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Abstract
Lipidomics is a rapidly developing field in modern biomedical research. While LC-MS systems are able to detect most of the
known lipid classes in a biological matrix, there is no single technique able to extract all of them simultaneously. In comparison
with two-phase extractions, one-phase extraction systems are of particular interest, since they decrease the complexity of the
experimental procedure. By using an untargeted lipidomics approach, we explored the differences/similarities between the most
commonly used two-phase extraction systems (Folch, Bligh and Dyer, and MTBE) and one of the more recently introduced one-
phase extraction systems for lipid analysis based on the MMC solvent mixture (MeOH/MTBE/CHCl3). The four extraction
methods were evaluated and thoroughly compared against a pooled extract that qualitatively and quantitatively represents the
average of the combined extractions. Our results show that the lipid profile obtained with the MMC system displayed the highest
similarity to the pooled extract, indicating that it was most representative of the lipidome in the original sample. Furthermore, it
showed better extraction efficiencies for moderate and highly apolar lipid species in comparison with the Folch, Bligh and Dyer,
andMTBE extraction systems. Finally, the technical simplicity of the MMC procedure makes this solvent system highly suitable
for automated, untargeted lipidomics analysis.

Keywords Lipids . Untargeted lipidomics . Extraction . LC-MS .Multivariate analysis

Introduction

Several studies have shown that in addition to roles in cellular
membranes and the provision of energy, lipids also have im-
portant bioactivities and signaling functions that may be al-
tered in widespread human diseases, including cardiovascular
disease, diabetes type 2, Alzheimer’s disease, and cancer [1,
2]. Consequently, lipidomics is a rapidly developing area of
research mainly focused on searching biomarkers for diagnos-
tic purposes [3, 4]. Irrespective of this rapid growth of the field
and the technological advances in chromatography and mass
spectrometry that resulted in the development of more sensi-
tive, selective, and high-throughput methods over the last de-
cade [5–8], extraction of all lipid species in a comprehensive
manner remains an active area of research in the lipidomics
field.

Currently, there is no single extraction technique able to
extract all lipid classes from a biological matrix (tissue, bio-
logical fluid, cell) in a quantitative manner [3]. The most com-
monly used methods for lipid extraction were introduced by
Folch et al. [9] and by Bligh and Dyer [10]. So far, different
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modifications of these methods have appeared for specific
applications [11, 12], nevertheless, using chloroform/
methanol mixtures that separate into an upper methanol-rich
layer, containing hydrophilic compounds, and a lower
chloroform-rich layer mainly containing lipids, remains the
basis of these extractions.

An important pitfall of two-phase extractions is the high
chance of contamination of the samples, due to the need of
retrieving lipids from the lower chloroform-rich layer [2]. To
avoid this issue, the methyl tert-butyl ether (MTBE) extraction
method and more recently the butanol-methanol (BUME)
method were introduced by Matyash et al. [13] and Löfgren
et al. [14], respectively. While both methods have the advan-
tage that the upper layer is the lipid-rich organic phase, unsat-
isfactory recovery for more polar lipid classes has been ob-
served [14].

The main objectives of lipidomics studies are to increase
the number of extracted and detected lipids (the coverage of
the lipidome) and to do so in a straightforward and reproduc-
ible manner to avoid bias due to technical variability. Trying to
achieve these objectives, while avoiding the inherent prob-
lems of the two-phase extraction methods, one-phase lipid
extractions have recently been developed [2, 3, 15, 16].
One-phase extractions focus on an Ball-in-one-tube^ approach
eliminating the need for phase separation by denaturing pro-
teins that are later removed by centrifugation. Methanol, bu-
tanol, isopropanol, MTBE, and mixtures thereof have been
used as solvents. However, up to date, these approaches have
been evaluated with respect to the targeted analysis of a small
set of lipid standards by comparing their recovery [2, 3, 14].
By using an untargeted lipidomics approach on plasma sam-
ples, the major aim of the current work is to explore the dif-
ferences and similarities between the three most commonly
used two-phase extraction systems and a more recently de-
scribed one-phase system, the MMC solvent mixture
(MeOH/MTBE/CHCl3) [3], for lipid analysis. The four ex-
traction methods were evaluated and thoroughly compared
against a pooled extract that qualitatively and quantitatively
was considered to represent an average standard extract.

Materials and methods

Lipid extraction methods

All extractions were performed in 2 mL Eppendorf tubes with
75 μL of human plasma each (see the electronic
Supplementary Material (ESM) for blood collection). Three
samples were independently prepared for each extraction
method. Incubation time (1 h) and temperature of extraction
(22 °C) were kept constant. Each extraction method was per-
formed three times (n = 3) on samples independently prepared

and analyzed in triplicate. Two- and one-phase extractions
were performed as detailed below.

Two-phase extractions

Folch method (Folch) Seventy-five microliters of human plas-
ma was mixed with 187.4 μL of MeOH and vortexed for 20 s
followed by addition of 375 μL of CHCl3. The mixture was
incubated on a shaker at 900 rpm for 1 h. Phase separation was
induced by the addition of 156.2 μL of H2O and incubation of
the mixture for 10 min. Subsequently, the sample was centri-
fuged at 175,00 RCF for 10 min at 20 °C and the lower
(CHCl3) phase was collected (300 μL). The upper MeOH
phase was re-extracted with 250 μL of the following solvent
mixture (CHCl3/MeOH/H2O 86:14:1, v/v/v), and the lower
phase was again collected (250 μL). The CHCl3 phases were
combined and dried in a vacuum centrifuge at 30 °C for 1 h.
The extracted lipids were re-suspended in 50 μL CHCl3/
MeOH/H2O (60:30:4.5, v/v/v) from which 10 μL was taken
to prepare the pooled extracts (see below). The remaining
40 μL was diluted to the same level as the pooled extract
(100 μL) and stored at − 20 °C.

Bligh and Dyer method (Bligh) Seventy-five microliters of
human plasma was mixed with 562 μL MeOH/CHCl3 (2:1)
and vortexed for 20 s. Subsequently, the mixture was incubat-
ed on a shaker at 900 rpm for 1 h, after which, 156.2 μL of
H2O was added to induce phase separation. The sample was
centrifuged at 17,500 RCF for 10 min at 20 °C, and the lower
CHCl3 phase was collected (150 μL). A second extraction
step was performed on the upper aqueous phase with
MeOH/CHCl3 (2:1). Both organic phases were combined
and dried in a vacuum centrifuge at 30 °C for 1 h. The extract-
ed lipids were re-suspended in 50 μL CHCl3/MeOH/H2O
(60:30:4.5, v/v/v) from which 10 μL was taken to prepare
the pooled extracts (see below). The remaining 40 μL was
diluted to the same level as the pooled extract (100 μL) and
stored at − 20 °C.

Matyash method (MTBE) Seventy-five microliters of human
plasma was mixed with 187.4 μL of MeOH and vortexed for
20 s. Next, 625 μL of MTBE was added and the mixture was
incubated on a shaker at 900 rpm for 1 h. Water (156.2 μL)
was added to the mixture and incubated for 10 min to induce
phase separation. The sample was centrifuged at 17,500 RCF
for 10 min at 20 °C, and the upper (MTBE) phase was col-
lected (700 μL). The lower methanol phase was re-extracted
with 250 μL of MTBE/MeOH/H2O (10:3:2.5, v/v/v), and the
upper phase was again collected (200 μL). The MTBE phases
were combined and dried in a vacuum centrifuge at 30 °C
during 1 h. The extracted lipids were re-suspended in 50 μL
CHCl3/MeOH/H2O (60:30:4.5) from which 10 μL was taken
to prepare the pooled extracts (see below). The remaining
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40 μL was diluted to the same level as the pooled extract
(100 μL) and stored at − 20 °C.

In order to assess the potential loss of polar lipids, the
hydrophilic phase from each two-phase extraction procedures
was collected and dried under a stream of N2 at room temper-
ature overnight. The pellets obtained were re-suspended sep-
arately in 40 μL CHCl3/MeOH/H2O (60:30:4.5, v/v/v). From
each pellet, 10 μL was taken to prepare the pooled extract (see
below). The remaining 30 μL was diluted to the same level as
the pooled extract (100 μL) and stored at − 20 °C.

One-phase extraction (MMC method)

Seventy-five microliters of human plasma was mixed with
500 μL of MeOH/MTBE/CHCl3 (1.33:1:1, v/v/v) and
vortexed for 20 s. Subsequently, the mixture was incubated
on a shaker at 900 rpm for 1 h at 22 °C. The sample was
vortexed during 10 s, and particulate matter was pelleted by
centrifugation at 17,500 RCF for 10min at 20 °C. Supernatant
was collected (500 μL) and dried in a vacuum centrifuge for
1 h at 30 °C. The extracted lipids were re-suspended in 50 μL
chloroform/methanol/water (60:30:4.5, v/v/v) from which
10 μL was taken to prepare the pooled extract (see below).
The remaining 40 μL was diluted to the same level as the
pooled extract (100 μL) and stored at − 20 °C.

Pooled lipid extracts

Two pooled extracts or quality control samples (QCs)
containing the entire set of components from all extrac-
tion methods were prepared. The first pool consisted of
the main set of extracted lipids (hydrophobic phases).
Briefly, 10 μL of the extracts (in CHCl3/MeOH/H2O
60:30:4.5, v/v/v) from each solvent system (Folch,
Bligh, MTBE, and MMC methods) was mixed.
Consequently, the final volume of the hydrophobic
pooled sample and the Folch, Bligh, MTBE, and
MMC hydrophobic lipid extracts was 40 μL. Volumes
of all five hydrophobic extracts were adjusted to
100 μL with IPA-ACN-H2O (2:1:1, v/v/v) and then sub-
jected to LC-MS analysis.

The second pool consisted of a set of polar lipids
and other components with more polar characteristics
that remained in the hydrophilic phase. In short,
10 μL of the solut ions ( in CHCl3/MeOH/H2O
60:30:4.5, v/v/v) obtained from the hydrophilic phases
of the two-phase extraction systems (Folch, Bligh, and
MTBE) was mixed. The final volume of the hydrophilic
pooled sample and that of the Folch, Bligh, and MTBE
extracts was 30 μL. Final volumes were adjusted to
100 μL with IPA-ACN-H2O (2:1:1, v/v/v) and then sub-
jected to LC-MS analysis.

Blank extracts

In order to evaluate whether contaminant features, that might
appear as lipid signals, were part of the measured lipidomes,
blank extracts were obtained using water (25 μL) instead of
plasma. By following the Folch, Bligh, MTBE, and MMC
experimental procedures (see above), four blank extracts
(n = 3) were obtained for comparison purposes. Contaminant
features, that were found to be differentially extracted (fold
change ≥ 1.5, statistical significance (p ≤ 0.05, Student’s t
test), CV < 30%) in the blank extracts (both in positive and
negative modes) in comparison with the various solvent sys-
tems, were removed from the data.

LC-MS

Lipids were separated by reversed-phase chromatography
using an Acquity UPLC CSH column (1.7 μm, 100 ×
2.1 mm) on an Acquity UPLC system (Waters, Manchester,
UK). Mobile phases consisted of 10 mM ammonium formate
in water (eluent A) and 10 mM ammonium formate in meth-
anol (eluent B). Linear gradient elution was as follows: 0–
5 min from 50 to 30% eluent A, 5–15 min from 30 to 10%
eluent A, and 15–25 min from 10 to 0% eluent A. This was
followed by isocratic elution at 0% eluent A over the next
15 min. A conditioning cycle of 5 min with the initial propor-
tions of eluents A and B was performed prior to the next
analysis. The column temperature was set at 80 °C, and the
flow rate was 0.5 mL/min. Four or eight microliters of sample
was injected in positive and negative modes, respectively. The
samples were analyzed in a randomized order throughout the
experiment.

Mass spectrometry detection was performed using a
Synapt G2-Si high-resolution QTOF mass spectrometer
(Waters, Manchester, UK). Lipids were detected by
electrospray ionization in positive (ESI+) and negative modes
(ESI−). Nitrogen and argon were used as desolvation and col-
lision gas, respectively. Data were acquired over them/z range
from 50 to 1750 Da in continuum and enhanced resolution
modes, at an acquisition rate of 1 spectrum/0.2 s. The source
temperature was set at 150 °C, the desolvation temperature at
400 °C, the cone voltage at 30 V, and the capillary voltage at
2000 V. MS/MS experiments were performed with data-
dependent acquisition (DDA). A survey MS scan was alter-
nated with three DDA MS/MS scans resulting in a cycle time
of 1 s. Singly charged precursor ions were selected based on
abundance with a threshold of 1000 cps intensity. After being
selected, a particular m/z value was excluded for 30 s from
MS/MS fragmentation. The collision energy potential setting
was 35 V. The system was equipped with an integral
LockSpray unit with its own reference sprayer that was con-
trolled automatically by the acquisition software to collect a
reference scan every 10 s lasting 0.3 s. The LockSpray internal
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reference used for these experiments was a 0.2-ng/μL leucine-
enkephalin solution (reference mass m/z 556.2771 in the pos-
itive and m/z 554.2615 in the negative modes) infused at
10 μL/min to allow operation of the instrument at high mass
accuracy (< 1 ppm).

Data preprocessing

MassLynx software version 4.1 was used for data acquisition.
Waters raw data files were analyzed using Progenesis QI soft-
ware (Waters Corporation, Milford, MA) for peak alignment,
peak picking, and normalization of the LC-MS data. On the
basis of normalized peak intensities, the number of features
was filtered according to two different sets of selection criteria
(see ESM for data preprocessing). A final table containingm/z
values, retention times, and normalized peak intensities was
imported into Simca P v.13 (Umetrics, Umea, Sweden) for
multivariate statistical analysis.

Multivariate statistical analysis

Using Simca P v.13, data were grouped in blocks according to
the extraction methods (Folch, Bligh, MTBE, and MMC), as
well as to the pooled extracts (hydrophobic and hydrophilic).
Principal component analysis (PCA) and partial least squares-
discriminant analysis (OPLS-DA) via orthogonal projection
to latent structures were carried out on the filtered features.
Discriminant features between lipid profiles were identified
and permutation tests were carried out to determine the robust-
ness of the multivariate models (see ESM on multivariate
statistical analysis).

Lipid identification

An in-house data base containing retention times and accurate
masses for about 600 lipid species was created by manually
checking and comparing the list of lipids identified by T’Kindt
et al. [17] with those present in a standard plasma sample
(section on blood collection). Tentative identification of lipids
was based on accurate mass determinations within a narrow
m/z (1–5 mDa) and retention time (0.1 min) range. Moreover,
further examination of the identified features was performed
with accurate mass information present in on-line databases
(LIPID MAPS, LipidBlast, and HMDB).

Results and discussion

Pooled lipid extracts as QC samples

The reliable multicomponent analysis of complex biologi-
cal samples such as plasma by HPLC-MS presents a num-
ber of challenges with respect to obtaining valid data [18].

By exploring the time dependency of the PCA scores for
pooled lipid extracts (QCs), one obtains insight into trends
and drifts over the course of the analysis of a batch of
samples [19]. Therefore, technical performance of the
LC-MS method was monitored by randomly injecting the
hydrophobic QC extract several times throughout the en-
tire study. After conditioning the system, the pooled extract
was measured nine times both in the positive and negative
modes. Data were processed by PCA, and the results
showed that the first principal component was within ±
2SD for both polarities, indicating that no outlier data were
observed (ESM Fig. S1), as suggested elsewhere [18].
Combining aliquots of all samples to be investigated into
one pooled extract to generate a QC is a common proce-
dure in untargeted lipidomics [20]. Since the pooled extract
mimics the sample matrix and lipid composition of the
experimental samples both qualitatively and quantitatively,
it is considered to be the average standard extract with the
most comprehensive lipid composition. The pooled extract
was used as a reference to test the performance of the two-
and one-phase extraction methods. By using an untargeted
approach with multivariate statistical data analysis, we
aimed to determine whether the extraction methods pro-
duced different lipid profiles and how efficient they are
for different groups of lipid species.

Unsupervised multivariate comparison
of the extraction systems

The total number of features detected in the positive mode for
the hydrophobic phases followed the order: pooled >MTBE >
Folch > MMC > Bligh (3688, 3300, 3254, 3200, and 3082
features, respectively). In negative ionization, the order was as
follows: pooled > MTBE > MMC > Folch > Bligh (1082,
1030, 1029, 943, and 738 features, respectively). These fea-
tures were filtered as described in the Experimental section
(see ESM on data preprocessing) to eliminate low-intensity,
highly variable signals and noise. Features fulfilling the filter-
ing criteria were subjected to comparative multivariate statis-
tical analysis (PCA).

PCA was used to display general trends, intrinsic clus-
tering of samples, and possible outliers. The tight clustering
of the pooled extracts in the middle of both PCA score plots
showed that the LC-MS analysis itself introduced little
technical variability compared with the extraction methods.
On data from the different extraction methods in the posi-
tive and negative ESI modes, PCA showed clear clustering
of samples according to the extraction methods, indicating
that different lipid profiles were acquired with the tested
extraction methods (Fig. 1A, B). Since the pooled extract
contains lipids derived from all four extraction methods,
proximity of the cluster of a given extraction method with
respect to the pool can be considered a readout of how
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comprehensive a given procedure is, but exact quantitative
interpretation of this proximity is difficult. Therefore, hier-
archical cluster analysis (HCA) was used to show the rela-
tionship between sample clusters according to similarities
in lipid composition. On data obtained in the positive ESI
mode, HCA showed that the MMC cluster is closest to the
pool cluster followed by the Folch, the Bligh, and the
MTBE clusters (Fig. 1C). In the negative ESI mode, the
results show a somewhat different order of proximity but
the MMC cluster is again most similar to the pool cluster.
The order in the negative mode is pooled = MMC > MTBE
> Folch > Bligh (Fig. 1D). According to our results, the
MMC extraction method results in a lipid composition that
is closest to the pooled extract from a qualitative and quan-
titative points of view, indicating that the lipid profile ob-
tained with this method is most similar to the average stan-
dard extract. However, separation of clusters in the PCA
plot indicates that there is still a considerable difference
between the lipid profiles that needs to be considered.

Selectivity of the extraction systems for different lipid
species

We employed OPLS-DA to identify lipid species that contrib-
ute to the observed molecular profile differences between the
extraction methods as observed in the PCA plots. For this anal-
ysis, a different filtering approach was used consisting of solely
focusing on reproducible features by taking only the contribu-
tion of signals with a CV ≤ 30% into account. These features
were then analyzed on the basis of their variable importance in
the projection (VIP) scores. OPLS-DA models and S-plots
were used to define those features with the greatest influence
on the separation of groups (ESM Fig. S2A–H for the positive
and Fig. S3A–H for the negative ESI mode). The VIP value is
related to the importance of the contribution of a given variable
to the model as a whole. Given that the average of the sum-of-
squares of the VIP values is equal to 1, values larger than 1
indicate important variables and values lower than 0.5 indicate
unimportant variables [21]. Furthermore, to check the
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Fig. 1 Comparison of lipid extraction methods by principal component
analysis (PCA) after LC-MS analysis in positive (A) and negative
electrospray ionization (ESI) mode (B). Hierarchical clustering analysis
(HCA) of the same data in positive (C) and negative (D) ESI mode,

depicting quantitative relationships between the extraction methods.
The vertical axis of theHCA dendrograms indicates the variance increase,
which can be considered normalized Euclidean distance
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robustness of the OPLS-DA models (pooled vs Folch, pooled
vs MTBE, pooled vs Bligh, and pooled vs MMC both in the
positive and negative modes), random permutation tests (n =
999) were performed (ESM Figs. S2A–H and S3A–H) and
compared with the default cross-validation method automatical-
ly performed by the SIMCA software (see Experimental section
on BMultivariate statistical analysis^). The results show that for
all OPLS-DA models both in the positive and negative ESI
modes, the R2 (> 0.983) andQ2 (> 0.954) values of the original
models were well above the permutated models, indicating low
variability and excellent predictive ability (ESM Figs. S2A–H
and S3A–H).

Here, we used VIP values ≥ 1.5 as cutoff, allowing a better
discrimination of important features. The comparisons of fea-
tures considered to be mainly responsible for discrimination
between the extraction methods (VIP ≥ 1.5) are shown in
Fig. 2 for the positive and Fig. 3 for the negative ESI modes,
respectively. The chromatograms were divided into three dif-
ferent retention time segments according to decreasing polar-
ity. In the positive mode, segment I corresponds to
lysophospholipids (LPL) and monoglycerides (MG), segment
II to phospholipids [phosphat idylchol ines (PC),
phosphatidylinositols (PI), phosphatidylglycerols (PG) and
phosphatidylethanolamines (PE)], sphingomyelins (SM),
cardiolipins (CL), and diglycerides (DG), and segment III to
cholesterol esters (CE), cardiolipins (CL), and triglycerides
(TG) (Fig. 2A). In the negative mode, segment I corresponds
to fatty acids (FA) and LPL, segment II to phospholipids [PC,
PI, PG, PE and phosphatidylserines (PS)] and sphingomyelins
(SM), and segment III to some ceramides (Cer) (Fig. 3A). To
identify a certain number of discriminating lipids, we merged
the accurate mass information from three on-line databases
(LIPID MAPS, LipidBlast, and HMDB) with our homemade
database built on accurate mass and retention times. The class
of lipid, adducts, and the identity of individual lipids in both
the positive and negative ESI modes were confirmed based on
matching the information using a narrow m/z window (1–
5 mDa) and retention time range (0.1 min). In total, 460 dis-
tinct lipids were identified (Table 1). Glycerophospholipids
were found to be the class with the largest number of species,
closely followed by glycerolipids. The full list of identified
lipid species and the specific groups in which the highest and
lowest ion intensities were observed are shown in ESM Table
S1.

The Venn diagrams in Figs. 2 and 3 show that the main
difference between extraction systems is due to the lipid se-
lectivity of each solvent system.While most of the features are
common to all extraction methods (Figs. 2B, C and 3B, C),
there is a number of features that contributes to the formation
of separate clusters upon PCA and the OPLS-DA analysis.

The main source of variation in the OPLS-DA analyses
was found in the first segment of the chromatograms, com-
prising lipids of a polar nature (FA, LPL, and MG). In order to

discard the contribution of contaminating features coming
from the extraction solvents, we performed a thorough com-
parison between blank extracts and the tested extraction ap-
proaches and found no interferences in either the positive or
negative ionization mode (ESM Figs. S5, S6, S7, and S8). In
the positive ionization mode, the ratio of discriminant to com-
mon features was highest in segment I for all comparisons
(pooled vs Folch, pooled vs MTBE, pooled vs Bligh, and
pooled vs MMC), followed by segments II and III (Figs. 2B,
C and 3B, C). In the negative mode, behavior was similar as in
the positive ESI mode, implying that overall LPL, FA, and
MG are strongly affected and PC, PI, PG, PS, PE, SM, and
DG somewhat less by the extraction method. However, seg-
ment III in the negative ESI mode can be neglected, since the
number of extracted features is rather low. Regarding compar-
ison of the extractionmethods against the pooled extract in the
positive ESI mode, MMC showed the best results providing
the broadest coverage across all lipid classes, followed by the
Folch, MTBE, and Bligh extraction methods (1707, 1647,
1637, and 1492 extracted features, respectively). These results
are in agreement with Reis et al. [12] who reported the same
decreasing order in efficiency for the two-phase extraction
systems (Folch > MTBE > Bligh) but contrasts with a more
recent report in which the Bligh extraction system was the
most efficient in the positive ESI mode [22]. In the negative
ESI mode on the other hand, our results showed the following
coverage of extraction across all lipid classes: Folch >MMC>
MTBE > Bligh (598, 572, 558, and 528 extracted lipids, re-
spectively). This decreasing order of efficiency of the two-
phase extraction systems is in agreement with the results pre-
viously reported by Lee et al. [22].

Comparing the two best extraction systems (MMC and
Folch) in the positive ESI mode, we observed that MMC is
more efficient for medium (PI, PC, PE, PG, SM, and DG) to
highly apolar lipids (CE and TG), while Folch performs better
for more polar lipids (LPL and MG) (Fig. 2C). This result
contrasts with the Ball-in-one-tube^ idea of the MMC extrac-
tion, in which one would expect to see the highest number of
lipids with a more polar nature. The Folch extraction method
appears to be better suited for the extraction of PC, PI, PG, PS,
PE, and SM when analyzed in the negative ESI mode, while
MMC and Folch show the same selectivity for FA and LPL
(Fig. 3C). Pellegrino et al. [3], previously introduced the
MMC solvent system (MeOH/MTBE/CHCl3) as one of the
most promising extraction methods for lipid analysis, since, in
comparison with the popular two-phase systems (Folch,
Bligh, and MTBE), it increased the recovery from 79 to above
95% for a set of lipid standards covering a broad polarity
range. Although, in the current work, we are not only taking
a small defined set of standard lipid compounds into account
but the total extractable set of plasma lipids, our results agree
with these findings. Moreover, the experimental simplicity of
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this one-phase approach makes it the preferred method for
untargeted lipid analysis.

Previously, pure isopropanol (IPA) and mixtures with other
solvents have been used for lipidomics analysis. Pellegrino et
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Fig. 2 Selectivity of the extraction systems for different lipid species
delimited by time windows and analyzed in positive ESI mode. (A) LC-MS
chromatogram of lipids present in plasma samples. (B) Venn diagrams of the
number of extracted features present in the pooled extract in comparison with
the tested extraction methods. (C) Venn diagrams of the number of extracted

features in the extracts of the tested approaches when compared with each
other. The type of lipids in each segment of the chromatogram is as follows:
segment I, lysophospholipids (LPL) and monoglycerides (MG); segment II,
phospholipids (PI, PC, PE, and PG), sphingomyelins (SM), and diglycerides
(DG); and segment III, cholesterol esters (CE) and triglycerides (TG)
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al. [3] tested a precipitating solvent based on a mixture of
MeOH/IPA and found an average low recovery (62.8%) for
a set of lipid standards. Sarafian et al. [23], on the other hand,

found that it was possible to get a repeatable extraction of the
lipidome from plasma samples using pure IPA as precipitating
solvent with increased lipid coverage and good recovery (>
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delimited by time windows and analyzed in negative ESI mode. (A)
LC-MS chromatogram of lipids present in plasma samples. (B) Venn
diagrams of the number of extracted features present in the pooled extract
in comparison with the tested extraction methods. (C) Venn diagrams of

the number of extracted features in the extracts of the tested approaches
when compared with each other. The type of lipids in each segment of the
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lysophospholipids (LPL); segment II, phospholipids (PC, PI, PG, PS,
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60–80%). Taking the physical-chemical characteristics of both
solvents into account, we did not perform an experimental
comparison of solvent systems containing IPA, since we be-
lieve their relatively high polarity might increase the amount
of contaminant features and probably having a negative effect
on our results.

Relative losses of identified lipid species

It is not feasible to evaluate the recovery of the 460 lipid
species identified here, due to the lack of internal standards.
Alternatively, following the work recently published by Klont
et al. [24], we evaluated method-induced losses on the basis of
lipids that were identified and subjected to relative quantifica-
tion in all 45 measurements (four extraction methods and one
pooled sample, nine replicates of each analysis). Average
levels of each compound were calculated for each method
based on peak intensities. Then, relative values of a particular
compound for one extraction method were calculated as per-
centage of the value relative to the most abundant condition
(extraction method) (see ESM Table S1). Overall, the Folch,
MTBE, and Bligh methods showed a similar extraction per-
formance with average lipid losses between 14.9 and 16.9%

(Fig. 4a). These were in line with the losses observed in the
pooled sample (16.6%). This figure furthermore shows that
MMC extraction results in statistically significantly reduced
lipid losses of 10.7%. Repeatability of the MMC extraction
method and the pooled sample were similar with coefficients
of variation of 14.6 and 14.9%, respectively, while the two-
phase lipid extraction systems had coefficients of variation
between 16.3 and 26.2%, with the Bligh extraction method
being the most variable. The MMC method yielded the
highest levels of FA, LPL, TG, and DG (Fig. 4b–h), while
the Bligh extraction method gave the highest levels for phos-
pholipids (PLs) in general as well as for SM. However, it
resulted in the greatest overall losses of all extractionmethods,
particularly affecting FA and LPL (Fig. 4).

Polar lipids species are lost in the hydrophilic fraction
of two-phase extractions systems

To gain a better understanding of the reason behind the differ-
ences observed in segment I of the chromatograms with the
different two-phase lipid extraction systems, we analyzed the
content of the remnant hydrophilic phases that are usually
d i s c a r d ed . We fo l l owed a s e t o f e ndogenou s

Table 1 List of lipid classes and
sub-classes identified by LC-
high-resolution mass
spectrometry in the extracted
plasma sample

Lipid class Number of detection Dominant adducts Retention time range
(min)

Fatty acyls 20

FAs 20 [M–H]− 6.4–16.19

Glycerophospholipids 207

LysoPCs 32 [M+H]+/[M+
HCOO]−

6.32–15.91

PCs 101 [M+H]+/[M+
HCOO]−

16.42–23.83

LysoPEs 10 [M+H]+/[M–H]− 8.15–11.93

PEs 36 [M+H]+/[M–H]− 17.7–21.38

LysoPSs 1 [M–H]−

PSs 5 [M–H]− 17.62–19.57

LysoPGs 1 [M–H]−

PGs 2 [M–H]−

LysoPIs 2 [M–H]−

PIs 14 [M–H]− 16.24–18.47

CL 3 [M+H]+/[M+NH4]
+

Sphingolipids 68

SMs 36 [M+H]+/[M+
HCOO]−

15.04–22.96

Cers 32 [M+H]+/[M–H]− 15.69–24.17

Glycerolipids 155

DGs 15 [M+NH4]
+ 19.44–22.44

TGs 140 [M+NH4]
+ 14.88–36.98

Sterol lipids 10

CEs 10 [M+NH4]
+ 27.35–31.19

Total 460

One- vs two-phase extraction: re-evaluation of sample preparation procedures for untargeted lipidomics in... 5867



lysophophatidylcholines (LPC) with a C18 carbon chain and
up to two double bonds in the positive ESI mode (Fig. 5) and a
set of endogenous FAwith the same number of carbon atoms
and up to three double bonds in the negative ESI mode (ESM
Fig. S4). According to our results, the Folch extraction meth-
od shows only minor signals of LPC and FA in the more
hydrophilic fraction, while the MTBE and notably the Bligh
method showed significant levels of LPC- and FA-derived
signals in the positive and negative ESI modes, respectively.
Figure 6 shows a PCA-Biplot (score and loading plots are
overlaid) of the extracted features in the methanol phase of
all two-phase extractions systems. This plot displays similar-
ities and dissimilarities between observations and allows us to
interpret the observations in terms of the variables/features.
Observations close to the origins do not contribute to the for-
mation of the clusters and are poorly described by the model
components. As highlighted in Fig. 6 by the ellipses, most of

the extracted lipid features present in the hydrophilic phases
are related to the Bligh and Dyer extraction system. This ex-
plains the low total coverage of lipids with this extraction
method observed in the Venn diagrams for the hydrophobic
fraction (Figs. 2 and 3), indicating that the Bligh and Dyer
method is less well suited for untargeted lipidomics.

Conclusion

By comparing a pooled extract with the extracts of four different
sample preparation methods for lipidomics, we tried to establish
which of the methods is most comprehensive (closest to the
pooled extract in terms of lipid composition) and which of the
methods show significant differences. While a pooled extract
might be considered most comprehensive, it is not practical to
perform two or more extractions with different methods in order
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Fig. 4 Assessment of method-induced losses of identified lipid species
for the different extraction approaches. (A) All identified lipid species,
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to increase the coverage of the number of extracted lipids.
Instead, a straightforward procedure able to perform this task in
a simple way is much preferred. In this regard, one-phase extrac-
tion methods, and specifically in our case, the MMC method
(MeOH/MTBE/CHCl3) developed by Pellegrino et al. [3]
showed the best results as it turned out to be quantitatively and
qualitatively most similar to the pooled extract.

The most important differences were observed for the
Bligh and Dyer extraction. Particularly, more polar lipid spe-
cies like LPC or FAwere lost in the methanol-rich hydrophilic
phase of this extraction approach, which is usually discarded
for lipid analysis.
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