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Original article

Skin autofluorescence improves the Finnish Diabetes Risk Score in the
detection of diabetes in a large population-based cohort: The LifeLines
Cohort Study

B.T. Fokkens a,*, R.P. van Waateringe b, D.J. Mulder a, B.H.R. Wolffenbuttel b, A.J. Smit a

a Division of Vascular Medicine, Department of Internal Medicine, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1,

9713 GZ Groningen, Netherlands
b Department of Endocrinology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, Netherlands

Introduction

Together with population growth and ageing, both the decrease
in physical activity and increase in obesity have led to a significant
increase in the number of adults with diabetes worldwide: from

108 million in 1980 to 422 million in 2014 [1]. It has also been
estimated that approximately 40% of people with diabetes are
unaware of their disease [2], and that the mean time between
diabetes development and its diagnosis is approximately 5 years.
In addition, and mainly in those with type 2 diabetes (T2D), the
silent development of microvascular and macrovascular compli-
cations frequently arises, yet it may be prevented or delayed by
early screening of high-risk individuals [3].

A variety of approaches have been proposed to identify
individuals with an increased risk of diabetes. The Finnish Diabetes
Risk Score (FINDRISC) is currently the most validated and widely
used [4]. This simple, safe and inexpensive screening test (see
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A B S T R A C T

Aim. – The aim of the present study was to investigate whether skin autofluorescence would improve

the Finnish Diabetes Risk Score (FINDRISC) in detecting undiagnosed diabetes in a large population-

based cohort.

Methods. – Included were participants from the Dutch LifeLines Cohort Study. Skin autofluorescence

was assessed in an unselected subset of participants using the AGE Reader. After the exclusion of

participants with previously diagnosed diabetes (n = 1635), pregnant women (n = 58) and those using

corticosteroids (n = 345), 79,248 subjects were eligible for analysis. Diabetes was defined as fasting

plasma glucose � 7.0 mmol/L, non-fasting plasma glucose � 11.1 mmol/L or HbA1c � 6.5% (48 mmol/

mol).

Results. – Diabetes was detected in 1042 participants (aged 55 � 12 years; 54% male). Skin auto-

fluorescence improved the area under the receiver operating characteristic (AUROC) curve of the FINDRISC

model from 0.802 to 0.811 (P < 0.001). Furthermore, the addition of skin autofluorescence to FINDRISC

reclassified 8–15% of all participants into more accurate risk categories (NRI: 0.080, 95% CI: 0.052–0.110). The

proportion of reclassified participants was especially high (> 30%) in the intermediate (1% to < 5% and 5%

to < 10%) risk categories. When skin autofluorescence was added to a simplified model (age + body mass

index), its discriminatory performance was similar to the full model + skin autofluorescence (AUROC: 0.806,

P = 0.062).

Conclusion. – Skin autofluorescence is a non-invasive tool that can be used to further improve the

FINDRISC for diabetes detection. The new resultant model is especially useful for reclassifying people in

the intermediate-risk categories, where additional blood glucose testing is needed to confirm the

presence of diabetes.
�C 2017 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: AGE, advanced glycation endproduct; AUC, area under the curve;

AUROC, area under the receiver operating characteristic curve; FINDRISC, Finnish

Diabetes Risk Score; NRI, net reclassification improvement; OGTT, oral glucose

tolerance test; SAF, skin autofluorescence.
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Methods below) was developed to predict drug-treated T2D, and to
increase awareness of the modifiable risk factors and benefits of a
healthy lifestyle [5].

Skin autofluorescence (SAF) has also been proposed as a useful
cost-effective, simple and reproducible screening test for diabetes
[6]. SAF is a clinical tool that non-invasively assesses advanced
glycation endproducts (AGEs) in the skin of the forearm [7,8]. AGEs
are formed by non-enzymatic modification of proteins, lipids and
nucleic acids by reducing sugars and reactive carbonyl compounds
[9,10]. The accumulation of AGEs is seen during general ageing in
healthy individuals, but happens at an advanced rate in people
with impaired renal function, inflammatory disease and/or
diabetes as a result of oxidative and glycaemic stress [11,12]. In
addition to the growing evidence from clinical studies that AGEs
and SAF serve as potential biomarkers for diabetic complications
[11,13], SAF has been shown to be comparable or superior to
HbA1c and fasting plasma glucose in the detection of diabetes in
intermediate-risk groups. However, it has also been pointed out
that establishing the predictive value of SAF in lower-risk groups
would still be useful.

The aim of the present study was to evaluate the combined
performance of the FINDRISC and SAF in detecting undiagnosed
diabetes. Furthermore, it was investigated whether a simplified
model could be devised that would have a similar performance to
the full model. Finally, the study also focused on the identification
of the optimal cut-off values of the FINDRISC (+SAF) for the general
Dutch population.

Methods

Study population

Subjects included in the present study were participants in the
LifeLines Cohort Study [16], a large prospective population-based
cohort in the northern part of the Netherlands. LifeLines was
established as a resource for research into the complex interactions
between genomic, phenotypic and environmental factors in the
development of chronic diseases and healthy ageing. At baseline
(2006–2013), approximately 167,000 participants completed exten-
sive questionnaires, physical examinations and the collection of
biomaterials [17]. All participants provided written informed consent
before participating in the study, which was approved by the Medical
Ethics Review Committee of the University Medical Center Groningen.

Case definition

For the present cross-sectional analysis, adults for whom SAF
measurements and plasma glucose or HbA1c values were available
(n = 81,286) were evaluated. For the vast majority, two glycaemic
measurements had been taken (plasma glucose and HbA1c); for
0.5% of participants, only one glycaemic measurement was
available. Individuals who were pregnant (n = 58), who were
using systemic glucocorticoid therapy (n = 345) or who had
previously been diagnosed with type 1 (T1D; n = 182) or type 2
(T2D; n = 1453) diabetes were excluded. As SAF measurements
may be influenced by the use of skin products [18], patients who
had used sunscreen prior to SAF measurement were also excluded.
Participants were classified as having screen-detected diabetes if
they had fasting blood glucose � 7.0 mmol/L, non-fasting blood
glucose � 11.1 mmol/L or HbA1c � 6.5% (48 mmol/mol).

Skin autofluorescence

SAF was assessed in a subset of participants in the LifeLines
cohort using the AGE Reader (DiagnOptics Technologies B.V.,
Groningen, Netherlands). This non-invasive desktop device uses

the characteristic fluorescent properties of certain AGEs to
estimate the level of AGE accumulation in the skin. Technical
details concerning the optical technique have been extensively
described elsewhere [19].

Questionnaires and physical examination

Extensive baseline questionnaires included questions on
demographic details, medical history and medication use. Weight
was measured to the nearest 0.1 kg and height to the nearest
0.5 cm by trained technicians using calibrated measuring equip-
ment, with participants wearing light clothing and no shoes. Body
mass index (BMI) was calculated as weight divided by height
squared (kg/m2). For the present study, participants were classified
as having a history of high blood glucose if they reported previous
T2D, previous gestational diabetes or previous diabetes caused by
another medical condition.

Finnish Diabetes Risk Score

The original publication of the FINDRISC included two models: a
concise model and a full model. Because it was reported that the
full model only minimally improved prediction, it was decided to
use the concise model for the present analysis. Variables in the
concise FINDRISC model are age, BMI, waist circumference, use of
antihypertensive agents and history of high blood glucose [5].

In addition, multiple imputations by chained equations were
applied to eliminate missing values for BMI (0.02%), waist
circumference (0.02%), use of antihypertensive agents (1.3%) and
history of high blood glucose (0.2%), resulting in five imputed
datasets.

Biochemical measures

Blood was collected in the fasting state between 08h00 and
10h00 in the morning, and transported to the LifeLines laboratory
facility at room temperature or at 4 8C, depending on the sample
requirements. On the day of collection, HbA1c (EDTA-anticoagulated)
was analyzed using a National Glycohemoglobin Standardization
Program (NGSP)-certified turbidimetric inhibition immunoassay on a
COBAS Integra 800 CTS analyzer (Roche Diagnostics Nederlands B.V.,
Almere, Netherlands). Fasting and non-fasting plasma glucose was
measured using a hexokinase method. For the present analysis, blood
was collected in a non-fasting rather than fasting state in 1.6% of
participants.

Statistical analysis

All analyses were performed using SPSS version 22 (IBM Corp.,
Armonk, NY, USA) and R 3.1.3 (R Foundation for Statistical
Computing, Vienna, Austria) software. Data are presented as
means � standard deviation (SD) or as number of participants and
percentages. Student’s t test or Chi2 test was performed to compare
groups. Receiver operating characteristic (ROC) curve analysis was
used to define groups for SAF. Cut-off values were chosen based on
their 50%, 90% and 97.5% specificity for detecting diabetes.

Logistic regression analysis was performed to determine the
association between FINDRISC variables, SAF and diabetes, and
also to determine the point-score systems for the SAF and
FINDRISC variables, as well as the simplified models. Regression
coefficients were multiplied by 4 and rounded off for simplicity,
thereby allowing comparisons of these score values with those of
FINDRISC. As the five imputed datasets showed comparable
regression coefficients and standard errors in the prediction of
diabetes, the imputation variation was low. Therefore, one
randomly chosen imputed dataset was used for further analyses.
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The discriminatory ability of the different models was estimated
using the area under the ROC (AUROC) curve. Calibration was
assessed with the Hosmer-Lemeshow Chi2 test by comparing
observed and predicted outcomes (based on the present regression
analysis) over deciles of risk [20]. Accurate stratification of
individuals into higher and lower risk categories was assessed using
risk reclassification analyses; in which predicted risk estimates
(based on the present regression analysis) were directly compared
with the actual risk observed in each group. Risk groups were based
on clinically relevant risk categories and defined as:< 1%, 1% to< 5%,
5% to < 10%, and � 10%. In addition, the net reclassification
improvement (NRI) index was calculated according to methods
described by Pencina et al. [21], with a 95% confidence interval (CI),
calculated according to methods described by Newcombe [22].

Results

The demographic and clinical characteristics of the study
population are presented in Table 1 for participants with and
without diabetes. Overall, the age range was 18–92 years, and the
prevalence of undiagnosed diabetes was 1.3%. Those with diabetes

were significantly older, had higher BMI scores, larger waist
circumferences and higher SAF values. Also, a greater proportion of
participants with diabetes was male, was using antihypertensives
and had a history of high blood glucose.

FINDRISC and SAF in detecting diabetes

Logistic regression analysis showed that all variables of the
FINDRISC were significant detectors of diabetes in our study cohort
independently of covariates (Table 2). Moreover, the addition of
SAF [in categories of arbitrary units (AU)< 1.9, 1.9–2.4, 2.5–2.9 and
> 2.9] contributed significantly to the model. People in the highest
SAF category had a 3.5-fold increased risk of having diabetes
compared with those in the lowest SAF category. To build the
FINDRISC + SAF model, the calculated risk scores for SAF were
added to the original risk scores of the FINDRISC. Estimates
(including calibration) for the different regression models are
presented in the footnotes of Table 2. The ROC curve for the
FINDRISC model yielded an AUC of 0.802 (95% CI: 0.789–0.815) for
detection of diabetes, whereas the addition of SAF significantly
improved the discriminatory value of the model to 0.811 (95% CI:
0.798–0.824; P < 0.001).

Table 3 shows the number and percentage of participants
initially classified by FINDRISC into four risk categories who were,
in fact, reclassified into higher- or lower-risk categories with the
addition of SAF. The proportion of participants reclassified was low
(< 10%) among those originally classified as having < 1% or > 10%
risk of diabetes, and high (> 30%) among those in the intermediate-
risk categories. Overall, 15% of all participants were reclassified
with the addition of SAF. As shown by the observed diabetes
prevalence, most of these participants were reclassified into more
accurate risk categories. Reclassification improved by 8.3% in those
who had diabetes and worsened by 0.2% in those without diabetes,
resulting in a net reclassification of 8.0% (95% CI: 5.2–11.0).

Simplified model and SAF for detecting diabetes

ROC curve analysis revealed that a simplified model consisting
of age and BMI (using the adjusted point-scores shown in Table II)

Table 2
Multivariable logistic regression models for detection of undiagnosed type 2 diabetes in the LifeLines cohort (n = 79,248).

Characteristics FINDRISC model FINDRISC model + SAF Simplified model + SAF

Regression

coefficient

OR (95% CI) Point-

scorea

Regression

coefficient

OR (95% CI) Point-score Regression

coefficient

OR (95% CI) Point-

score

Age, years

<45 0 1 0 0 1 0 0 1 0

45–55 0.725 2.06 (1.72–2.48) 2 0.541 1.72 (1.42–2.07) 2 0.658 1.93 (1.60–2.33) 3

56–65 1.349 3.85 (3.18–4.67) 3 1.030 2.80 (2.28–3.44) 3 1.257 3.52 (2.88–4.30) 5

�65 1.757 5.80 (4.72–7.12) 4 1.328 3.77 (3.01–4.73) 4 1.650 5.21 (4.20–6.46) 7

Body mass index, kg/m2

<25 0 1 0 0 1 0 0 1 0

25–30 0.581 1.79 (1.44–2.22) 1 0.571 1.77 (1.43–2.20) 1 0.914 2.49 (2.07–3.01) 4

�30 1.464 4.32 (3.39–5.51) 3 1.424 4.15 (3.26–5.30) 3 2.015 7.50 (6.22–9.04) 8

Waist circumference, cm

[TD$INLINE] <80, [TD$INLINE] <94 0 1 0 0 1 0 – – –

[TD$INLINE] 80–88, [TD$INLINE] 94–102 0.408 1.50 (1.17–1.94) 3 0.409 1.51 (1.17–1.94) 3 – – –

[TD$INLINE] �88 [TD$INLINE] >�&gt; 102 0.716 2.05 (1.58–2.65) 4 0.712 2.04 (1.57–2.64) 4 – – –

Use of antihypertensives 0.653 1.92 (1.67–2.22) 2 0.602 1.83 (1.58–2.11) 2 – – –

History of high blood glucose 1.642 5.17 (2.41–11.07) 5 1.909 6.75 (3.37–13.51) 5 – – –

SAF, arbitrary units (AU)

<1.9 – – – 0 1 0 0 1 0

1.9–2.5 – – – 0.490 1.63 (1.38–1.93) 2 0.502 1.65 (1.40–1.95) 2

2.5–2.9 – – – 0.653 1.92 (1.57–2.36) 3 0.679 1.97 (1.61–2.42) 3

�2.9 – – – 1.258 3.52 (2.74–4.52) 5 1.330 3.78 (2.95–4.84) 5

Nagelkerke R2: 0.135 for Finnish Diabetes Risk Score (FINDRISC) model; 0.144 for FINDRISC model + skin autofluorescence (SAF); 0.132 for simplified model + SAF; Model x2:

1409 (P<0.001) for FINDRISC model; 1505 (P<0.001) for FINDRISC model + SAF; 1383 (P<0.001) for simplified model + SAF; Hosmer–Lemeshow x2: 16.2 (P = 0.024) for

FINDRISC model; 11.7 (P = 0.113) for FINDRISC model + SAF; 16.8 (P = 0.019) for simplified model + SAF.
a Scores as published by Lindström et al. (Diabetes Care, 2003;26(3):725–31) [5].

Table 1
Characteristics of the study population.

Characteristics Diabetes P

Yes (n = 1042) No (n = 78,206)

Age, years 55�12 44�12 <0.001

Male gender, n (%) 561 (53.8) 32419 (41.5) <0.001

Body mass index, kg/m2 30.0�5.2 26.0�4.2 <0.001

Waist circumference, cm

Female 101�14 87 �12 <0.001

Male 106�13 95�10 <0.001

Use of antihypertensive

drugs, n (%)

393 (37.7) 8450 (10.8) <0.001

History of high blood

glucose, n (%)

12 (1.2) 172 (0.2) <0.001

Skin autofluorescence,

arbitrary units

2.30�0.52 1.90�0.43 <0.001

Data are presented as means� standard deviation unless otherwise specified.
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had an AUC close to that of the FINDRISC model (0.795, 95% CI:
0.781–0.808; P = 0.035). The addition of SAF to age + BMI further
improved the discriminatory value of this model to 0.806 (95% CI:
0.793–0.818; P < 0.001). The AUC of the simplified model + SAF
was not significantly different from that of either the FINDRISC
(P = 0.365) or FINDRISC + SAF (P = 0.062) model. Reclassification of
participants due to the addition of SAF to age + BMI is shown in
Table 4. Overall, 10% of all participants were reclassified into more
accurate risk categories. However, reclassification worsened by
0.4% among those who had diabetes, but improved by 8.2% among
subjects without diabetes, resulting in a net reclassification of 7.8%
(95% CI: 5.7–9.9).

Prevalence and cut-off points

With the FINDRISC (point range: 0–18), the prevalence of
diabetes rises as the score increases (Fig. 1A). Test characteristics of
the model are presented in Table S1 (see supplementary materials
associated with this article online) for a range of cut-off values. At a
score of 7, the sum of sensitivity and specificity is at maximum. Of
the total study population, 32% had a score � 7, a group that
included 79% of cases with undiagnosed diabetes (sensitivity). Of
those without diabetes, 68% had scores < 7 (specificity).

With the FINDRISC model + SAF (point range: 0–21), the
prevalence of diabetes likewise rises as the score increases
(Fig. 1B). Test characteristics of this model are presented in Table
S2 (see supplementary materials associated with this article
online) for a range of cut-off values. At a score of 9, the sum
of sensitivity and specificity is at maximum (sensitivity 75%,
specificity 75%).

With the simplified model + SAF (point range: 0–20), the
prevalence of diabetes also rises as the score increases (Fig. 1C).
Test characteristics of this model are presented in Table S3 (see
supplementary materials associated with this article online) for a
range of cut-off values. At a score of 8, the sum of sensitivity and
specificity is at maximum (sensitivity 83%, specificity 65%).

The optimal cut-off points for the FINDRISC, FINDRISC + SAF and
simplified + SAF models did not differ by gender (data not shown).

Discussion

Our present study has shown that SAF improved performance of
the FINDRISC model, an accepted tool for diabetes detection, in a
large and recently recruited population cohort. Furthermore, a
simplified model (comprising age and BMI) in combination with
SAF with re-estimated point-scores was shown to have a similar

Table 4
Diabetes risk reclassification in models of age + body mass index (BMI) and age + BMI + skin autofluorescence (SAF).

Predicted risk of diabetes: Age + BMI model Predicted risk of diabetes: Age + BMI + SAF model Total Reclassified (n [%])

0 to 1% 1% to<5% 5% to<10% �10%

0 to 1% 315 (0.7)

Number of participants 44,187 315 0 0 44,502

% classified in each risk stratum 99.3 0.7 – – 100

Observed diabetes incidence 0.3 1.9 – – 0.3

1% to<5% 7355 (22.9)

Number of participants 6912 24,780 443 0 32,135

% classified in each risk stratum 21.5 77.1 1.4 – 100

Observed diabetes incidence 0.7 2.5 8.1 – 2.2

5% to<10% 419 (25.3)

Number of participants 0 294 1239 125 1658

% classified in each risk stratum – 17.7 74.7 7.5 100

Observed diabetes incidence – 3.7 6.5 15.2 6.6

�10% 72 (7.6)

Number of participants 0 0 72 881 953

% classified in each risk stratum – – 7.6 92.4 100

Observed diabetes incidence – – 6.9 9.9 9.7

Net reclassification improvement (NRI): 0.0779 (95% CI: 0.0571–0.0986).

Table 3
Diabetes risk reclassification in the Finnish Diabetes Risk Score (FINDRISC) and FINDRISC + skin autofluorescence (SAF) models.

Predicted risk of diabetes: FINDRISC model Predicted risk of diabetes: FINDRISC + SAF model Total Reclassified n (%)

0–1% 1–<5% 5–<10% �10%

0 to 1% 4779 (8.9)

Number of participants 48,707 4779 0 0 53,486

% classified in each risk stratum 91.1 8.9 – – 100

Observed diabetes prevalence 0.3 1.3 – – 0.4

1% to<5% 6727 (30.0)

Number of participants 5537 15,673 1015 175 22,400

% classified in each risk stratum 24.7 70.0 4.5 0.8 100

Observed diabetes prevalence 1.1 2.7 5.9 9.7 2.5

5% to<10% 978 (35.3)

Number of participants 0 556 1794 422 2772

% classified in each risk stratum – 20 64.7 15.2 100

Observed diabetes prevalence – 5 6.5 9.5 6.6

�10% 49 (8.3)

Number of participants 0 0 49 541 590

% classified in each risk stratum – – 8.3 91.7 100

Observed diabetes prevalence – – 6.1 12.6 12.0

Net reclassification improvement (NRI): 0.080 (95% CI: 0.052–0.110).
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performance for diabetes detection compared with the FINDRISC
model with SAF added.

Discrimination, calibration and reclassification criteria were
used to assess the significance of the addition of SAF as a new
biomarker to the list of conventional diabetes risk factors. A
significant improvement in discrimination was found with the
addition of SAF to the FINDRISC model. Calibration also showed a
better fit for the FINDRISC model + SAF compared with the
FINDRISC alone. More importantly, significant reclassification
was demonstrated with the addition of SAF, with an overall NRI
index of 8%. This new model was especially useful for reclassifying
participants in the intermediate-risk categories, in which > 30% of
subjects were reclassified.

Although calibration of the simplified model + SAF was poor
(Hosmer–Lemeshow x2 = 16.2, P = 0.024), the discriminatory value
did not differ significantly from that of the FINDRISC model + SAF.
Therefore, the simplified model + SAF may well represent an
accurate alternative for settings where answers concerning
medication use and history of high blood glucose may be unreliable
or inappropriate: this includes screening not only in medical
settings such as general practitioner practices and pharmacies, but
also in supermarkets and at major public events, thereby reaching
those who avoid, or have never been exposed to, healthcare.
Moreover, because it is easy and quick to perform, the simplified
model + SAF may even improve the general public’s participation in
screening programmes, which is generally low [23].

Previous studies have addressed the value of skin fluorescence
in the detection of diabetes. In those at risk of diabetes, skin
fluorescence was comparable or superior to HbA1c and fasting
plasma glucose for the detection of impaired glucose tolerance and
diabetes detected by Oral Glucose Tolerance Tests (OGTTs)
[14,24]. To further improve the sensitivity and specificity of
diabetes detection, an SAF-based decision tree was developed.
Indeed, this decision tree has proved to be as good as or superior for
the detection of diabetes and impaired glucose tolerance in
comparison to conventional risk predictors in an intermediate-risk
group [15]. However, no previous reports have validated skin
fluorescence for the detection of diabetes in lower-risk groups.

The FINDRISC is often used as the first assessment tool to
identify those who may need further glucose testing. It was found
that the optimal cut-off value was a score � 7 with the FINDRISC
model (sensitivity 79%, specificity 68%), � 9 with the FINDRISC
model + SAF (sensitivity 75%, specificity 75%) and � 8 for the
simplified model + SAF (sensitivity 83%, specificity 65%). However,
as diabetes prevalence was rather low in the LifeLines population,
higher cut-off values may be more cost-effective in Dutch and
other populations [25].

Compared with the original publication, the present study’s
AUROC for FINDRISC was somewhat lower (0.857 vs. 0.802,
respectively). It is known that the performance of risk models is
generally higher in the population for which they were designed. In
addition, the present study differs from the original Finnish study

[(Fig._1)TD$FIG]

Fig. 1. Incidence of undiagnosed diabetes for different scores of (A) the FINDRISC score, (B) the FINDRISC + SAF score and (C) the simplified model + SAF score; black bars,

observed risk, grey bars, expected risk.
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with respect to population characteristics as well as the way that
diabetes was identified. The discriminatory performance of the
FINDRISC in our present cohort was somewhat higher than in other
validation studies addressing the performance of FINDRISC in the
detection of undiagnosed diabetes. In those studies, the AUROC
ranged from 0.70 to 0.78 [26–31]. The difference may be explained
by the wider distribution of risk factors in our large cohort study. In
fact, as an illustration of this, ROC curve analysis for participants in
the age range for which the FINDRISC was originally designed (35–
64 years) revealed a significantly lower AUC (results not shown).

Nowadays, screening programmes for early detection of
(pre)diabetes are lacking in most countries, despite the fact that
several (systematic) reviews performed over the last 5 years have
concluded that screening programmes for diabetes are efficient
and cost-effective [3,32,33]. On the other hand, glycaemic tests
(fasting plasma glucose, HbA1c, OGTT) have been poorly taken up
for diabetes screening by the general population, and the most
promoted questionnaire-based risk score (the FINDRISC) is still
little used. Yet, the model described here, comprising age, BMI and
SAF (no fasting required), can be used as a diabetes-screening tool
in non-medical settings, with medical referral of only a selection of
high-risk patients for confirmatory glycaemic tests, thereby adding
to the cost-effectiveness of such screening.

Our present analysis demonstrates that SAF improves the risk
classification of individuals at high-risk of diabetes, which opens
up the prospects for studies (some already ongoing) of related
applications. An important opportunity to address is the possible
value of SAF alone or in combination with conventional models for
the prediction of diabetes. Moreover, it would be relevant to
investigate whether the addition of SAF to the FINDRISC model
might more accurately predict the cardiovascular complications of
diabetes and cardiovascular disease. The FINDRISC has already
proved invaluable for the prediction of cardiovascular events in the
population for which it was developed [34], as well as in a
randomly selected Finnish population of men aged 45–74 years
[35]. Likewise, SAF has proved to be highly useful for the prediction
of cardiovascular events in diabetic populations [13,36] and in
patients with peripheral artery disease [37]. Finally, it is important
to confirm the validity of our present results in other populations,
especially non-Caucasians.

One limitation of our study is the identification of diabetes
cases using just a single measurement of (fasting) plasma glucose
and HbA1c rather than the repeated measurements required for a
clinical diagnosis or with OGTTs. However, the main disadvantage
of the gold standard OGTT would be the lower rate of participation.
Second, a history of high blood glucose was not directly addressed
in the LifeLines questionnaire, as participants with such a history
were identified only if they filled in a free space following the
question about having diabetes. This has probably led to
underestimation of the number of patients with a history of high
blood glucose. Nevertheless, as the prevalence of such a history
was rather low (0.7–1.6%) in other Dutch cohorts in which the
FINDRISC was validated [38], this is unlikely to have changed our
main results. Finally, a family history of diabetes was incomplete in
the LifeLines population, as the corresponding question was only
later integrated into the baseline questionnaire. Thus, it was not
possible to compare the performance of FINDRISC (+SAF) with the
updated FINDRISC [39] and other available risk scores [40–42].

In conclusion, the combination of a simple-to-perform FIN-
DRISC score plus the easy, non-invasive SAF measurement
provides an invaluable clinical tool for diabetes detection. This
new model is especially useful for reclassifying people in
intermediate-risk categories for whom further blood glucose
testing should confirm the presence of diabetes. Furthermore, a
simplified model including age, BMI and SAF may represent an
accurate alternative screening tool for settings where answers

about medication use and history of high blood glucose may be
unreliable or inappropriate. Indeed, the resultant early identifica-
tion of patients with diabetes may prevent or delay the
development of microvascular and macrovascular complications
by enabling intervention at an early stage of the disease.
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