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A B S T R A C T

Dactolisib (NVP-BEZ235, also referred to as: ′BEZ235′ or ′BEZ′) is a dual mTOR/PI3 K inhibitor that is of po-
tential interest in the treatment of inflammatory disorders. This work focuses on formulation of BEZ-loaded
polymeric nanoparticles composed of a blend of poly(D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide-co-
glycolide)-poly(ethylene glycol)-2000 (PLGA-PEG). The nanoparticles were prepared by an oil/water emulsion
solvent evaporation method, and were subsequently characterized for yield, encapsulation efficiency, mor-
phology, particle size, drug-polymer interaction and in vitro drug release profiles. A targeted formulation was
developed by conjugation of a S-acetyl-thioacetyl (SATA)-modified mouse-anti human E-selectin antibody to the
distal end of PLGA-PEG-SPDP containing nanoparticles. Our results show the successful preparation of spherical
PLGA/PLGA-PEG nanoparticles loaded with BEZ. The particle size distribution showed a range from 250 to
360 nm with a high (> 75%) BEZ encapsulation efficiency. Approximately 35% of the loaded BEZ was released
within 10 days at 37 °C in a medium containing 5% bovine serum albumin (BSA). Evaluation of efficacy of anti-
E-selectin decorated BEZ-loaded nanoparticles was carried out in tumor necrosis factor-α (TNF-α) activated
endothelial cells. Confocal microscopy analysis showed that cellular uptake of the targeted nanoparticles and
subsequent internalization. Cell functional assays, including migration assay and phosphowestern blot analysis
of the mTOR and pI3K signaling pathways, revealed that the E-selectin targeted nanoparticles loaded with BEZ
had a pronounced effect on inflammation-activated endothelial cells as compared to the non-targeted BEZ-
loaded nanoparticles. In conclusion, E-selectin targeted nanoparticles have a high potential in delivering the
potent mTOR/pI3K inhibitor dactolisib to inflamed endothelial cells and are an interesting nanomedicine for
anti-inflammatory therapy.

1. Introduction

In many inflammatory disorders endothelial cells are the key
players in induction and progression of the disease (Pober and Sessa,
2007). Activation of this cell type by pro-inflammatory cytokines in-
duces deregulation of various signaling pathways resulting in recruit-
ment of inflammatory cells and induction of fibrotic pathways (Arango
Duque and Descoteaux, 2014; Grivennikov et al., 2010; Karar and
Maity, 2011). One of these pathways is the PI3K/AKT/mTOR signaling
cascade, deregulation of which causes proliferation, malfunctioning
and morphological changes of endothelial cells (ECs), cumulating in
fibrotic tissue formation as a long term consequence (Karar and Maity,
2011; Maeshima and Makino, 2010; Fokas et al., 2012; Liu et al.,
2009a). It is important to note that the PI3K pathway is involved in
many different cellular functions under normal physiological condi-
tions, including cell growth and proliferation, inhibition of apoptosis,

cell metabolism, and intracellular signal transduction (Engelman et al.,
2006). Many of these functions occur as a result of PI3K’s interplay with
its downstream effectors, Akt and mTOR, the latter being a kinase that
is involved in the regulation of cell growth, angiogenesis, and meta-
bolism (Dy and Adjei, 2009)

Small molecular inhibitors of intracellular signaling kinases are
under investigation as chemotherapeutics for anti-inflammatory treat-
ment (Dinarello, 2010). However, many intracellular signaling mole-
cules are involved in cellular functions both under normal and under
pathological conditions. Recent studies have shown that inhibition of
activated PI3K/Akt and mTOR signaling in inflamed endothelial cells
resulted in diminished immune responses by suppressing the secretion
of pro-inflammatory cytokines (Fokas et al., 2012; Bhatt et al., 2010;
Liang et al., 2014)

Dactolisib (referred to as NVP-BEZ235 or BEZ in the rest of this
article) is a synthetic imidazoquinoline derivative with a hydrophobic
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character (Log P = 5.2) (Scheme 1). It is a drug candidate under phase
I/II clinical trials as an anti-cancer therapeutic with a highly selective,
reversible inhibitory effect on class I PI3K, and mTORC complexes
(mTORC1 and mTORC2). (Maira et al., 2008; Baumann et al., 2009; Liu
et al., 2009b; Bendell et al., 2015; Polivka and Janku, 2014). However,
the clinical potential of BEZ is limited due to its low bioavailability after
oral administration and pharmacokinetic variability among patients
(Bendell et al., 2015; Burris et al., 2010). In order to increase the
therapeutic efficacy and reduce side effects of (hydrophobic) drugs and
drug candidates, various types of drug carrier systems have been de-
veloped over the past decade. Typical examples of such carrier systems
are polymeric nanoparticles (NPs), (polymeric) micelles, and liposomes
(Zhang et al., 2008; Farokhzad and Langer, 2009; Deng et al., 2012).
Polymeric NPs in particular have attracted a lot of interest in recent
years (Duncan and Gaspar, 2011; Kamaly et al., 2016). Based on the
polymer composition they can be used to dissolve/encapsulate (hy-
drophobic) drug molecules and biotherapeutics (e.g. pharmaceutical
proteins and nucleic acid based drugs), which enables enhanced cir-
culation time in the bloodstream, sustained drug release, and (active)
targeting to specific sites in the body (Duncan and Gaspar, 2011;
Kamaly et al., 2016; Lammers et al., 2010). Poly(lactide-co glycolide)
(PLGA) with and without a PEG block is frequently used for the design
of drug carrier systems due to their good biocompatibility and biode-
gradability (Cho et al., 2013; Zhang et al., 2014; Anderson and Shive,
2012).

Nanoparticles with site-selective ligands bound to their surface have
been shown to improve the desired site-selective drug delivery, while
also increasing their active cellular uptake (Laquintana et al., 2014;
Ambade et al., 2005). Out of the various types of targeting ligands (e.g.
peptides, glycoproteins, carbohydrates, antibodies) that have thus far
been used in targeted drug delivery, monoclonal antibodies (mAbs) are
the most widely studied type of ligands (Van der Meel et al., 2013).

During inflammation the secretion of cytokines, such as tumor ne-
crosis factor-α (TNF-α) and interleukin-1β (IL-1β), by immune cells
induces an increase in the expression of several different adhesion
molecules, such as E-selectin, vascular cell adhesion molecule-1
(VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) on these
endothelial cells (Sprague and Khalil, 2009). Of the above mentioned
adhesion molecules, E-selectin in particular has been identified as a
suitable adhesion molecule for drug or carrier system delivery to in-
flamed endothelial cells (Asgeirsdóttir et al., 2003; Jubeli et al., 2012).

The aim of the present study was to formulate PEGylated PLGA NPs
loaded with the BEZ drug for active targeting of inflamed endothelial
cells. First, various formulation parameters were evaluated to study
their effects on the final characteristics such as size, morphology, BEZ
encapsulation efficiency and release kinetics. Subsequently, selected NP
formulations were surface functionalized with E-selectin antibody, in
order to render them endothelial cell specific. The targeting (i.e. specific
cell binding) capacity of such surface functionalized NPs was evaluated
by comparing formulations with varying surface antibody densities.

Finally, the intracellular uptake and efficacy of the targeted BEZ loaded
NPs were assessed on E-selectin (over)expressing HUVEC cells by cell
migration assay, as well as western blot analysis on the PI3K and mTOR
signaling pathways.

2. Materials and methods

2.1. Materials

PLGA 5004A (molecular weight 20,000 Da), a copolymer of D,L-
lactide and glycolide was obtained from Corbion Purac (Gorinchem, the
Netherlands). Poly(ethylene glycol) monomethyl ether (molecular
weight 2000 Da) was purchased from Sigma Aldrich (Germany). HO-
PEG-NH2 (Mw 2000 Da) was obtained from NOF corporations (Kyoto,
Japan). Di-tert-butyl dicarbonate (Boc-o-Boc), poly(vinyl alcohol) (PVA;
MW 13,000–23,000; 86–88% hydrolyzed), tin (II) 2-ethylhexanoate
(SnOct2) and aldrithiol-2 were products of Sigma Aldrich. TNBSA
(2,4,6-trinitrobenzene sulfonic acid) solution, succinimidyl 3-(2-pyr-
idyldithio)propionate (SPDP), N-succinimidyl-S-acetylthioacetate
(SATA) and rhodamine-NHS were obtained from Thermo scientific
(Landsmeer, the Netherlands). Formaldehyde (4%) in PBS buffer was
obtained from Fluka (Zwijndrecht, The Netherlands). NVP-BEZ235 was
purchased from LC laboratories, USA. 4′,6-Diamidino-2-phenylindole
(DAPI) was obtained from Roche (Penzberg, Germany). Phosphate
buffer saline (PBS: NaCl 8.2 g, Na2HPO4.12H2O 3.1 g, NaH2PO4.2H2O
0.3 g in 1 l of water for injection, pH 7.4) was obtained from Braun
(Melsungen AG, Germany). All other chemicals and reagents were ob-
tained from Sigma Aldrich (Zwijndrecht, The Netherlands), unless
otherwise mentioned.

2.2. Copolymer synthesis and preparation of nanoparticles

A PEG-PLGA copolymer was synthesized by ring opening poly-
merization of D,L-lactide (1.44 g, 0.01 mol) and glycolide (1.16 g,
0.01 mol) using H3CO-PEG2000-OH (0.50 g, 0.25 mmol), and stannous
octoate (0.05 g, 0.12 mmol) as initiator and catalyst, respectively.
Details on the synthesis can be found in the Supplementary informa-
tion. Nanoparticles (NPs) were prepared by a single emulsion solvent
evaporation technique adapted from methods previously described by
McCall et al. (McCall and Sirianni, 2013) with some modifications. In
short, the polymers PLGA and PEG-PLGA in varying weight ratios of
100:0, 90:10, 80:20, 70:30, 50:50, 20:80, 0:100, were dissolved in
chloroform to a final concentration of 5% w/v (0.10 g/2 ml). For BEZ
loaded NPs, first a stock solution of BEZ in chloroform at concentration
of 5 mg/ml was prepared. Next, 0.2, 1, or 2 ml of this solution were
pipetted into vials containing 100 mg of blend polymers and volumed
up to 2 ml with chloroform. Next, the obtained solutions were emulsi-
fied in an external aqueous phase (15 ml) containing poly(vinyl al-
cohol) 1% (w/v) in NaCl 0.9% (w/v) (filtered through a 0.2 μm Milli-
pore filter), by an ultrasonic homogenizer (LABSONIC P, B. Braun
Biotech) for 2 min at 45% amplitude to form an oil-in-water (o/w)
emulsion. Chloroform was subsequently evaporated at 30 °C under re-
duced pressure for about 30 min, after which the resulting nanoparticle
dispersion was kept under a nitrogen flow for 20 min at room tem-
perature. The NPs were washed three times with 40 ml of PVA 1% (w/
v) in NaCl 0.9% (w/v), by ultracentrifugation (J-26XP, Beckman Colter,
Avanti) at 14000g for 10 min, followed by resuspension in deminer-
alized water, ultracentrifugation, and resuspension in HBS buffer
(containing 10 mM Hepes and 135 mM NaCl, pH 7.4). For freeze
drying, the washed NPs were resuspended in demineralized water,
aliquoted and lyophilized under vacuum (−49 °C and<1 mHg) in a
Chris Alpha 1–2 freeze-drier (Osterode am Harz, Germany) for 12 h.

Anti-E-selectin decorated NPs were prepared by incorporation of
PLGA-PEG-SPDP (synthesized as described in Supporting information)
at PLGA-PEG-SPDP to PLGA-PEG weight ratios of 100:0, 83:17, 50:50
and 0:100. Mouse anti-human E-selectin (IgG2a) was purified from the

Scheme 1. Molecular structure of dactolisib (NVP-BEZ235). Mw: 469.6 g/mol; logP: 5.2
(PubChem).
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supernatant of hybridoma H18/7 cells, kindly provided by Dr. M.
Gimbrone Jr. (Harvard Medical School, Boston, MA) (Spragg et al.,
1997), and modified with S-acetylthioacetyl (SATA) (8:1 SATA: Ab mol
ratio) as described previously (Everts et al., 2003). Prior to coupling,
the SATA-modified E-selectin antibody (2 mg/ml in HBS buffer) was
treated with deacetylation buffer (consisting of 0.5 M Hepes, 0.5 M
hydroxylamine–HCl, and 25 mM EDTA at pH 7.4) at 1/10 (v/v) for
45 min at room temperature (Oliveira et al., 2010), to deprotect the
thioacetyl groups and to subsequently allow coupling with the SPDP
end groups on the nanoparticle surface. The solution with activated
antibody was added to the NP suspension at a concentration of 10 μg
Ab/mg polymer, and incubated overnight at 4 °C. Prepared NPs were
centrifuged and washed with HBS buffer (pH 7.4). Finally, the NPs were
suspended in HBS buffer, pH 7.4. Negative control NP decorated with
SATA-modified human serum IgG (Sigma Aldrich, Germany) were
prepared with 0:100 wt ratio of PLGA-PEG to PLGA-PEG-SPDP.

Fluorescently labeled NPs were prepared by addition of 1 wt% of
PLGA-PEG-rhodamine (synthesized as described in Supporting in-
formation) to the polymer mixtures.

Cell experiments were conducted with BEZ loaded NPs prepared
using 9 wt% BEZ, 64 wt% PLGA and 27 wt% PLGA-PEG. The latter
polymer was replaced by PLGA-PEG-SPDP when preparing the targeted
formulation.

2.3. Nanoparticle characterization

2.3.1. Size and charge determinations
Freshly prepared NPs dispersions were diluted 100 times with

10 mM HEPES, pH 7.0 (final concentration 50 μg/ml). The size of the
NPs was measured using dynamic light scattering (DLS, Malvern
Instruments, Malvern, UK). The intensity-weighted average (z-average)
and the polydispersity index (PDI) of the samples were determined by
analyzing the correlation function (cumulants analysis) using Malvern
software. The measurements were performed at 25 °C, at an angle of
90°. The ζ-potential of the nanoparticles was analyzed using Malvern
Zetasizer Nano-Z (Malvern instruments) with disposable folded capil-
lary cells. Nanoparticle (NP) dilutions were prepared as described in the
previous paragraph. The zeta potential measurements were performed
at 25 °C, and analyzed using DTS Nano 4.20 software. The morphology
and size of the nanoparticles were studied by Transmission Electron
Microscopy (TEM, Tecnai 10, Philips, 100 kV). Dilutions (100×) of
nanoparticles (NPs) in HBS buffer (concentration 50 μg/ml) were pre-
pared. Next, 25 μl of the NP suspension was pipetted onto parafilm, and
a formvar/carbon-coated copper grid was placed on top of the sample
droplet for 2 min to allow the particles to adsorb on the grid. Excess
liquid was gently removed with a filter paper. The grid was negatively
stained by placing it on top of a 20 μl droplet of 2% uranyl acetate in
demineralized water supported on parafilm for 2 min. Excess liquid was
gently removed by a filter paper and the grid was dried for 5 min at
room temperature prior to the TEM analysis. Nanoparticles were vi-
sualized with 7–73k fold magnification and analyzed using MeasureIT
software. TEM size estimates were calculated from 5 different areas on
the grid. The total amount of particles analyzed for the TEM size esti-
mates was 25 per sample.

2.3.2. Yield and drug loading of nanoparticles
Overall yield of nanoparticle preparation was determined by lyo-

philization of a 500 μl aliquot from the original nanoparticle (NP) dis-
persions (10 mg/ml) in demineralized water in pre-weighed Eppendorf
tubes. The nanoparticle yield was calculated as percentage of the
weight of the recovered product, divided by the total weights of poly-
mers and drug that had been used to prepare the nanoparticles.
Attachment or incorporation of PVA to the NPs was not considered in
the calculations.

The BEZ loading efficiency was determined by dissolving a sample
of lyophilized NPs in DMSO, of which a known aliquot was

subsequently diluted further with acetonitrile and analyzed by UPLC. In
detail, between 2 − 5 mg (accurately weighed) freeze-dried NPs was
dissolved in 1 ml DMSO. Next, dilutions were made in acetonitrile (1/
10 to 1/100), and samples were transferred into UPLC vials. Calibration
was done by preparing serial dilutions in acetonitrile of a stock solution
of BEZ in DMSO (concentration 1 mg/ml) in a concentration range of
0.05–100 μg/ml. An Acquity UPLC equipped with a BEH C18 1.7 μm
column (2.1 × 50 mm) was used with a UV-detector (detection wave-
length was 269 nm) for analysis. The gradient of the mobile phase
(0.5 ml/min) was composed of 5% ACN in water with 0.05% TFA
(solvent A) and 95% ACN in water with 0.05% of TFA (solvent B).
Samples of 2 μl were injected.

BEZ encapsulation efficiency (EE) and loading capacity (LC) were
calculated as follows:

EE = (amount of measured BEZ/amount of BEZ added) × 100%

LC = (amount of measured BEZ)/amount of (measured BEZ + polymer
added) × 100%

2.3.3. NMR measurements
The PEG-PLGA copolymers and the polymeric nanoparticles were

characterized by 1H NMR using a Gemini 300 MHz spectrometer
(Varian Association Inc. USA). The copolymer composition, number-
average molecule weight (Mn) and PEG content of the different copo-
lymers, as well as the PEG incorporation efficiency in the polymeric
particles, were determined by 1H NMR after dissolution in DMSO-d6.
Details on the 1H NMR characterization of the copolymers and the
nanoparticles can be found in the Supporting information.

2.3.4. Thermal analyses
The thermal behavior of formulated NPs was studied by differential

scanning calorimetry, using a TA instruments DSC Q2000 machine. For
polymers and freeze dried NPs, samples of 2 to 5 mg were accurately
weighed and loaded into aluminum pans, which were subsequently
closed. After equilibration at room temperature, the samples were he-
ated to 100 °C (non-modulation) at a ramping rate of 2 °C/min under a
nitrogen flow. Next, the samples were cooled down to −30 °C, modu-
lated (± 1 °C every 30 s) at a ramping rate of 2 °C/min. Thereafter, the
samples were heated to 100 °C modulated at a ramping rate of 2 °C/
min. Two heating cycles were applied. The second heating cycle
(modulated run) was used to determine the glass transition tempera-
tures (Tg). Glass transition temperatures (Tg) are defined as the point of
inflection of the step change observed in the heat flow curve.

2.3.5. Anti-E-selectin coupling efficiency
The antibody density on the surface of the NPs was determined

using a micro-BCA protein assay kit (Pierce Biotechnology, Rockford,
IL, USA) (Wiechelman et al., 1988). Calibration was performed using
serial dilutions of mouse IgG (Sigma Aldrich, 0.16–50 μg/ml in HBS
buffer). Coupling efficiency (CE%) is defined as the amount of Ab at-
tached to NPs (measured with the micro-BCA assay) divided by the total
amount of Ab added × 100%.

2.4. In vitro release of BEZ from nanoparticles

In vitro release experiments were conducted in HBS buffer (10 mM
HEPES and 135 mM NaCl, pH 7.4) supplemented with BSA (50 mg/ml)
to increase the solubility of released BEZ. Freshly prepared BEZ-loaded
NPs were dispersed in incubation buffer in triplicate, and incubated at
37 °C under mild agitation. At different time points samples were taken,
which were subsequently centrifuged at 22,000g for 10 min at 4 °C. The
supernatant was collected for further analyses, and the pellets were
resuspended in incubation buffer. The collected supernatants were
treated in the following way: 50 μl of supernatant was taken per
sample, to which 150 μl acetonitrile was added. Next, the samples were
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vortexed for 10 s and kept at room temperature for about 1 h, followed
by centrifugation for 10 min at 22,000g at 4 °C to spin down pre-
cipitated BSA. A sample of the supernatant was injected into the UPLC
system for BEZ analysis as described above. The same pretreatment
method was applied to BEZ standard solutions in incubation buffer in
the concentration range of 0.4 to 200 μg/ml. Released BEZ was reported
relative to the loaded amounts and fitted by different kinetic models
(i.e. first order, zero order and Higuchi, assuming spherical particles)
(Siepmann and Siepmann, 2012; Siepmann and Peppas, 2011).

BEZ release curves of the three different nanoparticle formulations
were fitted with three different simple kinetic (drug-release) models:.

Zero order kinetics: Mt = M0 − k*t; or: −dM/dt = k

First order kinetics: Mt =M0 * ek*t (alternatively: ln(Mt/M0) = –k*t);
or: −dM/dt = k*Mt

Higuchi model (simplified): Mt/M0 = k*(t1/2)

Where M0 is the loaded amount of drug in the particles at time = 0, Mt

is the amount of drug released from the particles at time = t, and k is
the release rate constant. The three kinetic models each represent a
fundamentally different type/mechanism of drug release from the
polymeric NP formulations.

2.5. Experiments with endothelial cells

2.5.1. Binding of fluorescently labeled nanoparticles by flow cytometry
Human umbilical cord endothelial cells (HUVEC, Lonza) were

seeded at 40,000 cells/well (96-well plates, Becton & Dickinson,
Mountain View, CA, USA) and subsequently activated with TNF-α
(10 ng/ml in EGM-2 medium) for 4 h at 37 °C (Kowalski et al., 2013).
Fluorescently labeled NPs with varying surface antibody densities were
diluted to concentrations of 0.1–8 mg polymer/ml in cell culture
medium. The cells were incubated with the NPs for 1 h at 4 °C in the
dark to avoid fluorochrome bleaching, after which they were washed
three times with protein blocking agent (PBA) composed of 0.3% bo-
vine serum albumin (BSA) in PBS. Finally, the cells were resuspended in
150 μl of PBA. The rhodamine fluorescence intensity of the different
samples was determined using a BD FACSCanto (Becton & Dickinson).
Typically, 10,000 events were acquired per sample prepared in tripli-
cate. Data were analyzed using BD FACSDiva™ software (Becton &
Dickinson) and results expressed as mean fluorescence intensity.

2.5.2. Binding and uptake of fluorescently labeled nanoparticles by confocal
microscopy

HUVEC (30,000 cells) were seeded in FluoroDish (FD35-100, cell
culture dish) and subsequently cultured overnight in full EGM-2
medium at 37 °C. Next, the cells were activated with 10 ng/ml of TNF-α
for 4 h at 37 °C, followed by incubation of the cells with fluorescently
labeled targeted and non-targeted nanoparticles (NPs), at a concentra-
tion of 100 μg/ml polymer, for 3 h at 37 °C. Following incubation, the
cells were detached with trypsin/EDTA (Visweswaran et al., 2015),
washed with plain medium, and the cells were then re-seeded in the
FluoroDish plate. The cells were subsequently incubated for 1 h at 37 °C
to allow their attachment on the plate surface. Next, the medium was
removed and the cells were washed with PBS after which they were
fixed with 4% formaldehyde in PBS for 30 min at room temperature.
For nuclear staining, the cells were washed and incubated with DAPI at
a concentration of 1 μg/ml for 5 min at room temperature. After three
washing cycles, the petri dishes were dried and covered with FluorSave
mounting agent (Calbiochem, San Diego, CA, USA) and kept at 4 °C for
confocal analyses. The cellular uptake of NPs was visualized by a Z-axis
scan of the sample using a Leica TCS-SP confocal laser-scanning mi-
croscope (Leica, Heidelberg, Germany) equipped with three lasers:
488 nm argon, 568 nm krypton, and 647 nm helium-neon. Scans were
performed using steps of 0.8 μm. The cells were visualized at 3 to 4 μm

Z-steps.

2.5.3. Effects of BEZ loaded nanoparticles in wound healing assay
HUVEC cells were seeded in 12 well plates at a density of 40,000

cells per well in full EGM-2 medium and cultured for 24 h at 37 °C.
Next, the cells were incubated with TNFα (10 ng/ml) for 4 h at 37 °C
and subsequently dispersions of targeted BEZ loaded and control NPs as
well as solution of free BEZ at concentrations of 10 and 50 nM were
added to the cells and incubated for 12 h at 37 °C. Subsequently, a
scratch was introduced in the cell monolayer using a p200 pipet tip
with diameter of 1.8 mm. Thereafter, the cells were washed with PBS
followed by the addition of plain medium (without TNFα). The wound
area was checked at time 0 (the moment of introducing scratch) and
after 16 h incubation of the cells with plain medium at 37 °C. The
wound surface area was analyzed using NIH Image J software. Wound
closure was quantified by calculating the scratch wound area relative to
surface area at t = 0.

2.5.4. Effects of BEZ loaded nanoparticles on mTOR and Pi3K signaling
cascades

HUVEC cells were seeded in 6 well plates at a density of 100,000
cells/well and allowed to adhere overnight, followed by activation with
TNF-α at concentration of 10 ng/ml for 4 h at 37 °C. Subsequently,
control and targeted NPs loaded with BEZ as well as free BEZ were
added to the cells at concentrations of 10 and 50 nM. The cells were
incubated for 16 h at 37 °C, followed by washing with cold PBS and
subsequent lysis with radio immune precipitation assay buffer (RIPA),
supplemented with phosphatase/kinase inhibitor cocktail (Thermo
Fisher Scientific, Rockford, IL, USA) on ice for 30 min. The lysates were
centrifuged at 4 °C for 15 min at 14,000g and the obtained supernatants
were stored at −20 °C. The protein concentration of the samples was
determined using the micro-BCA assay. The supernatants were sub-
jected to SDS-PAGE analysis using 4–12% gradient NuPAGE Novex Bis-
Tris mini-gels (Invitrogen, Breda, The Netherlands). Proteins were
electro-transferred onto a nitrocellulose membrane via iBlot Dry
Blotting system. The membranes were blocked with 5% BSA in Tris-
Buffered Saline containing 0.1% Tween-20 (TBS-T) for 2 h at room
temperature. The membranes were stained overnight at 4 °C with rabbit
monoclonal antibody against S6 Ribosomal protein (5G10), phospho-S6
ribosomal protein (Ser240/244) (D68F8)XP, Akt (pan) (C67E7), p-Akt
(S473) XP, P-PI3 K p85(Y458)/p55(Y199) and rabbit polyclonal anti-
body against β-actin (Cell Signaling Technology, Inc., Danvers, MA,
USA). The antibodies were diluted 1:1000 (according to the manu-
factures protocol) in 5% BSA in TBS-T. After washing with TBS-T, the
membranes were incubated for 2 h at room temperature with goat anti-
rabbit horseradish peroxidase (HRP) conjugated secondary antibody
(Cell Signaling Technology, Inc.), diluted 1:1000 in 5% BSA in TBS-T.
The proteins were visualized and detected using supersignal west femto
chemiluminescent substrate (Thermo Fischer Scientific) and a Gel Doc
imaging system equipped with a XRS camera and Quantity one analysis
software (Bio-Rad).

2.6. Statistical analysis

Statistical analysis of the data was performed by unpaired Student's
t-test and one-way ANOVA. Values are represented as mean ± SD.
Differences were considered significant at p < 0.05. Data were ana-
lyzed with Graphpad prism (Graphpad software 5.0b, San Diego CA,
USA).

3. Results and discussion

3.1. Characteristics of placebo PLGA/PLGA-PEG nanoparticles

Placebo (i.e. drug free) NPs were prepared by a single emulsion-
solvent evaporation method using different blend ratios of PLGA and
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PLGA-PEG. NPs containing less than 30 wt% of PLGA-PEG had com-
parable characteristics in terms of size, with a particle diameter as
determined by DLS analysis between 250 and 360 nm (Table S3). TEM
analysis (Fig. 1) showed that NPs were spherical, with particle size
ranging between 150- 200 nm. The nanoparticles had a negative zeta
potential ranging between −11 to −15 mV (Table S3), while no sig-
nificant differences in zeta potential were observed between the various
PLGA-PEG wt% contents in the NP formulations. NPs prepared with
50 wt% or more PLGA-PEG had a clearly different morphology, with
worm like structures being formed, in contrast to the spherical NPs that
were formed at PLGA-PEG contents below 30 wt% (Fig. 1). Previously
reported mechanistic studies on polymeric particle shape transforma-
tion have highlighted two main factors influencing the shape transfor-
mation kinetics of polymeric NPs. These are: 1) The viscoelastic prop-
erties of the applied polymer solutions, and 2) the interfacial tension
between the polymer(-blocks) and the surrounding (aqueous-)medium
(Williford et al., 2014; Chien et al., 2010; Blanazs et al., 2009). How-
ever, the exact interplay between these factors is highly complex, and
the exact nature of these polymeric particle shape transformations
would require a detailed investigation that is outside the scope of the
present study. In subsequent experiments, we therefore further focused
on NPs formulations that contained 30 wt% of PLGA-PEG.

Analysis of the various nanoparticles by 1H NMR spectroscopy (Fig.
S5) showed that within the experimental error PLGA-PEG was quanti-
tatively incorporated in the formulation (Table S3, 64–101%).

DSC analyses were performed in order to determine the glass tran-
sition temperatures (Tg) of the obtained polymeric NPs. The DSC results
showed that an increase in PLGA-PEG weight fraction from 0 to 30%
results in a decrease of Tg from 48.1 °C to 41.2 °C (Table S3). The fact
that only a single glass transition temperature was observed (see Fig.
S9) for the blend NPs demonstrates that the PEG and PLGA blocks are
fully miscible in their solid state. These results are consistent with data
reported in previous papers in which the miscibility of PLGA and PEG
was demonstrated (Jackson et al., 2007; Samadi et al., 2014). The high
miscibility of the PEG and PLGA blocks is further supported by com-
paring the value of the experimentally observed Tg values with the ones
calculated by the Fox equation for a blend of miscible polymers (Table
S3).

3.2. Characteristics of BEZ loaded PLGA/PLGA-PEG nanoparticles

Encapsulation efficiency of BEZ was high (80–90%) and in-
dependent of the drug/polymer ratio in the feed, resulting in NPs with
measured drug loadings varying between 0.9% and 8.1% (Table 1). The

Fig. 1. TEM images of NPs with different wt% of PLGA-PEG in the formulation ranging from 0 to 100%. (A) with 0 wt% PLGA-PEG (B) 10 wt% of PLGA-PEG (C) 30 wt% of PLGA-PEG (D)
50 wt% of PLGA-PEG (E) 80 wt% of PLGA-PEG (F) 100 wt% of PLGA-PEG. Scale bar represents 2 μm.

Table 1
Characteristics of NPs formulated at 30 wt

# Formulation TLCa (%) DLS Ζeta Potential
(mV)

Yield
(%)

EEb (%) DLCc (%) Tg

(°C)d
Tg

(°C)e

Size (nm) PDI

1 1.0% 317 ± 5 0.12 ± 0.05 −9.0 ± 0.3 71 ± 4 88.1 ± 3.4 0.87 ± 0.03 41.4 41.5
2 4.8% 290 ± 12 0.11 ± 0.03 −8.0 ± 0.2 75 ± 3 82.5 ± 3.7 4.0 ± 0.3 40.8 43.2
3 9.1% 342 ± 34 0.15 ± 0.02 −9.0 ± 0.5 72 ± 3 88.6 ± 5.9 8.1 ± 0.5 40.4 45.2

Data are presented as mean values ± SD for 3 preparations.
a Theoretical drug loading content.
b Encapsulation efficiency of the drug compound, as calculated from experimental/theoretical loading content DLC/TLC.
c Experimental drug loading content.
d Measured by DSC.
e Predicted by Gordon-Taylor equation: Tg = (W1Tg1 + KW2Tg2)/(W1 + KW2) (Van den Mooter et al., 2001), in which W1 and W2 are the weight fractions of polymer and BEZ and

Tg,1 and Tg,2 are the glass transition temperatures of the polymer and BEZ respectively, while K is defined as the ratio of the differences in expansion coefficient (Δα) at Tg of the drug and
the polymer (Gordon and Taylor, 1952). The measured Tg of the non-loaded NPs with a similar polymeric blend was 41.2 °C.
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size of drug-loaded NPs ranged from 290 to 342 nm with a poly-
dispersity index (PDI) between 0.11 and 0.15, and a negative zeta po-
tential between −8 and −9 mV. These values are comparable to the
sizes and charge of placebo (i.e. non-loaded) NPs as reported in Table
S3. In order to gain insight into the physical state of BEZ in the NPs,
XRD crystallography (supplemental information Fig. S6) was performed
on the formulation with the highest drug load content (8.1%). BEZ as
well as placebo NP formulations were also measured for reference
purposes. The X-ray diffractogram of BEZ showed sharp diffraction
peaks at 12, 17 and 20 ° 2θ, indicating high crystallinity. In contrast, the
XRD patterns of both the placebo (i.e. drug free) and BEZ-loaded NP
formulations did not show sharp diffraction peaks, which demonstrates
that the drug-loaded NP formulations are either amorphous or contain
only nanocrystalline domains that are below the XRD detection limits.
To further investigate the physical state of BEZ and to check whether
the drug is molecularly dissolved or dispersed in the polymer matrix,
DSC analysis was performed. The DSC thermogram of BEZ showed a
melting peak at Tm(onset) = 278 °C, based on which its Tg was predicted
to be around 85 °C, using the equation Tg = 0.67Tm (Alzghoul et al.,
2014), as no clear Tg for BEZ was detected in the thermogram. Since the
(calculated) Tg of BEZ (∼85 °C) is higher than that of the non-loaded
blend NP (41.2 °C) it is expected that a molecular dispersion of BEZ in
the polymer matrix would result in an increase in Tg. Table 1 shows Tg

for drug-loaded NP which are similar to the Tg of empty NPs (41.2 °C,
Table S3). It is therefore it is unlikely that BEZ is molecularly dissolved
in the polymeric matrix.

3.3. In vitro release of BEZ from PLGA/PLGA-PEG nanoparticles

Fig. 2 shows the in vitro release of BEZ-loaded NPs 1–3 with different
drug load contents (0.9%, 4.0% and 8.1% DLC, see also Table 1).

Approximately 90% of the total loaded BEZ was released by the NPs
with a 0.9% BEZ load content over a period of 10 days. The NPs with
4.0% and 8.1% BEZ load content released respectively 70% and 30% of
their total drug content in the same timeframe.

To further analyze the in vitro BEZ release data, shown in Fig. 2, and
to gain more insight into the potential mechanism of drug release, the
BEZ release curves of the three different nanoparticle formulations were
fitted with three different simple kinetic (drug-release) models, each
representing a different type/mechanism of drug release from the
polymeric NP formulations (Supplementary information, Table S4). As
is clear from the respective equation, zero order kinetics assumes a
(drug-) release rate that is constant over time. In principle, this would
be ideal in cases where a constant drug concentration in the release

medium is required during the release period. Instead, first order ki-
netics assumes an exponential correlation between time and amount of
drug released (i.e. high initial release rate, decaying over time). Finally,
the Higuchi model has been developed specifically to describe the re-
lease of drug molecules from a homogeneous (e.g. polymer) matrix in
which the drug is dispersed. More details on the kinetic models used in
this work can be found in the review by Siepmann (Siepmann and
Peppas, 2011). It should be noted that the models fit reasonably well
(correlation coefficients (R2) of> 0.92) with the exception of the zero-
order model for formulation 1 with 0.9% drug load content (DLC). Out
of the three kinetic models that were evaluated, the first-order model
showed the best fit to the experimental drug release data from the
formulation 1 with 0.9% DLC. For the formulation 2 with 4.0% DLC,
both first-order and Higuchi release models are excellent approxima-
tions (R2 > 0.99 for both models), while the release profile of the
formulation 3 with 8.1% DLC is best fitted by the Higuchi model. It is
important to note that the Higuchi model in its simplified form dis-
regards the effect of degrading (polymer) matrices on the drug release
rate. This assumption was previously shown to be valid for PLGA NPs,
since the degradation of PLGA heteropolymers start at approximately
2–6 weeks under similar conditions (Zweers et al., 2004; Belbella et al.,
1996; Español et al., 2016).

3.4. Characteristics of targeted placebo PLGA/PLGA-PEG NPs with
different surface antibody densities

The characteristics of antibody-decorated NPs are summarized in
Table 2. By varying the weight fraction of PLGA-PEG-SPDP in the NPs
from 0 to 30 wt%, the Ab coupling efficiency increased from 2 to 37%.
The size of the targeted NPs ranged from 260 to 360 nm with a PDI of
0.08 to 0.16, and the particles had a negative zeta potential ranging
between −11 to −30 mV. The decrease in zeta potential (−11 to
−30 mV) can be ascribed to an increase in antibody density on the
surface of NPs, which can be explained by the negative charge of the
anti-E-selectin monoclonal IgG Ab (pI: 5 to 6) at pH 7.4 (Agrisera
Antibodies, 2017).

To calculate the Ab density per particle, the average particle dia-
meter was taken as 200 nm (average value based on TEM, see Table S3),
and the density of PLGA/PLGA-PEG NPs was taken as 1.3 g/cm3 (Saha
et al., 2014). As shown in Table 2 the Ab density for the NP formulation
7 was 95 Ab molecules per nanoparticle, while for formulations 6, 5 and
4, the Ab density decreased to 54, 14 and 5 Ab molecules per nano-
particle, respectively. These data indicate that the antibody molecules
were mainly covalently attached (i.e. thiol linkage to the SPDP groups)
to the surface of NPs, given the low a-specific adsorption of the anti-
body onto the NPs (i.e. 5 Ab/NP for particles without PLGA-PEG-SPDP).

3.5. Binding and uptake of fluorescently labeled nanoparticles by TNF-α
activated HUVEC cells

Fig. 3 shows the binding of E-selectin targeted nanoparticles (NPs)
to TNF-α activated endothelial cells as measured by flow cytometry
analysis. The incubation time was fixed at 1 h and the temperature at
4 °C to exclude internalization. The results demonstrate that NPs in
formulation 7 containing the highest antibody density (95 Ab/NP) on
their surface had mean fluorescence intensity (i.e. cell-binding) values
that were 3 times higher than the values of formulation 4 with the
lowest Ab density (5 Ab/NP). The NPs with intermediate antibody
densities (54 Ab/NP and 14 Ab/NP) showed binding levels that were in
between the values of the NPs with the highest and the lowest antibody
densities, while the mean fluorescence intensity of formulation 6 with a
Ab density of 54 Ab/NP was clearly higher than that of formulation 5
with a Ab density of 14 Ab/NP. The negative control NPs (i.e. surface
decorated with SATA modified IgG (non-specific) antibody) at the
highest concentration, showed a binding comparable with formulation
4 having lowest (non-covalently bonded) antibody density (5 Ab/NP)

Fig. 2. In vitro release of BEZ from NP formulations #1–3 composed of 30 wt% of PLGA-
PEG and varying weight percentages of BEZ. Release studies were performed at 37 °C in
HBS buffer containing 5% BSA. Experimental DLC of formulations #1–3 are 0.9% w/w,
4.0% w/w and 8.1% w/w, respectively.
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Table 2
Characteristics of targeted nanoparticle formulations.

# Formulation NP Composition
X:Y:Za

NP Composition
Ab: SPDPb

DLS Zeta Potential
(mV)

NP Yield
(wt%)c

Ab coupled to NPs
(wt%)d

Molecules Ab coupled/
nanoparticlef

Ab coupling
efficiency (%)

Size
(nm)

PDI

4 30: 0: 70 N.A. 256 0.13 −11.4 73 0.03e 5 2.0
5 25:05:70 9.2: 1 297 0.08 −17.0 75 0.07 14 5.2
6 15:15:70 3.1: 1 305 0.12 −24.9 72 0.27 54 19.4
7 0: 30: 70 1.5: 1 347 0.16 −30.5 81 0.46 95 37.0

a X:Y:Z = PLGA-PEG: PLGA-PEG-SPDP: PLGA5004A weight ratio in formulated nanoparticles (NP).
b Amount of antibody (Ab) added per formulation is constant at 1% of total polymer weight (=X + Y + Z). Calculated number is the theoretical antibody: SPDP-group weight ratio in

the formulation.
c Percentage of total polymer weight (=X + Y+ Z) in the formulation recovered as nanoparticles after washing steps.
d Calculated numbers are adjusted for NP yield.
e Physically adsorbed.
f Assuming NP density = 1.3 g/cm3 and NP Ø = 200 nm, see main text.

Fig. 3. FACS analysis of TNF-α activated HUVEC cells incubated with NPs
formulations containing different Ab densities on their surface for a time
period of 1 h at 4 °C in the presence of serum. Tested NP formulations are
#4–#7 in Table 2 which have been decorated with different Ab/NP den-
sities.

Fig. 4. Confocal laser scanning microscope (CLSM) images of activated HUVEC cells after incubation with targeted NPs (formulation #7)and control rhodamine labeled NPs in serum for
3 h at 37 °C. Scale bars in the figures represent 28 μm.
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(data not shown). These results show that the extent of NP cell binding
correlates directly with the number of antibody molecules that are at-
tached on their surface which is in agreement with previously reported
findings (Gu et al., 2008). For further in vitro cell uptake and func-
tionality assays, the formulation 7 composed of 70 wt% PLGA and
30 wt% of PLGA-PEG-SPDP was selected as targeted carrier system,
focusing on the nanoparticle formulation with highest Ab density (95
Ab/NP).

The uptake of E-selectin targeted rhodamine labeled NPs by TNF-α
activated HUVEC cells was visualized using confocal microscopy
(Fig. 4). The cells were incubated with control PEG-PLGA NPs that had
not been incubated with anti-E-selectin Ab and with targeted labeled
NP with the highest density of anti-E-selectin Ab (formulation 7) for 3 h
at 37 °C, to allow for receptor mediated internalization of the targeted
NPs. The targeted uptake process resulted in a distinct increase in in-
tensity of the rhodamine fluorescence pattern compared to the cells that
were incubated with the non-targeted (control) NPs, as is shown in
Fig. 4. These results suggest that targeted NPs are suitable carrier sys-
tems for active carrier system delivery to the cells.

3.6. Characteristics of BEZ loaded targeted and non-targeted (control)
nanoparticles

Based on the results obtained from the previous sections regarding
drug load content and antibody density on the surface of NPs, the final
formulation to be tested for cell functional assays was composed of

70 wt% PLGA and 30 wt% PLGA-PEG-SPDP, functionalized with anti-E-
selectin antibodies, and loaded with BEZ at 9.1% drug loading content
(Table 3, formulation 8). Control (i.e. non-targeted) BEZ loaded NPs
(formulation 9) were prepared with 30 wt% PLGA-PEG and had not
been decorated with anti-E-selectin. Drug loading efficacies obtained
for both formulations were high (approximately 75%), with Ab cou-
pling efficiency being about 36% for the targeted formulation. DLS
analyses showed that the mean hydrodynamic diameter of both types of
NPs was approximately 300 nm. Of note, one can expect that the re-
latively large hydrodynamic size (i.e. ∼300 nm) of formulated NPs in
this study can be a limiting factor for future in vivo applications since it
can activate the complement system and be quickly removed from the
blood stream, accumulating in the liver and spleen. Optimizing the NP
size is therefore a next logical next step before in vivo evaluation to
confirm their capacity to effectively home to inflamed tissues. The
targeted BEZ-loaded NPs showed a higher (negative) zeta potential
value than the control BEZ-loaded NPs (-20.8 mV and −15.8 mV, re-
spectively), which can be explained by the presence of negatively
charged (at pH 7.4) antibody molecules (pI: 5–6) that are attached to
the surface of the targeted NPs.

Table 3
Characteristics of targeted and control NPs loaded with BEZ.

# Formulation Label Size (nm) PDI Zeta Potential
(mV)a

Yieldb (%) DLC
(%)c

Drug loading
efficiency (%)

Ab coupling
efficiency (%)

Molecules Ab coupled/
nanoparticle

8 Targeted
BEZ-loaded
NPs

324 ± 40 0.20 ± 0.04 −20.8 ± 6.0 74 ± 7 6.7 ± 0.3 75 ± 4 36 ± 5 100 ± 22

9 Control
BEZ-loaded
NPs

313 ± 42 0.16 ± 0.07 −15.8 ± 4.6 73 ± 10 6.8 ± 0.5 78 ± 7 N.A. N.A.

Presented data are the average of 3 preparations.
a Presented data are the average of 2 preparations.
b Yield is determined before Ab coupling to NPs.
c Experimental drug loading content.

Fig. 5. Semi-quantitative analysis of closure of the scratch wound area, as calculated from
the images taken at t = 0 h and t = 16 h. Data are plotted as mean values± SEM of two
individual experiments (n = 2) with the same formulations; *p < 0.05, **p < 0.01,
***p < 0.001 compared to TNF-α activated HUVEC cells (control), unless otherwise
depicted. NS = not significant. Tested NP formulations are #8–9 in Table 3.

Scheme 2. Simplified representation of PI3 K/mTOR-related signaling and ATP-compe-
titive dual PI3 K/mTOR inhibitor (i.e. BEZ235), which antagonize PI3 K and both mTOR
complexes.
Adapted with permission from (Shortt et al., 2013). Copyright The American Society of
Hematology.
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3.7. Pharmacological activity of targeted BEZ-loaded nanoparticles

3.7.1. Effects of targeted BEZ loaded nanoparticles in wound healing assay
The mTOR and PI3 K signaling cascades control a wide range of

cellular responses, including cell motility and migration (Berven et al.,
2004; Castellano et al., 2016). In previous studies it has been shown
that TNF-α induced extracellular kinase signaling is involved in cell
motility through Rho GTPase activity (Pollock et al., 2005; Vial et al.,
2003). The PI3 K pathway is also involved in Rho family signal trans-
duction which indirectly affects cell migration (Jiménez et al., 2000;
Tolias et al., 1995).

To investigate the pharmacological characteristics of targeted NPs
loaded with BEZ, the migration of endothelial cells was studied in a
scratch wound healing assay with TNF-α activated HUVEC. Semi-
quantitative analysis of the scratch wound area revealed that non-
treated, TNF-α activated endothelial cells (i.e. control) repopulated the
cell-free area for more than 95% in 16 h. Treatment with free BEZ re-
duced the closure of the scratch area in 16 h to values of approximately
30% and 15% at BEZ concentrations of 10 and 50 nM, respectively. BEZ
loaded control (i.e. non-targeted) NPs also inhibited closure of the
scratch wound area, although at a lesser extent compared to equivalent
solutions of concentrations of free BEZ. Possible explanations for the
observed effects of the control NPs can be either the non-specific cel-
lular interaction of the (non-targeted) control NPs within the set ex-
posure time, or (more likely) the release of BEZ from the control NPs
into the surrounding medium during the incubation period. During 16 h
of incubation the amount of BEZ released from the control NPs into the
medium would be equal to approximately 10% of the total amount of
BEZ present in the NP formulation, based on results discussed above in
Section 3.3. A more important result from Fig. 5 is that the E-selectin
targeted BEZ-loaded nanoparticles showed a strong reduction in cell
migration, similar to the values achieved by free BEZ. The targeted
formulations achieved a reduction of up to about 10% wound closure,
corresponding to a 70% inhibition of cell migration at 10 nM BEZ
concentrations and a 90% inhibition of cell migration at 50 nM BEZ

concentrations (Fig. 5). Given that only 10% of the total drug loading is
released from the NPs into the medium during the 16 h incubation
period (see Fig. 2) the equal cellular effects observed for targeted BEZ-
loaded nanoparticles and free BEZ point to a superior efficacy of the
targeted formulation.

3.7.2. Effects of targeted BEZ loaded nanoparticles on PI3K and mTOR
signaling cascades

In a similar setup as described above for cell migration, the effects of
BEZ-loaded targeted NPs on the mTOR/PI3K signaling cascades were
studied. BEZ has inhibitory effects on both the mTOR and PI3K sig-
naling cascades (Kim et al., 2014). This can be visualized by de-
termining the phosphorylation state of the downstream targets of these
kinases, as shown in Scheme 2.

The direct effect of BEZ on the PI3K/mTOR signaling cascade was
evaluated on total S6 ribosomal protein and its phosphorylated form at
Ser240/244 residues, as well as on total Akt and its phosphorylated
form at Ser473, while the indirect effect of the compound was analyzed
on the phosphorylated form of PI3K at p85 (Tyr458)/p55 (Tyr199) via
immunoblotting. The total S6, Akt and β-actin were used as a control to
show that the BEZ treatment does not affect total amount of S6, Akt and
β-actin proteins isolated from cell lysates.

Both free BEZ and E-selectin targeted BEZ-loaded NPs inhibited
phosphorylation of the S6 ribosomal subunit at BEZ concentrations of
10 nM (Fig. 6A and B). The same figure also shows that at a BEZ con-
centration of 50 nM, the inhibitory effects for both treatments were
more pronounced compared to the effects at a BEZ concentration of
10 nM.

The phosphorylation of Akt kinase also decreased upon treatment
with free BEZ and E-selectin targeted BEZ-loaded NPs at BEZ con-
centrations of 10 and 50 nM (Fig. 6A and B). However, a decrease in
total Akt level was also observed for both treatments, which can be
attributed to the inhibitory effect of BEZ on PI3K/Akt signaling
pathway (Kim et al., 2014).

Phosphorylation of the PI3K adaptor subunit (p85/p55) was

Fig. 6. Effect of BEZ and its NP formulations (at 10 nM and 50 nM BEZ concentrations) on total protein expression or phosphorylation levels in PI3 K and mTOR signaling pathways.
Tested NP formulations are #8–#9 in Table 3. (A) Representative Western blot bands of phosphorylation of S6 protein (Ser 240/244), Akt (Ser 473), PI3K (Tyr 199/458) and total protein
expression levels. β-actin expression was analyzed as a loading control. (B) Densitometry of Western blot bands in the blots. Results are normalized as ratio of protein expression level in
treated cells compared to TNF-α activated HUVEC cells (control).
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analyzed to confirm the indirect effect of the free BEZ and the BEZ-
loaded NP formulations on the PI3K signaling pathway. Free BEZ and E-
selectin targeted BEZ-loaded NPs at concentration of 10 nM and 50 nM
indeed showed inhibition of phosphorylation of the PI3K adaptor sub-
unit. In contrast, the control (i.e. non-targeted) BEZ-loaded NPs only
showed (minor) inhibitory effects at the highest concentration of 50 nM
(Fig. 6A and B).

The present data indicate that control (i.e. non-targeted) BEZ-
loaded NPs did not achieve active intracellular BEZ delivery, and
therefore failed to induce any significant inhibitory effect on cell mi-
gration and/or the PI3K/mTOR signaling cascade within the designated
time period. On the other hand, the BEZ-loaded NPs that actively tar-
geted E-selectin had an efficacy similar to that of the free BEZ, both
concentrations of 10 nM and 50 nM. A similar trend was also observed
in the cell migration assay discussed in the previous paragraph,

confirming the efficient cellular uptake and subsequent cytoplasmic
release of BEZ achieved by the targeted nanoparticles.

Although the initial in vitro results discussed in this work are pro-
mising, the question whether targeted BEZ-loaded NP formulations will
be able to achieve an enhanced efficacy of BEZ in vivo still remains
open. However, it is important to note that previously reported in vivo
studies on E-selectin targeted nanomedicines (mainly liposome-based)
have confirmed the high in vivo efficacy of the developed systems, as
well as their capability to efficiently target the disease-affected en-
dothelial cells that are primarily responsible for the inflammation
(Asgeirsdóttir et al., 2008; Kowalski et al., 2014). Based on these pro-
mising in vivo results using targeted liposomal nanomedicines, the in
vitro results of the E-selectin targeted BEZ-loaded NPs reported in this
work can be viewed as a very encouraging starting point for future in
vivo studies with targeted BEZ-loaded NP formulations.

Fig. 6. (continued)
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It is important to note that the applied concentrations of 10 nM and
50 nM are above the half maximal inhibitory concentration (IC50) (see
Fig. S12). Based on the cell viability assay (MTS assay) about 80 to 90%
cell viability was detected for the incubated cells in both the cell mi-
gration assay and the western blot analysis (see Fig. S13).

4. Conclusions

In this paper BEZ-loaded polymeric nanoparticles (NPs) are pre-
sented, which were used for delivery of a mTOR/PI3kinase inhibitor to
TNF-α activated endothelial cells. The different BEZ-loaded NP for-
mulations were composed of different ratios of PLGA and PLGA-PEG
copolymers, where the PEG moiety of the latter was modified with an
SPDP group to allow coupling of anti-E-selectin antibodies (Ab) when
formulating targeted NPs. The nanoparticles were evaluated based on
various characteristics, such as their particle size and morphology, BEZ
loading, drug release kinetics, Ab coupling efficiency to NP surface, and
the NP’s ability to bind to activated endothelial cells. The most pro-
mising targeted BEZ-loaded nanoparticles were further tested in vitro
using cell functionality assays, where they showed successful in-
tracellular delivery and cytosolic release of the BEZ drug compound,
achieving an efficacy that was comparable to the efficacy of an
equivalent concentration of free BEZ. In contrast, the control (non-
targeted) BEZ-loaded NPs showed an almost negligible efficacy, de-
monstrating that the targeting of E-selectin by functionalization of the
NP surfaces with antibody molecules was critical to develop an effective
BEZ nanocarrier.
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