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Abstract: When people make decisions in a social context, they often make use
of theory of mind, by reasoning about unobservable mental content of others.
For example, the behavior of a pedestrian who wants to cross the street depends
on whether or not he believes that the driver of an oncoming car has seen him or
not. People can also reason about the theory of mind abilities of others, leading
to recursive thinking of the sort ‘I think that you think that I think...’. Previous
research suggests that this ability may be especially effective in simple com-
petitive settings. In this paper, we use a combination of computational agents
and Bayesian model selection to determine to what extent people make use of
higher-order theory of mind reasoning in a particular competitive game known
as matching pennies. We find that while many children and adults appear to
make use of theory of mind, participants are also often classified as using a sim-
pler reactive strategy based only on the actions of the directly preceding round.
This may indicate that human reasoners do not primarily use their theory of
mind abilities to compete with others.

Keywords: theory of mind, agent-based modeling, Bayesian model selection,
matching pennies

1 Introduction
In social interactions, people often reason about the beliefs, goals, and inten-
tions of others. People use this so-called theory of mind [39] or mentalizing to
understand why others behave the way they do, as well as to predict the future
behavior of others. People can even use their theory of mind to reason about
the way others make use of theory of mind. For example, people make use of
second-order theory of mind to understand a sentence such as “Alice knows that
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Bob knows that Carol is throwing him a birthday party”, by reasoning about
what Alice knows about what Bob knows.

The human ability to make use of higher-order theory of mind is especially
apparent in story comprehension tasks. Adults perform much better than chance
on story comprehension questions that explicitly involve theory of mind reason-
ing up to the fourth order [32, 46]. Interestingly and contrary to predictions
of traditional game theory and complexity theory [47], experimental evidence
shows that people have more difficulty applying their theory of mind abilities
in strategic games. In these settings, individuals are typically found to reason
at low orders of theory of mind and are slow to adjust their level of theory of
mind reasoning to more sophisticated opponents [5, 26, 28, 49]. However, some
empirical research suggests that the use of theory of mind by participants can
be facilitated by context [14, 34], setting [11, 13, 26], and training [35].

Results from an empirical study by Goodie et al. [26] suggest that partic-
ipants may be particularly encouraged to make use of higher-order theory of
mind in simple and strictly competitive settings. Simulation studies show that
the ability to make use of higher-order theory of mind can indeed be particularly
effective in such settings [9, 10, 15, 17, 18]. However, in these simple compet-
itive settings, it is difficult to distinguish between participants who make use
of theory of mind and participants who rely on simpler, behavior-based strate-
gies. In addition, participants may vary in their strategy use [see, for example,
21, 27, 36, 40]. This may cause estimation methods based on population data
to yield unreliable results.

In this paper, we use a combination of computational agents and Bayesian
model selection, introduced by [45], to estimate strategy use of individual partic-
ipants in simple strategic games. This method allows us to consider a population
that differs in their use of theory of mind, in contrast to the existing estimation
methods in the behavioral economics literature, which determine which level of
theory of mind reasoning best describes the population as a whole [5, 49]. Our
goal is to test the effectiveness of the Bayesian estimation procedure, as well as
to determine to what extent human participants make use of theory of mind
in simple competitive games. To do so, we apply this method on two empirical
studies in which participants play a simple game known as matching pennies.

In the first study, Devaine, Hollard, and Daunizeau [14] let participants play
against Bayesian theory of mind opponents. Participants faced these opponents
in the setting of a hide-and-seek task and in the setting of a casino task. In
the hide-and-seek task, participants were asked to search for their opponent,
who was hidden in one of two possible hiding locations. In the casino task,
participants had to choose one of two slot machines to play against. Importantly,
the only difference between these two tasks was the cover story presented to
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the participants. Both games had the exact same structure, namely ‘matching
pennies’, and the exact same computer opponent.

In the second study, Sher, Koenig, and Rustichini [43] let children between
the ages of 3 and 9 play a sender-receiver game. This game involved two boxes,
one of which hid a piece of candy, while the other box hid a rock. Only the
sender was told which box contained the candy. The sender was then asked to
point at one of the boxes, after which the receiver could choose one of the two
locations. If the receiver selected the box with the candy, the receiver could keep
the candy. Otherwise, the sender would get the candy.

In both these studies, human participants played against an opponent that
followed a known and fixed strategy. In Devaine et al. [14], participants played
against software agents that followed a theory of mind strategy, while Sher et al.
[43] let children play against a confederate who always selected the action that
would have won in the last round. In this paper, we estimate the level of theory
of mind reasoning of both the participants as well as their pre-‘programmed’
opponents. This allows us to both validate the estimation method, by comparing
our estimation results to the known strategies of the computer opponents, and
estimate the extent of human theory of mind use in simple competitive games.

The remainder of this paper is structured as follows. In Section 2, we give an
overview of related work on theory of mind in behavioral economics. In Section
3, we present the details of the matching pennies game that participants play in
the studies of Devaine and colleagues and Sher and colleagues. Section 4 outlines
the estimation method and agent strategies that we consider in our estimation.
The results of the estimation are presented in Section 5. In Section 6, we discuss
these results and suggest directions for future research.

2 Related work
The behavioral economics literature contains several approaches to bounded ra-
tionality and recursive modeling of the behavior of others that are related to the
theory of mind agents we present in this study. Similar to our theory of mind
model, the level of sophistication of an agent based on iterated best-response
models such as level-𝑛 theory [1, 2, 7, 38, 44], cognitive hierarchies [5], quan-
tal response equilibria [33], and noisy introspection models [25], is measured by
the maximum number of steps of recursive reasoning that the agent can con-
sider. When these models are used to estimate the level of iterated reasoning
of a player, human participants are typically found to use low levels of iterated
reasoning. Camerer et al. [5], for example, find that over various non-repeated
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single-shot games such as the 𝑝-beauty contest and the traveler’s dilemma, par-
ticipants were estimated to use an average 1.5 steps of recursive reasoning, which
corresponds to first-order theory of mind reasoning. In a meta-analysis of these
types of games, Wright and Leyton-Brown [49] find evidence of participant be-
havior that is consistent with higher-order theory of mind reasoning. However,
few players were found to be well-described as higher-level agents.

One limitation of the iterated reasoning models described above is that a
level-𝑛 agent assumes that all other agents are exactly one level of sophistication
lower than himself, or that the distribution of lower level agents can be described
with a fixed probability distribution. However, in repeated game settings, such
assumptions can be detrimental to an agent [30]. The theory of mind agents we
describe in the rest of this article are more similar to dynamic models of theory
of mind, such as experience-weighted attraction learning [6], recursive opponent
modeling [22, 24], interactive POMDPs [23], and game theory of mind [50]. In
these approaches, agents adjust their level of recursive reasoning in reaction to
the behavior of others. An agent of level 𝑘 can consider others as being agents
of any level up to and including level 𝑘 − 1. Such an agent does not observe the
level of sophistication of others directly, but forms beliefs concerning the level
of sophistication of others based on observed behavior.

These dynamic models of theory of mind reasoning show that over repeated
trials, human participants can successfully increase their level of theory of mind
reasoning. For example, Doshi et al. [16] use adjusted interactive POMDPs to
model human behavior in repeated competitive single-shot games. They find
that although humans generally reason at low levels of theory of mind, partic-
ipants exhibit higher levels of reasoning in simpler settings. Yoshida et al. [50]
evaluate the behavior of human participants in a sequential game variation on
the cooperative Stag Hunt game. Using game theory of mind, they find evidence
that participants make use of higher-order theory of mind reasoning.

When computational models are used in the literature to estimate the level
of theory of mind reasoning of human players, the models are typically fitted on
aggregate data. That is, the estimation method implicitly assumes that there is
a single model that best explains the behavior of all participants. In contrast,
we make use of random-effects Bayesian model selection, which estimates what
distribution of strategies best explains participant data. This modeling approach
allows for participants to differ in the strategy they employ. Therefore, our ap-
proach is more realistic, corresponding to the large variety of strategies among
individual human players [21, 27, 36, 40].
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Fig. 1. The hide-and-seek game [14] and the sender-receiver game [43] share a common
underlying structure. First, player 𝑖 chooses to perform either action 𝑢 or action 𝑑. Without
knowing what choice player 𝑖 has made, player 𝑗 then chooses to perform either action 𝑙 or
𝑟. This results in an outcome (𝜋𝑖, 𝜋𝑗), where player 𝑖 obtains payoff 𝜋𝑖 and player 𝑗 obtains
outcome 𝜋𝑗 .

3 Matching pennies
Matching pennies is a simple two-player game in which two players, 𝑖 and 𝑗, in-
dependently select one of two possible actions. Figure 1 shows an extensive form
representation of the game. In this figure, the actions resulting in the outcomes
(𝑢, 𝑙) and (𝑑, 𝑟) are considered ‘matched’, which results in player 𝑗 winning.
In the remaining outcomes (𝑢, 𝑟) and (𝑑, 𝑙), the actions are ‘mismatched’, and
player 𝑖 wins.

The hide-and-seek game [14] and the sender-receiver game [43] share the
underlying structure of matching pennies. Both games start with player 𝑖 se-
lecting to perform either action 𝑢 or action 𝑑. Afterwards, without knowing the
choice of player 𝑖, player 𝑗 decides whether to perform action 𝑙 or action 𝑟. In the
hide-and-seek game [14], player 𝑖 is the hider that hides at location 0 (action 𝑢)
or at location 1 (action 𝑑). Player 𝑗 is the seeker that can either search location
0 (action 𝑙) or location 1 (action 𝑟). In the sender-receiver game [43], player 𝑖

is the sender who points at the hidden candy (action 𝑢) or at the hidden rock
(action 𝑑). Player 𝑗 is the receiver who either selects the box pointed out by the
sender (action 𝑙) or the other box (action 𝑟).

The unique Nash equilibrium in matching pennies is for both players to
randomly select one of their actions to play [see, for example, 29]. That is, unless
both players play randomly, at least one of the players has an incentive to change
their behavior. Human participants are known to have difficulties generating
random sequences [41, 48]. As a result, human participants playing repeated
matching pennies games typically deviate from playing the Nash equilibrium.
This may encourage participants to try and take advantage of their opponent’s
deviations. In Section 4, we describe the method we use to determine what
strategies participants use.
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4 Estimation method
To determine to what extent human participants make use of theory of mind
when playing matching pennies, we make use of a technique known as group-
level random-effects Bayesian model comparison (RFX-BMS), introduced by
Stephan et al. [45]. This technique models participants as individuals who can
differ in the strategy they use while playing matching pennies. Random-effects
Bayesian model selection treats strategies as random effects that can vary among
participants, and which occur with fixed and unknown population frequencies.
That is, unlike fixed-effects Bayesian model selection, we do not assume that
there is one strategy that best describes the actions of all participants. Instead,
we define a number of strategies that participants may use, including both theory
of mind strategies and simpler behavior-based strategies. Each of these strategies
𝑠 generates pieces of evidence 𝑝(𝑦|𝑠) representing the probability that choosing
actions according to strategy 𝑠 will result in some observed data 𝑦. In addition,
participants are assumed to be a random sample of the population of strategies.
Using the model evidences and the participant data, random-effects Bayesian
model selection estimates the relative frequencies of strategies in the general
population.

To test to what extent participants make use of theory of mind while playing
matching pennies, we compare the observed behavior of participants with the
predicted behavior of computational agents following different strategies. That
is, the model evidence 𝑝(𝑦|𝑠) generated by a given model is the probability that
that model will perform the same action as the participant, given the history of
moves observed by the participant. In addition to theory of mind strategies, we
consider a number of reactive strategies. These reactive strategies do not make
use of an unobservable internal state. Instead, these strategies only react to the
most recently observed behavior. This technique has previously been used by
Devaine et al. [14] to estimate the effect of framing on theory of mind use in
participants. Instead, we compare theory of mind use across different opponent
strategies. We also attempt to identify known strategies through Bayesian RFX-
BMS estimation. This allows us to determine to what extent Bayesian RFX-
BMS estimation accurately distinguishes between theory of mind strategies and
behavior-based reactive strategies.

In the following subsections, we discuss each of the strategies included in
the analysis in detail. To avoid confusion, for the remainder of this paper we
refer to player 𝑖 as if she were female, while we refer to player 𝑗 as if he were
male.
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4.1 Reactive strategies

To determine whether participant behavior is better explained by simple reactive
strategies or by the use of theory of mind, we consider three reactive strategies.
The reactive strategies we describe here do not make use of an internal state.
Instead, these strategies respond to actions observed in the previous round of
play only. Each of these strategies is parameterized with a single parameter
𝜆 ∈ [0, 1], which we will refer to as the learning speed. Note that although we
use the same symbol for each strategy, 𝜆 has a different interpretation in each
strategy.

The first reactive strategy we consider is the biased strategy. This strategy
does not react to the behavior of either player, but instead selects each action
with a fixed probability. Specifically, a biased player 𝑖 selects action 𝑢 with some
individual bias probability 𝜆 and action 𝑑 with probability (1 − 𝜆). Similarly,
when player 𝑗 follows a biased strategy, he selects action 𝑙 with probability 𝜆

and action 𝑟 with probability (1 − 𝜆).
We also consider an other-regarding strategy. A player following this strategy

selects with probability 𝜆 the action that would have resulted in the player
winning the previous round. As a result, an other-regarding agent selects the
action that would have lost the previous round with probability (1 − 𝜆). For
example, suppose that in the previous round of the game, player 𝑖 has chosen
action 𝑢 and player 𝑗 has selected action 𝑙. Since this means that player 𝑗 has
won the previous round, an other-regarding player 𝑖 would select action 𝑑 with
probability 𝜆, while an other-regarding player 𝑗 would repeat his previous choice
𝑙 with probability 𝜆.

Finally, we consider a self-regarding strategy. A self-regarding player repeats
the action performed in the previous round with probability 𝜆 and selects the
other action with probability (1 − 𝜆). For example, if a self-regarding player 𝑖

chooses action 𝑢, her next action has probability 𝜆 of being 𝑢 and probability
(1 − 𝜆) of being 𝑑. This strategy is intended to model players that attempt to
play randomly, but either switch between actions too often (𝜆 < 0.5) or switch
too little (𝜆 > 0.5).

Note that each of these three reactive strategies is equivalent to the Nash
equilibrium strategy when the parameter 𝜆 equals 0.5. In this case, each strategy
randomly chooses one of the two options to play. In addition to these three
reactive strategies, we also include the Nash equilibrium strategy as a separate
parameter-less strategy in our analysis of player strategies.
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Fig. 2. If the blue agent 𝑗 is a ToM0 seeker, his beliefs concerning the hiding location of
the hider 𝑖 are based on her previous behavior. If the red agent 𝑖 has typically hidden herself
behind the tree, the blue agent 𝑗 believes it is most likely that she will hide behind the tree
again, and choose to search for her there.

4.2 Zero-order theory of mind

In addition to the reactive strategies described in the previous subsection, we
also consider the possibility that participants apply a strategy based on the use
of theory of mind. Note that the theory of mind strategies we describe here
implement our theory of mind (ToM) agents that we studied in the game of
rock-paper-scissors [9]. These agents are known to be able to take advantage of
the use of higher-order theory of mind when playing rock-paper-scissors against
a less sophisticated opponent. Moreover, our previous results show that these
higher-order theory of mind agents maintain this advantage even if they do
not accurately model the beliefs of their opponent [9]. These agents differ from
the Bayesian theory of mind agents used in the study of Devaine et al. [14].
Importantly, this means that our random-effects Bayesian model selection does
not include the exact strategies used by the computational theory of mind agents.
By using a different agent model to estimate the use of theory of mind than was
used to generate agent behavior in the hide-and-seek experiment, we aim to
demonstrate that Bayesian RFX-BMS estimation [45] can estimate the level of
theory of mind reasoning of a player, even if that player’s strategy deviates from
our specific implementation of theory of mind.

A zero-order theory of mind (ToM0) agent is a goal-directed agent that is
unable to represent or reason about mental content. Instead, the ToM0 agent
makes predictions about the behavior of the opponent based only on previously
observed behavior. Figure 2 shows an example of this process in the hide-and-
seek game. In this example, previous behavior of the red hider agent (agent 𝑖)
leads the blue ToM0 seeker agent (agent 𝑗) to believe that she has hidden herself
behind the tree. As a result, the ToM0 seeker 𝑗 believes that he should look for
his opponent at the same location.

A ToM0 agent forms zero-order beliefs 𝑏(0) so that 𝑏(0)(𝑎) represents the
probability that the agent assigns to the event of its opponent playing some given
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action 𝑎. For example, if player 𝑖 is a ToM0 agent, she believes that opponent
𝑗 will play action 𝑙 with probability 𝑏(0)(𝑙) = 1 − 𝑏(0)(𝑟). Using these beliefs,
the ToM0 agent can calculate the expected value of playing a given action. For
example, the expected value 𝐸𝑉 (0)(𝑢) that ToM0 agent 𝑖 assigns to playing
action 𝑢 is

𝐸𝑉
(0)

𝑖 (𝑢; 𝑏(0)) =
∑︁

𝑎𝑗∈{𝑙,𝑟}

𝑏(0)(𝑎𝑗) · 𝜋𝑖(𝑢, 𝑎𝑗) = 𝑏(0)(𝑟) = 1 − 𝑏(0)(𝑙). (1)

The ToM0 agent then chooses to play the action 𝑎𝑖 that maximizes the expected
value. That is, a ToM0 agent with zero-order beliefs 𝑏(0) chooses to play action

𝑡
(0)
𝑖 (𝑏(0)) = arg max

𝑎
𝐸𝑉 (0)(𝑎; 𝑏(0)). (2)

Whenever a ToM0 agent observes the behavior of its opponent, it updates its
zero-order beliefs 𝑏(0). For example, when ToM0 agent 𝑖 observes player 𝑗 playing
action 𝑎𝑗 , she updates her beliefs so that

𝑏(0)(𝑎) :=
{︂

(1 − 𝜆) · 𝑏(0)(𝑎) + 𝜆 if 𝑎 = 𝑎𝑗 ,

(1 − 𝜆) · 𝑏(0)(𝑎) otherwise.
(3)

Note that the ToM0 strategy is similar to the other-regarding strategy described
in Section 4.1. Like the other-regarding strategy, the ToM0 strategy is drawn to
the action that would have won in the previous round. The distinction between
the ToM0 strategy and the reactive strategies described in the previous subsec-
tion is that a ToM0 agent has an internal state that summarizes all previously
observed behavior of the opponent, while the reactive other-regarding strategy
only reacts to the actions in the most recently observed round of play. That
is, when an other-regarding player 𝑗 observes that player 𝑖 has hidden behind
the tree, he will respond by choosing to search near the tree with probability 𝜆,
irrespective of previous observations. In contrast, a ToM0 player 𝑗 is more likely
to search near the tree when player 𝑖 has hidden there three times in a row than
he is to search near the tree when player 𝑖 has only hidden there once.

For the purpose of Bayesian RFX-BMS estimation of theory of mind use, we
follow Devaine et al. [14] and consider that choices may exhibit small deviations
from the optimal decision rule defined by a strategy. We therefore employ the
so-called ‘softmax’ probabilistic policy. That is, the probability that a ToM0
player 𝑖 will perform action 𝑢 is given by
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Fig. 3. If the blue agent 𝑗 is a ToM1 seeker, he puts himself in the position of the hider
𝑖 to predict where she will hide. If the ToM1 seeker 𝑗 usually searches near the tree, the
hider 𝑖 may believe that he is going to search for her near the tree again. If this is what she
believes, she would hide behind the wall to avoid the seeker. Therefore, the ToM1 seeker 𝑗

concludes, he should seek for the hider behind the wall.

𝑃 (𝐴𝑖 = 𝑢) = 𝑠

(︃
𝐸𝑉

(0)
𝑖 (𝑢; 𝑏(0))

𝛽

)︃
(4)

:=
exp

(︁
𝐸𝑉

(0)
𝑖 (𝑢; 𝑏(0))/𝛽

)︁
exp

(︁
𝐸𝑉

(0)
𝑖 (𝑢; 𝑏(0))/𝛽

)︁
+ exp

(︁
𝐸𝑉

(0)
𝑖 (𝑑; 𝑏(0))/𝛽

)︁ ,

where 𝛽 is the exploration temperature, a free parameter that controls the mag-
nitude of behavioral noise.

4.3 First-order theory of mind

In contrast to a ToM0 agent, a first-order theory of mind (ToM1) agent can
reason about the mental content of its opponent and realize that the opponent
has a goal of its own. A ToM1 agent can place itself in the position of its opponent
and calculate what the agent would have done itself in that position. Figure 3
shows an example of this process for a ToM1 seeker agent 𝑗 in the hide-and-seek
game. Based on his own previous actions, the ToM1 seeker 𝑗 reasons that if he
had been in the position of the hider, he would predict that the seeker is going
to search behind the tree. To avoid this seeker, the ToM1 agent would therefore
have chosen to hide behind the wall. The ToM1 seeker 𝑗 attributes this reasoning
process to his opponent and therefore concludes that she is most likely to hide
behind the wall. As a result, the ToM1 seeker decides to search behind the wall.

More in general, to model the beliefs of her opponent, a ToM1 agent 𝑖 forms
first-order beliefs 𝑏(1) that represent what the agent’s zero-order beliefs would
have been if she had been in the position of her opponent. That is, according to
the first-order beliefs 𝑏(1) of ToM1 agent 𝑖, if agent 𝑖 had been in the position of
her opponent 𝑗, she would have believed that the probability that agent 𝑖 will
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perform action 𝑎𝑖 is 𝑏(1)(𝑎𝑖). If she had been in the position of her opponent 𝑗,
agent 𝑖 would therefore have chosen to play action 𝑡

(0)
𝑗 (𝑏(1)). Using first-order

theory of mind, ToM1 player 𝑖 predicts that opponent 𝑗 will do the same.
Based on the observed behavior of her opponent, a ToM1 player 𝑖 may come

to believe that her first-order beliefs do not accurately predict the behavior of
player 𝑗. In this case, she may decide to act as if she were a ToM0 agent instead.
This behavior is controlled by the ToM1 agent’s confidence 𝑐1 ∈ [0, 1] in first-
order theory of mind. The higher the confidence 𝑐1, the more the behavior of a
ToM1 agent is determined by its first-order beliefs 𝑏(1). When the confidence 𝑐1
reaches zero, the ToM1 player will play as if it were a ToM0 player. The expected
value 𝐸𝑉

(1)
𝑖 (𝑎𝑖) that ToM1 agent 𝑖 assigns to playing action 𝑎𝑖 is

𝐸𝑉
(1)

𝑖 (𝑎𝑖; 𝑏(0), 𝑏(1), 𝑐1) = 𝑐1 · 𝜋𝑖
(︁

𝑎𝑖, 𝑡
(0)
𝑗 (𝑏(1))

)︁
+ (1 − 𝑐1) · 𝐸𝑉

(0)
𝑖 (𝑎𝑖; 𝑏(0)). (5)

The expected value for ToM1 player 𝑗 is constructed analogously. Similar to a
ToM0 agent, the ToM1 agent chooses to play the action 𝑡

(1)
𝑖 (𝑏(0), 𝑏(1), 𝑐1) that

maximizes its expected value.
After observing the outcome of a game in which the ToM1 agent 𝑖 decided

to play action 𝑎𝑖 and the opponent 𝑗 played action 𝑎𝑗 , a ToM1 agent 𝑖 updates
her confidence 𝑐1 in first-order theory of mind so that

𝑐1 :=

{︃
(1 − 𝜆) · 𝑐1 + 𝜆 if 𝑎𝑗 = 𝑡

(0)
𝑗 (𝑏(1))

(1 − 𝜆) · 𝑐1 otherwise.
(6)

That is, if the agent’s first-order theory of mind accurately predicted that oppo-
nent 𝑗 would play 𝑎𝑗 , the ToM1 agent increases her confidence 𝑐1 in first-order
theory of mind. Otherwise, the agent lowers her confidence.

Next, the ToM1 agent 𝑖 updates her zero-order beliefs as described in Equa-
tion (3). In the same way, the ToM1 agent 𝑖 updates her first-order beliefs 𝑏(1)

to increase the belief that she will play action 𝑎𝑖 again. Note that the ToM1
agent 𝑖 updates her first-order beliefs 𝑏(1) using her own learning speed 𝜆. Un-
like Devaine’s Bayesian agents [14], our ToM agents do not attempt to estimate
the learning speed 𝜆 of their opponent. However, simulation results show that
our theory of mind agent can take advantage of the use of higher-order theory
of mind even when the implicit assumption of equal learning speeds is violated
[9].

Similar to the procedure of the ToM0 agent, we use a softmax policy with
exploration temperature 𝛽, so that the probability that a ToM1 player 𝑖 will
perform action 𝑢 is given by

𝑃 (𝐴𝑖 = 𝑢) = 𝑠
(︁

𝐸𝑉
(1)

𝑖 (𝑢; 𝑏(0), 𝑏(1), 𝑐1)/𝛽
)︁

, (7)

where 𝛽 is the exploration temperature.
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4.4 Higher orders of theory of mind

A 𝑘th-order theory of mind (ToM𝑘) agent considers the possibility that its op-
ponent is a ToM𝑘−1 agent in addition to the possibility that the opponent is
reasoning at even lower orders of theory of mind. To predict the behavior of
its opponent, a ToM𝑘 agent takes the perspective of the opponent and deter-
mines what it would have done itself, based on its own 𝑘th-order beliefs 𝑏(𝑘) and
confidence 𝑐𝑘 in 𝑘th-order theory of mind.

Analogous to the way a ToM1 agent integrates the predictions of different or-
ders of theory of mind, a ToM𝑘 player 𝑖 calculates the expected value 𝐸𝑉 (𝑘)(𝑎𝑖)
of playing actions 𝑎𝑖 as

𝐸𝑉
(𝑘)

𝑖 (𝑎𝑖;𝑏(0), . . . , 𝑏(𝑘), 𝑐1, . . . , 𝑐𝑘) =

𝑐𝑘 · 𝜋𝑖
(︁

𝑎𝑖, 𝑡
(𝑘−1)
𝑗 (𝑏(1), . . . , 𝑏(𝑘), 1, 0, . . . , 0)

)︁
+

(1 − 𝑐𝑘) · 𝐸𝑉
(𝑘−1)

𝑖 (𝑎𝑖; 𝑏(0), . . . , 𝑏(𝑘−1), 𝑐1, . . . , 𝑐𝑘−1), (8)

and decides to play the action 𝑡
(𝑘)
𝑖 (𝑏(0), . . . , 𝑏(𝑘), 𝑐1, . . . , 𝑐𝑘) that maximizes this

expected value.
Following our previous work [9], our ToM agents do not attempt to model

their opponent’s confidence in theory of mind. Rather, a ToM𝑘 agent 𝑖 maintains
𝑘+1 models of opponent behavior (corresponding to her 0, 1, . . . 𝑘th-order theory
of mind) and performs the actions prescribed by the model that she believes to
most accurately predict the behavior of her opponent.

After observing the outcome of a game in which player 𝑖 played action 𝑎𝑖 and
player 𝑗 played action 𝑎𝑗 , the ToM𝑘 agent updates its confidences 𝑐𝑛 in 𝑛th-
order theory of mind according to Equation (6) and corresponding 𝑛th-order
beliefs 𝑏(𝑛). For each even numbered order of theory of mind 𝑛, player 𝑖 updates
her beliefs 𝑏(𝑛) according to Equation (3) to reflect that she believes it to be
more likely that her opponent will play action 𝑎𝑗 again. For each odd numbered
order of theory of mind 𝑚, player 𝑖 updates her beliefs 𝑏(𝑚) to reflect that she
predicts her opponent to believe that she is more likely to play action 𝑎𝑖 again.

To obtain the likelihood that a ToM𝑘 player 𝑖 will play action 𝑢, we use the
softmax policy so that

𝑃 (𝐴𝑖 = 𝑢) = 𝑠
(︁

𝐸𝑉
(𝑘)

𝑖 (𝑢; 𝑏(0), . . . , 𝑏(𝑘), 𝑐1, . . . , 𝑐𝑘)/𝛽
)︁

, (9)

where 𝛽 is the exploration temperature.
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5 Results
To determine the extent to which theory of mind is used when playing matching
pennies, the strategies described in Section 4 are used as the basis for random-
effects Bayesian model selection [45]. These strategies include two randomiz-
ing strategies (Nash, biased), three behavior-based strategies (other-regarding,
self-regarding, ToM0), as well as four theory of mind strategies (ToM𝑘, 𝑘 ∈
{1, 2, 3, 4}). Note that only the Nash strategy is parameter-free. The biased,
other-regarding, and self-regarding strategies each have a single parameter 𝜆,
while the ToM𝑘 strategies (0 ≤ 𝑘 ≤ 4) have two free parameters: 𝜆 and 𝛽.
The values of these parameters were allowed to vary between subjects, but were
assumed to be fixed within subjects.

The experimental data from Devaine et al. [14] and Sher et al. [43] contain
the behavioral responses of human participants following an unknown strategy,
but also the actions performed by their opponents, who strictly follow a fixed
strategy. In Section 5.1, we start by estimating strategy use of these opponents
to show that Bayesian RFX-BMS estimation can successfully recover known
strategies from behavioral data. In Section 5.2, we estimate the strategies used
by human participants in these matching pennies games.

5.1 Validation

To show that Bayesian RFX-BMS estimation can successfully recover player
strategies, we apply this method to the behavior of players that follow a known
strategy. Since the ToM𝑘 strategies have an additional free parameter compared
to the simpler, reactive strategies, a particular concern is that these theory of
mind strategies can more accurately model a broader range of behavior. In this
section, we show that this does not result in a tendency to erroneously classify
strategies that are known to be simple, reactive behavior-based strategies as
theory of mind strategies instead.

In the experimental study of Sher et al. [43], children played the sender-
receiver game against a confederate who was instructed to follow a fixed other-
regarding strategy. After the initial choice, the confederate would always select
the action that would have won in the previous round. That is, confederates fol-
lowed an other-regarding strategy with learning speed 𝜆 = 1.0. Figure 4 shows
the estimated proportions of each of the nine strategies we consider based on
the behavioral data of confederates in the sender-receiver game. As the fig-
ure shows, Bayesian RFX-BMS estimation successfully recovers the confederate
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Fig. 4. Estimated proportions of strategies used by confederates in the sender-receiver game
[43].

other-regarding strategy. In addition, the average estimated value of the learning
speed parameter 𝜆 was 0.98. This shows that Bayesian RFX-BMS estimation
can successfully recover a player strategy if it is included in the estimation as a
population strategy.

The experimental study of Devaine et al. [14] also included players following
a known strategy. Both in the hide-and-seek task and in the casino task, par-
ticipants played against four different computer agents. These agents included
a random biased agent that always chose one of the options with a 65% proba-
bility and three Bayesian theory of mind agents. Note that although Devaine’s
Bayesian agents make use of theory of mind, the exact specifications of these
agents differ from our ToM agent descriptions in Section 4. That is, the strate-
gies used by Devaine’s Bayesian agents are not included as population strategies
and can therefore not be recovered from the empirical data. This allows us to
test whether Bayesian RFX-BMS estimation can accurately classify a strategy
as a theory of mind strategy, even if the specific implementation of the theory
of mind strategy used by the player differs from our ToM agent definition. In
addition, by using different agents to generate behavior and to classify behavior,
we can determine to what extent different orders of theory of mind reasoning
are consistent among our ToM agents and Devaine’s Bayesian agents.

Figure 5 shows the results of Bayesian RFX-BMS estimation on the be-
havioral data of computer agents in the Devaine et al. study, aggregated across
the two task settings. The figure shows that the Bayesian RFX-BMS estimation
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Fig. 5. Estimated proportions of strategies used by Devaine’s Bayesian agents in the hide-
and-seek game and the casino game [14].

method accurately distinguishes between theory of mind strategies and simpler,
reactive strategies. In addition, the theory of mind abilities of Devaine’s Bayesian
agents are estimated remarkably well, despite the differences in agent specifica-
tion1. In our Bayesian RFX-BMS estimation results, only Bayesian first-order
theory of mind agents are regularly misclassified and identified as ToM2 agents.
This suggests that Devaine’s Bayesian first-order theory of mind agents may be
capable of more complex opponent modeling than the ToM1 agent described
in Section 4. Interestingly, Bayesian zero-order and second-order theory of mind
agents are rarely misclassified, which suggests a good fit between the two models
of second-order theory of mind.

The results in this section show that Bayesian RFX-BMS estimation can
accurately recover known strategies used when playing matching pennies as well
as distinguish between theory of mind strategies and reactive strategies. More-
over, Bayesian RFX-BMS estimation accurately distinguishes between levels of
theory of mind reasoning, even when the level of theory of mind reasoning is esti-
mated using a different model than the model that generated the behavior. This
suggests that Bayesian RFX-BMS estimation may be useful in determining the

1 Note that Devaine’s Bayesian theory of mind agents are not classified as using Devaine’s
Bayesian theory of mind strategy because these strategies are not included in the RFX-
BMS estimation.
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Fig. 6. Estimated proportions of strategies used by children playing the sender-receiver
game [43].

extent to which human participants make use of theory of mind when playing
this game. In the following subsection, we will consider this issue in detail.

5.2 Participant strategy use

The results of Bayesian RFX-BMS estimation on behavioral data of known
strategies suggests that this method can accurately recover player strategies
across several variants of the matching pennies game. In this section, we apply
Bayesian RFX-BMS estimation to human participant data to determine the
extent to which they make use of theory of mind.

Sher et al. [43] let children play a sender-receiver game against a confederate
following a strict other-regarding strategy. Note that the best response against
this strategy is to follow a self-regarding strategy that alternates between the two
possible actions. Figure 6 shows the results of Bayesian RFX-BMS estimation of
the strategies used by these children. The figure shows that Bayesian RFX-BMS
estimation classifies over 40% of these children as ToM1 agents, both in the
sender role and in the receiver role. However, Figure 6 shows that in the sender
role, 24% of the children are classified as using an other-regarding strategy and
17% as using a self-regarding strategy. In the receiver role, 12% of the children are
classified as using an other-regarding strategy and 26% as using a self-regarding
strategy. That is, the behavior of many of these children is best described as the
use of a reactive strategy.
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Fig. 7. Estimated proportions of strategies used by participants playing the hide-and-seek
game and the casino game [14].

Devaine et al. [14] let participants play against Bayesian theory of mind
agents in the social setting of a hide-and-seek task and the non-social setting
of a casino task. As in the previous subsection, we aggregate data across the
two tasks. Unlike Devaine et al., however, we do not aggregate across opponent
strategy. That is, we explicitly take into account that participants may adjust
their strategy based on the observed behavior of an opponent, while we ignore
the effects of task context. Figure 7 shows the results of Bayesian RFX-BMS
estimation of the strategies used by the participants. These results show strong
variation in the strategy use of participants. Interestingly, participants are poorly
described by randomizing strategies (Nash or biased), with one exception. When
participants play against a biased opponent, 20% of them are best described as
using a biased strategy as well. Note that in this case, the best response is indeed
for participants to follow a biased strategy.

Compared to the estimated strategy use of children in Figure 6, adult par-
ticipants are less often classified as making use of a theory of mind strategy.
One notable exception is when participants play against a Bayesian first-order
theory of mind agent, where the proportion of participants using a second-order
theory of mind strategy is estimated at 25%.

The results in Figure 7 suggest that participants engage in some opponent
modeling. Participants that play against a biased agent are more likely to be clas-
sified as using a biased strategy themselves, while participants that play against a
first-order Bayesian theory of mind agent are more likely to be classified as using
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second-order theory of mind. However, across the different opponent strategies,
many participants are well-described as using a self-regarding strategy. This sug-
gests that a sizable portion of participants may rely on simple reactive strategies
when playing matching pennies in the context of the hide-and-seek or the casino
game, irrespective of the behavior of the opponent 2.

To summarize, the results of our Bayesian RFX-BMS estimation suggest
that there are both child and adult participants that make use of theory of
mind strategies while playing matching pennies. However, there also appear to
be many participants whose behavior is better described as following a simpler
reactive strategy.

6 Discussion and conclusion
Both empirical and simulation studies suggest that players can benefit from rea-
soning about unobservable mental content of opponents in simple competitive
games such as matching pennies or rock-paper-scissors [9, 14, 15, 17, 18, 26]. In
this paper, we combined computational agents with Bayesian RFX-BMS esti-
mation [45] to determine to what extent human participants actually make use
of this so-called ‘theory of mind’ when playing repeated versions of matching
pennies in two different empirical studies.

Sher et al. [43] let children play the sender-receiver game against a human
confederate following a fixed strategy, while Devaine et al. [14] let participants
play against computational Bayesian theory of mind agents in both a social
hide-and-seek task and a non-social casino task. Our results show that Bayesian
RFX-BMS estimation can accurately recover the known strategies used by both
confederates and computational agents. In particular, players that were known
to use a behavior-based strategy were not classified as theory of mind reasoners,
while players that were known to follow a theory of mind strategy were clas-
sified as such. Our results also show that Bayesian RFX-BMS estimation can
accurately identify a theory of mind strategy when the model used to estimate
theory of mind use differs from the model that generated theory of mind behav-
ior. This suggests that Bayesian RFX-BMS estimation can be used effectively to

2 When individual differences are ignored and all participants are assumed to best de-
scribed by the same model, participants are classified as using fourth-order theory of
mind. This result is partially due to the fact that the higher-order theory of mind models
can typically generate behavior that resembles lower-order theory of mind more easily
than the other way around.
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determine theory of mind use in human participants, even when the the details
of their theory of mind strategy are unknown.

Our results about human participants suggest that both children and adults
engage in theory of mind when playing simple repeated games such as matching
pennies. Many children make use of first-order theory of mind in the sender-
receiver game, both in the role of sender and in the role of receiver. In addition,
adult participants appear to make use of second-order theory of mind when
facing a Bayesian first-order theory of mind agent. However, both the child data
and the adult data show that many participants are better described as making
use of a simpler reactive strategy. In addition, Devaine et al. [14] report that
adult participants won, on average, 51% of the games they played. This may
indicate that human players do not use their theory of mind abilities primarily
to compete with others in one-shot situations such as matching pennies, or may
even be unable to profitably apply theory of mind in these game situations.

One reason for the apparent lack of participants’ use of theory of mind is
that there are many viable simple strategies available in the matching pennies
setting. The availability of these simple strategies may make it less appealing
for participants to select a more complex and cognitively demanding theory
of mind strategy. In addition, the wide range of strategies may make it more
difficult for participants to use theory of mind to accurately predict the behavior
of an opponent [cf. 21]. Future research could disentangle the effects of the
appeal of using simple strategies from effects caused by the unpredictability
of other players. Settings such as the centipede game and Marble Drop [34–
37], for example, have fewer viable simple strategies than matching pennies. In
such settings, less sophisticated players would therefore exhibit more predictable
behavior, which may encourage human players to make more use of theory of
mind as well. Experimental evidence shows that participants in these settings
vary in their strategy use and level of theory of mind reasoning [see, for example,
21, 27, 36, 40], which suggests that Bayesian RFX-BMS estimation may yield
additional insights.

Alternatively, human participants may be more likely to use their the-
ory of mind in more cooperative settings. Experiments in the communicative-
cooperative setting of the Tacit Communication Game, for example, demonstrate
that participants readily reason about unobservable mental content of others [8].
In this setting, participants do not only reason about the way unfamiliar part-
ners will interpret a novel signal, but also adjust their behavior depending on
whether they believe to be partnered with a child or with an adult [4]. Addi-
tionally, simulation experiments with artificial agents have shown that the use of
higher-order theory of mind can partially explain the high human performance
in the Tacit Communication Game [12]. These results seem to suggest that par-
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ticipants more readily make use of higher-order theory of mind in cooperative
settings. Additionally, participants also seem to be more likely to make use of
higher-order theory of mind in mixed-motive settings, where both cooperative
and competitive aspects play a role3.

In our analysis, we have only made use of participant choice data in the
matching pennies game. Our results show that Bayesian RFX-BMS estimation
can be effective in extracting information concerning the level of theory of mind
reasoning from a sequence of binary choices. Other research has shown that in-
formation such as eye movements [31, 36] and reaction times [3, 42] can give
additional insights concerning the strategies used by participants. Future re-
search could extend the Bayesian RFX-BMS estimation to models that include
predictions of reaction times and eye movements. In the setting of the Marble
Drop game, for example, this could be done with the ACT-R and PRIMs models
described by Meijering et al. [37], Ghosh et al. [20], and Ghosh and Verbrugge
[19].
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