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A SUB-RIEMANNIAN SANTALÓ FORMULA WITH APPLICATIONS
TO ISOPERIMETRIC INEQUALITIES AND FIRST DIRICHLET

EIGENVALUE OF HYPOELLIPTIC OPERATORS

DARIO PRANDI1, LUCA RIZZI2,3, AND MARCELLO SERI4

Abstract. In this paper we prove a sub-Riemannian version of the classical Santaló
formula: a result in integral geometry that describes the intrinsic Liouville measure
on the unit cotangent bundle in terms of the geodesic flow. Our construction works
under quite general assumptions, satisfied by any sub-Riemannian structure associated
with a Riemannian foliation with totally geodesic leaves (e.g. CR and QC manifolds
with symmetries), any Carnot group, and some non-equiregular structures such as the
Martinet one. A key ingredient is a “reduction procedure” that allows to consider only
a simple subset of sub-Riemannian geodesics.

As an application, we derive isoperimetric-type and (p-)Hardy-type inequalities for a
compact domain M with piecewise C1,1 boundary, and a universal lower bound for the
first Dirichlet eigenvalue λ1(M) of the sub-Laplacian,

λ1(M) ≥ kπ2

L2 ,

in terms of the rank k of the distribution and the length L of the longest reduced sub-
Riemannian geodesic contained in M . All our results are sharp for the sub-Riemannian
structures on the hemispheres of the complex and quaternionic Hopf fibrations:

S1 ↪→ S2d+1 p−→ CPd, S3 ↪→ S4d+3 p−→ HPd, d ≥ 1,
where the sub-Laplacian is the standard hypoelliptic operator of CR and QC geometries,
L = π and k = 2d or 4d, respectively.

1. Introduction and results

Let (M, g) be a compact connected Riemannian manifold with boundary ∂M . Santaló
formula [17, 39] is a classical result in integral geometry that describes the Liouville mea-
sure µ of the unit tangent bundle UM in terms of the geodesic flow φt : UM → UM .
Namely, for any measurable function F : UM → R we have

(1)
∫
U�M

F µ =
∫
∂M

[∫
U+

q ∂M

(∫ `(v)

0
F (φt(v))dt

)
g(v,nq)ηq(v)

]
σ(q),

where σ is the surface form on ∂M induced by the inward pointing normal vector n, ηq
is the Riemannian spherical measure on UqM , U+

q ∂M is the set of inward pointing unit
vectors at q ∈ ∂M and `(v) is the exit length of the geodesic with initial vector v. Finally,
U�M ⊆ UM is the visible set, i.e. the set of unit vectors that can be reached via the
geodesic flow starting from points on ∂M .

In the Riemannian setting, (1) allows to deduce some very general isoperimetric in-
equalities and Dirichlet eigenvalues estimates for the Laplace-Beltrami operator as showed
by Croke in the celebrated papers [19, 20, 21].

The extension of (1) to the sub-Riemannian setting and its consequences are not
straightforward for a number of reasons. Firstly, in sub-Riemannian geometry the geodesic
flow is replaced by a degenerate Hamiltonian flow on the cotangent bundle. Moreover, the
unit cotangent bundle (the set of covectors with unit norm) is not compact, but rather has
the topology of an infinite cylinder. Finally, in sub-Riemannian geometry there is not a
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2 DARIO PRANDI1, LUCA RIZZI2,3, AND MARCELLO SERI4

clear agreement on which is the “canonical” volume, generalizing the Riemannian measure.
Another aspect to consider is the presence of characteristic points on the boundary.

In this paper we extend (1) to the most general class of sub-Riemannian structures for
which Santaló formula makes sense. As an application we deduce Hardy-like inequalities,
sharp universal estimates on the first Dirichlet eigenvalue of the sub-Laplacian and sharp
isoperimetric-type inequalities.

To our best knowledge, a sub-Riemannian version of (1) appeared only in [36] for the
three-dimensional Heisenberg group, and more recently in [34] for Carnot groups, where the
natural global coordinates allow for explicit computations. As far as other sub-Riemannian
structures are concerned, Santaló formula is an unexplored technique with potential ap-
plications to different settings, including CR (Cauchy-Riemann) and QC (quaternionic
contact) geometry, Riemannian foliations, and Carnot groups.

1.1. Setting and examples. Let (N,D, g) be a sub-Riemannian manifold of dimension
n, where D ⊆ TN is a distribution that satisfies the bracket-generating condition and g
is a smooth metric on D. Smooth sections X ∈ Γ(D) are called horizontal. We consider a
compact n-dimensional submanifold M ⊂ N with boundary ∂M 6= ∅.

If (N,D, g) is Riemannian, we equip it with its Riemannian volume ωR. In the genuinely
sub-Riemannian case we fix any smooth volume form ω on M (or a density if M is not
orientable). In any case, the surface measure σ = ιnω on ∂M is given by the contrac-
tion with the horizontal unit normal n to ∂M . For what concerns the regularity of the
boundary, we assume only that ∂M is piecewise C1,1. (See Remark 7 for the Lipschitz
case.)

A central role is played by sub-Riemannian geodesics, i.e., curves tangent to D that
locally minimize the sub-Riemannian distance between endpoints. In this setting, the
geodesic flow1 is a natural Hamiltonian flow φt : T ∗M → T ∗M on the cotangent bundle,
induced by the Hamiltonian function H ∈ C∞(T ∗M). The latter is a non-negative,
degenerate, quadratic form on the fibers of T ∗M that contains all the information on the
sub-Riemannian structure. Length-parametrized geodesics are characterized by an initial
covector λ in the unit cotangent bundle U∗M = {λ ∈ T ∗M | 2H(λ) = 1}.

A key ingredient for most of our results is the following reduction procedure. Fix a
transverse sub-bundle V ⊂ TM such that TM = D⊕V. We define the reduced cotangent
bundle T ∗M r as the set of covectors annihilating V. On T ∗M r we define a reduced Liouville
volume Θr, which depends on the choice of the volume ω on M . These must satisfy the
following stability hypotheses:

(H1) The bundle T ∗M r is invariant under the Hamiltonian flow φt;
(H2) The reduced Liouville volume is invariant, i.e. L ~HΘr = 0.

This allows to replace the non-compact U∗M with a compact slice U∗M r := U∗M ∩T ∗M r,
equipped with an invariant measure (see Section 4.3). These hypotheses are verified for:

• any Riemannian structure, equipped with the Riemannian volume;
• any sub-Riemannian structure associated with a Riemannian foliation with totally

geodesic leaves, equipped with the Riemannian volume. These includes contact,
CR, QC structures with transverse symmetries, and also some non-equiregular
structures as the Martinet one on R3. See Section 5.2;
• any left-invariant sub-Riemannian structure on a Carnot group2, equipped with

the Haar volume, see Section 5.1.
An interesting example, coming from CR geometry, is the complex Hopf fibration (CHF)

S1 ↪→ S2d+1 p−→ CPd, d ≥ 1,
1Abnormal geodesics are allowed, but strictly abnormal ones, not given by the Hamiltonian flow on the

cotangent bundle, do not play any role in our construction.
2We stress that Carnot groups are not Riemannian foliations if their step is > 2.
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γ(`(λ))
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∂M
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λ2 /∈ U�M

π(λ1)

λ1 ∈ U�M

M

Figure 1. Exit length (left) and visible set (right). Covectors are repre-
sented as hyperplanes, the arrow shows the direction of propagation of the
associated geodesic for positive time.

where D := (ker p∗)⊥ is the orthogonal complement of the kernel of the differential of
the Hopf map w.r.t. the round metric on S2d+1, and the sub-Riemannian metric g is
the restriction to D of the round one. Another interesting structure, coming from QC
geometry and with corank 3, is the quaternionic Hopf fibration (QHF)

S3 ↪→ S4d+3 p−→ HPd, d ≥ 1,

where HPd is the quaternionic projective space of real dimension 4d and the sub-Riemann-
ian structure on S4d+3 is defined similarly to its complex version.

1.2. Sub-Riemannian Santaló formulas. Consider a sub-Riemannian geodesic γ(t)
with initial covector λ ∈ U∗M . The exit length `(λ) ∈ [0,+∞) is the length after which γ
leaves M by crossing ∂M . Similarly, ˜̀(λ) is the minimum between `(λ) and the cut length
c(λ). That is, after length ˜̀(λ) the geodesic either loses optimality or leaves M .

The visible unit cotangent bundle U�M ⊂ U∗M is the set of unit covectors λ such that
`(−λ) < +∞. (See Fig. 1.) Analogously, the optimally visible unit cotangent bundle Ũ�M
is the set of unit covectors such that ˜̀(−λ) < +∞.

For any non-characteristic point q ∈ ∂M , we have a well defined inner pointing unit
horizontal vector nq ∈ Dq, and U+

q ∂M ⊂ U∗qM is the set of initial covectors of geodesics
that, for positive time, are directed toward the interior of M .

As anticipated, we do not consider all the length-parametrized geodesics, i.e. all initial
covectors λ ∈ U∗qM ' Sk−1 × Rn−k, but a reduced subset U∗qM r ' Sk−1. In the following
the suffix r always denotes the intersection with the reduced unit cotangent bundle U∗M r.
We stress the critical fact that U∗M r is compact, while U∗M never is, except in the
Riemannian setting where the reduction procedure is trivial. With these basic definitions
at hand, we are ready to state the sub-Riemannian Santaló formulas.

Theorem 1 (Reduced Santaló formulas). The visible set U�M r and the optimally visible
set Ũ�M r are measurable. For any measurable function F : U∗M r → R we have∫

U�M r
F µr =

∫
∂M

[∫
U+

q ∂M r

(∫ `(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηr

q(λ)
]
σ(q),(2)

∫
Ũ�M r

F µr =
∫
∂M

[∫
U+

q ∂M r

(∫ ˜̀(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηr

q(λ)
]
σ(q).(3)
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In (2)-(3), µr is a reduced invariant Liouville measure on U∗M r, ηr
q is an appropriate

smooth measure on the fibers U∗qM r and 〈λ, ·〉 denotes the action of covectors on vectors.
Indeed both include the Riemannian case, where the reduction procedure is trivial and
U∗M ' UM since the Hamiltonian is not degenerate.

Remark 1. Hypotheses (H1) and (H2) are essential for the reduction procedure. An
unreduced version of Theorem 1 holds for any volume ω and with no other assumptions but
the Lipschitz regularity of ∂M (see Theorem 16 and Remark 7). However, the consequences
we present do not hold a priori, as their proofs rely on the summability of certain functions
on U∗M r, generally false on the non-compact U∗M .

1.3. Hardy-type inequalities. For any f ∈ C∞(M), let ∇Hf ∈ Γ(D) be the horizontal
gradient: the horizontal direction of steepest increase of f . It is defined via the identity
(4) g(∇Hf,X) = df(X), ∀X ∈ Γ(D).

Consider all length-parametrized sub-Riemannian geodesic passing through a point q ∈
M , with covector λ ∈ U∗qM . Set L(λ) := `(λ) + `(−λ); this is the length of the maximal
geodesic that passes through q with covector λ.

Proposition 2 (Hardy-like inequalities). For any f ∈ C∞0 (M) it holds∫
M
|∇Hf |2ω ≥

kπ2

|Sk−1|

∫
M

f2

R2ω,(5) ∫
M
|∇Hf |2ω ≥

k

4|Sk−1|

∫
M

f2

r2 ω,(6)

where k = rankD and r,R : M → R are:
1

R2(q) :=
∫
U∗qM

r

1
L2 η

r
q,

1
r2(q) :=

∫
U∗qM

r

1
`2
ηr
q, ∀q ∈M.

We observe that r is the harmonic mean distance from the boundary defined in [23].
One can also consider the following generalization of Proposition 2 for Lp(M,ω) norms.

Proposition 3 (p-Hardy-like inequality). Let p > 1 and f ∈ C∞0 (M). Then∫
M
|∇Hf |pω ≥ πpp Cp,k

∫
M

|f |p

Rp
ω,(7) ∫

M
|∇Hf |pω ≥

(
p− 1
p

)p
Cp,k

∫
M

|f |p

rp
ω,(8)

where k = rankD, the constants πp and Cp,k are

πp = 2π(p− 1)1/p

p sin(π/p) , Cp,k = k

|Sk−1|

√
π Γ(k+p

2 )
2Γ(1+p

2 )Γ(k2 + 1)
,

and rp, Rp : M → R are
1

Rp(q) :=
∫
U∗qM

r

1
Lp
ηr
q,

1
rp(q) :=

∫
U∗qM

r

1
`p
ηr
q, ∀q ∈M.

1.4. Lower bound for the first Dirichlet eigenvalue. For any given smooth volume
ω, a fundamental operator in sub-Riemannian geometry is the sub-Laplacian ∆ω, playing
the role of the Laplace-Beltrami operator in Riemannian geometry. Under the bracket-
generating condition, this is an hypoelliptic operator on L2(M,ω). Its principal symbol
is (twice) the Hamiltonian, thus the Dirichlet spectrum of −∆ω on the compact manifold
M is positive and discrete. We denote it

0 < λ1(M) ≤ λ2(M) ≤ . . . .
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As a consequence of Proposition 2 and the min-max principle, we obtain a universal lower
bound for the first Dirichlet eigenvalue λ1(M) on the given domain. Here by universal we
mean an estimate not requiring any assumption on curvature or capacity.

Proposition 4 (Universal spectral lower bound). Let L = supλ∈U∗M r L(λ) be the length
of the longest reduced geodesic contained in M . Then, letting k = rankD,

(9) λ1(M) ≥ kπ2

L2 ,

where we set the r.h.s. to 0 if L = +∞.

Remark 2. In (9), L cannot be replaced by the sub-Riemannian diameter, as M might
contain very long (non-minimizing) geodesics, for example closed ones, and L = +∞. See
Appendix B for more details.

In the Riemannian case, as noted by Croke, we attain equality in (9) when M is the
hemisphere of the Riemannian round sphere. We prove the following extension to the
sub-Riemannian setting.

Proposition 5 (Sharpness of the eigenvalue lower bound). In Proposition 4, in the fol-
lowing cases we have equality, for all d ≥ 1:

(i) the hemispheres Sd+ of the Riemannian round sphere Sd;
(ii) the hemispheres S2d+1

+ of the sub-Riemannian complex Hopf fibration S2d+1;
(iii) the hemispheres S4d+3

+ of the sub-Riemannian quaternionic Hopf fibration S4d+3;
all equipped with the Riemannian volume of the corresponding round sphere. In all these
cases, L = π and λ1(M) = d, 2d or 4d, respectively. Moreover, the associated eigenfunc-
tion is Ψ = cos(δ), where δ is the Riemannian distance from the north pole.

Remark 3. The Riemannian volume of the sub-Riemannian Hopf fibrations coincides, up
to a constant factor, with their Popp volume [6, 35], an intrinsic smooth measure in sub-
Riemannian geometry. This is proved for 3-Sasakian structures (including the QHF) in [38,
Prop. 34] and can be proved exactly in the same way for Sasakian structures (including
the CHF) using the explicit formula for Popp volume of [6]. For the case (i) ∆ω is the
Laplace-Beltrami operator. For the cases (ii) and (iii) ∆ω is the standard sub-Laplacian
of CR and QC geometry, respectively.

In principle, L can be computed when the reduced geodesic flow is explicit. This
is the case for Carnot groups, where reduced geodesics passing through the origin are
simply straight lines (they fill a k-plane for rank k Carnot groups). It turns out that,
in this case, L = diamH(M) (the horizontal diameter, that is the diameter of the set M
measured through left-translations of the aforementioned straight lines). Thus (9) gives an
easily computable lower bound for the first Dirichlet eigenvalue in terms of purely metric
quantities.

Corollary 6. Let M be a compact n-dimensional submanifold with piecewise C1,1 bound-
ary of a Carnot group of rank k, with the Haar volume. Then,

(10) λ1(M) ≥ kπ2

diamH(M)2 ,

where diamH(M) denotes the horizontal diameter of M .

In particular, if M is the metric ball of radius R, we obtain λ1(M) ≥ kπ2/(2R)2. Clearly
(10) is not sharp, as one can check easily in the Euclidean case.
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∂M

q

ϑ�q

M

Figure 2. Visibility angle on a 2D Riemannian manifold. Only the
geodesics with tangent vector in the dashed slice go to ∂M .

1.5. Isoperimetric-type inequalities. In this section we relate the sub-Riemannian
area and perimeter of M with some of its geometric properties. Since M is compact,
the sub-Riemannian diameter diam(M) can be characterized as the length of the longest
optimal geodesic contained in M . Analogously, the reduced sub-Riemannian diameter
diamr(M) is the length of the longest reduced optimal geodesic contained in M . Indeed
diamr(M) ≤ diam(M).

Consider all reduced geodesics passing through q ∈ M with covector λ. Some of them
originate from the boundary ∂M , that is `(−λ) < +∞; others do not, i.e. `(−λ) = +∞.
The relative ratio of the lengths of these two types of geodesics (w.r.t. an appropriate
measure on U∗qM r) is called the visibility angle ϑ�q ∈ [0, 1] at q (see Definition 6). Roughly
speaking, if ϑ�q = 1 then any geodesic passing through q will hit the boundary and, on the
opposite, if it is equal to 0 then q is not visible from the boundary (see Fig. 2). Similarly,
we define the optimal visibility angle ϑ̃�q by replacing `(−λ) with ˜̀(−λ). Finally, the
least visibility angle is ϑ� := infq∈M ϑ�q , and similarly for the least optimal visibility angle
ϑ̃� := infq∈M ϑ̃�q .

Proposition 7 (Isoperimetric-type inequalities). Let ` := sup{`(λ) | λ ∈ U∗qM r, q ∈ ∂M}
be the length of the longest reduced geodesic contained in M starting from the boundary
∂M . Then

(11) σ(∂M)
ω(M) ≥ C

ϑ�

`
and σ(∂M)

ω(M) ≥ C
ϑ̃�

diamr(M) ,

where C = 2π|Sk−1|/|Sk| and we set the r.h.s. to 0 if ` = +∞.

The equality in (11) holds for the hemisphere of the Riemannian round sphere, as
pointed out in [19]. We have the following generalization to the sub-Riemannian setting.

Proposition 8 (Sharpness of isoperimetric inequalities). In Proposition 7, in the following
cases we have equality, for all d ≥ 1:

(i) the hemispheres Sd+ of the Riemannian round sphere Sd;
(ii) the hemispheres S2d+1

+ of the sub-Riemannian complex Hopf fibration S2d+1;
(iii) the hemispheres S4d+3

+ of the sub-Riemannian quaternionic Hopf fibration S4d+3;
where ω is the Riemannian volume of the corresponding round sphere. In all these cases
ϑ� = ϑ̃� = 1 and ` = diamr(M) = π.
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We can apply Proposition 7 to Carnot groups equipped with the Haar measure. In this
case ϑ� = ϑ̃� = 1 and ` = diamr(M) = diamH(M). Moreover, ω is the Lebesgue volume
of Rn and σ is the associated perimeter measure of geometric measure theory [14].

Corollary 9. Let M be a compact n-dimensional submanifold with piecewise C1,1 bound-
ary of a Carnot group of rank k, with the Haar volume. Then,

σ(∂M)
ω(M) ≥

2π|Sk−1|
|Sk|diamH(M) ,

where diamH(M) is the horizontal diameter of the Carnot group.

This inequality is not sharp even in the Euclidean case, but it is very easy to compute
the horizontal diameter for explicit domains. For example, if M is the sub-Riemannian
metric ball of radius R, then diamH(M) = 2R.

1.6. Remark on change of volume. Fix a sub-Riemannian structure (N,D, g), a com-
pact set M with piecewise C1,1 boundary and a complement V such that (H1) holds.
Now assume that, for some choice of volume form ω, also (H2) is satisfied, so that we
can carry on with the reduction procedure and all our results hold. One can derive the
analogous of Propositions 2, 3, 4, 7 for any other volume ω′ = eϕω, with ϕ ∈ C∞(M). In
all these results, it is sufficient to multiply the r.h.s. of the inequalities by the volumet-
ric constant 0 < α ≤ 1 defined as α := min eϕ

max eϕ , and indeed replace ω with ω′ = eϕω in
Propositions 2 and 3, σ with σ′ = eϕσ in Proposition 7, and the sub-Laplacian ∆ω with
∆ω′ = ∆ω + 〈dϕ,∇H ·〉 in Proposition 4. Analogously, one can deal with the Corollaries 6
and 9 about Carnot groups.

This remark allows, for example, to obtain results for (sub-)Riemannian weighted mea-
sures. This is particularly interesting in the genuinely sub-Riemannian setting since, in
some cases, the volume satisfying (H2) might not coincide with the intrinsic Popp one.

1.7. Remark on rigidity. The sharpness results of Propositions 5 and 8 hold for hemi-
spheres of (sub-)Riemannian structures associated with Riemannian submersions of the
sphere with totally geodesic fibers, which have been completely classified in [26]. The only
case which is not covered in these propositions is the so-called octonionic Hopf fibration
(OHF) S7 ↪→ S15 → OP1, which to our best knowledge has not yet been studied from the
sub-Riemannian point of view, and for which explicit expressions for the sub-Laplacian do
not appear in the literature. It is however likely that the sharpness results of Propositions 5
and 8 hold also for the hemisphere S15

+ of the sub-Riemannian OHF.
Finally, concerning the universal lower bound of Proposition 4, Croke proved the follow-

ing rigidity result in the Riemannian case (see [19, Thm. 16]). As we already remarked,
the lower bound (9) is non-trivial if and only if all geodesics starting from points of M
hit the boundary at some finite time (i.e. ϑ� = 1). If, furthermore, every such geodesic
minimizes distance up to the point of intersection with the boundary (i.e. ϑ̃� = 1), then
we have equality in (9) if and only if M is an hemisphere of the round sphere. See also
[21] for a more general rigidity result. The following question is thus natural.

Open question. Are the hemispheres of the CHF, QHF, and possibly OHF, the only
domains on compact sub-Riemannian manifolds tamed by a foliation with totally geodesic
leaves (see Section 5.2) where the lower bound of Proposition 4 is attained?

1.8. Afterwords and further developments. Despite its broad range of applications
in Riemannian geometry and its Finsler generalizations [42], only a few works used Santaló
formula in the hypoelliptic setting, all of them in the specific case of Carnot groups [34, 36]
or 3D Sasakian structures [15]. It is interesting to notice that, in [36], Pansu was able
to use Santaló formula in pairs with minimal surfaces to eliminate the diameter term in
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Corollary 9 and obtain his celebrated isoperimetric inequality. In our general setting, this
is something worth investigating.

The study of spectral properties of hypoelliptic operators is an active area of research.
Many results are available for the complete spectrum of the sub-Laplacian on closed man-
ifolds (with no boundary conditions). We recall [8, 10, 11] for the case of SU(2), CHF
and QHF. Furthermore, in [18], one can find the spectrum of the “flat Heisenberg case” (a
compact quotient of the Heisenberg group) together with quantum ergodicity results for
3D contact sub-Riemannian structures. Lower bounds for the first (non-zero) eigenvalue
of the sub-Laplacian on closed foliation, under curvature-like assumptions, appeared in [9]
(see also [7] for a more general statement).

Concerning the Dirichlet spectrum on Riemannian manifolds with boundary, a classical
reference is [16]. In the sub-Riemannian setting, we are aware of results for the sum of
Dirichlet eigenvalues [40] by Strichartz and related spectral inequalities [28] by Hannson
and Laptev, both for the case of the Heisenberg group. To our best knowledge, Propo-
sition 4 is the first sharp universal lower bound for the first Dirichlet eigenvalue in the
sub-Riemannian setting and in particular for non-Carnot structures.

The study of Hardy’s inequalities, already in the Euclidean setting, ranges across the
last century and continues to the present day (see [5, 12, 25] and references therein). The
sub-Riemannian case is more recent, for an account of the known result we mention the
works for Carnot groups of Capogna, Danielli and Garofalo (see e.g. [13, 22]).

Poincaré inequalities are strictly connected to Hardy’s ones. On this subject the liter-
ature is again huge, we already mentioned the works of Croke and Derdzinski concerning
the Riemannian case [19, 20, 21]. Finally, see [30] for results on CR and QC manifolds
under Ricci curvature assumptions in the spirit of the Lichnerowicz-Obata theorem.

In this paper we focused mostly on foliations, where our results are sharp. For Carnot
groups, Corollaries 6 and 9 appeared in [34] and are not sharp. Let us consider for
simplicity the 3D Heisenberg group, with coordinates (x, y, z) ∈ R3. A relevant class of
domains for the Dirichlet eigenvalues problem are the “Heisenberg cubes” [0, ε] × [0, ε] ×
[0, ε2], obtained by non-homogeneous dilation of the unit cube [0, 1]3. These represent a
fundamental domain for the quotient H3/εΓ of the 3D Heisenberg group H3 by the (dilation
of the) integer Heisenberg subgroup Γ (a lattice). This is the basic example of nilmanifold,
(we thank R. Montgomery for pointing out this example). For these fundamental domains,
the first Dirichlet eigenvalue is unknown. However, we mention that for any Carnot group
the reduction technique developed here can be further improved leading to a λ1 estimate
for cubes, via the technique sketched in Appendix B.)

1.9. Structure of the paper. In Section 2 we recall some basic definitions about sub-
Riemannian geometry and sub-Laplacians. In Section 3 we introduce some preliminary
constructions concerning integration on vector bundles that we need for the reduction
procedure. In Section 4 we prove the main result of the paper, namely the reduced Santaló
formula. Section 5 is devoted to examples, and contains the general class of structures
where our construction can be carried out. Finally, in Section 6 we apply the reduced
Santaló formula to prove Poincaré, Hardy, and isoperimetric-type inequalities.

2. Sub-Riemannian geometry

We give here only the essential ingredients for our analysis; for more details see [2, 35,
37]. A sub-Riemannian manifold is a triple (M,D, g), where M is a smooth, connected
manifold of dimension n ≥ 3, D is a vector distribution of constant rank k ≤ n and g is a
smooth metric on D. We assume that the distribution is bracket-generating, that is

span{[Xi1 , [Xi2 , [. . . , [Xim−1 , Xim ]]]] | m ≥ 1}q = TqM, ∀q ∈M,

for some (and thus any) set X1, . . . , Xk ∈ Γ(D) of local generators for D.
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A horizontal curve γ : [0, T ]→ R is a Lipschitz continuous path such that γ̇(t) ∈ Dγ(t)
for almost any t. Horizontal curves have a well defined length

`(γ) =
∫ T

0

√
g(γ̇(t), γ̇(t))dt.

Furthermore, the sub-Riemannian distance is defined by:
d(x, y) = inf{`(γ) | γ(0) = x, γ(T ) = y, γ horizontal}.

By the Chow-Rashevskii theorem, under the bracket-generating condition, d is finite and
continuous. Sub-Riemannian geometry includes the Riemannian one, when D = TM .

2.1. Sub-Riemannian geodesic flow. Sub-Riemannian geodesics are horizontal curves
that locally minimize the length between their endpoints. Let π : T ∗M → M be the
cotangent bundle. The sub-Riemannian Hamiltonian H : T ∗M → R is

H(λ) := 1
2

k∑
i=1
〈λ,Xi〉2, λ ∈ T ∗M,

where X1, . . . , Xk ∈ Γ(D) is any local orthonormal frame and 〈λ, ·〉 denotes the action of
covectors on vectors. Let σ be the canonical symplectic 2-form on T ∗M . The Hamiltonian
vector field ~H is defined by σ(·, ~H) = dH. Then the Hamilton equations are

(12) λ̇(t) = ~H(λ(t)).
Solutions of (12) are called extremals, and their projections γ(t) := π(λ(t)) on M are
smooth geodesics. The sub-Riemannian geodesic flow φt ∈ T ∗M → T ∗M is the flow of ~H.
Thus, any initial covector λ ∈ T ∗M is associated with a geodesic γλ(t) = π ◦ φt(λ), and
its speed ‖γ̇(t)‖ = 2H(λ) is constant. The unit cotangent bundle is

U∗M = {λ ∈ T ∗M | 2H(λ) = 1}.
It is a fiber bundle with fiber U∗qM = Sk−1 × Rn−k. For λ ∈ U∗qM , the curve γλ(t) is a
length-parametrized geodesic with length `(γ|[t1,t2]) = t2 − t1.

Remark 4. There is also another class of minimizing curves, called abnormal, that might
not follow the Hamiltonian dynamic of (12). Abnormal geodesics do not exist in Rie-
mannian geometry, and they are all trivial curves in some basic but popular classes of
sub-Riemannian structures (e.g. fat ones). Our construction takes in account only the
normal sub-Riemannian geodesic flow, hence abnormal geodesics are allowed, but ignored.
Some hard open problems in sub-Riemannian geometry are related to abnormal geodesics
[1, 35, 31].

2.2. The intrinsic sub-Laplacian. Let (M,D, g) be a compact sub-Riemannian mani-
fold with piecewise C1,1 boundary ∂M , and ω ∈ ΛnM be any smooth volume form (or a
density, if M is not orientable). We define the Dirichlet energy functional as

E(f) =
∫
M

2H(df)ω, f ∈ C∞0 (M).

The Dirichlet energy functional induces the operator −∆ω on L2(M,ω). Its Friedrichs
extension is a non-negative self-adjoint operator on L2(M,ω) that we call the Dirichlet
sub-Laplacian. Its domain is the space H1

0 (M), the closure in the H1(M) norm of the
space C∞0 (M) of smooth functions that vanish on ∂M . Since ‖∇Hf‖2 = 2H(df), for
smooth functions we have

∆ωf = divω(∇Hf), ∀f ∈ C∞0 (M),
where the divergence is computed w.r.t. ω, and ∇H is the horizontal gradient defined by
(4). The spectrum of −∆ω is discrete and positive,

0 < λ1(M) ≤ λ2(M) ≤ . . .→ +∞.
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In particular, by the min-max principle we have

(13) λ1(M) = inf
{
E(f)

∣∣∣∣ f ∈ C∞0 (M),
∫
M
|f |2 ω = 1

}
.

3. Preliminary constructions

We discuss some preliminary constructions concerning integration on vector bundles
that we need for the reduction procedure. In this section π : E → M is a rank k vector
bundle on an n dimensional manifold M . For simplicity we assume M to be oriented and E
to be oriented (as a vector bundle). If not, the results below remain true replacing volumes
with densities. We use coordinates x on O ⊂ M and (p, x) ∈ Rk × Rn on U = π−1(O)
such that the fibers are Eq0 = {(p, x0) | p ∈ Rk}. In a compact notation we write, in
coordinates, dp = dp1 ∧ . . . ∧ dpk and dx = dx1 ∧ . . . ∧ dxn.

3.1. Vertical volume forms. Consider the fibers Eq ⊂ E as embedded submanifolds
of dimension k. For each λ ∈ Eq, let Λk(TλEq) be the space of alternating multi-linear
functions on TλEq. The space

Λkv(E) :=
⊔
λ∈E

Λk(TλEπ(λ))

defines a rank 1 vector bundle Π : Λkv(E)→ E, such that Π(η) = λ if η ∈ Λk(TλEπ(λ)).
To see this, choose coordinates (p, x) ∈ Rk×Rn on U = π−1(O) such that the fibers are

Eq0 = {(p, x0) | p ∈ Rk}. Thus the vectors ∂p1 , . . . , ∂pk
tangent to the fibers Eq are well

defined. The map Ψ : Π−1(U) → U × R, defined by Ψ(η) = (Π(η), η(∂p1 , . . . , ∂pk
)) is a

bijection. Suppose that (U ′, p′, x′) is another chart, and similarly Ψ′ : Π−1(U ′)→ U ′ ×R.
Then, on Π−1(U ′ ∩ U) × R we have Ψ′ ◦ Ψ−1(λ, α) = (λ, det(∂q′/∂q)). Finally, we apply
the vector bundle construction Lemma [32, Lemma 5.5].

Definition 1. A smooth, strictly positive section ν ∈ Γ(Λkv(E)) is called a vertical volume
form on E. In particular, the restriction νq := ν|Eq of a vertical volume form defines a
measure on each fiber Eq.

Lemma 10 (Disintegration 1). Fix a volume form Ω ∈ Λn+k(E) and a volume form
ω ∈ Λn(M) on the base space. Then there exists a unique vertical volume form ν ∈ Λkv(E)
such that, for any measurable set D′ ⊆ E and measurable f : D → R,

(14)
∫
D′
f Ω =

∫
π(D′)

[∫
D′q

fq νq

]
ω(q), fq := f |Eq , D′q := Eq ∩D′.

If, in coordinates, Ω = Ω(p, x)dp ∧ dx and ω = ω(x)dx, then

ν|(p,x) = Ω(p, x)
ω(x) dp.

Proof. The last formula does not depend on the choice of coordinates (p, x) on E. So we
can use this as a definition for ν. Moreover, in coordinates,

Ω|(p,x) = Ω(p, x)dp ∧ dx =
(Ω(p, x)
ω(x) dp

)
∧ (ω(x)dx).

Both uniqueness and (14) follow from the definition of integration on manifolds and Fubini
theorem. �
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3.2. Vertical surface forms. Let E′ ⊂ E be a corank 1 sub-bundle of π : E → M .
That is, a submanifold E′ ⊂ E such that π|E′ : E′ → M is a bundle, and the fibers
E′q := π−1(q)∩E′ ⊂ Eq are diffeomorphic to a smooth hypersurface C ⊂ Rk. As a matter
of fact, we will only consider the cases in which C is a cylinder or a sphere.

Fix a smooth volume form Ω ∈ Λn+k(E). The Euler vector field is the generator of
homogenous dilations on the fibers λ 7→ eαλ, for all α ∈ R. In coordinates (p, x) on E we
have e =

∑n
i=1 pi∂pi . If e is transverse to E′ we induce a volume form on E′ by µ := ιeΩ.

In this setting, a volume form µ ∈ Λn+k−1(E′) is called a surface form. For any vertical
volume form ν ∈ Λkv(E), we define a measure on the fibers E′q as ηq = ιeν|Eq . With an
abuse of language, we will refer to such measures as vertical surface forms.

Lemma 11 (Disintegration 2). Fix a surface form µ = ιeΩ ∈ Λn+k−1(E′) and a volume
form ω ∈ Λn(M) on the base space. For any measurable set D ⊆ E′ and measurable
f : D → R,

(15)
∫
D
fµ =

∫
π(D)

[∫
Dq

fq ηq

]
ω(q), fq := f |E′q , Dq := E′q ∩D.

Here, ηq = ιeν|Eq and ν is the vertical volume form on E defined in Lemma 10.

Proof. Choose coordinates (p, x) on E. As in the proof of Lemma 10

µ|(p,x) = ιeΩ|(p,x) = Ω(p, x)
(
ιedp ∧ dx+ (−1)kdp ∧ ιedx

)
= Ω(p, x)ιedp ∧ dx

=
(Ω(p, x)
ω(x) ιedp

)
∧ (ω(x)dx).

Thus (15) holds with η|(p,x) = Ω(p,x)
ω(x) ιedp. This, together with the local expression of ν in

Lemma 10, yields η = ιeν. �

Example 1 (The unit cotangent bundle). We apply the above constructions to E = T ∗M
and E′ = U∗M . In this case E′q = U∗qM are diffeomorphic to cylinders (or spheres, in the
Riemannian case). Moreover, we set Ω = Θ, the Liouville volume form, and µ = ιeΘ, the
Liouville surface form.3 One can check that Θ = dµ.

Let ν ∈ Λnv(T ∗M) and η = ιeν as in Lemmas 10 and 11. In canonical coordinates,
Θ = dp ∧ dx. Then, if ω = ω(x)dx,

ν = 1
ω(x) dp and η = 1

ω(x)

n∑
i=1

(−1)i−1pi dp1 ∧ . . . ∧ d̂pi ∧ . . . ∧ dpn.

Choose coordinates x around q0 ∈ M such that ∂x1 |q0 , . . . , ∂xk
|q0 is an orthonormal basis

for the sub-Riemannian distribution Dq0 . In the associated canonical coordinates we have

U∗q0M = {(p, x0) ∈ R2n | p2
1 + . . .+ p2

k = 1} ' Sk−1 × Rn−k.

In this chart, ηq0 is the (n− 1)-volume form of the above cylinder times 1/ω(x0).

Remark 5. This construction gives a canonical way to define a measure on U∗M and its
fibers in the general sub-Riemannian case, depending only on the choice of the volume ω
on the manifold M . It turns out that this measure is also invariant under the Hamiltonian
flow. Notice though that in the sub-Riemannian setting, fibers have infinite volume.

3 Let ϑ ∈ Λ1(T ∗M) be the tautological form ϑ(λ) := π∗(λ). The Liouville invariant volume Θ ∈
Λ2n(T ∗M) is Θ := (−1)

n(n−1)
2 dϑ∧ . . .∧ dϑ. In canonical coordinates (p, x) on T ∗M we have Θ = dp∧ dx.
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3.3. Invariance. Here we focus on the case of interest where E ⊆ T ∗M is a rank k vector
sub-bundle and E′ ⊂ E is a corank 1 sub-bundle as defined in Section 3.2. We stress that
E′ is not necessarily a vector sub-bundle, but typically its fibers are cylinders or spheres.

Recall that the sub-Riemannian geodesic flow φt : T ∗M → T ∗M is the Hamiltonian
flow of H : T ∗M → R. Moreover, in our picture, M ⊂ N is a compact submanifold with
boundary ∂M of a larger manifold N , with dimM = dimN = n.

Definition 2. A sub-bundle E ⊆ T ∗M is invariant if φt(λ) ∈ E for all λ ∈ E and t such
that φt(λ) ∈ T ∗M is defined. A volume form Ω ∈ Λn+k(E) is invariant if L ~HΩ = 0.

Our definition includes the case of interest for Santaló formula, where sub-Riemannian
geodesics may cross ∂M 6= ∅. In other words, E is invariant if the only way to escape from
E through the Hamiltonian flow is by crossing the boundary π−1(∂M). Moreover, if Ω is
an invariant volume on an invariant sub-bundle E, then φ∗tΩ = Ω.

Lemma 12 (Invariant induced measures). Let E ⊆ T ∗M be an invariant vector bundle
with an invariant volume Ω. Let E′ ⊂ E be a corank 1 invariant sub-bundle. Let e be
a vector field transverse to E′ and µ = ιeΩ the induced surface form on E′. Then µ is
invariant if and only if [ ~H, e] is tangent to E′.

In Example 1, E = T ∗M and E′ = U∗M are clearly invariant; in particular ~H is tangent
to E′. By Liouville theorem, Ω = Θ is invariant for any Hamiltonian flow Moreover, if the
Hamiltonian H is homogeneous of degree d (on fibers), one checks that [ ~H, e] = −(d−1) ~H
and Lemma 12 yields the invariance of the Liouville surface measure µ = ιeΘ. In particular
this holds in Riemannian and sub-Riemannian geometry, with d = 2.

4. Santaló formula

4.1. Assumptions on the boundary. Let (N,D, g) be a smooth connected sub-Rie-
mannian manifold, of dimension n, without boundary. We focus on a compact n-dimen-
sional submanifold M with piecewise C1,1 boundary ∂M .

Let q ∈ ∂M such that the tangent space is well defined. We say that q is a characteristic
point if Dq ⊆ Tq∂M . If q is non-characteristic, the horizontal normal at q is the unique
inward pointing unit vector nq ∈ Dq orthogonal to Tq∂M ∩Dq. If q ∈ ∂M is characteristic,
we set nq = 0. We call C(∂M) the set of characteristic points. The size of C(∂M) has been
studied in [24, 4] under various regularity assumptions on ∂M . We give a self-contained
proof of the negligibilty of C(∂M), which we need in the following. The C1,1 regularity
assumption cannot be weakened to C1,α, with 0 < α < 1, as shown in [3, Thm. 1.4].

Proposition 13. Let ∂M be piecewise C1,1. Then, the set of characteristic points C(∂M)
has zero measure in ∂M .

Proof. Without loss of generality we assume that N = Rn and that locally ∂M is the
graph of a C1,1 function f : Rn−1 → R. Let also u(x, z) = z − f(x), so that locally
∂M = {(x, z) ∈ Rn−1 × R | u(x, z) = 0}.

Let Ã ⊂ Rn−1 be measurable with positive measure, and let A = {(x, f(x)) | x ∈ Ã} ⊆
∂M . We claim that if X,Y are smooth vector fields (not necessarily horizontal), tangent
to ∂M a.e. on A, then also [X,Y ] is tangent to ∂M a.e. on A. Notice that X is tangent
to ∂M a.e. on A if and only if X(u)(x, f(x)) = 0 for a.e. x ∈ Ã. Consider the Lipschitz
function ξ(x) := X(u)(x, f(x)). As a consequence of coarea formula [27], we have∫

Ã
|∇ξ(x)| dx =

∫
R
Hn−2(Ã ∩ ξ−1(t)) dt = 0,

where |∇ξ| is the norm of the Euclidean gradient of ξ : Rn−1 → R, and Hn−2 is the
Hausdorff measure. In particular, ∇ξ = 0 a.e. on Ã. Since Y is tangent to ∂M a.e. on A,
the above identity yields that Y (X(u)) = 0 a.e. on A. A similar argument shows that also
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Y (X(u)) = 0 a.e. on A. Since [X,Y ](u)(x, f(x)) = X(Y (u))(x, f(x))− Y (X(u))(x, f(x))
for a.e. x ∈ Rn−1, we have that [X,Y ] is tangent to ∂M a.e. on A, as claimed.

Assume by contradiction that C(∂M) has positive measure. In particular, applying the
above claim to any pair X,Y ∈ Γ(D), and A = C(∂M), we obtain that [X,Y ] is tangent
to ∂M a.e. on C(∂M). Since [X,Y ] ∈ Γ(TM), we can apply the claim a finite number of
times, obtaining that any iterated Lie bracket of elements of Γ(D) is tangent to ∂M a.e.
on C(∂M). This contradicts the bracket-generating assumption. �

4.2. (Sub-)Riemannian Santaló formula. For any covector λ ∈ U∗qM , the exit length
`(λ) is the first time t ≥ 0 at which the corresponding geodesic γλ(t) = π ◦ φt(λ) leaves
M crossing its boundary, while ˜̀(λ) is the smallest between the exit and the cut length
along γλ(t). Namely

`(λ) = sup{t ≥ 0 | γλ(t) ∈M},
˜̀(λ) = sup{t ≤ `(λ) | γλ|[0,t] is minimizing}.

We also introduce the following subsets of the unit cotangent bundle π : U∗M →M :

U+∂M = {λ ∈ U∗M |∂M | 〈λ,n〉 > 0} ,

U�M = {λ ∈ U∗M | `(−λ) < +∞},

Ũ�M = {λ ∈ U�M | ˜̀(−λ) = `(−λ)}.

Some comments are in order. The set U+∂M consists of the unit covectors λ ∈ π−1(∂M)
such that the associated geodesic enters the set M for arbitrary small t > 0. The visible
set U�M is the set of covectors that can be reached in finite time starting from π−1(∂M)
and following the geodesic flow. If we restrict to covectors that can be reached optimally
in finite time, we obtain the optimally visible set Ũ�M (see Fig. 1).

Lemma 14. The cut-length c : U∗M → (0,+∞] is upper semicontinuous (and hence
measurable). Moreover, if any couple of distinct points in M can be joined by a minimizing
non-abnormal geodesic, c is continuous.

Proof. The result follows as in [17, Thm. III.2.1]. We stress that the key part of the proof
of the second statement is the fact that, in absence of non-trivial abnormal minimizers, a
point is in the cut locus of another if and only if (i) it is conjugate along some minimizing
geodesic or (ii) there exist two distinct minimizing geodesics joining them. �

Lemma 15. The exit length ` : U+∂M → (0,+∞] is lower semicontinuous (and hence
measurable). Moreover, ˜̀ : U+∂M → (0,+∞] is measurable.

Proof. Let λ0 ∈ U+∂M . Consider a sequence λn such that lim infλ→λ0 `(λ) = limn `(λn).
Then, the trajectories γn(t) = π ◦ φt(λn) for t ∈ [0, `(λn)] converge uniformly as n→ +∞
to the trajectory γ0(t) = φt(λ0) for t ∈ [0, δ] where δ = limn `(λn). Moreover, by continuity
of ∂M and the fact that γn(`(λn)) ∈ ∂M , it follows that γ0(δ) ∈ ∂M . This proves that
δ ≥ `(λ0), proving the first part of the statement.

To complete the proof, observe that ˜̀= min{`, c}, which are measurable by the previous
claim and Lemma 14. �

Fix a volume form ω on M (or density, if M is not orientable). In any case, ω and
σ := ιnω induce positive measures on M and ∂M , respectively. According to Lemmas 10
and 11, these induce measures νq and ηq = ιeνq on T ∗qM and U∗qM , respectively.
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Theorem 16 (Santaló formulas). The visible set U�M and the optimally visible set Ũ�M
are measurable. Moreover, for any measurable function F : U∗M → R we have∫

U�M
F µ =

∫
∂M

[∫
U+

q ∂M

(∫ `(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηq(λ)

]
σ(q),(16)

∫
Ũ�M

F µ =
∫
∂M

[∫
U+

q ∂M

(∫ ˜̀(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηq(λ)

]
σ(q).(17)

Remark 6. Even if M is compact and hence ˜̀ < +∞, in general Ũ�M ( U�M . Fur-
thermore, if ` < +∞ (that is, all geodesics reach the boundary of M in finite time), then
U�M = U∗M . Thus, our statement of Santalò formula contains [17, Thm. VII.4.1].
Remark 7. If ∂M is only Lipschitz and C(∂M) has positive measure, the above Santaló
formulas still hold by removing on the left hand side from U�M and Ũ�M the set {φt(λ) |
π(λ) ∈ C(∂M) and t ≥ 0}. Nothing changes on the right hand side as σ(C(∂M)) = 0,
since σ = ιnω and n vanishes on C(∂M) by definition.
Proof. Let A ⊂ [0,+∞) × U+∂M be the set of pairs (t, λ) such that 0 < t < `(λ). By
Lemma 15 it follows that A is measurable. Let also Z = π−1(∂M) ⊂ U�M which has
zero measure in U∗M . Define φ : A → U�M \ Z as φ(t, λ) = φt(λ). This is a smooth
diffeomorphism, whose inverse is φ−1(λ̄) = (`(−λ̄),−φ`(−λ̄)(−λ̄)). In particular, U�M is
measurable. Then, using Lemma 17 (see below), and Fubini theorem, we have

(18)
∫
U�M

F µ =
∫
φ(A)

F µ =
∫
A

(F ◦ φ)φ∗µ =

=
∫
∂M

[∫
U+

q ∂M

(∫ `(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηq(λ)

]
σ(q),

which proves (16). Analogously, with Ã = {(t, λ) | 0 < t < ˜̀(λ)} and Z̃ = Z ∪ {φ˜̀(λ)(λ) |
λ ∈ U+∂M} the map φ : Ã→ Ũ�M \ Z̃ is a diffeomorphism with the same inverse. Then,
the same computations as (18) replacing A with Ã and Z with Z̃ yield (17). �

Lemma 17. The following local identity of elements of Λ2n−1(R× U+∂M) holds
φ∗µ|(t,λ) = 〈λ,nq〉 dt ∧ σ ∧ η, λ ∈ U+∂M,

where, in canonical coordinates (p, x) on T ∗M

η = ιeν, ν = 1
ω(x)dp, σ = ιnω, ω = ω(x)dx.

Proof. For any (t, λ) ∈ R× U+∂M let {∂t, v1, . . . , v2n−2} be a set of independent vectors
in T (R× U+∂M) = TR⊕ TU+∂M . Observe that φ∗µ = dt ∧ (ι∂tφ

∗µ). Then,

ι∂tφ
∗µ(v1, . . . , v2n−2) = µ|φ(t,λ)

(
d(t,λ)φ∂t, d(t,λ)φ v1, . . . , d(t,λ)φ v2n−2

)
.

Notice that,
(a) d(t,λ)φ∂t = (dλφt) ~H, this is in fact just ~H|φt(λ),
(b) d(t,λ)φ vi = (dλφt)vi for any i = 1, . . . , 2n− 2.

Hence it follows that
(19) ι∂tφ

∗µ = ι ~Hφ
∗
tµ = ι ~Hµ,

where in the last passage we used the invariance of µ (see the discussion below Lemma 12).
By Lemma 11 and its proof (in particular see Example 1) locally µ = η ∧ ω. By the
properties of the interior product,
(20) ι ~Hµ = (ι ~Hη) ∧ ω + (ι ~Hω) ∧ η.
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The first term on the r.h.s. vanishes: as a 2n − 2 form, its value at a point λ ∈ U+∂M
is completely determined by its action on 2n − 2 independent vectors of TλU+∂M . We
can choose coordinates such that ∂M = {xn = 0}. Then a basis of TλU+∂M is given by
∂x1 , . . . , ∂xn−1 and a set of n − 1 vectors vi =

∑n
j=1 v

j
i ∂pj in TλU

+
π(λ)∂M . Since ι ~Hη is a

n− 2 form, then ω necessarily acts on at least one vi, and vanishes. Now, notice that

(21) ι ~Hω|λ(·) = ω|π(λ)(π∗ ~H, π∗·) = 〈λ,nπ(λ)〉ω|π(λ)(nπ(λ), π∗·) = 〈λ,nπ(λ)〉σ|λ(·).
Putting together (19), (20), and (21) completes the proof of the statement. �

4.3. Reduced Santaló formula. The following reduction procedure replaces the non-
compact set U�M in Theorem 16 with a compact subset that we now describe.

To carry out this procedure we fix a transverse sub-bundle V ⊂ TM such that TM =
D⊕V. We assume that V is the orthogonal complement of D w.r.t. to a Riemannian metric
g such that g|D coincides with the sub-Riemannian one and the associated Riemannian
volume coincides with ω. In the Riemannian case, where V is trivial, this forces ω = ωR, the
Riemannian volume. In the genuinely sub-Riemannian case there is no loss of generality
since this assumption is satisfied for any choice of ω.

Definition 3. The reduced cotangent bundle is the rank k vector bundle π : T ∗M r → M
of covectors that annihilate the vertical directions:

T ∗M r := {λ ∈ T ∗M | 〈λ, v〉 = 0 for all v ∈ V} .
The reduced unit cotangent bundle is U∗M r := U∗M ∩ T ∗M r.

Observe that U∗M r is a corank 1 sub-bundle of T ∗M r, whose fibers are spheres Sk−1. If
T ∗M r is invariant in the sense of Definition 2, we can apply the construction of Section 3.3.
The Liouville volume Θ on T ∗M induces a volume on T ∗M r as follows.

Let X1, . . . , Xk and Z1, . . . , Zn−k be local orthonormal frames for D and V, respectively.
Let ui(λ) := 〈λ,Xi) and vj(λ) := 〈λ, Zj〉 smooth functions on T ∗M . Thus

T ∗M r = {λ ∈ T ∗M | v1(λ) = . . . = vn−k(λ) = 0}.
For all q ∈M where the fields are defined, (u, v) : T ∗qM → Rn are smooth coordinates on
the fiber and hence ∂u1 , . . . , ∂uk

,∂v1 , . . . , ∂vn−k
are vectors on Tλ(T ∗qM) ⊂ Tλ(T ∗M) for all

λ ∈ π−1(q). In particular, the vector fields ∂v1 , . . . , ∂vn−k
are transverse to T ∗M r, hence

we give the following definition.

Definition 4. The reduced Liouville volume Θr ∈ Λn+k(T ∗M r) is
Θr
λ := Θλ(. . . , . . . , . . .︸ ︷︷ ︸

k vectors

, ∂v1 , . . . , ∂vn−k
, . . . , . . . , . . .︸ ︷︷ ︸

n vectors

), ∀λ ∈ T ∗M r.

The above definition of Θr does not depend on the choice of the local orthonormal
frame {X1, . . . , Xk, Z1, . . . , Zn−k} and Riemannian metric g|V on the complement, as long
as its Riemannian volume remains the fixed one, ω. In fact, let X ′, Z ′ be a different
frame for a different Riemannian metric g′|V . Then4, X ′ = RX and Z ′ = SX + TZ for
R ∈ SO(k), T ∈ SL(n − k) and S ∈ M(k, n). One can check that ∂v = S∂u′ + T∂v′ and
that Θr = Θ(. . . , ∂v, . . .) = Θ(. . . , T∂v′ , . . .) = (Θr)′, where both frames are defined.

Assumptions for reduction. We assume the following hypotheses:
(H1) The bundle T ∗M r ⊆ T ∗M is invariant.
(H2) The reduced Liouville volume is invariant, i.e. L ~HΘr = 0.

Remark 8. Assumption (H1) depends only on V, while (H2) depends also on ω (since Θr

does). In the Riemannian case, with ω = ωR, both are trivially satisfied.

4For simplicity, assume that D is orientable as a vector bundle and that X1 . . . , Xk is an oriented frame.
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Under these assumptions U∗M r = U∗M ∩ T ∗M r is an invariant corank 1 sub-bundle
of T ∗M r. Moreover, µr = ιeΘr is an invariant surface form on U∗M r. This follows from
Lemma 12 observing that [ ~H, e] = − ~H is tangent to U∗M r. As in Section 3.1, the volume
Θr ∈ Λn+k(T ∗M r) induces a vertical volume νr

q on the fibers T ∗qM r and a vertical surface
form ηr

q = ιeνq on U∗qM
r. As a consequence of Lemmas 10 and 11 the latter has the

following explicit expression, whose proof is straightforward.

Lemma 18 (Explicit reduced vertical measure). Let q0 ∈ M and fix a set of canonical
coordinates (p, x) such that q0 has coordinates x0 and

• {∂x1 , . . . , ∂xk
}q0 is an orthonormal basis of Dq0,

• {∂xk+1 , . . . , ∂xn}q0 is an orthonormal basis of Vq0.
In these coordinates ω|x0 = dx|q0. Then νr

q0 = volRk and ηr
q0 = volSk−1. In particular,∫

U∗q0M
r
ηr
q0 = |Sk−1|, ∀q0 ∈M,

where |Sk−1| denotes the Lebesgue measure of Sk−1 and volRk , volSk−1 denote the Euclidean
volume forms of Rk and Sk−1.

We now state the reduced Santaló formulas. The sets U+∂M r, U�M r, and Ũ�M r are
defined from their unreduced counterparts by taking the intersection with T ∗M r.

Theorem 19 (Reduced Santaló formulas). The visible set U�M r and the optimally visible
set Ũ�M r are measurable. For any measurable function F : U∗M r → R we have∫

U�M r
F µr =

∫
∂M

[∫
U+

q ∂M r

(∫ `(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηr

q(λ)
]
σ(q),(22)

∫
Ũ�M r

F µr =
∫
∂M

[∫
U+

q ∂M r

(∫ ˜̀(λ)

0
F (φt(λ))dt

)
〈λ,nq〉ηr

q(λ)
]
σ(q).

Proof. The proof follows the same steps as the one of Theorem 16 replacing the invariant
sub-bundles, volumes, and surface forms with their reduced counterparts. �

Remark 9. Let HsR be the sub-Riemannian Hamiltonian and HR be the Riemannian
Hamiltonian of the Riemannian extension. The two Hamiltonians are (locally on T ∗M)

HR = 1
2

 k∑
i=1

u2
i +

n−k∑
j=1

v2
j

 , HsR = 1
2

k∑
i=1

u2
i .

Let φsRt = et
~HsR and φRt = et

~HR be their Hamiltonian flows. Since T ∗M r = {λ | v1(λ) =
. . . = vn−k(λ) = 0}, by assumption (H1) we have

HsR = HR, and φsRt = φRt on T ∗M r.

In particular, the sub-Riemannian geodesics with initial covector λ ∈ U∗M r are also
geodesics of the Riemannian extension and viceversa.

5. Examples

5.1. Carnot groups. A Carnot group (G, ?) of step m is a connected, simply connected
Lie group of dimension n, such that its Lie algebra g = TeG admits a nilpotent stratification
of step m, that is

g = g1 ⊕ . . .⊕ gm,

with
[g1, gj ] = g1+j , ∀1 ≤ j ≤ m, gm 6= {0}, gm+1 = {0}.
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Let D be the left-invariant distribution generated by g1, and consider any left-invariant
sub-Riemannian structure on G induced by a scalar product on g1.

We identify G ' Rn with a polynomial product law by choosing a basis for g as follows.
Recall that the group exponential map,

expG : g→ G,

associates with V ∈ g the element γ(1), where γ : [0, 1] → G is the unique integral line
starting from γ(0) = 0 of the left invariant vector field associated with V . Since G is
simply connected and g is nilpotent, expG is a smooth diffeomorphism.

Let dj := dim gj . Indeed d1 = k. Let {Xj
i }, for j = 1, . . . ,m and i = 1, . . . , dj be an

adapted basis, that is gj = span{Xj
1 , . . . , X

j
dj
}. In exponential coordinates we identify

(x1, . . . , xm) ' expG

 m∑
j=1

dj∑
i=1

xjiX
j
i

 , xj ∈ Rdj .

The identity e ∈ G is the point (0, . . . , 0) ∈ Rn and, by the Baker-Cambpell-Hausdorff
formula the group law ? is a polynomial expression in the coordinates (x1, . . . , xm). Finally,

Xj
i = ∂

∂xji

∣∣∣∣∣
0
,

so that D|e ' {(x, 0, . . . , 0) | x ∈ Rk} and Dq = Lq∗D|e, where Lq∗ is the differential of the
left-translation Lq(p) := q ? p.

We equip G with the Lebesgue volume of Rn, which is a left-invariant Haar measure.
In order to apply the reduction procedure of Section 4.3, let V be the left-invariant distri-
bution generated by

V|e := g2 ⊕ . . .⊕ gm,

and consider any left-invariant scalar product g|V on V. Thus, up to a renormalization,
g = g|D ⊕ g|V is a left-invariant Riemannian extension such that TM = D ⊕ V is an
orthogonal direct sum and its Riemannian volume coincides with the Lebesgue one.

Proposition 20. Any Carnot group satisfies assumptions (H1) and (H2).

Proof. Let X1, . . . , Xk ∈ Γ(D) and Z1, . . . , Zn−k ∈ Γ(V) be a global frame of left-invariant
orthonormal vector fields. Let ui(λ) := 〈λ,Xi〉 and vj(λ) := 〈λ, Zj〉 be smooth functions
on T ∗G. We have the following expressions for the Poisson brackets

{ui, vj} =
k∑
i=1

n−k∑
`=1

d`ijv`, i = 1, . . . , k, j = 1, . . . , n− k,

for some constants d`ij . We stress that the above expression does not depend on the ui’s, as
a consequence of the graded structure. Denoting the derivative along the integral curves
of ~H with a dot, we have

v̇j = {H, vj} =
k∑
i=1

ui{ui, vj} =
k∑
i=1

n−k∑
`=1

uid
`
ijv`.

Thus, any integral line of ~H starting from λ ∈ T ∗M r = {v1 = . . . = vn−k = 0} remains in
T ∗M r and the latter is invariant.

To prove the invariance of Θr, consider, for any fixed left-invariant X ∈ Γ(D), the
adjoint map adX : V|e → V|e, given by adX(Z) = [X,Z]|e. This map is well defined (as a
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consequence of the graded structure) and nilpotent. In particular Trace(adX) = 0. Thus,
we obtain from an explicit computation (see Appendix A)

�L ~HΘr = −

 k∑
i=1

n−k∑
j=1

uid
j
ij

Θr = −
(

k∑
i=1

ui Trace(adXi)
)

Θr = 0.

Proposition 21 (Characterization of reduced geodesics for Carnot groups). The geodesics
γλ(t) with initial covector λ ∈ T ∗qM r are obtained by left-translation of straight lines, that
is, in exponential coordinates,

γλ(t) = q ? (ut, 0, . . . , 0), u ∈ Rk.

Proof. Let X1, . . . , Xk ∈ Γ(D) and Z1, . . . , Zn−k ∈ Γ(V) be a global frame of left-invariant
orthonormal vector fields. Let ui(λ) := 〈λ,Xi〉 and vj(λ) := 〈λ, Zj〉 be smooth functions
on T ∗G. Let u ∈ Rk. The extremal λ(t) = φt(λ), with initial covector λ = (q, u, 0) satisfies
v ≡ 0 by Proposition 20 and, as a consequence of the graded structure,

u̇i = {H,ui} =
k∑
j=1

uj{uj , ui} =
k∑
j=1

n−k∑
`=1

ujc
`
jiv` = 0,

In particular λ(t) = (q(t), u, 0). Moreover the geodesic γλ(t) = π(λ(t)) satisfies

γ̇λ(t) =
k∑
i=1

uiXi(γλ(t)).

Since the ui’s are constants, γλ(t) is an integral curve of
∑k
i=1 uiXi starting from q. Then

L−1
q γλ(t) is an integral curve of

∑k
i=1 uiL

−1
q∗ Xi =

∑k
i=1 uiXi starting from the identity. By

definition of exponential coordinates

�γλ(t) = q ? expG

(
t
k∑
i=1

uiXi

)
' q ? (ut, 0).

Remark 10. In the case of a step 2 Carnot group, the group law is linear when written
in exponential coordinates. In fact, for a fixed left-invariant basis X1, . . . , Xk ∈ Γ(D) and
Z1, . . . , Zn−k ∈ Γ(V) it holds

[Xi, Xj ] =
n−k∑
`=1

c`ijZ`, c`ij ∈ R.

By the Baker-Campbell-Hausdorff formula, (x, z) ? (x′, z′) = (x′ + x, z′ + z + f(x, x′)),
where

f(x, x′)` = 1
2

k∑
i,j=1

xic
`
ijx
′
j , ` = 1, . . . , n− k.

As a consequence, the geodesics γλ(t) with initial covector λ ∈ T ∗qM r span the set q ?D|e.
The latter is not an hyperplane, in general, when q 6= e and the step m > 2.

Example 2 (Heisenberg group). The (2d + 1)-dimensional Heisenberg group H2d+1 is the
sub-Riemannian structure on R2d+1 where (D, g) is given by the following set of global
orthonormal fields

Xi := ∂xi −
1
2

2d∑
i=1

Jijxj∂z, J =
(

0 In
−In 0

)
, i = 1, . . . , 2d,

written in coordinates (x, z) ∈ R2d × R. The distribution is bracket-generating, as
[Xi, Xj ] = Jij∂z. These fields generate a stratified Lie algebra, nilpotent of step 2, with

g1 = span{X1, . . . , X2d}, g2 = span{∂z}.
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There is a unique connected, simply connected Lie group G such that g = g1 ⊕ g2 is its
Lie algebra of left-invariant vector fields. The group exponential map expG : g → G is a
smooth diffeomorphism and then we identify G = R2d+1 with the polynomial product law

(x, z) ? (x′, z′) =
(
x+ x′, z + z′ + 1

2x · Jx
′
)
.

Notice that X1, . . . , X2d (and ∂z) are left-invariant.
To carry on the reduction, we consider the Riemannian extension g such that ∂z is a

unit vector orthogonal to D. The geodesics associated with λ ∈ U∗M r and starting from
q reach the whole Euclidean plane q ? {z = 0} (the left-translation of R2d ⊂ R2d+1). At
q = (x, z) this is the plane orthogonal to the vector

(
1
2Jx, 1

)
w.r.t. the Euclidean metric.

5.2. Riemannian foliations with bundle like metric. Roughly speaking, a Riemann-
ian foliation has bundle like metric if locally it is a Riemannian submersion w.r.t. the
projection along the leaves.

Definition 5. Let M be a smooth and connected n-dimensional Riemannian manifold.
A k-codimensional foliation F on M is said to be Riemannian with bundle like metric if
there exists a maximal collection of pairs {(Uα, πα), α ∈ I} of open subsets Uα of M and
submersions πα : Uα → U0

α ⊂ Rk such that
• {Uα}α∈I is a covering of M
• If Uα ∩ Uβ 6= ∅, there exists a local diffeomorphism Ψαβ : Rk → Rk such that
πα = Ψαβπβ on Uα ∩ Uβ
• the maps πα : Uα → U0

α are Riemannian submersions when U0
α are endowed with

a given Riemannian metric
On each Uα, the preimages π−1

α (x0) for fixed x0 ∈ U0
α are codimension k embedded sub-

manifolds, called the plaques of the foliation. These submanifolds form maximal connected
injectively immersed submanifolds called the leaves of the foliation. The foliation is totally
geodesic if its leaves are totally geodesic submanifolds [41].

To any Riemannian foliation with bundle-like metric we associate the splitting TM =
D ⊕ V, where V is the bundle of vectors tangent to the leaves of the foliation and D is
its orthogonal complement (we call V the bundle of vertical directions, and its sections
vertical vector fields). If D is bracket-generating, then (D, g|D) is indeed a sub-Riemannian
structure on M that we refer to as tamed by a foliation and we assume to be equipped
with the corresponding Riemannian volume.

We say that a vector field X ∈ Γ(TM) is basic if, locally on any Uα, it is πα-related
with some vector X0 on U0

α. If X ∈ Γ(TM) is basic, and V ∈ Γ(V) is vertical, then
the Lie bracket [X,V ] is vertical. In this setting we consider a local orthonormal frame
Z1, . . . , Zn−k ∈ Γ(V) of vertical vector fields and a local orthonormal frame of basic vector
fields X1, . . . , Xk ∈ Γ(D) for the distribution. The structural functions are defined as

[Xi, Xj ] =
k∑
`=1

b`ijX` +
n−k∑
`=1

c`ijZ`, [Xi, Zj ] =
n−k∑
`=1

d`ijZ`, [Zi, Zj ] =
n−k∑
`=1

e`ijZ`.

The totally geodesic assumption is equivalent to the fact that any basic horizontal vector
field X generates a vertical isometry, that is

(23) (LXg)(Z,W ) = 0, ∀Z,W ∈ Γ(V) ⇐⇒ d`ij = −dji`.

Proposition 22. Any sub-Riemannian structure tamed by a foliation with totally geodesic
leaves satisfies assumptions (H1) and (H2).

Proof. Locally, T ∗M r is the zero-locus of the functions vi(λ) = 〈λ, Zi〉 for some family
{Zj}n−kj=1 of generators of V. Thus, denoting the derivative along the integral curves of ~H
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with a dot, we have

v̇j = {H, vi} =
k∑
i=1

ui{ui, vj} =
k∑
i=1

n−k∑
`=1

uid
`
ijv` = 0, on T ∗M r.

This readily implies the invariance of T ∗M r. To prove the invariance of Θr, we obtain
from an explicit computation (see Appendix A)

L ~H(Θr) = −
(

k∑
i=1

n−k∑
`=1

uid
`
i`

)
Θr = 0,

where, in the last step, we used the totally geodesic assumption (23). �

5.2.1. Riemannian submersions. A Riemannian submersion π : (M, g) → (M̄, ḡ) is triv-
ially a Riemannian foliation with bundle-like metric. Let M be a sub-Riemannian manifold
tamed by a Riemannian submersion π : M → M̄ . We have the following characterization.

Proposition 23. Let M be a sub-Riemannian manifold tamed by a Riemannian submer-
sion π : M → M̄ . Then γλ : [0, T ] → M is a sub-Riemannian geodesic associated with
λ ∈ U∗M r if and only if it is the lift of a Riemannian geodesic γ̄λ := π ◦ γλ of M̄ .

Proof. Let X̄1, . . . , X̄k ∈ Γ(TM̄) be a local orthonormal frame for (M̄, ḡ). LetX1, . . . , Xk ∈
Γ(D) the corresponding local orthonormal frame of basic vector fields on M , such that
π∗Xi = X̄i. Let Z1, . . . , Zn−k ∈ Γ(V) be a local orthonormal frame for V. Indeed

[Xi, Xj ] =
k∑
`=1

b`ijX` +
n−k∑
`=1

c`ijZ`, b`ij , c
`
ij ∈ C∞(M).

Since the Xi’s are basic, the functions b`ij ∈ C∞(M) are constant along the fibers of the
submersion and descend to well defined functions in C∞(M̄). Moreover

[X̄i, X̄j ] =
k∑
`=1

b`ijX̄`.

Sub-Riemannian extremals λ(t) ∈ U∗M r satisfy

(24) vj(t) ≡ 0, u̇j(t) =
k∑

i,`=1
ui(t)b`iju`(t), γ̇λ(t) =

k∑
i=1

ui(t)Xi(γλ(t)),

where the structural functions b`ij = b`ij(γλ(t)) are computed along the sub-Riemannian
geodesic. On the other hand, Riemannian extremals λ̄(t) ∈ UM̄ satisfy

(25) ˙̄uj(t) =
k∑

i,`=1
ūi(t)b`ij ū`(t), γ̇λ(t) =

k∑
i=1

ūi(t)X̄i(γ̄λ(t)),

where ūi : T ∗M̄ → R are the smooth functions ui(λ̄) = 〈λ̄, X̄i〉, for i = 1, . . . , k and are
computed along the extremal. The statement follows by observing that the projections
γ̄λ = π◦γλ of sub-Riemannian extremals satisfy (25) with ūi(t) = ui(t). Viceversa, for any
Riemannian geodesic γ̄λ̄ on M̄ , its horizontal lift γλ on M satisfies (24) with ui(t) = ūi(t)
and vj ≡ 0. �

Example 3 (Complex Hopf fibrations). Consider the odd dimensional spheres S2d+1

S2d+1 = {(z0, z1, . . . , zd) ∈ Cd+1 | ‖z‖ = 1},
equipped with the standard round metric. The unit complex numbers S1 = {z ∈ C | |z| =
1} give an isometric action of U(1) on S2d+1 by

z → eiϑz, z ∈ S2d+1, ϑ ∈ (−π, π].
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Hence, the quotient space S2d+1/S1 ' CPd (the complex projective space) has a unique
Riemannian structure (the Fubini-Study metric) such that the projection

p(z0, . . . , zd) = [z0 : . . . : zd]

is a Riemannian submersion. The fibration S1 ↪→ S2d+1 p−→ CPd is called the complex Hopf
fibration. In real coordinates zj = xj + iyj on Cd+1, the vertical distribution V = ker p∗ is
generated by the restriction to S2d+1 of the unit vector field

ξ =
d∑
j=0

(xj∂yj − yj∂xj ).

The orthogonal complement D := V⊥ with the restriction g|D of the round metric define
the standard sub-Riemannian structure on the complex Hopf fibrations. In real coordi-
nates, as subspaces of R2d+2, the hemisphere and its boundary are

M = S2d+1
+ :=

{
d∑
i=0

x2
i + y2

i = 1 | x0 ≥ 0
}
, ∂M =

{
d∑
i=0

x2
i + y2

i = 1 | x0 = 0
}
.

A different set of coordinates we will use is the following

(ϑ,w1, . . . , wd) 7→
(

eiϑ√
1 + |w|2

,
w1e

iϑ√
1 + |w|2

, . . . ,
wde

iϑ√
1 + |w|2

)
,

where ϑ ∈ (−π, π) and w = (w1, . . . , wd) ∈ Cd. In particular (w1, . . . , wd) are inohomge-
neous coordinates for CPd given by wj = zj/z0 and ϑ is the fiber coordinate. The north
pole corresponds to ϑ = 0 and w = 0. The hemisphere is characterized by ϑ ∈ [−π

2 ,
π
2 ]

and its boundary by cos(ϑ) = 0.

Example 4 (Quaternionic Hopf fibrations). Let H be the field of quaternions. If q =
x+ iy + jz + kw, with x, y, z, w ∈ R, the quaternionic norm is

‖q‖ = x2 + y2 + z2 + w2.

Consider the sphere S4d+3 as a subset of the quaternionic space Hd,

S4d+3 = {(q0, q1, . . . , qd) ∈ Hd+1 | ‖q‖ = 1},

equipped with the standard round metric. The left multiplication by unit quaternions
S3 = {q ∈ H | |q| = 1} gives an isometric action of SU(2) on S4d+3. The quotient space
S4d+3/S3 ' HPd (the quaternionic projective space) has a unique Riemannian structure
such that the projection

p(q0, . . . , qd) = [q0 : . . . : qd]

is a Riemannian submersion. The fibration S3 ↪→ S4d+3 p−→ HPd is the quaternionic Hopf
fibration. In real coordinates qj = xj + iyj + jzj + kwj on Hd+1, the vertical distribution
V = ker p∗ is generated by

ξI =
d∑
i=0

yi∂xi − xi∂yi + wi∂zi − zi∂wi , ξJ =
d∑
i=0

zi∂xi − wi∂yi − xi∂zi + yi∂wi ,

ξK =
d∑
i=0

wi∂xi + zi∂yi − yi∂zi − xi∂wi .

The orthogonal complement D := V⊥ with the restriction g|D of the round metric define
the standard sub-Riemannian structure on the quaternionic Hopf fibrations.
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In real coordinates, the hemisphere M = S4d+4
+ ⊂ R4d+4 and its boundary are

M =
{

d∑
i=0

x2
i + y2

i + z2
i + w2

i = 1 | x0 ≥ 0
}
,

∂M =
{

d∑
i=0

x2
i + y2

i + z2
i + w2

i = 1 | x0 = 0
}
.

A different set of coordinates we will use is the following

(ϑ1, ϑ2, ϑ3, w1, . . . , wd) 7→
(
eiϑ1+jϑ2+kϑ3√

1 + |w|2
,
w1e

iϑ1+jϑ2+kϑ3√
1 + |w|2

, . . . ,
wde

iϑ1+jϑ2+kϑ3√
1 + |w|2

)
,

where |ϑ|2 = ϑ2
1 + ϑ2

2 + ϑ2
3 < π2 and w = (w1, . . . , wd) ∈ Hd. In particular (w1, . . . , wd)

are inohomgeneous coordinates for HPd given by wj = q−1
0 qj and ϑ1, ϑ2, ϑ3 are local

coordinates on SU(2). The north pole corresponds to ϑ1 = ϑ2 = ϑ3 = 0 and w = 0. The
hemisphere is characterized by |ϑ| ≤ π/2 and its boundary by cos |ϑ| = 0.

6. Applications

In this section we present the proofs of the applications of the reduced Santaló formula
presented in Sections 1.3, 1.4 and 1.5.

6.1. Hardy-type inequalities. It is well known that for all f ∈ C∞0 ([0, a]) one has

(26)
∫ a

0
f ′(t)2dt ≥ π2

a2

∫ a

0
f(t)2dt, (1D Poincaré inequality)

with equality holding if and only if f(t) = C sin
(
π
a t
)
. Moreover,∫ a

0
f ′(t)2dt ≥ 1

4

∫ a

0

f(t)2

d(t)2 dt, (1D Hardy inequality)

where d(t) = min{t, a− t} is the distance from the boundary and the equality holds if and
only if f(t) = 0.

Recall that `(λ) is the length at which the geodesic with initial covector λ leaves M
crossing the boundary ∂M and, in general, t 7→ `(φt(λ)) is a decreasing function. Then
`(·) is not invariant under the flow φt. For this reason in Section 1.3 we introduced the
function L : U∗M → [0,+∞] defined as L(λ) := `(λ) + `(−λ), that measures the length
of the projection of the maximal integral line of ~H passing through λ. Indeed, L(·) is
φt-invariant and coincides with `(·) on U+∂M , since it can be equivalently defined as

L(λ) :=
{
`(−φ`(−λ)(−λ)), if `(−λ) < +∞,
+∞, otherwise.

Proof of Proposition 2. Choose coordinates x around a fixed q ∈M as in Lemma 18, and
let (p, x) be the associated canonical coordinates on T ∗M . Let Q be a quadratic form on
T ∗qM

r. In particular Q(λ) =
∑k
i,j=1 piQijpj , where λ = (p1, . . . , pk). By Lemma 18 we

have ∫
U∗qM

r
Q(λ)ηr

q0(λ) =
∫
Sk−1

k∑
i,j=1

Qijpipj dvolSk−1(p) = |S
k−1|
k

Trace(Q),

where we performed the standard integral of a quadratic form on Sk−1. Choosing Q(λ) =
〈λ,∇Hf(q)〉2, then Trace(Q) = |∇Hf(q)|2. Thus, for any point q ∈M we have

(27) |Sk−1|
k
|∇Hf(q)|2 =

∫
U∗qM

r
〈λ,∇Hf(q)〉2ηr

q(λ), ∀f ∈ C∞(M).
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Using the reduced Santaló formula (22),

|Sk−1|
k

∫
M
|∇Hf(q)|2ω(q) =

∫
M

[∫
U∗qM

r
〈λ,∇Hf(q)〉2ηr

q(λ)
]
ω(q)

=
∫
U∗M r

〈λ,∇Hf〉2µr

≥
∫
U�M r

〈λ,∇Hf〉2µr

=
∫
∂M

[∫
U+

q ∂M r

(∫ `(λ)

0
〈φt(λ),∇Hf〉2dt

)
〈λ,nq〉ηr

q(λ)
]
σ(q).

Consider the subset D = U+∂M r ∩ {` < +∞}. Let fλ(t) := f(π ◦ φt(λ)). For λ ∈ D we
have fλ(0) = fλ(`(λ)) = 0 and the one-dimensional Poincaré inequality (26) gives

(28)
∫ `(λ)

0
〈φt(λ),∇Hf〉2dt =

∫ `(λ)

0
f ′λ(t)2dt ≥ π2

`2(λ)

∫ `(λ)

0
fλ(t)2dt.

Indeed we can replace ` with L, which is φt-invariant. Then

|Sk−1|
k

∫
M
|∇Hf(q)|2ω(q) ≥ π2

∫
∂M

[∫
Dq

(∫ `(λ)

0

fλ(t)2

L(λ)2 dt

)
〈λ,nq〉ηr

q(λ)
]
σ(q).

Since on U+
q ∂M \ Dq the function 1/L(λ)2 = 0, we can replace Dq with U+

q ∂M . Using
again Santaló formula to restore the integral on U�M r, we obtain∫

M
|∇Hf(q)|2ω(q) ≥ kπ2

|Sk−1|

∫
U�M r

(π∗f)2

L2 µr = kπ2

|Sk−1|

∫
M

[∫
U∗qM

r

1
L2 η

r
q

]
f(q)2ω(q).

The second equality follows by Lemma 11. This concludes the proof of (5).
To prove (6) we replace Poincaré inequality with Hardy in (28):∫ `(λ)

0
〈φt(λ),∇Hf〉2dt =

∫ `(λ)

0
f ′λ(t)2dt

≥ 1
4

∫ `(λ)

0

fλ(t)2

min{t, `(λ)− t}2dt ≥
1
4

∫ `(λ)

0

fλ(t)2

`(φt(λ))2dt,

where we used the fact that if λ ∈ U+∂M then `(φt(λ)) = `(λ) − t. We then proceed as
in the previous case without replacing ` with L. �

Proof of Proposition 3. The result is obtained by mimicking the proof of Proposition 2.
Observe that, for any f ∈ C∞0 (M) and q ∈M , we have∫

U∗qM
r
|〈λ,∇Hf(q)〉|pηr

q(λ) = |∇Hf(q)|p
∫
U∗qM

r

∣∣∣∣〈λ, ∇Hf(q)
|∇Hf(q)| 〉

∣∣∣∣p ηr
q(λ)

= 2|∇Hf(q)|p
∫
Sk−1∩{p1>0}

pp1 dvolSk−1(p)

= |∇Hf(q)|pC−1
p,k ,

where we used coordinates as in Lemma 18, the rotational invariance of the measure and

Cp,k :=
Γ(k+p

2 )
2Γ(1+p

2 )π(k−1)/2
= k

|Sk−1|

√
π Γ(k+p

2 )
2Γ(1+p

2 )Γ(k2 + 1)
.

Using the above in place of (27), by Santaló formula (22) we obtain

C−1
p,k

∫
M
|∇Hf |pω(q) ≥

∫
∂M

[∫
U+

q ∂M r

(∫ `(λ)

0
|〈φt(λ),∇Hf〉|pdt

)
〈λ,nq〉ηr

q(λ)
]
σ(q).
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To prove (7) we proceed as in the proof of Proposition 2 replacing the step (28) with the
Lp Poincaré inequality [33, Sec. 5.3]∫ a

0
|f ′(t)|pdt ≥

(
πp
a

)p ∫ a

0
|f(t)|pdt.

We proceed similarly for the proof of (8), replacing (28) with the Lp Hardy’s inequalities
[29, Thm. 327]

�
∫ a

0
|f ′(t)|pdt ≥

(
p− 1
p

)p ∫ a

0

|f(t)|p

d(t)p dt.

Proof of Proposition 4. With L := supλ∈U∗Mr L(λ), the Hardy inequality (5) can be fur-
ther simplified into ∫

M
|∇Hf |2ω ≥

kπ2

L2

∫
M
f2ω.

By the min-max principle (13), whenever any f ∈ C∞0 (M) such that
∫
M f2ω = 1, we have

�λ1(M) ≥
∫
M
|∇Hf |2ω ≥

kπ2

L2 .

Proof of Proposition 5. Fix a north pole q0 and the hemisphere M whose center is q0. By
Remark 9, in all three cases, the reduced sub-Riemannian geodesics are a subset of the
Riemannian ones (great circles). In particular L = π and Proposition 4 gives

λ1(M) ≥ k,
where k = d for the Riemannian sphere, k = 2d for the CHF and k = 4d for the QHF.

In all cases, uniqueness of Φ = cos(δ) ∈ C∞0 (M) follows as in the Riemannian case from
the min-max principle [16, Corollary 2, p. 20]. To complete the proof, we show that Φ
is an eigenfunction of the positive (sub-)Laplacian with eigenvalue d, 2d, 4d, respectively.
In the Riemannian case this is well known. For the CHF we use coordinates (ϑ,w) of
Example 3. Then,

Φ = x0 = cos(ϑ)√
1 + |w|2

= cos(ϑ) cos(r),

where we have set tan(r) = |w|. In [10, Proposition 2.3] the authors show that for a
function depending only on ϑ and r the action of the sub-Laplacian reduces to the action
of its cylindrical part, given by

∆̃ = ∂2
r + ((2d− 1) cot(r)− tan(r))∂r + tan2(r)∂2

ϑ.

In particular ∆Φ = ∆̃Φ = (−2d)Φ.
For the QHF we use coordinates (ϑ1, ϑ2, ϑ3, w) of Example 4. Using the expression

eiϑ1+jϑ2+kϑ3 = cos(η) + (iϑ1 + jϑ2 + kϑ3)sin(η)
η

, η :=
√
ϑ2

1 + ϑ2
2 + ϑ2

3,

we obtain

Φ = x0 = cos(η)√
1 + |w|2

= cos(η) cos(r),

where we have set tan(r) = |w|. In [11, Definition 2.1 and Proposition 2.2] the authors
show that, for a function depending only on η and r, the action of the sub-Laplacian
reduces to the action of its cylindrical part, given by

∆̃ = ∂2
r + ((4d− 1) cot(r)− 3 tan(r))∂r + tan2(r)

(
∂2
η + 2 cot(η)∂η

)
.

In particular ∆Φ = ∆̃Φ = (−4d)Φ. �
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6.2. Isoperimetric inequalities. We define some quantities that we already introduced.

Definition 6. The visibility angle at q ∈M and the optimal visibility angle are

ϑ�q :=
ηr
q(U�q M r)
ηr
q(UqM r) , ϑ̃�q :=

ηr
q(Ũ�q M r)
ηr
q(UqM r) .

The least visibility angle and the least optimal visibility angle are

ϑ� = inf
q∈M

ϑ�q , ϑ̃� = inf
q∈M

ϑ̃�q .

Notice that ϑ�q , ϑ̃�q , ϑ�, ϑ̃� ∈ [0, 1] and do not depend on the choice of the volume ω.

Definition 7. The sub-Riemannian diameter and reduced diameter are:

diam(M) := sup{d(x, y) | x, y ∈M} = sup{˜̀(λ) | λ ∈ U∗M},
diamr(M) := sup{˜̀(λ) | λ ∈ U∗M r}.

Clearly diamr(M) ≤ diam(M).

Proof of Proposition 7. The proof follows as in [17, 19], considering F = 1 in (22). The
l.h.s. is estimated from below using the disintegration of µr given in Lemma 11. For the
estimate of the r.h.s. we only observe that, by Lemma 18 we have

�
∫
U+

q ∂M r
〈λ,nq〉ηr

q(λ) =
∫
Sk−1∩{p1>0}

p1 dvolSk−1(p) = |S
k|

2π .

Proof of Proposition 8. For all these structures, all the inequalities in the proof of Propo-
sition 7 are equalities, hence the sharpness follows. Anyway, here we perform the explicit
computation for the hemisphere of the sub-Riemannian complex Hopf fibration; the re-
maining case of the quaternionic Hopf fibration can be checked following the same steps.

We use the notation of Example 3, and real coordinates. Let q = (0, y0, . . . , xd, yd) ∈
∂M . The sub-Riemannian normal nq is the unique inward pointing unit vector in Dq
orthogonal to Dq ∩ Tq∂M . Indeed, Tq∂M is the orthogonal complement to ∂x0 w.r.t.
to the Riemannian round metric, while Dq is the orthogonal complement to ξ. Thus,
nq = αξ + β∂x0 . The condition nq ∈ D and the normalization imply

nq = 1√
1− g(∂x0 , ξ)2 (∂x0 − g(∂x0 , ξ)ξ) .

Using the explicit expression for ξ we obtain

nq =
√

1− y2
0 ∂x0 mod Tq∂M.

Notice that C(∂M) = {y2
0 = 1} ∩ ∂M . Due to the factor ρ(y0) :=

√
1− y2

0, the sub-
Riemannian surface measure σ is different from the Riemannian one in cylindrical coordi-
nates σR = ι∂x0

ω = ρ2d−2dy0 dvolS2d−1 . In particular

σ(∂M) =
∫
∂M

ρ(y0)σR = |S2d−2|
∫ 1

−1
ρ(y0)2d−1dy0 = |S

2d+1|
|S2d|

.

Moreover ω(M) = |S2d+1|/2. By Remark 9, the reduced geodesics γλ with λ ∈ U∗M r are
a subset of Riemannian geodesics hence ϑ� = ϑ̃� = 1 and ` = diamr(M) = π. �
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Appendix A. Lie derivative of the reduced Liouville volume

Lemma 24. In the notation of Section 4.3, we have

L ~HΘr = −

n−k∑
j=1

k∑
i=1

ui∂vj{ui, vj}

Θr.

Proof. For any `-tuple w = (w1, . . . , w`) of vector fields and `-form α, we denote

α(L ~H(w)) =
∑̀
i=1

α(w1, . . . , [ ~H,wi], . . . , w`).

Let (x1, . . . , xn) : U → Rn be coordinates on U ⊂ M . Then (x, u, v) : π−1(U) → R2n are
local coordinates for T ∗M and T ∗M r ∩ π−1(U) = {(x, u, v) | v = 0}.

Denote ∂v = (∂v1 , . . . , ∂vn−k
), ∂u = (∂u1 , . . . , ∂uk

) and ∂x = (∂x1 , . . . , ∂xn). Recall that
Θr(∂u, ∂x) = Θ(∂u, ∂v, ∂x) = (−1)k(n−k)Θ(∂v, ∂u, ∂x). Then, using twice (L ~Hα)(w) =
~H(α(w))− α(L ~H(w)) for any `-form α and `-uple w, we obtain

(L ~HΘr)(∂u, ∂x) = ~H(Θr(∂u, ∂x))−Θr(L ~H(∂u, ∂x))

= (−1)k(n−k)
[
~H(Θ(∂v, ∂u, ∂x))−Θ(∂v,L ~H(∂u, ∂x))

]
= (−1)k(n−k)

[
(L ~HΘ)(∂v, ∂u, ∂x) + Θ(L ~H(∂v), ∂u, ∂x)

]
= Θ(∂u,L ~H(∂v), ∂x),(29)

where, in the last step, we used that L ~HΘ = 0. Now observe that, for j = 1, . . . , n− k,

[ ~H, ∂vj ] =
k∑
i=1

[ui~ui, ∂vj ] =
k∑
i=1

ui[~ui, ∂vj ]

= −
k∑
i=1

k∑
`=1

ui∂vj{ui, u`}∂u`
−

k∑
i=1

n−k∑
`=1

ui∂vj{ui, v`}∂v`
.(30)

Plugging (30) in (29), and using complete skew-symmetry, we obtain the statement. �

Appendix B. Improving estimates through reduction

We sketch a strategy to improve the lower bound for the (sub-)Laplacian of Proposi-
tion 4, when the latter is trivial, i.e. when L = +∞. Similar considerations hold also for
isoperimetric-type inequalities.

Let M be a (sub-)Riemannian manifold with boundary ∂M , and assume that a reduced
bundle U∗M r has been found in such a way that the reduced Santaló formula, and all
its consequences, hold. Assume that there exists a reduced geodesic that never hits the
boundary of M . This happens if there exists a covector λ ∈ U∗M r such that L(λ) = +∞.
This phenomenon occurs already in the Riemannian case, where no reduction is required,
and in particular if M contains closed Riemannian geodesics. For example, consider the
small rotationally symmetric neighborhood

M = {(ϑ, φ) | π/2− ε ≤ ϑ ≤ π/2 + ε} ⊂ S2,

of the equator ϑ = π/2 of the two dimensional round sphere, equipped with the standard
measure. In this cases, the lower bound of Proposition 4 for the Dirichlet spectrum on M
is trivial, since L = supλ∈U∗M L(λ) = +∞. Nevertheless the reduction procedure can be
still applied to circumvent this problem, as we now sketch for the spherical band above.

The idea is to define a set of reduced geodesics by considering only those which are
normal to the boundary ∂M . More precisely, we let

D := span{∂ϑ}, V := span{∂φ},
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and we set T ∗M r = V⊥ = span{dϑ}. The restriction of g to D induces a sub-Riemannian
structure (which does not satisfy the bracket-generating condition, but this is inconsequen-
tial here). The Dirichlet energy of (M,D, g) is not greater than the one of the original
Riemannian structure. Hence a lower bound for the first eigenvalue of the sub-Laplacian
of (M,D, g|D) yields a lower bound for the Laplace-Beltrami operator on M .

Geodesics with λ ∈ U∗M r cross the spherical band longitudinally, and L(λ) = 2ε. Both
(H1) and (H2) are verified, and thus we obtain from Proposition 4 the sharp estimate

λ1(M) ≥ π2

(2ε)2 .

This construction highlights the fact that the reduction procedure can be used in both
the Riemannian and sub-Riemannian case to improve estimates such as the one of Propo-
sition 4, when the geometry of the problem is quite explicit. The general philosophy is
that the smaller is the set of reduced geodesics, the better is the bound in Proposition 4.
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