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Abstract: Efficient utilization of resources plays an important role in the performance of large scale
task processing. In cases where heterogeneous types of resources are used within the same application,
it is hard to achieve good utilization of all of the different types of resources. By taking advantage
of recent developments in cloud infrastructure that enable the use of dynamic clusters of resources,
and by dynamically altering the size of the available resources for all the different resource types, the
overall utilization of resources, however, can be improved. Starting from this premise, this paper
discusses a solution that aims to provide a generic algorithm to estimate the desired ratios of instance
processing tasks as well as ratios of the resources that are used by these instances, without the
necessity for trial runs or a priori knowledge of the execution steps. These ratios are then used as
part of an adaptive system that is able to reconfigure itself to maximize utilization. To verify the
solution, a reference framework which adaptively manages clusters of functionally different VMs to
host a calculation scenario is implemented. Experiments are conducted based on a compute-heavy
use case in which the probability of underground pipeline failures is determined based on the
settlement of soils. These experiments show that the solution is capable of eliminating large amounts
of under-utilization, resulting in increased throughput and lower lead times.

Keywords: cloud computing; big data processing and analytics; heterogeneous cloud resources;
industrial case study

1. Introduction

Developments in cloud computing have allowed large improvements in the utilization of
resources. The time taken to acquire new resources in the cloud is currently on a level at which
new resources can be acquired in the order of minutes. Furthermore, the pay-per-use model provides
an increasingly affordable opportunity for computational resources [1], especially when the demand
for resources depends on dynamic or ad-hoc computational tasks. These developments in cloud
computing enable operations engineers to change the size of their resource cluster while applications
are running. In research fields, like logistics and manufacturing, the efficient utilization of resources is a
recurring research goal. In this paper we used the ideas behind the just-in-time production philosophy,
as used in the production process of Toyota [2] for the ‘production’ of computational resources.

Managing different types of functionally different resources is, however, still a difficult and mostly
manual process. Most cloud providers have the functionality to easily scale a group of resources based
on utilization thresholds [3,4], but adaptive alteration of the size of resource groups based on the
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application demand is not available, especially when functionally different resources are used in one
integrated cluster hosting one application.

Estimating the idle-time of resources by determining the demand of resources at runtime and
making decisions on the size of the resource cluster will lead to lower lead times and thus, lower costs.
For instance, compute intensive data processing applications benefit from an automated decision
process regarding the allocation of resources. This paper, proposes an approach to adaptively provision
different types of resources at runtime to be used by compute intensive applications. It uses the
determination of ratios in consecutive steps in an application as a basis combined with a control loop
that continuously applies the calculated ratios. The approach is worked into a working reference
platform which is evaluated using an industrial use case and compared against an approach using
Apache Spark. The proposed approach is able to effectively reduce the under-utilization of resources
in a cluster.

The rest of this paper is structured as follows. Section 2 discusses related work. Section 3 describes
the solution. Section 4 discusses the reference architecture. Section 5 presents the experiments and
results. Section 6 gives the concluding remarks.

2. Related Work

Most of the research on improving the utilization of resources for data processing has assumed
that homogeneous resources are used for processing, as this provides the best performance due to the
lack of need for communication between different resources.

To have a good basis for processing data through multiple steps in a distributed fashion, Dean and
Ghemawat [5] published their MapReduce programming model. This model is used in different
solutions aiming to process data, like Hadoop MapReduce and Apache Spark. To support the
heterogeneous resources in the MapReduce model, Ahmad et al. [6] introduced Tarazu. This solution
uses functionally compatible resources for which resources are used with different performance
specifications. A cross-platform resource scheduling middleware for Apache Spark, proposed by
Cheng et al. [7], uses three mechanisms to reduce the reservation delay of resources: reservation-aware
executor placement, dependency-aware resource adjustment, and cross-platform locality-aware task
assignment. This middleware focuses on reducing resource utilization for multi-tenant Apache
Spark clusters.

Different possibilities exist to schedule tasks over a distributed set of worker instances. Work
stealing [8] is a proven concept in task scheduling that originally focused on multi-core processors.
However, for instances spread across different resources, this algorithm also works very well [9].
Other options use a central master that provides tasks to workers who are able to process new
tasks, like in the MapReduce model [5]. Many of the scheduling algorithms assume workers are
homogeneous with more or less the same performance. Schedulers exist for functionally compatible
workers for MapReduce that take into account this heterogeneity [10]. Several publications [11–13]
have attempted to balance the throughput rates between subsequent steps. By using greedy algorithms,
the re-partitioning of data or back-pressure congestion is avoided. By limiting the need for intermediate
buffers, the resource utilization of individual steps is not wasted by filling up buffers, but the steps
will idle indicating that the successive step is not performing at the same throughput rate. An adaptive
scheduling approach for Spark Streaming was proposed by Cheng et al. [14]. In this approach, the
scheduling parameters are adaptively adjusted to improve performance and resource efficiency by
using different policies based on the data dependencies. Another scheduler approach was proposed by
Pace et al. [15] which interacts with a cluster management back-end in order to schedule and allocate
resources to applications.

Provisioning based on the utilization of resources and the application running on the resources is
covered in different types of research. By using different algorithms to start and stop homogeneous
or functionally different resources combined with a just-in-time scheduler, the available cluster of
resources is used optimally [16]. Another approach uses deadlines to make sure tasks are finished on
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time [17]. Machine learning can also be used to predict how the demand develops over time. Using
these predictions, provisioning steps can be executed to match the demand [18,19]. When optimizing
only against costs, Xu et al. [20] proposed a solution that provisions resources based on their pricing.
By exploiting changes in pricing over different geographical data center locations, cheaper resources
can be provisioned, reducing the need of optimizing the resource utilization. In order to reduce the
energy demands of big data applications, Maroulis et al. [21] proposed an Apache Spark scheduler
that changes the clock speed of CPUs to better match the applications run on the Spark cluster.

Having a dynamic resource cluster that is able to scale different parts of the cluster requires
management of the resources. Different aspects of this management were discussed by Peinl et al. [22].
Researchers at Google published their approach [23], the Google Borg platform, for managing their
cluster which includes hundreds of thousands of running jobs across many thousands of machines.
When executing tasks distributed on a cluster of resources, the instance processing data have to behave
similarly across the cluster. In the field of scientific work, flow efforts [24–26] have been made to isolate
processing instances by isolating them in containers. These methods supply the ability to reproduce
experiments and run experiments on top of different hardware platforms in a consistent way.

The current adaptive provisioning of resources is mainly focused on scaling a resource type up
or down based on the request load of the applications running on the resources. For batch-based
applications, most likely, all of the requests will be available at the beginning of the application. This
makes it harder to scale up resource types, as, in most cases, this would mean that the amount of
instances would increase heavily with deployment of a processing chain. As a result, the overheads of
provisioning resources increase, which is harmful when the costs and the lead time of the processing
chain are considered important features of the processing chain. For this reason, this work provides a
new algorithm to estimate the demand for resources which does not depend heavily on a threshold
value for utilization.

For heterogeneous clusters, most research has been based on heterogeneous hardware that is able
to run all tasks, where the different resource types have different performances. This approach makes
it easier to schedule tasks, as all tasks are able to run on each resource. In this work, the focus lies on
heterogeneous clusters based on the software layer, where applications can only run on one of the
resource types.

3. Distribution Calculation Solution

For clarification purposes, first, the relevant terms for this work are explained. The type of
applications that this work is aimed at are processing chains, which are formed by chaining processing
steps so that the output of a step is linked to the input of the next step in the chain, except for the first
and last steps. Processing steps are, in turn, formed by a number of processing step instances. Tasks
are single entities that contain the data that are processed at the processing step instances. In Figure 1,
an overview is shown with an example of a processing chain that will be used throughout this paper.

Figure 1. Flow of tasks through a processing chain.
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The rest of this section explains our approach to reducing the under-utilization of resources in a
heterogeneous computational cluster. First, a general idea is described on how to classify successive
steps in a processing cChain. Subsequently, the optimal distribution of processing steps is calculated
which, in turn, is used to calculate the number of worker instances necessary. Last, the calculation of
the number of resources needed for each resource type is performed. To provide more clarification,
a worked out example of the solution is provided in Section 3.4.

In order to estimate the optimal distribution of resources, we need to make sure that none of
the steps in the Processing Chain are under- or over-producing. As this is the cause for resource
under-utilization when processing steps require different resources. Looking at the structure of the
applications used in this paper, it can be observed that computations are composed of a series of
steps that are chained together by attaching the output of one step to the input of another step. Steps,
therefore, produce the input for a step that is consuming that input. Because the steps are chained, one
step is both a consumer and a producer, except for the first and the last steps in the chain. To investigate
the efficiency of processing chains, we identified the metrics based on the notion that the input is
split up into relatively small tasks, shown in Table 1, that can help us to determine the utilization of
individual steps in the chain. The metrics were gathered for a given interval, the PublishWait and
ConsumeWait metrics were averaged over this interval for all tasks processed in that interval.

There are three categories to which a pair of Processing Steps can be classified with respect to the
rate of production and consumption of data:

• Fast producer, slow consumer: The producer is producing at a higher rate than the consumer is
able to consume.

• Slow producer, fast consumer: The consumer is consuming at a higher rate than the producer is
able to produce.

• Balanced producer and consumer: The rates of producing and consuming are balanced.

Table 1 provides an overview of the classification of a pair of processing steps. Combining the
metrics from Table 1 and these categories, a pair of processing steps can be classified with respect to
the flow of input/output data between them. An overview of the metrics and categories is shown in
Table 2. The pathological state is a special category to which two steps in normal operations cannot
reach. For example, there is no logical explanation for two steps waiting on each other, as the publishers
local buffer is full and the consumer is waiting for tasks to appear in that same local buffer.

Table 1. Processing chain metrics.

Metric Code Formula Description

PublishWait Twait
Twait+Tprocessing

The ratio of wait time to publish a task in the local buffer (Twait)
of producing processing steps, to the processing time of that task
(Tprocessing).

BufferChange # published tasks
# consumed tasks

The ratio of the number of tasks being published to the local buffer to
the number of tasks transferred to consumers.

ConsumeWait Tidle
Tidle+Tprocessing

The ratio of the wait time for a new task (Tidle) to the processing time
of that task (Tprocessing) for consuming processing steps.
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Table 2. Producer/consumer categorization, indicating in which category the producer and consumer
belong to with the following possibilities: fast producer slow consumer (FP-SC), slow producer fast
consumer (SP-FC), balanced producer and consumer (Balanced), and pathological states (-).

BufferChange

PublishWait ConsumeWait <1 ≈1 >1

≈0 ≈0 SP-FC Balanced FP-SC
≈0 >0 - SP-FS -
>0 ≈0 - FP-SC -
>0 >0 - - -

3.1. Processing Chain Distribution

When the processing steps are categorized into the different states, determination of the ratio
between the steps should occur. For this, the currently deployed ratio between the processing steps is
needed; this is provided by Equation (1), where n is the number of instances for either the producing
processing step or the consuming processing step:

r = nprod : ncons. (1)

Calculation of the new ratio depends on the category that the pair of processing steps falls into
(see Table 2) as well as the BufferChange. The category determines whether there should be more or
less publishers relative to consumers, and the buffer change indicates whether or not the buffer is full
or empty. If the buffer is not full and not empty, the change in the buffer can be used to determine the
optimal ratio between the processing steps. The BufferChange is 2 when the producers process 2 times
more tasks than the consumers is consuming, and it is 0.5 when the consumers consume tasks 2 times
faster than the producer is producing. Multiplying the number of consumers by the BufferChange
results in an increase in workers when the producer is faster and a decrease of workers when the
consumer is faster, which is the goal of calculating the ratios between processing steps.

When the buffer is full, either the producer has a significant wait percentage to publish tasks in
its buffer, or the consumer is exactly on par with the production of the producer. In cases where the
producer is waiting, it makes sense to lower the amount of producer instances with the percentage
that the producers are waiting on average. The same holds for cases where the buffer is empty and
consumers are waiting for significant amounts of time for new tasks; in these cases, the number of
consumer instances should be lowered.

In Equations (2)–(6), this description is translated into formulas that can be used in algorithms
later on:

Fast producer ∧ δ ≈ 1 : r′ = nprod · (1− pw ) : ncons (2)

Fast producer ∧ δ > 1 : r′ = nprod : ncons · δ (3)

Slow producer ∧ δ ≈ 1 : r′ = nprod : ncons · (1− cw ) (4)

Slow producer ∧ δ < 1 : r′ = nprod : ncons · δ (5)

Balanced ∧ δ < 1 : r′ = nprod : ncons (6)

where δ = BufferChange, pw = PublishWait, cw = ConsumeWait
With the new set of ratios for the processing chain, the distribution can be calculated with an

recursive function, as displayed in Equation (7):
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Dn = Dn−1 · r′ (7)

D0 = 1 (8)

where D is the distribution of processing steps
For each processing step in the processing chain, the position in the chain determines which D

belongs to that Processing Step, e.g., for the configuration shown in Figure 1, this is 3:2:3. The first
processing step has an index of 1, and the last processing step has an index of N. For clarification, D is
normalized against the sum of D, following Equation (9):

D̂ =
D
|D| . (9)

The normalized distribution, D̂, now contains the fraction of instances that a processing step
needs with respect to the total number of instances.

3.2. Processing Step Instance Counts

The normalized distribution, D̂, can be used to determine the amount of instances that each
processing step is to be assigned that will improve the resource utilization. For this, the resource
utilization metric Utilization is needed. This metric defines the utilization of a resource, and, therefore,
the ability of that resource to handle more tasks. To be able to use the utilization in formulas, a function
was introduced in Equation (10) that returns the fraction of utilization of an input processing step,
which corresponds with the utilization of the resource that is needed for that processing step. The
utilization measured is the utilization at the moment of calculation, with possibly a small interval to
overcome sudden peaks or drops in the utilization depending on how the metrics are gathered:

U(p) = utilization of resource needed for p. (10)

This function is used to determine the scaling factor that results in the total amount of instances
that at least can run on the specific resource, by dividing the current amount of instances by the
utilization fraction. As the current amount of instances do not produce more load than the current
utilization fraction, scaling the amount of instances by 1 over the utilization of the instances that
cannot produce more than the current load as U(p) · 1

U(p) is always equal to 1. Equation (11) shows
the calculation of the scale factor which is determined for all processing steps that have an higher
distribution factor than that currently deployed:

sp =
1

U(p)

s = min
∀p

sp

pscale = argmin
∀p

sp.

(11)

As all of the processing steps are scaled based upon the same scale factor, the lowest scale factor
should be used, as this is the scale factor that leads to no over-utilization of the processing steps,
because, when a scaling factor is chosen not to be the minimum, scaling the resource with the highest
utilization with this factor will lead to an utilization higher than 1. With these factors calculated, the
new processing step instance count can be determined. By following Equation (12), the new set of
processing step instance counts can be calculated:
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N′pscale
= Npscale · s

N′ = N′pscale
· D̂

D′pscale

(12)

where Np = # current instances of step p.
This set, N′, can now be used to scale the processing step instance. As N′ contains fractions,

the set must most likely be converted to a set of number of workers by either rounding, ceiling, or
flooring the fractions, depending on the characteristics of the processing step instances and the kind of
resources used in the processing chain.

3.3. Resource Provisioning

At this stage, the processing step instance count is stable, meaning that the resource usage is
fairly constant, so the optimal resource distribution can be determined. By multiplying the number of
resource instances by the utilization factor, the optimal number of instances for the current situation
can be calculated. As the number of processing step instances, N′, will not use more than 100% of
the resources, none of the resources are over-utilized at this moment. As for the calculation of the
normalized distribution of processing step instances, D̂, for the resource distribution, a normalized
distribution is used to make the calculations using the distribution easier, as shown in Equation (13):

R′r = Rr ·Ur

R̂ =
R′

|R′|
(13)

where Rr is the # current instances of resource r, and Ur is the utilization of resource r.
To determine the extent to which the resource instances should be scaled up or down, a budget per

time unit, B, of the maximal resource allocation is needed. Calculating the number of resource instances
that is needed to create an even resource utilization is a simple task, as shown in Equation (14):

R′′ = R̂ · B. (14)

This new optimal resource instance count, R′′, is fractional, as resources are most likely scaled
based on integers, so the fractions have to be converted to corresponding integers.

3.4. Example

To clarify the formulas, a synthetic scenario was worked out based on a car manufacturing
process. This scenario has a logical heterogeneity in the resources and provides a clear abstraction
of our problem space. In the scenario, four processing steps were distinguished: the dealer, body
processing, painting, and assembly. In Table 3, the metrics of the processing steps at a given point are
shown, when, in the current configuration, there is an imbalance of resources.

Table 3. Scenario metrics.

Processing Step Instances PublishWait BufferChange ConsumeWait

Dealer 1 0.75 ≈1 0.25
Body processing 20 0.1 ≈1 ≈0

Painting 5 ≈0 1.2 ≈0
Assembly 10 ≈0 ≈1 ≈0

Each of the processing steps uses a distinct resource, so four utilization metrics are shown in
Equation (15) with their corresponding scale factors.
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U(Dealer) = 0.1 pDealer = 10;

U(Body processing) = 0.4 pBody processing = 2.5;

U(Painting) = 0.2 pPainting = 5;

U(Assembly) = 0.3 pAssembly = 3.33.

(15)

The initial ratios were determined from the number of instances from Table 3, as shown in
Equation (16):

r1 = Dealer→ Body processing = 1 : 20;

r2 = Body processing→ Painting = 20 : 5;

r3 = Painting→ Assembly = 5 : 10;

r4 = Assembly→ Dealer = 10 : 1.

(16)

Now, given the initial ratios and the metrics at a certain point in time, the new processing step
distribution was calculated. All the ratios are in the form of 1 : n to improve readability in the following
equations. Equation (17) shows these calculations and their results:

r′1 = 1 · (1− 0.75) : 20 = 0.25 : 20 = 1 : 80;

r′2 = 20 · (1− 0.1) : 5 = 18 : 5 = 1 : 0.2778;

r′3 = 5 : 10 · 1.2 = 5 : 12 = 1 : 0.4167;

r′4 = 10 : 1 = 1 : 0.1.

(17)

Given these ratios, the distribution of processing steps was determined, as shown in Equation (18),
where the values of D′n correspond to the consumers of each pair of processing steps. So, the value of
D′1 corresponds to the body processing instances, and D′2 corresponds to the painting instances. The
last value, D′4, corresponds to the consumers of the first processing step, namely, the dealer:

D′1 = 1 · r′1 = 80;

D′2 = D′1 · r′2 = 22.222;

D′3 = D′2 · r′3 = 9.259;

D′4 = D′3 · r′4 = 0.926.

(18)

Normalizing this distribution gave the fractions of each processing step, as shown in Equation (19),
which sums up to 1. This indicates that, in this case, 71.17% all of the processing step instances should
be of the body processing type:

D̂1 = 1 · r′1 = 0.7117;

D̂2 = D′1 · r′2 = 0.1976;

D̂3 = D′2 · r′3 = 0.0824;

D̂4 = D′3 · r′4 = 0.0082.

(19)

Once the new processing step distribution had been calculated, the processing step instance count
could be determined. First the starting point for the scaling was determined by looking at the resource
that is utilized the most, which is the resource belonging to the body processing step, as shown in
Equation (20):

s = min
∀p

sp = 2.5

pscale = argmin
∀p

sp = Body processing.
(20)
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Filling in Equation (12) with the calculated values gave the new processing step instance
distribution. Using Equation (21), the values of the desired instance counts were calculated:

N′pscale
= Npscale · pscale = 20 · 2.5 = 50

N′ = N′pscale
· D̂

D′pscale

= 50 · {0.0082, 0.7117, 0.1976, 0.0824}
0.7117

= {0.579, 50, 13.883, 5.789}.

(21)

As these numbers are fractional and it is most likely that we could not use half a paint gun, these
values were rounded up to the next integer. Table 4 shows the number of processing step instances
that should be provisioned.

Table 4. New instance counts.

Processing Step # Instances

Dealer 1
Body processing 50

Painting 14
Assembly 6

When the number of instances for each processing step stops changing, the resources can be
scaled accordingly by looking at the utilization fractions and using Equations (13) and (14).

4. Reference Platform Architecture

Using the solution for calculating the distributions of processing step instances as well as resources,
we now discuss a reference platform architecture that incorporates the concepts of the previous section
combined with a control loop that continuously applies these concepts. We use micro-batching in
order to retrieve application metrics in a timely manner. This enables us to demonstrate a proof of
concept that is able to evaluate these concepts.

The high-level architecture of the platform, shown in Figure 2, gives an overview of the
components in the platform and the relationships between these components. The logical center
of the platform is the monitor, which monitors running processing chains and make decisions for
the provision of processing step instances as well as resource instances. The monitor has no direct
notion of the resources and processing step instances; separate managers (i.e., resource or processing
step managers in Figure 2) provide a layer of abstraction for these components. This allows letting
these managers take care of the low-level matching between processing step instances and resources
and letting the monitor take decisions on the global overview of the processing chains. It also offers
the option to change resource managers or processing step managers to other vendors.

The monitor orchestrates processing chains, by initializing, monitoring, and modifying processing
chains initiated by users, based on the algorithms proposed in Section 3. Dynamic provisioning is
provided by the monitor, as this component gathers the metrics of the resources and the processing
step instances. The monitor is, therefore, responsible for the control loop for the processing chain,
specifically, monitoring and controlling the processing chain. The architecture of the run-time
monitoring and coordination, as shown in Figure 3, provides a solution for the distribution and
scheduling of tasks. Furthermore, the run-time architecture provides information on how the
processing chain metrics are gathered.
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Figure 3. Run-time task distribution.

Processing chains delegate the execution of computations to processing step instances to execute
functions on input data. In order to manage the distribution of tasks across processing step instances,
processing chain mediators are introduced. These mediators are responsible for distributing the
tasks that they receive to processing step instances for the next processing step. To prevent the
mediators becoming a bottleneck when all data travels through them, only task descriptions are
shared with the mediators. These task descriptions are small packages, indicating that the processing
step that published the task description has a new task available. Processing step instances have the
responsibility of transferring the data between each other. The reason that mediators are situated
between the processing step instances is because the monitor is required to know how tasks are
traveling through the system so that it has an accurate view of the running processing chain. The
mediators share the knowledge they have about the processing chain section they are responsible for.
In Figure 3, the communication steps between the processing step instances and mediators is shown.
The dotted lines indicate that the amount of network traffic used is small compared to the solid line.
The communication over the dotted lines are meta-data of the tasks. The time it takes to transfer and
process these messages is a couple of magnitudes lower than the time it takes to transfer and process
the actual tasks.
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The control loop that periodically decides on the distribution of processing step instances and
resource instances is mainly situated at the monitor, which controls the number of instances for both the
processing steps and the resources. To be able to calculate new instance counts requires the algorithm
discussed in Section 3, which provides run-time feedback based on the number of instances deployed
at that moment.

The processing chain metrics are gathered for all partitions during the application run-time.
Therefore, we use micro-batching to ensure that the processing time of single partitions is relatively
low. The interval of the control loops depends mainly on external factors from resource providers, as
the time to provision resources depends heavily on the types of resources. Furthermore, the gathering
of metrics from the resources introduces additional delays, as the metrics provided by the resource
providers are not instantaneous.

5. Experiments

To evaluate the effectiveness of the solution and the architecture, a scenario from the Netherlands
Organisation for Applied Scientific Research (TNO) project sensor-technology applied to underground
pipeline-infrastructures (STOOP) [27], with an existing approach using Apache Spark is used. In this
project, sensor-technology was used to estimate the chance on underground pipeline failures based on
the land subsidence around pipelines in the future. An example of the scenario used in the STOOP
project is shown in Algorithm 1. In this scenario, the underground pipeline is divided into segments
that are calculated individually. For each segment, a Monte Carlo algorithm is used to variate the
model inputs. For each variation, the region layout is generated which is used as input for the land
subsidence model and the pipeline soil spring model. The results of these models are combined and
serve as inputs for the underground pipeline stress model; based on these stresses, a Boolean output is
given that indicates whether or not the pipeline is likely to fail.

Algorithm 1 STOOP model pseudo-code

Input: Segmented pipeline information
for all segments do

while not simulation.converged() do . Process until simulations converge
variations← generate random soil variations . Normal distribution-based variation
for all variations do

layout← constructRegionLayout(variation) . Soil layout around segment
subsidence← subsidenceCalculation(layout) . Estimated land subsidence in 30 years
pipeline← pipelineCalculation(layout) . Basic segment stress estimation
segmentStress← segmentStress(subsidence, pipeline) . Extended segment stress

estimation
simulation.add(variation, hasFailed(segmentStress)) . Determine wheter or not

segment is likely to fail

A simplification of this model is used to evaluate our solution. In Figure 4, this processing chain
is shown. The model calculates the land subsidence of soil in the area of a pipeline after a given period
of time given a weight, i.e., extra soil, that is added; based on this land subsidence, the stresses on the
pipeline are estimated. There are two types of resources used in this processing chain: a Linux resource
type for the model input generator and the underground pipeline stresses model and a Windows
resource type for the land subsidence model.
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Figure 4. Processing chains of the test scenarios; Scenario 3 is a composition and acts as Scenario 1 for
the first half of the tasks and as Scenario 2 for the remainder of the tasks.

The input generator and the underground pipeline stresses model are both Linux models, and
the land subsidence model is a Windows model. Three different scenarios based on the test case were
evaluated as follows:

• Scenario 1: A single model input was introduced to the land subsidence model, so only one land
subsidence calculation was needed per pipeline segment.

• Scenario 2: Four model inputs were introduced to the land subsidence model, so four land
subsidence calculations were needed per pipeline segment.

• Scenario 3: Starting similar as Scenario 1, but halfway switching to Scenario 2.

The calculation times of each land subsidence calculation were roughly half the time of a pipeline
stress calculation, respectively the second and third step in Figure 4. The random model input generator
is negligible with respect to the other two models.

All of the test scenarios were performed on an Azure cluster with 20 virtual machines (VMs)
allocated to each test run, for 5 runs per scenario. For the first scenario, additional tests were performed
with 100 VMs for 3 runs to verify the scalability of the platform itself. The number of tasks processed
in this scenario was 10 times higher than for the 20 VM tests. The VMs were Standard D2 v3 (https:
//azure.microsoft.com/en-us/pricing/details/cloud-services/) Azure instances with two cores and
8GB of RAM. All tests were run in the same Azure Europe West region, to maintain the best network
connectivity between VMs. One additional VM was used in each scenario to run the monitor and user
interface for the platform. The tests started with a fraction of the VM budget, preventing the removal
of resources at the beginning of the executions. For the test with a budget of 20 VMs, the test started
with 4 VMs, evenly distributed over Windows and Linux. For the tests with a 100 VM budget, the tests
started with 10 VMs.

For comparison, an alternative solution using Apache Spark (version 2.2.0) was used as the
baseline. This alternative deploys a Linux Spark cluster which propagates calculations for the land
subsidence model to a partner VM running Windows which results in a fixed cluster with, in the case
of the 20 VMs test runs, 10 Linux VMs and 10 Windows VMs. This approach is currently used in the
project, and, therefore, is a good approach to compare the adaptive approach with.

5.1. Results

In Figure 5, the results of the tests with 20 VMs for all scenarios are shown with respect to the
throughput of tasks in the platform. In Figure 5a–c, similar patterns arise—at first our adaptive
platform performs worse than the reference Spark solution. This is easily explained by the fact that
less VMs have started at the beginning of the test runs on the adaptive platform. After roughly 30

https://azure.microsoft.com/en-us/pricing/details/cloud-services/
https://azure.microsoft.com/en-us/pricing/details/cloud-services/
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min, the additional VMs start which leads to a significant increase in the throughput of the adaptive
platform. The Spark solution also shows a lower throughput at the beginning of the test runs; this is
because provisioning the land subsidence model takes around 20 to 30 min. This is due to the fact
that provisioning a Windows VM takes longer than Linux VMs as well as the fact that downloading
and starting the land subsidence model takes longer than the Linux counterparts. In the following
tasks that are executed, this model is already loaded so that throughput of tasks is higher. For the third
scenario, it is clear that the throughput of the adaptive platform drops below the Spark throughput;
this is explained by the fact that the distribution is skewed towards the first phase of the test scenario
and therefore, performs worse when the second phase of tasks is launched.

The overall results of the tests with 20 VMs are shown in Table 5. The improvement in the
throughput is measured at the time periods when both approaches were relatively stable with respect
to the throughput of tasks. For the three scenarios, these were, respectively, 0:45–2:15, 1:15–2:15,
and 0:45–1:15 & 2:30–3:30. It is clear that, in the third scenario, the improvement in the adaptive
approach was the lowest; this is due to the costs of reconfiguring the resources two times. The longer
the scenario is, the more benefits the adaptive approach can provide.
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Figure 5. Throughput of the three scenarios with 20 VMs over 5 runs.

Table 5. Improvements of the adaptive approach relative to the Spark approach.

Scenario Throughput Resource Utilization Lead Time

1 50% 30% 29%
2 40% 29% 27%
3 57% & 22% 8.3% 14%
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To verify the scalability of the adaptive approach, the first scenario was also run with 100 VMs.
In Figure 6, the throughput and resource utilization are shown. The throughput figure is similar to
Figure 5a, but the advantage of the adaptive approach is shown to be even higher with 100 VMs
compared to 20 VMs.

Looking at the resource utilization of the cluster, the adaptive approach exceeds an average
utilization of 90% after 45 min. Instead, the Spark approach reaches, on average, around 65% resource
utilization. This explains the reduced lead time of more than 2 h from the 6.5 h required during baseline.

During testing, in both approaches we saw that deploying larger amounts of VMs on Azure
led to approximately 3% to 5% of VMs not provisioning correctly. This could be overcome for the
adaptive approach by enabling the over-provisioning feature of Azure, so that more VMs are started.
This feature monitors the amount of VMs that are provisioned successfully, and when the desired
amount of VMs are provisioned successfully it removes the VMs that are still busy with provisioning.
For the Spark approach, this was not possible, because in this approach, two VMs are linked to each
other and when one of the VMs in such a link is not provisioned correctly, both VMs will not process
tasks. So, more VMs are provisioned and the excess VMs have to be removed manually from the
cluster to achieve a more optimal number of working VMs.
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Figure 6. Scenario 1 with 100 VMs over 3 runs.
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It is also interesting to compare the costs of the tests with 100 VMs as they are run on Microsoft
Azure. To estimate the cost improvement of the tests, the number of VM hours has to be determined.
For the Spark scenario, this is easy, as its tests ran for 404 min with 50 Linux VMs and 50 Windows
VMs. For the adaptive approach, a calculation had to be made for each window between the provision
steps. The results of this calculation are shown in Table 6. In this table, the execution costs are also
displayed, based on the pricing on 27 September, 2017, i.e., $0.212 per hour per VM for Windows VMs
and $0.120 per hour per VM for Linux VMs for the selected configuration of Azure Standard D2 VM.

Table 6. Costs of different approaches on Microsoft Azure.

Approach VM Hours (Windows, Linux) Costs (Windows + Linux)

Adaptive 135.33, 273.80 $28.69 + $32.86 = $61.55
Spark 336.67, 336.67 $71.37 + $40.40 = $111.77

The large difference in costs, with an improvement of almost 45%, can partly be explained by the
fact that, in the Spark approach, the Windows VMs were not utilized optimally since Windows VMs
are almost twice as costly as Linux VMs.

5.2. Discussion

The results of the experiments are very promising with significant improvements with respect
to throughput, resource utilization, and lead time. In particular, when scenarios take at least several
hours and the platform is relatively stable, the resource utilization approaches 95%. As seen in the third
scenario, the platform is able to adapt to changing demands for resources, although, in this scenario,
following the sudden switch from a higher demand for Linux to a higher demand for Windows, it
took almost an hour to re-balance the cluster correctly.

However, there are some difficulties with this approach with respect to the provisioning of new
resources. For example, the time between deciding a new Windows VM needed to be started and the
moment it is ready and available to the processing chain can be up to 30 min. Furthermore, the failure
rate for provisioning resources is for such clusters is on a level at which special actions have to be
taken in order to ensure the overall state of the cluster. When looking at the resource utilization in the
case of 100 VMs (Figure 6b), it takes 2 h for the platform to stabilize. Although it reaches it reaches the
maximum throughput after 45 min. This is, however, a limitation of the computational infrastructure,
but the approach still works and should work even better when computational infrastructures
have evolved.

Another limitation at this point is the gathering of metrics of resources. For the Azure
cloud metrics, the smallest interval is 1 minute, and the delay of the metrics is 2–3 min. So, the
decision-making process occurs quite some time after the actual state of the cluster.

6. Conclusions

This work introduced a new approach to the adaptive provision of heterogeneous resources based
on demand at run-time. By estimating the distributions between steps in a processing chain, the
workers can be balanced, and resources can be provisioned accordingly. By using these distributions in
a control loop that continuously monitors applications at run-time, an adaptive computing environment
is created that is altered to match application demand. A reference platform was created to allow the
evaluation of our approach with respect to an industrial use case.

Our approach showed very promising results. By increasing the overall utilization of resources,
significant improvements in lead time and task throughput were realized, as shown in Figures 5 and 6.

The basis behind the approach is quite intuitive—by introducing small buffers between processing
steps, the relative performance of two linked processing steps can be estimated by using this
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information, to deploy the right amount of resources as well as processing step instances; thus,
a balanced ecosystem is created.

However, reconfiguring cloud resources can still take up to 20 min before resources are fully
operational, or even longer when a large number of resources is requested. In particular, in the case of
Windows VMs, the land subsidence model took quite some time to successfully provision. This means
that the approach is less useful for applications with small lead times, or in which the distribution of
resources changes often. In the experiments conducted, we found that the lead time should be at least
around 10 times the time it takes to reconfigure resources, especially when the distribution of resources
is likely to change heavily during one run, like we saw in the third scenario where the reconfiguration
took quite some time. However, for the third scenario, there was also an improvement in lead time
of 14%.

This paper provides a new approach to data processing with heterogeneous resources. Different
aspects could be identified in further research to improve the results of this approach. Data locality
is one of those aspects—for this research we focused on CPU intensive tasks as the amount of data
that has to be transferred is low compared to the computational time. For this approach to be suitable
for data intensive tasks, data locality should be taken into account. By performing computations as
close to the data as possible, the performance loss in transferring data can be reduced. However, when
heterogeneous resources are used, the data has to be moved to the corresponding platform which is
unavoidable. Corresponding to the aspect of data locality, support for distributed file systems and
databases should be added to fully support big data processing by optimizing the decision-making
process and having a higher frequency of metric gathering. The latter can only be achieved when cloud
platforms provide these data at higher rates, but incorporating another system for metrics gathering
could also improve the frequency of metrics.
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