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Abstract. The adoption of cloud computing by organizations of all sizes
and types in the recent years has created multiple opportunities and
challenges for the development of software to be used in this environment.
In this work-in-progress paper, the focus is on the latter part, providing
a view on the main research challenges that are created for software
engineering by cloud computing. These challenges stem from the inherent
characteristics of the cloud computing paradigm, and require a multi-
dimensional approach to address them. Towards this goal, a lifecycle for
cloud-based applications is presented, as the foundation for further work
in the area.

Keywords: cloud computing, software engineering, cloud-based applications,
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1 Introduction

The adoption of cloud computing has increased dramatically since the introduction
of the term only roughly ten years ago — despite the fact that the technologies
underpinning the paradigm have been around for a while longer. It is not an
exaggeration to claim that in one way or another cloud computing offerings and
associated technologies are currently being used by the majority of software-
intensive enterprises. A report of the Thoughtworks Technology Advisory Board
back in May 20151, for example, claims that “Organizations have accepted that

“cloud” is the de-facto platform of the future, and the benefits and flexibility it
brings have ushered in a renaissance in software architecture.” From the thousand
professionals from across sectors participating to RightScale’s annual survey in
early 2017 [31], 95% are reporting that the organization they belong to is already
using or experimenting with the use of cloud computing.

Under the umbrella of the same term, however, there are multiple service
delivery and deployment models on offer, succinctly summarized by NIST’s widely
accepted definition of cloud computing [24]. The availability of these options,

1 Thoughtworks Tech Radar, May 2015: https://assets.thoughtworks.com/assets/
technology-radar-may-2015-en.pdf

https://assets.thoughtworks.com/assets/technology-radar-may-2015-en.pdf
https://assets.thoughtworks.com/assets/technology-radar-may-2015-en.pdf
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in conjunction with the plethora of offerings by cloud providers like Amazon
Web Services (AWS), Microsoft Azure (MSA), and Google Compute Platform
(GCP), and software solutions for the deployment of private clouds such as the
ones from VMwware and OpenStack, create both opportunities and challenges
for software developers [4]. Even the process of selecting an appropriate provider
to run software on is an open research subject, with many of the issues identified
in [34] (e.g. lack of standardization in the QoS descriptions and lack of long term
performance prediction) still valid today. As such, there are still many issues
that need to be resolved with respect to how cloud computing is to be used for
software development.

At the same time, in the recent years the discourse on the best practices and
principles of software development, at least in the industry, has been affected
significantly by the introduction of two movements that have a co-dependence
relation with cloud computing. The first one is the use of DevOps technologies
and processes in order to bridge the gap between development and operations
of software [8] in order to streamline software delivery and maintenance. The
adoption of Continuous Delivery/Integration (CD/CI) techniques with frame-
works like Jenkins2 used together with deployment automation tools like Chef3

or Ansible4 shortens the development cycle dramatically and produces synergy
with agile-oriented software development practices. Allowing for the management
of multiple software stacks running in partially isolated containers inside one
operating system as made popular by Docker5, is the logical extension of this
approach: each architectural component is developed, deployed, managed, and
updated in its own software stack, and therefore it can follow a life cycle that
is loosely coupled with the overall system evolution. This principle is made
even more prominent in the second of the movements relevant to the discussion,
i.e. microservices [27]. While there is an ongoing discussion in the academic
community related to the actual innovation of microservices in comparison to
Software-Oriented Architecture, it is important to notice how the notion of
microservices have integrated into practice the use of design patterns, that so far
have been mostly adopted at a much lower level (e.g. the Gang of Four book).
Entries on microservices in Martin Fowler’s blog6, a popular grey literature source
for practitioners and researchers provides many instances of this phenomenon.

In summary, therefore, the virtualization of resources and their offering as
services, in conjunction with the DevOps movement, the containerization of
software stacks, and the use of microservices, have evolved the way that software
is developed, deployed, and managed over time. The key message of this paper
is that engineering software, and in particular software architecture, should
similarly evolve. For the purposes of scoping, the discussion is focused on how

2 Jenkinks: https://jenkins.io/
3 Chef: https://www.chef.io/
4 Ansible: https://www.ansible.com/
5 Docker: https://www.docker.com/
6 For example: Microservices, by James Lewis and Martin Fowler (March 2014): https:
//martinfowler.com/articles/microservices.html

https://jenkins.io/
https://www.chef.io/
https://www.ansible.com/
https://www.docker.com/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
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software engineering can change to incorporate cloud-related concepts by means of
introducing a cloud-based application lifecycle. In the absence of a widely accepted
definition of what constitutes one, and following the definition of service-based
applications discussed in [3], this paper uses a working definition of Cloud-based
applications (CBAs) as applications that rely on one or more cloud services in
order to be able to deliver their functionality to their users. CBAs therefore include
both cloud-enabled through migration [2] and cloud-native applications [21].

The rest of this paper is structured as follows: Section 2 identifies and presents
the most relevant challenges to cloud-based application engineering (definitely
not an exhaustive list). Section 3 transforms these challenges into a set of
requirements on lifecycle methodologies in this context. Consequently, Section 4
discusses a CBA lifecycle that aims to address these requirements as the basis for
future research. Finally, Section 5 compares the proposed lifecycle with related
approaches, and Section 6 concludes with a short summary and future work.

2 Major challenges

Following the NIST definition [24], cloud computing has the following essential
characteristics: (i) On-demand self-service: appropriate interfaces are offered
to consumers to access resources (computational, storage, network, etc.) in
an automated manner. (ii) Broad network access: resources are accessed over
the network by heterogeneous clients. (iii) Resource pooling: service providers
are enforcing a multi-tenant model of sharing the offered resources. (iv) Rapid
elasticity: the volume of accessed resources can be adjusted dynamically, by any
quantity and at any time. (v) Measured service: a metering mechanism is used
to ensure appropriate billing for the used resources in predefined periods of time.

The combinations of these characteristics has severe implications for the
software that is being developed in this environment. In the following we identify
four major challenges that arise due to these characteristics.

2.1 *aaS software model

The first major challenge stems from the fact that resources are offered in the
Everything as a Service (*aaS) model, usually affiliated with the categorization
of delivery models into Infrastructure (IaaS), Platform (PaaS), and Software
as a Service (SaaS), also covered by the NIST definition. The *aaS model is
a natural outcome of the first two characteristics (i.e. on-demand self-service,
and broad network access) and in many cases manifests as sets of RESTful APIs
that are exposing cloud resources through relatively simple CRUD operations.
While there has been lots of work on the subject of engineering service-based
applications in the last 15 or so years, see for example [3], the very nature of
service orientation still poses particular difficulties when used as the model for
accessing resources. These can be attributed to the following:
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Information hiding behind interfaces: exposing only the amount of information
that is absolutely necessary for clients to use a service is one of the fundamental
premises of service orientation [12]. However, this means that software developers
have to refer to documentation and help desks in order to understand the
boundary conditions and assumptions of consuming each resource.

Lack of control and observability over resource implementation: while the on-
demand self-service characteristic prescribes a degree of control over the consumed
resources by removing the need for administration on the part of the provider,
this control is in practice limited to the operations defined in the service API,
that for all practical purposes act as black box endpoints.

Distributed and heterogeneous environment: distribution transparency [33] is an
essential feature of offered services, creating an impression of homogeneity and
opaqueness to software developers. Nevertheless, the operating environment is
fundamentally distributed, irrespective of the type of software developed on it
(distributed or not).

Evolution driven by 3rd parties: as with many other API publishers in the past,
cloud providers reserve the right to change their supported APIs at any point in
time — and they do so for various reasons. As such, therefore, the evolution of
software developed on these solutions is at least partially driven by the cloud
providers and beyond software developer control.

Lastly, it can also be argued that while it is indeed possible to build all kinds
of systems on top of cloud resources, it is consistent with the model that it is
offered to design and implement them as services themselves. Doing so, however,
imposes its own challenges, as evidenced by the continuous research output of the
SOA community in the last two decades. The most thorny issue to deal with is
probably the design of the system as services itself; indicative of the complexity of
this issue is the fact that service design is identified as a major research question
in both the SOA research roadmap [30], and its revision ten years later [10].
Further work towards this direction is therefore required.

2.2 Multi-tenancy of resources

One of the most difficult challenges to address, especially for performance-sensitive
systems, is that of the shared nature of cloud resources due to its resource pooling
characteristic. In a sense it is exactly this characteristic which makes rapid
elasticity possible, while allowing for resource prices to be offered at very low
levels, as also discussed by the next challenge. In essence, multiple tenants sharing
the same infrastructure enable economies of scale for service providers and allow
for higher utilization on the provider side through smart scheduling of large
volumes of work load.

This sharing of resources, however, leads at the same time to performance
variability that is external to the application itself, and as such outside of the
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control of the system developer. The inherent variance of cloud offerings has
been documented in a series of publications: in [22], for example, large deviations
are reported for similar in specification offerings across different providers, while
significant variance can be observed in the same provider and offering within the
same day and week [32] (and even more so across different availability zones), or
even over the period of a year for the same offering [17]. Benchmarking cloud
applications is faced with multiple challenges, see for example [9], and [14], and
is not readily available as a tool for software developers to incorporate in their
toolset. Cloud monitoring [1] is therefore the most common way to check and
potentially address detrimental performance variation of the consumed resources.

2.3 Utility computing

One of the main reasons for the wide adoption of cloud computing is the transfer
of costs from the capital to operating expenses through its “pay as you go”
model [6], enabled by its measured service characteristic. In this sense, cloud
computing can be seen as an implementation of the utility computing vision [39].
Access to computational resources in this context is enabled in a utility-oriented
model, and results in the illusion of virtually infinite resources being available

— assuming of course a sufficiently large budget [6]. At the same time, the use
of economies of scale on behalf of the service providers, and the environment of
intense competition for a very lucrative market, result into continuously decreasing
prices for the offered resources. This creates the dynamics of a “race to zero”
phenomenon, especially in storage offerings7. Even if the provider prices are not
lower in comparison with operating one’s own data center as e.g. in the (already
outdated) analysis of [37], there are boundary conditions that still make the use of
cloud solutions favorable to the alternative [38]. The key is in the rapid elasticity
characteristic which allows for quick scaling to cope with dynamic demand,
resulting in compensation of potentially incurred losses throughout relatively
stable demand periods by means of serving requests that would otherwise be
over capacity and therefore resulting in loss of revenue.

Nevertheless, cheap is not the same as free of charge, and costs for successful
cloud-based companies might run so high that result in their profit margin
shrinking to the point of necessitating the migration to their own data centers
instead, as documented by the case of Dropbox8, a company that was famous
for running all their infrastructure on Amazon Web Services until that point.
Rightscale’s 2017 State of the Cloud survey [31] reports two stark findings that
are relevant to this discussion: first, mature adopters of the technology are more
concerned with cost management in comparison to beginners to it; second, only
a minority of companies actually take measures to minimize unnecessary costs
(e.g. VMs unnecessarily being active). Some notion of costs control is therefore
clearly necessary.

7 See for example: http://www.computerweekly.com/microscope/news/4500271376/
Whatever-the-cost-may-be-Cloud-price-war-continues

8 See https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-

cloud-empire/

http://www.computerweekly.com/microscope/news/4500271376/Whatever-the-cost-may-be-Cloud-price-war-continues
http://www.computerweekly.com/microscope/news/4500271376/Whatever-the-cost-may-be-Cloud-price-war-continues
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
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2.4 Distributed topology

There is no escaping the fact that systems developed in the cloud environment
are essentially distributed, and they need to be designed, implemented, and
operated as such [11]. Distribution in this case is both spatial and logical, but
distribution transparency [33] is partially violated when e.g. availability zones
are used for the deployment of applications. On top of this, there are multiple
offerings by service providers that can be used as alternatives to application
components [4] taking advantage of the on-demand self service characteristic.
For example, Database as a Services (DBaaS) offerings can replace completely
the data layer of an application, providing natively scaling mechanisms to cope
with increasing demand. An illustration of the range of possibilities available to
software architects is the case of Netflix, which combines AWS EC2, S3, EBS
and other offerings to run in a cloud-only environment9.

Adding to the size of the design space is the capability to use containers as the
means for enabling portability of application components and work loads across
cloud providers, essentially expanding on the characteristic of resource pooling.
In conjunction with a cloud orchestration layer, containers allow for a series
of benefits like reduced (infrastructure) complexity, automation of portability,
better governance and security management, transparent geographical domain-
aware distribution, and the ability to automate services that offer policy-based
optimization and self-configuration [23]. As a result, there are many possible
system configuration options that are optimal under different dimensions [4], e.g.
cost versus performance, creating exceptional challenges to software architects in
identifying the best solution for their needs.

3 Requirements on the Solution Space

From the discussion above it becomes quickly obvious that addressing these
challenges is a multi-faceted undertaking, and that their nature requires them
to be considered throughout the lifecycle of software systems operating in the
Cloud. The following constraints are, as a result, imposed on possible solutions
for engineering cloud-based applications (CBAs):

1. Irrespective of the purpose and type of software under consideration, cloud-
based application development should understand and incorporate service-
orientation concepts. In practice, this means that resources are accessed
through programmatic interfaces, which in turn favors the Infrastructure
as a Code approach [16] that homogenizes the way that the software itself
and its supporting infrastructure is managed. Across similar lines, cloud
service composition [18], which deals with the selection and aggregation of
cloud services in order to support software, needs to be considered on equal
grounds with (software) service composition [30] which delivers functionality
by combining independent services.

9 Netflix Global Cloud Architecture: https://www.slideshare.net/adrianco/

netflix-global-cloud, slide 26

https://www.slideshare.net/adrianco/netflix-global-cloud
https://www.slideshare.net/adrianco/netflix-global-cloud
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2. System design should incorporate the notion of dynamic topology. Topology
here refers to the software and infrastructure stack required to operate
the software artifacts under consideration, including e.g. the middleware
associated with them. The system topology is prone to change over time
due to changes a) in the system architecture, and b) refactoring of the
infrastructure that supports the system. This might also include incorporation
of new services by the same cloud provider or migration to another provider
and/or deployment model. In this sense, the resolution of system architecture
into concrete deployment models should rely on the generation of viable
topologies through e.g. graph transformations, as per [4], instead of explicit
modeling of alternatives. This is a consequence of the very large amount
of available alternatives during design when considering all the different
configurations available for each service type.

3. Self-* characteristics (e.g. self-management, -adaptation, -healing, -configura-
tion, etc.) are necessary to deal with the multi-tenancy induced performance
variability and its impact to the QoS of cloud-based applications. The intro-
duction of a MAPE-K (Monitor, Analyse, Plan, and Execute over a Knowledge
base) feedback loop [20] is a necessary and very common solution at this level
as the means to implement control [29], but the difficulty is in evaluating
the impact of individual cloud services, e.g. a DBaaS solution, to overall
performance. Furthermore, the connection between run-time observations
and design-time predictions is not sufficiently covered by the state of the
art [15], and further work is necessary towards this direction. End-to-end
performance measurement is potentially more important — alternative viable
topologies have to be evaluated after all against their actual effectiveness in
generating revenue — and in case of software delivered as services relatively
easy to implement.

4. An awareness of consumed resources on self-management level during both
development and operation of the system is essential. Cost models that cover
the various deployment models, e.g. an extension of the model for hybrid
clouds discussed in [19], should be used for this purpose. However, such
analysis cannot be only performed offline. Instead, design- and run-time cost
analysis should complement each other [25], resulting in cost models that are
dynamically updated by actual billing data received from the cloud provider.

In the following we introduce a lifecycle model for cloud-based applications
that incorporates the constraints discussed above as the means for defining in
the future a holistic framework for engineering cloud-based applications. For this
purpose the lifecycle model of service-based applications as discussed in [3] is
used as the inspiration for this work.

4 Cloud-based Applications Lifecyle

4.1 The Phases of the Lifecycle

Figure 1 illustrates the proposed lifecycle of CBAs. Before proceeding with
explaining the stages of the lifecycle, it needs to be pointed out that for the
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Fig. 1. The Lifecycle of Cloud-based Applications

purposes of this discussion, there is no clear design- and run-time (or development
and operation, respectively) distinction, but more of a spectrum of activities
spanning between them. The everything as a service and dynamic topology
challenges affect more the one end (design), while performance variability and
cost awareness more the other (run time). However it is impractical to attempt
to assign them to specific stages of the lifecycle. The proposed CBA lifecycle
(as shown in the figure) reflects this by intentionally not identifying when the
transitions between stages are to take place, but only the transition relations
between them. In this respect, the presented lifecycle is in accordance with the
main principles of the DevOps movement [8] which unifies the different stages of
software lifecycle.

Looking now at the figure, and starting from its top left part, the highest
stage of the lifecycle consists of the service portfolio for the application, i.e. the
collection of services that implement the functionalities offered by the application.
Such services could be composed out of other services, belonging either to
the same portfolio, or being external to it, as per the well established SOA
practice [30]. Following the same principles, the service portfolio is the outcome
of a service identification phase that connects higher level requirements and
business operations into functionalities to be exposed by the application as
services. In terms of how these services are mapped into software components and
its supporting middleware, a decomposition into structural tiers can be applied
using one of the methodologies discussed in [3]. In principle, non-application
specific software components should be excluded from this process, resulting into
a system architecture expressed as a set of α-topologies [4] (top center of Fig. 1).
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The intentional exclusion of the underlying software stack from this stage (except
where it cannot be avoided as e.g. in the case of customized middleware that
needs to be rolled out together with the application) allows for flexibility in the
transition to the next stage, that of viable topology alternatives, each one of which
represent the whole software stack and its relation to the application components
(bottom half of Fig. 1). Viable topology models encapsulate the various types
of cloud services (e.g. VM or DB as a Service in the figure) that are part of the
infrastructure supporting the software stack of the application.

As discussed above, and due to the numerous cloud service offerings currently
available, a large number of viable topology alternatives potentially exist for
each application. Selecting between them can be, and usually is interpreted as
an optimization problem for which there are many techniques available (see [4]
for further discussion). However, an alternative approach would be to look
into this situation as an exploratory search problem instead. In this context,
identifying a unique optimal solution in advance would be of not such interest
as in transitioning between different alternative solutions in order to identify
the optimal for the current conditions. For this purpose, the overall consumer
utility and revenue generated by the viable topology currently used needs to
be evaluated by comparing the continuously updated cost and performance
models for each viable topology against the Service Level Agreements (SLAs)
and budget associated with the service portfolio by the application owners. This
approach requires, of course, that costs for the transition between viable topology
models are negligible in comparison with the overall revenue generated by the
application. Using a microservices-based approach for the decomposition of the
service portfolio into isolated sub-systems before generating viable topologies
would actually minimize such costs, since the finer granularity of each system
tier would mean less components to consider (and potentially migrate) on the
topology level. Alternatively, if this transition is deemed too costly and/or if
the search space of viable topology alternatives has been exhausted then it is
meaningful to revert to the previous stages of the lifecycle and either decompose
the service portfolio as different α-topologies, or even refactor the service portfolio
itself, repeating the cycle as necessary.

In order to add the necessary self-* mechanisms that regulate decision making
during system operation a distributed MAPE-K model can be used [20], as
discussed in Section 3. Considering the lifecycle of Fig. 1, however, it becomes
clear that a hierarchical organization of controllers is better fitting. On the bottom
level, it is possible to view the architectural components of each viable topology
as its own autonomic element. However, all such elements need to coordinate
with a controller on the level of the viable topology which is responsible for
changes inside it. Another level of controllers is necessary to be added at the
level of α-topologies when more than one viable topologies are active for a given
decomposition. A similar process is repeated to the level of the service portfolio,
and is used in order to trigger the transitions between stages of the lifecycle. Since
the degree of automation that is feasible and available can vary among these
transitions, it might become necessary to involve architects and system designers



10 Vasilios Andrikopoulos

M

A

P

E K

Identify
Services

Service
Portfolio

Decompose into 
Architecture

a-Topology

Generate 
AlternativeViable TopologyDeploy & 

Operate

M

A

P

E K

M

A

P

E K
M

A

P

E K

Service 
Identification

Service 
Decomposition

Topology 
Generation

Deployment & 
Operation

Fig. 2. The Phases of the CBA Lifecycle, with Activities Implemented as MAPE-K
Loops and Information Flowing Between them

for this purpose. As such, design activities could be triggered by operations, as
much as operational models could be derived during development.

Figure 2 summarizes and illustrates this discussion by identifying the concrete
phases of the proposed lifecycle (Service Identification, Service Decomposition,
Topology Generation, and Deployment & Operation) and the activities that take
place in each phase (Identify Services, Decompose into Architecture, Generate
Alternative, and Deploy & Operate, respectively). Each of the activities in
the figure is implemented by a MAPE-K controller which is responsible for
monitoring the situation at its level (e.g. α-topology), analyzing its behavior (is
the application within its SLA and budget constraints?), planning for an action if
necessary (deciding whether to transition into a new viable topology by moving
into the Generate Alternative phase, or into a new alpha-topology by escalating
the decision upwards into the Service Identification controller), and executing the
decided action. Rules for the decision making, and the outcomes of past decisions
are persisted in the knowledge base component of the controller at each level in
order to learn over time about the effectiveness of each decision in a given context.
Figure 2 shows the flow of information between the controllers of each level as
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dashed arrows between the loops. Bottom-level controllers (i.e. the controllers of
the components in a viable topology in the Deployment & Operation phase) can
only decide to escalate the need for an adaptive action upwards in the hierarchy,
while top-level controllers (i.e. the controller at the level of Service Identification)
can only trigger transitions into a lower level through the next phase.

4.2 An Example Instantiation

Figure 3 shows an example instantiation of the proposed lifecycle in the case
of a Web Shop application. The service portfolio for the Web Shop consists
(among others) of two client-facing services: BuyProduct and ListProducts, the
former of which is composed out of services RegisterSale and PrepDelivery, while
the latter one is using the internal service GetInventory. The BuyProduct service
can be decomposed into a classic three-tier architecture, resulting in the top
α-topology in the figure; for ListProducts a simpler two-tier architecture with
separate (eventually synchronizing) databases is used. Staying with the first
α-topology we can see that there are at least two alternative viable topologies to
consider: in the first a DBaaS solution like AWS RDS10 is used for the Database
tier, operating in a cluster mode for scalability purposes. The front- and back-end
are implemented as a web application deployed inside an App Server like JBoss11

10 Amazon Relational Database Service: https://aws.amazon.com/rds/
11 JBoss: http://www.jboss.org/

https://aws.amazon.com/rds/
http://www.jboss.org/
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that is scaled horizontally by running inside multiple VMs in a service like AWS
EC212. A Load Balancer solution is deployed inside its own VM for traffic routing.
An alternative viable topology for the Web Shop consists of deploying the front-
end in its own dedicated VM cluster, decoupling the stateless functionalities of the
back-end and deploying them separately in their own stack, and bundling the rest
of the back-end into VMs combining application servers and database instances
that replace the DBaaS solution (but which still need some logic to synchronize).
Such transformations require of course much more detailed α-topologies than the
examples in Fig. 3 that are kept to a minimum for illustration purposes, but are
nevertheless possible to be largely automated given an appropriate knowledge
base of reusable software stacks expressed e.g. as γ-topologies [4].

4.3 Evaluation & Discussion

Looking at the requirements identified in Section 3, it can be seen that the
proposed lifecycle indeed satisfies them by: (i) seamlessly integrating service-ori-
entation concepts both at the level of the artifacts that it deals with (applications
as service portfolios), and at the level of cloud services used as the underlying
resources for the deployment and operation of an application; (ii) building around
the dynamic nature of application topologies by decoupling their α-topology from
the actual viable topology and relying on the generation of the latter on demand
to cope with changes in the perceived behavior of the application through the
hierarchy of MAPE-K controllers; (iii) implementing the foreseen self-* char-
acteristics by means of the same controllers; and finally, (iv) by introducing
awareness of the consumed resources across the different phases of the lifecycle.
However, validation of the lifecycle in more complex scenarios than the example
presented in the previous through e.g. field studies, is the subject of future work
since it is related with the development of the necessary tooling to support it
(see Section 6). Furthermore, and in terms of limitations to the presented work
there are two main issues not covered by the discussion: quality assurance for the
developed software, and security and privacy. Both of these issues are in practice
cross-cutting concerns running in parallel to the lifecycle, and while it can be
argued that they could therefore be considered external to it, they nevertheless
need to be examined further in future works.

5 Related Work

There are a number of mature works in the literature focusing on the complete
lifecycle of cloud-based applications that are related to the lifecycle proposed
here. In their majority however they address only parts of the requirements
discussed in Section 3. For example, the Cloud Application Lifecycle Model
(CALM) and its supporting framework is introduced in [35] without a provision
for self-* characteristics or cost awareness. The same holds for [26] that discusses

12 Amazon EC2: https://aws.amazon.com/ec2/

https://aws.amazon.com/ec2/
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a cloud application lifecycle from a service governance perspective, and for the
lifecycle presented in [28] which builds around the notion of blueprints as abstract
templates for services to be published in application marketplaces. The work
in [36] uses a centralized repository as the means to manage knowledge related
to the phases of the lifecycle, but without the notion of cost awareness.

In further related work, the MODAClouds project relies on a Model-Driven
Development-based approach to support the lifecycle of cloud-based applica-
tions [5]. The project builds on the models@runtime architectural pattern to
connect run-time and design-time [13] and provides an IDE for the development,
provisioning, deployment, and adaptation of CBAs. Nevertheless, the CBA lifecy-
cle itself is only implicitly defined by this approach. The work in [7], part of the
PaaSage project, discusses a service-based application lifecycle that emphasizes
a multi-cloud deployment model. When compared to this work, the approach
discussed in [7] attempts to (dynamically) optimize provider selection considering
also monitoring data without however taking into account the possibility to
re-distribute the application as part of this process.

6 Conclusions & Outlook

In summary, this work is based on the observation that the adoption of cloud
computing, in conjunction with the advancements in software development in
the form of DevOps, container-based software management, and microservices,
requires an evoluationary step in software engineering practices, and especially in
the area of software architecture. The challenges that drive this evolution are the
everything as a service model in which cloud resources are offered, the multi-tenant
environment created by resource pooling, the need to incorporate cost awareness
due to the utility-based cost model for cloud computing, and the abundance of
available offerings that can easily and efficiently replace parts of the software
stack of each application. These challenges transform the lifecycle of cloud-based
applications into a series of loops that transition between sets of application
functionalities encapsulated as services, abstractly defined but application-specific
architectural models, and software stack models that seamlessly incorporate cloud
services. These transitions are triggered by controllers that coordinate within
and across the various stages of the lifecycle.

Future work focuses on developing the methodologies and instrumentation
necessary in order to support the proposed lifecycle, with a refinement of its
various stages as an essential part of this process. A complete IDE in the manner
discussed by the MODAClouds approach [5] is identified as the means to achieve
this. Such an environment would further allow for field study-based validation
of the lifecycle through collaboration with the industry. The development and
integration of the IDE with the MAPE-K controllers as the implementation of
the lifecycle phases-related activities is a critical component towards this effort.
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