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String stability for cascaded systems subject to disturbances
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∗∗Department of Automatic Control, KTH Royal Institute of Technology, Stockholm, Sweden

Summary. A notion of string stability for large-scale cascaded (nonlinear) systems is presented that provides a characterization of the
amplification of disturbances as they propagate through the cascade. This notion is particularly relevant for the stability and performance
analysis of groups of closely-spaced automatically controlled vehicles known as platoons and extends earlier string stability notions in
the literature. The results are used to design a distributed controller for a platoon of vehicles.

Introduction

In large-scale cascaded (nonlinear) systems, the concept of string stability provides a notion of stability and performance
by characterizing the attenuation of disturbances as they propagate through the subsystems in the cascade. This notion is
particularly relevant for the performance analysis of groups of closely-spaced and automatically controlled (heavy-duty)
vehices, see, e.g., [3, 2]. However, existing notions of string stability do not allow for the practically relevant case of
external disturbances on vehicles. Motivated by this observation, we propose a notion of string stability for cascaded
systems that includes disturbances on each subsystem. The results are illustrated by designing a distributed controller that
achieves this notion of disturbance string stability, see also [1].

String stability

Consider the cascaded system of length N + 1 as

ẋ0 = f(x0, 0, w0),

ẋi = f(xi, xi−1, wi), i ∈ IN\{0}
(1)

where xi ∈ Rn for i ∈ IN = {0, 1, . . . , N} and f satisfying f(0, 0) = 0 is locally Lipschitz. In (1), wi ∈ Rm, i ∈ IN
represent external disturbances on each of the subsystems. For cascaded systems of the form (1), the stability notion of
disturbance string stability is defined as follows.

Definition 1. The cascaded system (1) is said to be disturbance string stable if there exist functions β̄ of class KL and σ̄
of class K∞ such that, for any initial condition xi(0) and bounded disturbance wi, i ∈ IN , the solution xi, i ∈ IN , exists
for all t ≥ 0 and satisfies

max
i∈IN

|xi(t)| ≤ β̄
(

max
i∈IN

|xi(0)|, t
)

+ σ̄

(
max
i∈IN

‖wi‖[0,t]∞

)
, (2)

for all N ∈ N. Here, |x| =
√
xTx and ‖w‖[0,t]∞ = supτ∈[0,t] |w(τ)|.

In Definition 1, the requirement that (2) holds for all N ∈ N is crucial. Namely, this condition implies that perturbations
cannot grow unbounded as they propagate through the subsystems in the cascade, even in case the cascade length grows
unbounded. In addition, this condition ensures scalability as subsystems can be added to (or removed from) the cascade
without affecting disturbance string stability properties. Finally, it is remarked that this notion extends existing notions of
string stability [3] by explicitly accounting for the effect of external disturbances.
As the definition of disturbance string stability is based on properties on the entire cascaded system (even for all N ∈ N),
it could be difficult to evaluate in practice. The following result allows for establishing disturbance string stability on the
basis of local properties, i.e., on the basis of properties of the individual subsystems.

Theorem 1. Consider the cascaded system (1) and let each subsystem i ∈ IN be input-to-state stable with respect to
xi−1 and wi, i.e., there exist functions β of class KL and γ and σ of class K∞ such that

|xi(t)| ≤ β
(
|xi(0)|, t

)
+ γ

(
‖xi−1‖∞

)
+ σ

(
‖wi‖[0,t]∞

)
, (3)

for all i ∈ IN , N ∈ N (and with xi−1 = 0 for i = 0). If the gain function γ satisfies

γ(r) ≤ γ̄r (4)

for some γ̄ < 1, then the cascaded system (1) is disturbance string stable as in Definition 1.

The condition (4) specifies that each subsystem should strictly attenuate any perturbations that are the result of its prede-
cessor (through the coupling with its state xi−1).
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Figure 1: A platoon of heavy-duty vehicles and the spacing errors ∆i and ∆0
i of vehicle i with respect to its predecessor and the lead

vehicle, respectively.
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Figure 2: Velocities vi (top) and spacing errors ∆i (bottom) for platoons subject to external disturbances. In the left figures, a platoon
for N = 10 is considered in which only the lead vehicle encounters a disturbance. In the right figures, a platoon for N = 50 is
considered and all vehicles are subject to disturbances. The parameter values of the relaxed spacing policy (5) are κ = 2 and κ0 = 0.1.

Example: Control design for string stability of vehicle platoons

A platoon of N + 1 vehicles is considered as in Figure 1, where each vehicle i ∈ IN has a position si, velocity vi, and
potentially more states describing, e.g., acceleration or engine dynamics. Each vehicle is subject to an external disturbance
wi representing, e.g., the effect of road slope or wind. For such a platoon, the objective is to design a distributed controller
that achieves tracking of a constant inter-vehicular distance as well as disturbance string stability. Here, the tracking errors
∆i = si − si−1 + d and ∆0

i = si − s0 + id denote the spacing error for vehicle i with respect to its predecessor and the
lead vehicle (with index 0). However, rather than directly targeting these spacing errors, the relaxed spacing policy

δi = (1− κ0)∆i + κ0∆0
i + κ(v − vref) (5)

is defined, where 0 ≤ κ0 < 1 and κ > 0. Namely, the following result holds.

Theorem 2. For any controller that achieves, for some functions β of class KL and σ of class K∞,

|δi(t)| ≤ β
(
|δi(0)|, t

)
+ σ

(
‖w̄i‖[0,t]∞

)
, (6)

a platoon with relaxed spacing policy (5) is disturbance string stable if κ0 > 0.

Consequently, the inclusion of lead vehicle information in platoon control leads to string stable behavior. Here, it is noted
that the results of Theorem 2 are independent of the details of the vehicle model, as long as the (potentially nonlinear)
vehicle model is feedback linearizable. The performance of a platoon subject to a distributed controller satisfying (6) is
evaluated in Figure 2.

Conclusions

In this abstract, a notion of string stability for cascaded systems subject to external disturbances is presented. This
stability notion is scalable and sufficient conditions are given in terms of properties of individual subsystems. Finally, the
usefulness of this notion is illustrated by application to a platoon of heavy-duty vehicles.

References

[1] B. Besselink and K.H. Johansson. String stability and a delay-based spacing policy for vehicle platoons subject to disturbances. IEEE Transactions
on Automatic Control, submitted.

[2] J. Ploeg, N. van de Wouw, and H. Nijmeijer. Lp string stability of cascaded systems: application to vehicle platooning. IEEE Transactions on Control
Systems Technology, 22(2):786–793, 2014.

[3] D. Swaroop and J.K. Hedrick. String stability of interconnected systems. IEEE Transactions on Automatic Control, 41(3):349–357, 1996.


