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Abstract
We present a local refinement approach for gradient meshes, a primitive commonly used in the design of vector illustrations
with complex colour propagation. Local refinement allows the artist to addmore detail only in the regionswhere it is needed, as
opposed to global refinementwhichoften clutters theworkspacewith undesired detail andpotentially slowsdown theworkflow.
Moreover, in contrast to existing implementations of gradient mesh refinement, our approach ensures mathematically exact
refinement. Additionally, we introduce a branching feature that allows for a wider range of mesh topologies, as well as a
feature that enables sharp colour transitions similar to diffusion curves, which turn the gradient mesh into a more versatile
and expressive vector graphics primitive.

Keywords Vector graphics · Gradient meshes · Colour interpolation · Local refinement

1 Introduction

Vector graphics provide an interesting alternative to raster
graphics, as they are resolution-independent and in gen-
eral easier to edit because they are composed of objects
(often called primitives) as opposed to coloured pixels. The
number of different primitives is rather limited, with the gra-
dient mesh as one of the most complex ones. This primitive
facilitates the creation of intricate colour propagation over
regular quadrilateral meshes, contributing to the possibility
of designing photorealistic illustrations in vector format.

Gradient meshes were introduced by Adobe Illustrator [1]
as the Mesh object. CorelDRAW soon followed [7] with a
similar tool calledMeshFill.More recently, the primitivewas
added to the proposal for SVG 2 [27] and is now available in
Inkscape [14] aswell.Although there are subtle differences in
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the way gradient meshes behave in these software packages
(see also Fig. 6), the overall concept is the same. In this
paper we use the term traditional gradient mesh to refer to
the primitive as implemented in these suites.

Upon using the traditional gradient mesh, it becomes clear
that it comes with several limitations. The main shortcoming
is its fixed rectangular topology, making it difficult to design
complex objects and impossible to perform local refinement.
As is well-known in Computer Graphics, the latter aspect
is a desirable feature [12]. Global refinement (propagating
through the entire row/column) often adds control points to
the mesh where they are not needed, thereby cluttering the
workspace and potentially slowing down the workflow. The
conceptual difference between global and local refinement is
depicted in Fig. 1. In addition, the traditional gradient mesh
allows little to no control over the propagation of colour along
curves and (as a consequence) in the interior, thus limiting
the range of artistic styles that can be expressed with it.

It is our aim to create amore versatile and expressive prim-
itive, in particular from the perspective of manual creation
and editing. Our contributions in this direction are:

– Mathematically exact local refinement, which adds con-
trol points only where they are required
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Fig. 1 Global refinement (left), where each refinement propagates
through an entire row/column, is the only form of refinement avail-
able in existing implementations of the gradient mesh primitive. We
propose a local refinement approach (right)

Fig. 2 Using a single gradient mesh to model a leek (control net top,
rendering bottom). Local refinement is used to express local details,
the branching feature is used to create the non-rectangular topology
desired for modelling this shape, and sharp colour transitions are used
to express depth

– Branching,which enables the creation of non-rectangular
meshes by allowing branches, loops and (as a conse-
quence) holes

– Assignment of colours to individual sectors of control
points, which facilitates sharp colour transitions

An example gradient mesh using all three novel features
is shown in Fig. 2.

The structure of the remainder of this paper is as fol-
lows. In Sect. 2, we discuss and compare related work on
gradient meshes and alternative tools. We describe our inter-
pretation of the gradient mesh primitive in Sect. 3, focusing
on geometry and colour blending. Refinement is discussed
in detail in Sect. 4. User interaction (i.e., editing a gradient
mesh) is considered in Sect. 5. Relevant details regarding the
implementation are described in Sect. 6. Branching and sharp
colour transitions are described in Sect. 7 and are illustrated
using a number of examples (see also the supplementary
video). Finally, we evaluate the advantages and limitations
of our contributions in Sect. 8, and look ahead to future work
in Sect. 9.

Fig. 3 Local refinement using Catmull–Clark subdivision. Vertices in
the control net (orange) are generally not interpolated. Local refinement
affects the valency of faces, which results in different limit surfaces
(patch boundaries in black)

2 Related work

The traditional gradient mesh primitive is conceptually
straightforward. As such, the existing literature focuses on
extensions or applications of the tool. The prior work can
be classified into three different categories, discussing either
the topology of the gradient mesh, aspects related to colour,
or vectorisation, the (semi-) automatic creation of vector
graphics from raster graphics. We conclude with a concise
overview of alternative techniques.

Considering the matter of restricted topology, in related
fields subdivision surfaces are often used to model meshes
of arbitrary topology. The catch in using them for gradient
meshes is that neither interpolating subdivision schemes nor
approximating ones can be directly applied in a generally
satisfactory way. Using the former often results in colours
outside the gamut (which leads to flat or uniformly coloured
spots), whereas the latter typically results in washed-out
colours. The approaches taken by [17,31] use Loop’s approx-
imating subdivision scheme for editing and vectorisation.
Consequently, in practice the triangular elements in the mesh
need to be quite small for the intended colours to be approx-
imated closely enough (they are not interpolated), which
in turn might complicate the editing process. This issue
is mostly avoided in [18] by combining augmented lin-
ear ternary subdivision and Catmull–Clark’s approximating
scheme supporting quad-dominantmeshes of arbitrary topol-
ogy. However, though colour is interpolated, by default the
geometry (represented by the control net) is not. Moreover,
like [17,31], the proposed method does not allow for local
refinementwithout changing thegeometry or the colour prop-
agation. In this subdivision setting, local refinement changes
the valency of faces and/or introduces vertices of irregular
valencies, thereby changing the limit surface. See Fig. 3, cf.
Fig. 1 (right).

Finally, neither the PDF 2.0 [21] nor the SVG 2 standard
supports the surface patches required to render subdivision
surfaces, which reduces the applicability of subdivision-
based methods.

Methods not based on subdivision include the use of
curved Bézier triangles [28] for vectorisation. The approach
touches only briefly on colour continuity across two trian-
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gular elements, which is not sufficient for overall continuity.
Although editing of the generated elements is discussed to
some extent, the method does not appear to support manual
addition of elements. Finally, [16] considers vectorisation as
an application of their generalised barycentric coordinates
for Hermite interpolation, which allows the use of highly
irregular patch shapes. While interesting for vectorisation,
the method does not seem suitable for intuitive manual cre-
ation of gradient meshes.

To the best of our knowledge, no extensive comparison
regarding the use of different colour spaces for gradient
meshes has been published. However, preference for cer-
tain colour spaces, including CIELAB, has been mentioned
before [18]. Instead, work on colour-related aspects focuses
on colour transfer, which discusses how colour characteris-
tics from an existing (raster) image can be used to (re-)colour
a gradient mesh [29,30].

Most work primarily focuses on vectorisation. In [22],
cubic Bézier patches are used to approximate individual
objects extracted from raster images. Interestingly, it also
discusses the need for (in this case, automatic) local refine-
ment to efficiently express local detail. However, smoothness
of the result is not guaranteed, and locally refined areas can-
not be edited directly. A different approach is taken in [25],
where the positions and other properties at control points of a
given (manually created) gradient mesh of rectangular topol-
ogy can be optimised. In contrast, [15] proposes a completely
automatic approach, which is more generally applicable as it
can vectorise objects with holes using a single mesh. How-
ever, like [25], it uses rectangular meshes, and holes can only
be formed by separating surface patches along a chain of
curve segments, which restricts their shape.

Obtaining the desired topology using a (traditional) gra-
dient mesh can be quite a challenge. A common workflow
is to use multiple gradient meshes to design the envisioned
object. Still, manual creation of complex shapes remains
time-consuming. Diffusion curves [20] alleviate this task by
allowing the user to draw outlines and open or closed inner
regions where changes in colour might occur, using Bézier
or B-spline curves. Assigning (possibly different) colours to
the two sides of the curves, the interior colour is determined
using the principle of diffusion. Fromamathematical point of
view, this is interpreted as solving a harmonic or biharmonic
[11] equation. In addition to the multigrid method used orig-
inally, existing approaches for solving these PDEs include
FEM [6], BEM [26] and approximation by ray-tracing [5].
Although the workflow is closer to the classical workflow
of artists, a drawback is that the solution of the diffusion
process typically requires a global approach. Moreover, tra-
ditional diffusion curves do not allow much control over the
colour propagation. Various methods that mitigate the latter
issue, such as diffusion barriers, anisotropic diffusion and
colour strength, have been proposed in [4].

Related to diffusion curves, [19] associates shading pro-
files to the curves and subsequently converts the scene to a
Catmull–Clark subdivision surface which can be rendered
directly. As it is subdivision-based, it comes with the same
drawbacks as mentioned above.

3 The gradient mesh primitive

We now construct our interpretation of the gradient mesh
primitive. First, we consider the geometrical aspects, after
which we focus on blending the colours defined on top of the
2D geometry. In addition, “Appendix A” briefly discusses the
use of different colour spaces.

As pointed out in [24], (semi-)transparency in vector
graphics is an important feature. In addition to the R, G and
B channels, a fourth channel A could be added to smoothly
blend different alpha values assigned to control points.
To fully appreciate this feature, a layer system should be
integrated to handle overlapping meshes. Although straight-
forward to implement, our framework currently does not
support it as it adds little value from a scientific point of
view. In the following, we adopt the RGB colour space.

3.1 Geometry

In essence, the geometrical aspect consists of a 2D curve net-
work in the xy-plane with (traditionally) the topology of a
rectangular grid. An example is shown in Fig. 1 (left). The
curves composing this network are commonly cubic curves.
Throughout the paperweuse bothBézier andHermite formu-
lations of these curves (and later surface patches). As such,
each cubic curve C(t) can be described as

C(t) =
3∑

k=0

Pk Bk(t) = PTB(t) (1)

=
3∑

k=0

QkHk(t) = QTH(t), (2)

where t ∈ [0, 1]. Note that Pk are the Bézier control points
and Bk(t) the cubic Bernstein functions, Qk theHermite con-
trols (points or tangent handles) and Hk(t) the cubic Hermite
functions.

As two different representations are considered, a way to
convert between them is desirable. Hermite control data Q
can readily be obtained from the Bézier control data P :

Q =

⎛

⎜⎜⎝

1 0 0 0
− 3 3 0 0
0 0 − 3 3
0 0 0 1

⎞

⎟⎟⎠ P = X P . (3)
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Fig. 4 Different colour blending functionswith cubic parameterisation.
Only the first one is G1-compatible

Likewise, P can be obtained from Q by inverting the
matrix X .

3.2 Colour blending

Once the 2D geometry is defined, a colour can be assigned
to each Hermite control point in the curve network. Immedi-
ately, the question arises how the colour should be propagated
not only along the curves, but also within the quadrilateral
regions bounded by these curves.

Assigning an RGB colour to each Hermite control point
can be interpreted as extending the planar curve network to
5D. Alternatively, we can consider a separate height-field for
each colour channel on top of the 2D geometry, such that the
z-component takes on the R, G or B value, which we choose
tomap to the interval [0, 1].We use this latter view, extending
the curve network to 3D for each colour channel in turn.

Following the assignment of z-values to the Hermite con-
trol points, the z-values of theHermite tangents are initialised
to 0. Assuming co-linear geometrical handles on the sides of
control points (see e.g., Fig. 8), this connects the curves in the
3D geometry/colour channel space with tangent continuity
(G1), and even C1 in case these geometrical handles are of
equal length. Clearly, other options for blending the colours
along the curves become available when the Hermite tan-
gents are assigned nonzero z-values, as illustrated in Fig. 4.
Although this variation facilitates the use of different artis-
tic styles, the drawback is that the colour curves no longer
connect with tangent continuity.

Whether tangent continuity is required or not depends on
the interpretation of colour continuity, which is clearly dif-
ferent from geometric continuity as humans perceive spatial
changes in a different way than changes in colour. This is
most likely caused by the different spectral sensitivities of
the three types of cone cells in the eyes [23], and might be
influenced by genetic and even cultural aspects. We postu-
late that although tangent continuitymight not be a necessary
condition for smooth colour propagation, it is a sufficient con-
dition. Therefore, we choose to use colour blending which
results in at least G1 continuity (see Fig. 4, far left).

Having fixed the colour blending along the curves, we
now take a look at the propagation of colour in the regions
bounded by these curves. As we only have data on the curves

0 1

1

v

u

S(u, v)

Fig. 5 A Ferguson surface patch is defined by four control points and
eight tangent vectors. The visualised tangent vectors are scaled down
by a factor 3

and not in the interior, a natural choice is to use some kind
of transfinite interpolation. More specifically, we consider
Coons patches that use a full set of cubics to blend the data
on the boundary. As the boundary curves are also cubics,
this results in a bicubic patch S(u, v), which we choose to
describe in Hermite form as

S(u, v) = HT(u)CH(v), (4)

with

C =

⎛

⎜⎜⎝

S(0, 0) Sv(0, 0) Sv(0, 1) S(0, 1)
Su(0, 0) Suv(0, 0) Suv(0, 1) Su(0, 1)
Su(1, 0) Suv(1, 0) Suv(1, 1) Su(1, 1)
S(1, 0) Sv(1, 0) Sv(1, 1) S(1, 1)

⎞

⎟⎟⎠ ,

where S(i, j), Su(i, j), Sv(i, j) and Suv(i, j) are elements
of R3 with x and y the geometrical data and z the data from
one of the colour channels.

Initially, the mixed partials Suv(i, j), with i, j ∈ {0, 1}
(commonly referred to as twist vectors in Hermite form) at
the control points, are set to zero as we do not have inte-
rior information. This results in a subset of bicubic Hermite
patches known as Ferguson patches, illustrated in Fig. 5.

When we cast the patch into Bézier form as

S(u, v) = BT(u)X−1CX−TB(v),

where we have used the equality

QTH(t) = PTB(t) =
(
X−1Q

)T
B(t) = QTX−TB(t),

it becomes evident that vanishing twist vectors correspond
to inner Bézier points positioned in such a way that they form
parallelogramswith the closest corner and two corresponding
handles.

When editing the geometry or colour and refining (indi-
vidual) patches (see Sect. 4), the twist vectors might become
nonzero, which is why we adopt the full Hermite description
in favour of merely the Ferguson one in the remainder of this
paper.
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Mesh Our implementation

Adobe Illustrator CorelDRAW

Inkscape (‘Bicubic’) Inkscape (‘Coons’)

Fig. 6 Comparing renderings of a 2×3 gradient mesh in different soft-
ware packages. Handles are at their default location and are visualised
as small open circles

We conclude this subsection with the observation that
existing implementations of the traditional gradient mesh
primitive use different blending functions, see Fig. 6.
Used versions are Adobe Illustrator 2017.1.0, CorelDRAW
19.0.0.328 (Graphics Suite 2017), and Inkscape 0.92.2.
Based on these and other results, our approach resembles
most that of CorelDRAW. Adobe Illustrator supposedly uses
a different way of interpolation [25], which is also used in
the bicubic option in Inkscape. The other option in Inkscape
uses bilinear Coons interpolation.

4 Refinement

In our setting, (local) refinement (also referred to as splitting)
refers to the introduction of a new curve that is the image of
an u- or v-isoline of the patch to be split. In the following, we
describe the splitting process along the u-direction, though
the process is completely analogous along the v-direction.

Creating anewcurve (expressed inHermite form) involves
the evaluation of position and first derivatives (tangents).
Moreover, we need the mixed partial derivatives (twist vec-
tors) at the new control points to properly describe the new
patches. The required computations are based on the follow-
ing set of equations:

S(u, v) = HT(u)CH(v),
∂S

∂v
= HT(u)CH ′(v),

∂S

∂u
= H ′T(u)CH(v),

∂2S

∂u ∂v
= H ′T(u)CH ′(v). (5)

1
2

1
8

1
2 −1

8

−3
2 −1

4
3
2 −1

4

1
2

1
8

1
2 −1

8

−3
2 −1

4
3
2 −1

4

Fig. 7 Four stencils to compute the quantities in (5) for u = 0 or 1 and
v = 1

2 in Hermite form (green). Tangents are visualised as solid arrows,
twist vectors as dashed arrows

Fig. 8 Splitting a patch using the stencils from Fig. 7 to compute posi-
tions and tangent vectors. The twist vectors are not shown

It follows that the unknown quantities in (5) can be com-
puted just from the information available on the boundary of
the patches. Using the matrix C introduced in (4), this results
in the stencils shown in Fig. 7.

At this point, patches can be split by applying the stencils
on twoopposite curves, see Fig. 8. For example, a newcontrol
point at v = 1

2 is obtained as a weighted sum (in this case
using the weights from the top stencil in Fig. 7) of the two
control points and two tangent handles defining the curve of
interest. Examples of refinement are shown in Figs. 2, 14, 15,
16 and 17, where individual patches have been split to locally
accommodate more detail. Note that local refinement leads
to T-sections in the mesh. In Sect. 5 we take a look at these
from the user’s point of view, whereas details regarding the
implementation and book-keeping concerning T-sections are
discussed in Sect. 6.

We underline that our splitting approach is mathemati-
cally exact, which means that no change in geometry or
colour propagation occurs upon splitting. The only difference
could be caused by the (adaptive) tessellation step when it is
not pixel-accurate (see Sect. 6.2). In contrast, splitting meth-
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ods in existing implementations are rarely exact. Figure 9
compares the accuracy of the splits in the aforementioned
software packages. The renderings before and after splitting
have been imported in GIMP as different layers using 8 bits
per colour channel, with themode of the top layer set to differ-
ence. The layers are subsequently merged and thresholded,
where the highest value resulting in white pixels has been
recorded. Lower values for thresholding have been selected
to emphasise the regions with the largest difference.

Clearly, the splitting algorithms in Adobe Illustrator and
CorelDRAW are not exact. In the former case, the twist vec-
tors do not seem to be updated correctly, and in the latter
case there is an issue most likely related to the computa-
tion of tangent handles. Splitting in the case of Inkscape’s
bicubic approach indicates severe problems regarding the
computation of both position and tangent handles and pos-
sibly twist vectors. The splitting procedure for Inkscape’s
bilinear Coons implementation seems theoretically sound,
though results in minor artefacts caused by the rendering
approach. As mentioned, our implementation only shows a
difference when the triangles created in the tessellation step
are significantly larger than single pixels, and even in that
case the difference is minimal.

5 User interaction

In this section we discuss how the continuity of the colour
surface is affected by user interaction. As an initial mesh
(with or without local splits) is C1 by construction, we first
look atwhat it takes tomaintain this continuity. As it turns out
that the resulting constraints can be somewhat restrictive, we
subsequently discuss how the interaction can be made more
flexible.

5.1 C1 continuity

The requirement for C1 continuity between two surface
patches (mapped from the same domain) is straightforward
[10]. In our bicubic setting, we have two sets of tangent han-
dles and two sets of twist vectors that should remain co-linear
and symmetricwith respect to the shared curve.Of these, only
the geometrical tangents can be edited by the user. Mirror-
ing the movement of one handle to the one opposite of it is
sufficient to preserve local C1 continuity. Moving a tangent
vector also updates one or more inner Bézier points, as these
are related to the twist vectors which are kept constant. Note
that nonzero twists might appear after movement of the tan-
gent(s) logically orthogonal to a curve followed by (local)
splitting, as is evident from the stencils in Fig. 7. Finally,
as is customary in vector graphics software, tangent handles
follow the movement of control points.

Original mesh Vertical split Cross-split

Our implementation 1 1 1 1

Adobe Illustrator 4 3 3 2

CorelDRAW 7 4 11 6

Inkscape (‘Bicubic’) 43 26 68 32

Inkscape (‘Coons’) 1 1 2 1

Fig. 9 Comparing refinement accuracy. The left column shows the ren-
dering of an elementary gradient mesh (consisting of a single patch),
the middle and right columns the differences after refining vertically
and in both directions (cross), respectively. The two values below each
result are thresholding values (minimal value and selected value for
better visual comparison)

This completes maintaining C1 in regular regions, and
leaves us to consider the same task around T-sections. In
this setting, data at T-sections cannot be modified by the
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T1 T2

T3

T4

P2P1

Fig. 10 AmeshwithT-sections.Half-edges are indicated in grey.Green
arrows indicate the opposite of a half-edge, which is not always a sym-
metrical relation near T-sections. T-sections have fixed links to the
outgoing half-edge pointing in the direction of their stem, which are
here indicated in dark red

user. Instead, the T-sections inherit their information from
the longest curve (and associated patch) they are a part of.
Moving a geometrical control point or tangent handle influ-
encing a curve containing one or more T-sections triggers a
procedure which updates this data. In the case of position
and tangent vectors along the long curve, this is straight-
forward, whereas updating tangents in the other parametric
direction and the twist vectors requires more effort because
data from the adjacent patch need to be reflected and scaled
by the appropriate factor. Note that modification of data at
a T-section might again affect other T-sections. This only
happens when the stem (vertical part of an upright T) of an
updated T-section points at the bar (horizontal part of an
upright T) of another T-section. For example, consider the
mesh in Fig. 10, in which an update of the curve between P1
and P2 triggers the update of the two T-sections T1 and T2
on that curve. The stem of T1 points at the bar of T3 below
it, whose stem in turn points to the bar of T4.

Finally, we also update logically orthogonal tangent han-
dles at T-sections (as well as adjacent twist vectors) when
logically parallel tangent handles at control points on the
curve containing theT-section are updated. For example, con-
sider the tangent handle pointing down from T1 in Fig. 10.
According to the stencils in Fig. 7 this handle (as well as
its adjacent twist vectors) depends on the tangent handles
pointing down from P1 and P2.

Note that a change in geometry causes a change in colour
propagation because colour is defined on top of the geome-
try. However, the actual colour values remain unchanged. Of
these values, only the colour at Hermite control points can be
updated by the user. The colour tangents directly follow from
the choice of blending function along the curve (see Fig. 4)
and can only be nonzero following a (local) split, automati-
cally maintaining a smooth connection. Colour twists follow
the colour tangents.

Fig. 11 User controls for the C1 setting (left) and general (C0) case
(right), zooming in on the top-left part of the locally refined mesh in
Fig. 1, here edited. Only the green colour channel is visualised, which
is colour-banded in order to assess continuity. In the general setting,
tangent handles at the T-sections can be edited by the user, and tangent
handles at control points no longer need to be (pairwise) co-linear,
resulting in C0 transitions

The last aspect to consider is an update of the colour of
a control point that is part of a curve containing T-sections.
The procedure followed is analogous to the one for geom-
etry, including the occurrence of chain reactions which are
required to correctly update the information at T-sections
further away from the affected curve in order to maintain C1

continuity.

5.2 More flexibility

Forcing co-linear tangent vectors to be of the same length
is required for C1 continuity, but might pose a restriction on
the design of a desired image. Unfortunately, merely keeping
them co-linear does not automatically imply G1 continu-
ity. The requirements for this type of continuity are more
involved [9], and are at this point not discussed inmore detail.

Letting go of tangent continuity altogether exposes more
freedom to the user. In this setting, geometric tangent han-
dles can be edited individually, allowing the design of sharp
interior features. Tangent handles along the bar of a T-section
are still updated automatically, but those in the other para-
metric direction (along the stem of a T-section) can now be
modified by the user. Figure 11 compares the user controls
for the C1 and general C0 setting.

6 Implementation

In this section, we consider the relevant aspects of the imple-
mentation, starting with an outline of the developed data
structure, followed by an overview of the employed adap-
tive GPU-based tessellation. User controls such as moving
points or handles, or colour picking from a background tex-
ture, are not discussed. We refer to the supplementary video
for more details.
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6.1 Data structure

Although local refinement for gradient meshes could be
implemented using, e.g., (a forest of) binary trees, we instead
chose to use an augmented half-edge data structure to support
additional and future extensions.

Using amixture ofBézier andHermite representations, the
Hermite control points are connected by half-edges, which in
turn link to the handles (stored in Bézier format). Each half-
edge also links to a twist vector, stored in Hermite format. In
addition, colour information is also stored in the half-edges.
Near T-sections, the opposite (often referred to as twin or
pair) of an older half-edge is always the newer half-edge
pointing to the origin of the older one. This ensures a stable
cycle around non-T-sections using the next and opposite links
of a half-edge. Multiple newer half-edges can therefore have
the same older half-edge as their opposite. The level of a
half-edge is increased by 1 every time it is split, where level
0 refers to the original (oldest) half-edges.

Control points contain a flag indicating whether they are
a T-section or not. At T-sections, the outgoing link from a
control point to a half-edge is always the half-edge logically
orthogonal to the T-section, whereas for other control points
it can be an arbitrary outgoing half-edge like in the classi-
cal half-edge structure. The reason for this fixed link is that
it facilitates the traversal of an edge in both directions. Fig-
ure 10 shows an example mesh with T-sections in which the
behaviour deviating from a classical half-edge mesh is high-
lighted.

In the case of T-sections, there are two choices for the
storage of handles along the adjacent pairs of half-edges of
different level. One option would be to simply store two han-
dles per half-edge.Amore elegant solution is to share handles
between a pair of half-edges with different levels, which in
practice amounts to the multiplication of the tangent handle
(in Hermite form) by a scaling factor which readily follows
using de Casteljau’s algorithm. The result is that a T-section
always has its own handles on both sides, whereas other han-
dles can be scaled versions of older ones. Figure 12 illustrates
this approach for the central edge P1P2 in Fig. 10 where
dyadic refinement has been applied.

6.2 Adaptive tessellation

With the advent of programmable shaders in the graphics
pipeline, also the rendering of vector graphics can be accel-
erated [3]. In our application, the patches are rendered using
the OpenGL tessellation shaders in fractional even mode,
which is mostly straightforward. Only when the levels of
two opposite half-edges are different, special care needs to
be taken to select an even integer tessellation level along that
edge such that no cracks will occur. Using an approximation
of the on-screen length of the shortest section (associated

1
2

1
4

1
2

1
2

=

level 0

level 1

level 2

P2P1

Fig. 12 Sharing handles between pairs of half-edges of different levels.
The original handles are re-used and scaled by a factor 1

2 after the first
refinement, also resulting in two new handles on the sides of the T-
section. One of these is re-used and scaled after the second refinement,
whereas the other re-used handle is an original one scaled by a factor 1

4

Fig. 13 Adaptive tessellation showing compatible even integer tessel-
lation levels as well as fractional levels

with the newest half-edge) of the curve of interest, a tessella-
tion level is computed in a pre-processing step, which is then
multiplied by the appropriate power of 2 (based on the differ-
ence Δ in level of the two sides of the curve) for the longer
sections of the edge. To illustrate this procedure, consider the
short curve between T1 and T2 in Fig. 10. Assuming a com-
puted tessellation level of 6 for this curve, the curve between
P1 and P2 is assigned a tessellation level of 6 · 2Δ=2 = 24,
likewise the curve between P1 and T1 level 6 · 2Δ=1 = 12,
and finally the curve between T2 and P2 level 6 · 2Δ=0 = 6.

Currently, the common hardware limit for tessellation lev-
els is 64. In case of large patches or repeated refinement along
a curve, the preferred level could exceed the maximum. In
that case, the tessellation procedure can be extended such
that these patches are virtually subdivided (subdivided only
in memory), thereby mimicking levels of 128 and up.

For opposite half-edges of the same level, such as those
between T2 and T4 in Fig. 10, the tessellation level is deter-
mined in the tessellation control shader and can be fractional.
An example of the entire procedure is illustrated in Fig. 13.

A more involved alternative would be to use the pixel-
accurate approach from [13], although we should mention
that this only considers accuracy in geometry, which does
not automatically guarantee accuracy in colour.
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Fig. 14 A plum modelled using local refinement and branching

7 Artistic features

The two contributions considered in this section are mostly
interesting from an artistic point of view, as they bring more
expressiveness to the primitivewithout introducing new tech-
nical details. See the supplementary video for additional
examples.

7.1 Branching

Although the use ofmultiple, possibly (partially) overlapping
gradient meshes might still be the preferred way of designing
a complex shape, creating so-called branches in the mesh
has proven to be an interesting alternative. Clearly, as we are
no longer bound to a fixed rectangular topology, this allows
for the design of meshes of more complex shape. The C1

conditions (see Sect. 5) can be enforced by reflecting tangents
and twist vectors.

Moreover,multiple branches can easily be stitched together
to form closed loops (and therefore holes), a feature that can
also be used to design genuine radial gradient meshes (see
Fig. 15). In existing implementations, radial gradient meshes
are merely rectangular gradient meshes with multiple over-
lapping control points, making them troublesome to edit.

Figures 2, 14 and 17 show examples of gradient meshes
with branching.

7.2 Sharp colour transitions

In Sect. 6 we mentioned that colour information is stored in
half-edges. The reason to do so is that it facilitates discon-
tinuity of colour around a control point, which can be used
to model sharp colour transitions similar to diffusion curves.
This obviously violates continuity properties discussed in
Sect. 5, but in return provides the artist with more freedom.
As images often contain colour discontinuities, it is a very
useful feature to have.

Assigning the different colours is realised by only updat-
ing the colour of a specific sector of a control point. Each
adjacent patch has its own sector, which means that up to 4

Fig. 15 The control net of a radial gradient mesh with local refinement,
branches and multiple colours per control point enabling sharp colour
transitions. The control points are enlarged for visualisation purposes

Fig. 16 A wheel of cheese modelled using local refinement and sharp
colour transitions

Fig. 17 Two husks of Physalis alkekengi (‘Chinese lantern’) modelled
using local refinement, branching and sharp colour transitions

different colours can be assigned to one control point. The
control net shown in Fig. 15 contains various control points
with multiple colours assigned to them. Examples of this
extension are illustrated in Figs. 2, 16 and 17.

8 Discussion and conclusion

In this paper we have described our interpretation of a gradi-
ent mesh primitive extended with mathematically exact local
refinement, branching capabilities and sharp colour transi-
tions.

Local refinement allows the user to add detail only where
needed, such as local reflections of a light source. It helps the
designer tomaintain an overview of the topology of themesh,
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Table 1 Comparing the number of patches required tomodel the exam-
ples shown in this paper (figure numbers are indicated between brackets)
using our version (local refinement and branching) and traditional gra-
dient meshes (global refinement and possibly using multiple meshes
per object)

Leek (2) Plum (14)

Ours 59 154

Traditional 93 274

Cheese (16) Lanterns (17)

Ours 69 76

Traditional 126 145

instead of getting lost in a clutter of points and curves which
might slow down the workflow either directly or indirectly.
Table 1 compares global and local refinement by listing the
number of patches required to model the examples shown in
this paper; see also Fig. 1.

Branching takes away some of the topological restrictions
of the traditional gradient mesh, enabling the design of more
complex objects using a single gradient mesh without reduc-
ing editability.

The possibility to assign multiple colours to a single con-
trol point provides the artist with a user-friendly way to
include sharp colour transitions in a design, one of the attrac-
tive characteristics of diffusion curves.

Using adaptive crack-free tessellation allows for real-time
editing, which remains interactive even for complex illustra-
tions and (near) pixel-accuracy on our setup (i.e., anNVIDIA
Quadro K420 GPU at a resolution of 2560×1440 pixels).

Ultimately, the result is an efficient, versatile and expres-
sive primitive, which is compatible with the PDF and new
SVG 2 standards. This compatibility makes it widely appli-
cable, in contrast to several existing methods, including
subdivision-based ones.

Experience and user feedback with regard to editing has
shown that certain topologies are difficult or even impossible
to create using a single extended gradient mesh. Using mul-
tiple objects is currently the only available alternative (see
Sect. 9 for future work on this aspect). In addition, certain
aspects of illustrations would benefit from the availability of
other vector primitives. Integration of our tool in a general
vector graphics editor is therefore desirable.

9 Future work

We conclude the paper with some promising ongoing and
future work topics. First, more flexibility in topology of the
curve network is highly desirable. Although an approach
based on subdivision surfaces for quad-dominant meshes

is available [18], it comes with several drawbacks as men-
tioned in Sect. 2. An alternative method based on polynomial
or rational patches, instead of the special patches required
for subdivision surfaces, could work. However, as tangent
continuity of the colour surface (in each channel) might be
required, this is not a trivial task.

Secondly, improved colour control would add to the range
of styles supported by the primitive. Combining this with a
G1 blending function hints at introducing additional degrees
of freedom along individual curves.

Combining both topics with vectorisation of raster graph-
icswould be a very challenging direction of research. Besides
the artistic applications, it might also be interesting from the
perspective of (image) compression, certainly in conjunction
with local refinement.

With the upcoming support of SVG 2 in most web
browsers, animated gradient meshes using, e.g., the data
structure introduced in [8] would make an interesting topic
for research.

Finally, as mentioned in [2], the next step in this field
could very well be the development of a primitive combining
the positive characteristics from both gradient meshes and
diffusion curves.
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A Colour spaces

In addition to the colour blending functions discussed in
Sect. 3, we considered the use of different colour spaces.
We briefly discuss the main characteristics of HSV, HSL,
HSI,CIELChab (cylindrical spaces), andCIEXYZ,CIELUV,
CIELAB, sRGB as well as linear sRGB.

Cylindrical colour spaces represent hue in a single channel
H . Because of the periodical nature of H , interpolation can
be performed either clockwise or counter-clockwise, which
turns out to be problematic. For example, interpolation in
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CIEXYZ CIELUV

CIELAB sRGB

Fig. 18 Renderings of a 2 × 3 gradient mesh interpolated in different
colour spaces using G1 colour blending

HSV between red (H = 0◦) and magenta (H = 300◦) yields
an undesired colour gradient including yellow, green, cyan
and blue when going counter-clockwise. Clearly, clockwise
interpolation is preferred in this case. Ambiguity of direction
occurs with a 180◦ difference between two colours, whereas
subsequently tweaking one of these colours results in unsta-
ble and non-intuitive behaviour. An alternative would be to
linearly interpolate within the hue/saturation disc in HSV,
though also in this case the results are often undesirable. We
conclude that cylindrical colour spaces are not suitable in the
context of gradient meshes.

Results of using the other colour spaces are shown in
Fig. 18.Note that this overviewdoes not include linear sRGB,
as it is a linear transformation of CIEXYZ and therefore
produces the same interpolation results. CIELUV, CIELAB
and sRGB produce slightly darker results than CIEXYZ as
they include a nonlinear gamma correction. Dark regions
can occur when interpolating in sRGB between markedly
different hues. Both CIELUV and CIELAB seem to be suit-
able spaces for colour interpolation, which makes sense as
they were specifically designed to be perceptually uniform.
Of these two, CIELAB introduces some undesirable pur-
ple when interpolating from blue to yellow, which makes
CIELUV the best choice among the colour spaces consid-
ered.

In practice, the difference between rendering in the default
sRGB colour space and CIELUV is hardly perceptible in our
experience. The reason is that the difference in colour of
adjacent control points is usually much less extreme than
depicted in Fig. 18, and moreover, the patches are typically
much smaller. In addition, conversion between sRGB and
CIELUV (on the GPU) is non-trivial. For these reasons, our
current implementation uses sRGB.
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