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Background: Ventricular fibrillation in patients with Brugada syndrome (BrS) is often initiated by premature
ventricular contractions (PVCs). Presence of SCN5Amutation increases the risk of PVCs upon exposure to sodium
channel blockers (SCB) in patients with baseline type-1 ECG. In patients without baseline type-1 ECG, however,
the effect of SCN5Amutation on the risk of SCB-induced arrhythmia is unknown.We aimed to establish whether
presence/absence, type, and topology of SCN5A mutation correlates with PVC occurrence during ajmaline
infusion.
Methods and results:We investigated 416 patients without baseline type-1 ECGwho underwent ajmaline testing
and SCN5Amutation analysis. A SCN5Amutationwas identified in88patients (S+). Ajmaline-inducedPVCs occurred
more often in patients with non-missense mutations (Snon-missense) or missense mutations in transmembrane or
pore regions of SCN5A-encoded channel protein (Smissense-TP) than patients with missense mutations in intra-/
extracellular channel regions (Smissense-IE) and patients without SCN5Amutation (S−) (29%, 24%, 9%, and 3%, respec-
tively; P b 0.001). The proportion of patientswith ajmaline-induced BrSwas similar in differentmutation groups but
lower in S− (71% Snon-missense, 63% Smissense-TP, 70% Smissense-IE, and 34% S−; P b 0.001). Logistic regression indicated
Snon-missense and Smissense-TP as predictors of ajmaline-induced PVCs.
Conclusions: SCN5Amutation is associatedwith an increased risk of drug-induced ventricular arrhythmia in patients
without baseline type-1 ECG. In particular, Snon-missense and Smissense-TP are at high risk.
© 2017 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Ventricular fibrillation in patients with Brugada syndrome (BrS) is
often initiated by premature ventricular contractions (PVCs) [1].
Mutations in SCN5A, the gene encoding the cardiac sodium channel
protein Nav1.5, are an important cause of BrS, and BrS patients with
baseline type-1 ECG who carry such mutations have increased risk of
PVCs after exposure to sodium channel blockers (SCB) [2]. However,
the impact of SCN5Amutations on the risk of drug-induced ventricular
arrhythmia in BrS patients without baseline type-1 ECG (BrS in these
patients is diagnosed through SCB testing) is unknown. As a result, no
guidelines or consensus recommendations exist regarding the use of
SCB in SCN5A mutation carriers without baseline type-1 ECG.
f Cardiology, Academic Medical
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Because conduction slowing is a key pathomechanism in BrS and
Nav1.5 is critical for impulse propagation [3], clinical severity should
be greatest in patients who carry SCN5A mutations that disrupt Nav1.5
function the most. Accordingly, we previously showed that non-
missense mutations leading to premature truncation of Nav1.5 in-
creased the sensitivity of the cardiac conduction system to SCB more
thanmissensemutations, as reflected bymore PR and QRS prolongation
during SCB testings [4]. Similarly, missense mutations that cause severe
loss of Nav1.5 current (INa) causedmore conduction slowing thanmuta-
tions that reduced INa less. In our study, we derived themagnitude of INa
frompublished biophysical studies [4]. However, such studies are labor-
intensive and not available for manymutations. While magnitude of INa
reduction and clinical severity may be easy to predict for non-missense
mutations (severe), we hypothesized that this can also be estimated for
missense mutations based on their topology. In support of this hypoth-
esis, recent evidence suggests that SCN5Amissense mutations affecting
the transmembrane or pore regions of Nav1.5 (severe INa reduction)
are more likely to be pathogenic than mutations in intracellular or
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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extracellular regions (i.e., N-terminus, C-terminus, interdomain or
intersegment linkers) (limited INa reduction) [5].

In this study, we aimed to establish whether SCN5A mutation
presence/absence, type and topology determine the risk of PVC
occurrence during SCB (ajmaline) testing in patients without baseline
type-1 ECG. Such knowledge may drive clinical management strategies.

2. Methods

2.1. Patient inclusion

In this study,we included 416 consecutive subjects (N15-years-old)whohadundergone
ajmaline testing and SCN5Amutation analysis. No subject displayed type-1 ECG at baseline.
Indications for the test were aborted cardiac arrest (ACA), ventricular arrhythmia, syncope,
palpitations, family history of BrS and/or sudden cardiac death (FH-SCD), or an ECG
suspicious but not diagnostic for BrS.

2.2. Mutation analysis, ajmaline testing and ECG analysis

Informed consent was obtained. The study conformed to the ethical guidelines of the
1975Declaration ofHelsinki. GenomicDNAextraction fromperipheral blood lymphocytes
and SCN5Amutation analysis was performed as described previously [4]. Ajmaline testing
was performed using the protocol of the BrS consensus conference [6]. Ajmaline infusion
was stopped when type-1 ECG appeared or immediately after occurrence of PVCs. Twelve-
lead ECGs were analyzed at baseline and peak ajmaline dose (ajmalinepeak; i.e., at maximum
dose of ~1 mg/kg or at the first dose when type-1 ECG or PVCs occurred). Ajmaline testing
was considered positive if type-1 ST elevation ≥2-mm appeared in ≥1 right-precordial lead
[6].

2.3. Statistical analysis

Differences between groups were compared using Fisher exact test or χ [2] test
(categorical variables), or Student t-tests or analysis of variance (continuous variables).
Homogeneous subsets of groups were determined with the Standardized Residual
Methods (categorical variables) and Student-Newman-Keuls post hoc multiple compari-
son of groups (continuous variables). For ECG parameters, since multiple tests were
performed, the significance level was set at 0.001. In the Tables, homogeneous subsets
(no statistical difference) are indicated by an equals (=) sign. A logistic regression analysis
was performed to identify predictors for PVCs during ajmaline infusion, and variableswith
P b 0.05 were selected for multivariable analysis. A correction for the relatedness among
individuals was applied and the linearity assumption for the numerical predictors
was checked. Results of the logistic regression are expressed as odds ratio (OR) with
confidence interval (CI). Data are expressed as number (percentage) or mean± standard
deviation (SD), where appropriate.

3. Results

The studypopulation included 210men (age 43±15 years) and 206
women (age 44 ± 14 years). Twenty-eight (6.7%) and 52 (12.5%)
patients had experienced ACA or syncope, respectively, and 89 patients
(21.4%) had a FH-SCD. Ajmaline induced type-1 ECG in 171 patients
(41.1%). A SCN5A mutation was identified in 88 patients (21.2%) (see
Supplementary Table 1 for a list of mutations). No patient developed
sustained arrhythmia or high-degree AV block during ajmaline testing.
Twenty-six patients (6.3%) developed PVCs during ajmaline infusion.

3.1. Comparisons between patients according to the occurrence of
ajmaline-induced type-1 ECG

First we studied whether ajmaline-induced BrS was associated
with the occurrence of PVCs. We therefore compared patients with
ajmaline-induced type-1 ECG (Ajmalinepositive; n = 171) with those
without ajmaline-induced type-1 ECG (Ajmalinenegative; n = 245)
(Supplementary Table 2). Compared to Ajmalinenegative, Ajmalinepositive

were more often probands (41 [16.7%] vs. 52 [30.4%], P = 0.002), and
had experienced more often syncope (23 [9.4%] vs. 29 [17.0%], P =
0.032). The proportion of patients with a SCN5A mutation (S+) was
higher in Ajmalinepositive than Ajmalinenegative (59 [34.5%] vs. 29
[11.8%], P ≤ 0.001). Both at baseline and at ajmalinepeak, PR and QRS
were longer in Ajmalinepositive than Ajmalinenegative. The proportion of
patients with ajmaline-induced PVCs did not differ between
Ajmalinepositive and Ajmalinenegative (15 [8.8%] vs. 11 [4.4%],
respectively; P = 0.117).

Next, we studied the role of the SCN5Amutation in relation to the oc-
currence of type-1 ECG and PVCs during ajmaline testing by comparing
Ajmalinepositive without a SCN5Amutation (Ajmalinepositive/S−; n = 112)
with Ajmalinepositive with a SCN5A mutation (Ajmalinepositive/S+;
n = 59) and Ajmalinenegative with a SCN5A mutation (Ajmalinenegative/
S+; n = 29) (Table 1). Ajmalinepositive/S− and Ajmalinepositive/S+

(i.e., BrS patients) were younger, and more often probands and symp-
tomatic compared to Ajmalinenegative/S+. At baseline, PR was longer
in Ajmalinepositive/S+ and Ajmalinenegative/S+ (i.e., mutation carriers)
than Ajmalinepositive/S−. At ajmalinepeak, PR and QRS were longer in
Ajmalinepositive/S+ and Ajmalinenegative/S+ (mutation carriers) than
Ajmalinepositive/S−. The proportion of patients with ajmaline-induced
PVCs was higher in Ajmalinepositive/S+ and Ajmalinenegative/S+ (mutation
carriers) than Ajmalinepositive/S− (10 [16.9%] and 7 [24.1%] vs. 5 [4.4%],
respectively; P=0.002).

3.2. Comparisons between SCN5A mutation carriers and non-carriers

We next compared SCN5A mutation carriers (S+; n = 88) vs. non-
carriers (S−; n = 328); regardless of the occurrence of type-1 ECG dur-
ing ajmaline testing. S+ were more often probands than S− (29 [33.0%]
vs. 64 [19.5%], P = 0.011). Other clinical characteristics (age, ACA, syn-
cope, and FH-SCD) did not differ between S+ and S− (Supplementary
Table 3).

At baseline, S+ had longer PR than S−, while baseline heart rate
(HR), QRS and QTc did not differ. Ajmalinepeak was lower in S+ than
S−. At ajmalinepeak, S+ had slower HR and longer PR and QRS than S−.
Ajmaline induced type-1 ECG more often in S+ than S− (59 [67.0%] vs.
112 [34.1%], P b 0.001).

Ajmaline also induced PVCs more often in S+ than S− (17 [19.3%]
vs. 9 [2.7%], P b 0.001). Except for baseline PR (212 ± 28 ms. in S+

vs. 147 ± 29 ms. in S−, P b 0.001), other ECG parameters at baseline
or ajmalinepeak and clinical characteristics (age, sex, history of ACA or
syncope, and FH-SCD) did not differ between S+ with PVC and S− with
PVC. PVCs occurred immediately after the appearance of type-1 ECG in
10/17 S+ (58.8%) and 5/9 S− (55.5%). The remaining patients with
PVCs did not develop type-1 ECG.

Ten of 17 S+ and 8/9 S− had PVCs with left bundle branch block
(LBBB) morphology: 8/17 S+ (47.1%) and 7/9 S− (77.8%) with LBBB
and inferior axis, and 2/17 S+ (11.8%) and 1/9 S− (11.1%) with LBBB
and superior axis. Seven S+ (41.2%) and 1 S− (11.1%) had PVCs with
right bundle branch block (RBBB) morphology.

3.3. Comparisons between patients with different SCN5A mutations and
non-carriers

To further study the role of the SCN5Amutation on the occurrence of
ajmaline-induced PVCs, we compared patients with non-missense mu-
tations (Snon-missense; n = 14), patients with missense mutations in
transmembrane/pore regions (Smissense-TP; n = 41), patients with mis-
sense mutations in intra−/extracellular regions (Smissense-IE; n = 33),
and S− (Table 2). Except for FH-SCD, other clinical characteristics did
not differ between groups.

At baseline, PRwas longer in Snon-missense and Smissense-TP than Smissense-IE

and S−. Other baseline ECG parameters did not differ between the groups.
Ajmalinepeak was lower in Snon-missense and Smissense-TP than Smissense-IE and
S−. At ajmalinepeak, Snon-missense had slower HR and longer QRS than
other S+ and S−. The proportion of patients with ajmaline-induced
type-1 ECG did not differ between different mutation groups.

Ajmaline induced PVCs more often in Snon-missense and Smissense-TP

than Smissense-IE and S−. Expect for baseline PR (212 ± 33 ms. in
Snon-missense, 223 ± 21 in Smissense-TP, 175 ± 16 ms. in Smissense-IE,
and 147 ± 26 ms. in S−, P b 0.001), other ECG parameters at baseline
or ajmalinepeak and clinical characteristics did not differ between



Table 1
Comparisons between subjects according to the occurrence of ajmaline-induced type-1 ECG and SCN5Amutation status.

Parameter Positive ajmaline test &
S− (n = 112)

Positive ajmaline test &
S+ (n = 59)

Negative ajmaline test &
S+ (n = 29)

P value

Clinical parameters
Male gender, n (%) 55 (49) 32 (54) 15 (52) 0.813
Proband, n (%) 26 (23) 26 (44) 3 (10) 0.001 (1 = 2 N 3)
Age at ajmaline test, years 44 ± 13 44 ± 12 51 ± 14 0.033 (1 = 2 b 3)
Aborted cardiac arrest, n (%) 10 (9) 3 (3) 0 0.192
Syncope, n (%) 16 (14) 13 (22) 0 0.022 (1 = 2 N 3)
Family history of SCD, n (%) 20 (18) 18 (31) 8 (28) 0.143
Body weight, kg 74 ± 14 76 ± 17 81 ± 6 0.053

Baseline
Heart rate, beats/min 68 ± 13 65 ± 13 63 ± 11 0.045
PR, ms 164 ± 26 191 ± 36 197 ± 39 b0.001 (1 b 2 = 3)
QRS, ms 100 ± 12 102 ± 16 97 ± 25 0.230
QTc, ms 406 ± 22 404 ± 24 416 ± 31 0.077

Peak ajmaline dose
Ajmaline dose/weight, mg/kg 0.99 ± 0.19 0.82 ± 0.27 1.00 ± 0.20 b0.001 (2 b 1 = 3)
Heart rate, beats/min 79 ± 11 73 ± 12 70 ± 12 b0.001 (1 N 2 = 3)
PR, ms 220 ± 31 243 ± 53 254 ± 51 b0.001 (1 b 2 = 3)
QRS, ms 133 ± 17 146 ± 25 150 ± 28 b0.001 (1 b 2 = 3)
QTc, ms 470 ± 29 471 ± 34 470 ± 27 0.981
PVC, n (%) 5 (4) 10 (17) 7 (24) 0.002 (1 b 2 = 3)

Δ Peak ajmaline - baseline
Δ HR, ms 11 ± 12 7 ± 9 7 ± 8 (1 N 2 = 3)
Δ PR, ms 56 ± 20 51 ± 36 57 ± 25 0.108
Δ QRS, ms 33 ± 16 45 ± 28 53 ± 24 b0.001 (1 b 2 = 3)
Δ QTc, ms 64 ± 19 67 ± 31 55 ± 27 0.062

S+, SCN5A mutation carriers; S−, patients without SCN5Amutation. HR, heart rate; PVC, premature ventricular contractions; QTc, heart rate-corrected QT interval; SCD, sudden cardiac
death. Data are expressed as number (percentage) or mean ± SD. N indicates number of patients. Δ indicates differences between ECG values at peak ajmaline dose – values at baseline.
P values indicate results of statistical comparisons between the three groups (columns). In case of an overall statistical significant difference, homogeneous groups (with no statistical dif-
ference) are indicated by an equals (=) sign.
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patients with PVCs in different groups (i.e., Snon-missense and Smissense-TP,
Smissense-IE, and S−).

3.4. Predictors of PVCs during ajmaline infusion

Multivariable analysis included HR, PQ, QRS, and QTc at baseline
and ajmalinepeak, weight-adjusted ajmalinepeak, Snon-missense, Smissense-TP,
and Smissense-IE. Ajmaline-induced type-1 ECG was not included because
itwas not identified as a predictor for PVCs by logistic regression analysis.
Snon-missense (OR 10.15 [CI 2.14–48.02]) and Smissense-TP (OR 7.25 [CI 1.68–
31.38]) were identified as independent predictors for ajmaline-induced
PVCs. Moreover, baseline HR (OR 1.05 [CI 1.02–1.09]) and QRS at
ajmalinepeak (OR 1.04 [1.01–1.06]) were found as independent
predictors. Baseline HR was higher in patients with than without PVCs
(74 ± 14 vs. 67 ± 13 beats/min, P = 0.007). QRS at ajmalinepeak was
longer in patients with than without PVCs (155 ± 33 vs. 131 ±
18 ms, P b 0.001).

4. Discussion

In the last 15 years, several studies have attempted to identify pre-
dictors for drug-induced ventricular arrhythmia in patients undergoing
SCB testing. However, these studies did not investigate SCN5Amutation
status and/or included patientswith baseline type-1 ECG (whoarewell-
recognized to be at high risk for adverse events in the presence of SCB)
[2,7]. As a result, it is still unknown whether carriers of a SCN5A
mutation without baseline type-1 ECG are at higher risk of drug-
induced ventricular arrhythmia.

In this study, we first systematically studied the impact of SCN5A
mutation on the occurrence of PVCs during ajmaline testing in patients
without baseline type-1 ECG. We found that presence of SCN5A
mutation increases the likelihood that ajmaline exposes BrS and evokes
PVCs, and that the risk of PVCs in S+ is regardless of the occurrence of
type-1 BrS ECG during ajmaline testing (i.e., the occurrence of PVCs
was similar between Ajmalinepositive-S+ and Ajmalinenegative-S+ and
higher than Ajmalinepositive-S− [Table 1]). In line with earlier data [8],
S− often had PVCs with LBBB morphology and inferior axis, suggesting
a right-ventricular outflow tract origin, while S+ had PVCs originating
from both left and right ventricle.

In addition, we found that the risk for drug-induced PVCs depends
on the type and topology of the SCN5Amutation. Multivariable analysis
identified Snon-missense and Smissense-TP mutations as strong predictors for
ajmaline-induced PVCs. Moreover, although the effect was weaker,
baseline heart rate and QRS after ajmaline were also identified as pre-
dictors for PVCs. Ajmaline-induced type-1 ECG was not associated
with PVC occurrence and did not predict PVCs, and the proportions of
patients who developed type-1 ECG did not differ between mutation
groups. Based on these findings, onemay speculate that themechanism
underlying ajmaline-induced PVCs is large reduction of INa and the de-
polarization reserve in the heart [3,4,9]. INa reduction by Snon-missense

or Smissense-TP mutations may be significant, but depolarization reserve
is large enough to ensure that QRS in Snon-missense and Smissense-TP at base-
line is not different from Smissense-IE or S−. However, the added presence
of ajmaline results in further INa reduction and decline in the depolariza-
tion reserve to a level that results in QRS prolongation [4] and ultimately
PVCs [9]. Since ajmaline requires repetitive opening and closing of
Nav1.5 to act as a blocker (‘use-dependent block’), Nav1.5 is blocked
more potently at higher heart rates. Together these processes may
explain why SCN5A mutation type and topology, higher baseline heart
rates and longer QRS intervals after ajmaline are associated with the
risk for ajmaline-induced PVC occurrence.

The concept that the magnitude of INa reduction due to a SCN5A
mutation plays a crucial role in the occurrence of ajmaline-induced
PVCs is in line with our finding that the peak ajmaline dose was



Table 2
Comparisons between subjects according to SCN5A mutation status, type and location.

Parameter S+ non-missense
(n = 14)

S+ missense-TP
(n = 41)

S+ missense-IE
(n = 33)

S−

(n = 328)
P value

Clinical parameters
Male gender, n (%) 7 (50) 17 (41) 23 (70) 163 (50) 0.098
Proband, n (%) 5 (36) 13 (32) 11 (33) 64 (20) 0.062
Age at ajmaline test, years 47 ± 10 44 ± 14 49 ± 13 43 ± 14 0.089
Aborted cardiac arrest, n (%) 0 1 (2) 2 (6) 25 (8) 0.448
Syncope, n (%) 3 (21) 7 (17) 3 (9) 39 (12) 0.519
Family history of SCD, n (%) 9 (64) 9 (22) 8 (27) 63 (19) b0.001 (1 N 2 = 3 = 4)
Body weight, kg 74 ± 20 76 ± 17 82 ± 14 76 ± 16 0.074

Baseline
Heart rate, beats/min 61 ± 9 66 ± 14 64 ± 11 68 ± 13 0.037
PR, ms 212 ± 23 198 ± 41 179 ± 33 160 ± 24 b0.001 (1 = 2 N 3 = 4)
QRS, ms 104 ± 20 99 ± 21 99 ± 17 98 ± 12 0.292
QTc, ms 406 ± 29 411 ± 28 404 ± 24 408 ± 25 0.543

Peak ajmaline dose
Ajmaline dose/weight, mg/kg 0.79 ± 0.21 0.84 ± 0.26 0.96 ± 0.27 1.03 ± 0.14 b0.001 (1 = 2 b 3 = 4)
HR, beats/min 66 ± 12 73 ± 13 73 ± 12 78 ± 11 b0.001 (1 b 2 = 3 = 4)
PR, ms 260 ± 44 253 ± 62 234 ± 38 212 ± 30 b0.001 (1 = 2 N 3 = 4)
QRS, ms 162 ± 21 150 ± 29 138 ± 19 129 ± 17 b0.001 (1 N 2 = 3 = 4)
QTc, ms 481 ± 39 475 ± 31 460 ± 29 466 ± 32 0.090
Brugada ECG, n (%) 10 (71) 26 (63) 23 (70) 112 (34) b0.001 (1 = 2 = 3 N 4)
PVC, n (%) 4 (29) 10 (24) 3 (9) 9 (3) b0.001 (1 = 2 N 4 = 3)

Δ Peak ajmaline - baseline
Δ HR, ms 5 ± 5 7 ± 10 8 ± 6 10 ± 9 0.004
Δ PR, ms 48 ± 33 53 ± 37 55 ± 26 52 ± 21 0.843
Δ QRS, ms 58 ± 27 51 ± 27 40 ± 25 31 ± 15 b0.001 (1 N 2 N 3 = 4)
Δ QTc, ms 75 ± 29 64 ± 32 57 ± 28 58 ± 26 0.005

S+, SCN5Amutation carriers; S−, patientswithout SCN5Amutation; non-missense, non-missensemutations;missense-TP,missensemutations in transmembrane segments or pore region of
Nav1.5;missense-IE,missensemutation in intra- or extracellular regions of Nav1.5. HR, heart rate; PVC, premature ventricular contractions; QTc, heart rate-correctedQT interval; SCD, sudden
cardiac death. Data are expressed as number (percentage) ormean± SD. N indicates number of patients.Δ indicates differences between ECG values at peak ajmaline dose – values at base-
line. P values indicate results of statistical comparisons between the four groups (columns). In case of an overall statistical significant difference, homogeneous groups (with no statistical
difference) are indicated by an equals (=) sign.
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lower in Snon-missense and Smissense-TP than Smissense-IE or S−, while
the proportion of patients with PVCs was much larger in Snon-missense

and Smissense-TP. This suggests that Snon-missense and Smissense-TP mutations
cause more INa reduction and therefore require less Nav1.5 block by
ajmaline for PVCs to occur. Interestingly, the same concept may also
apply for the occurrence of ajmaline-induced type-1 ECG. While the
proportion of ajmaline-induced type-1 ECG did not differ between
Snon-missense, Smissense-TP, and Smissense-IE, the required peak ajmaline
dosewas higher in the latter, suggesting that the degree of INa reduction
may also play an important role in the pathophysiology of BrS, and that
Snon-missense and Smissense-TP are at higher risk of developing BrS in the
presence of SCB than Smissense-IE (or S−).

The limitations of our study include its retrospective design and the
small size of various SCN5A mutation groups. In addition, although
type-1 ECG was absent in all patients on at least two time points, we
cannot exclude the presence of transient type-1 ECG, e.g., during fever.
Moreover, the study population was not screened for large genomic re-
arrangements or mutations in other genes that have been anecdotally
linked to BrS. However, in this regard it is important to note that in an
earlier genetic screening study in 38 BrS patients from our center, we
have excluded large genomic rearrangements and mutations in other
BrS-linked candidate genes [10].

5. Conclusions

The presence of a SCN5A mutation increases the likelihood that
ajmaline exposes BrS and evokes ventricular arrhythmia in patients
without baseline type-1 ECG. Moreover, the risk for drug-induced
arrhythmia depends on type and topology of the SCN5A mutation, and
patients with Snon-missense or Smissense-TP mutations may be at highest
risk. We recommend SCN5A mutation analysis in individuals who
experience ventricular arrhythmia while using SCB, particularly if
arrhythmia is preceded by QRS prolongation, also in patients in whom
type-1 ECG has not been achieved (yet). Moreover, we discourage
prescription of SCB in patients with SCN5Amutation, including patients
without BrS.
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