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The solid-state properties of most elements are now well understood on the basis of 

quantum physics – with few exceptions, notably the element number 94, plutonium. 

Plutonium has six crystalline phases at ambient pressure, some of which are 

separated by unusual phase transitions with large discontinuities in volume, exhibit 

negative thermal expansion coefficients, or form exotic low-symmetry structures
1,2

. 

The main challenge to explain these anomalous properties is that the characteristic 

ingredient of actinides, the 5f electronic states, are in the cross-over regime between 

the localized and delocalized (itinerant) behaviour in Pu
3,4

. The early part of the 

actinide series with the 5f states being itinerant, i.e. part of the metallic bond, 

culminates with Pu; starting with Am (Z = 95), the 5f states are localized, non-

bonding, and resemble the 4f states in lanthanides. Both itinerant and localized 

regimes are well covered by existing theories, but they cannot be simply interpolated 

due to the importance of dynamical electron-electron correlations
5,6

. Here we 

present accurate quantum Monte Carlo calculations achieving previously 

inaccessible resolution. Obtained results demonstrate that interplay of the full 



Coulomb interaction vertex with spin-orbital coupling is crucial for understanding 

the experimentally observed spectral properties of plutonium near the Fermi level.  

In the last few years there has been intense research, both theoretical and 

experimental, aimed to understand properties of metallic plutonium, one of the most 

complicated elements in the Periodic Table
1
.  At atmospheric pressure plutonium metal 

exhibits six crystal structures upon heating from room temperature to its melting point of 

913 K.
2
 The low–temperature monoclinic  phase is stable up to 395 K, while the face-

centered-cubic (fcc)  phase is stable between 593-736 K. The -Pu phase, which 

received a significant interest in the metallurgical community because of its high 

ductility, is quite different from the brittle ground-state -Pu phase. For instance: (i) -Pu 

has an atomic volume of about 25 % greater than -Pu; (ii) the thermal expansion of -Pu 

is small and negative whereas it is very large and positive for -Pu; (iii) the electronic 

specific heat coefficient of -Pu is substantially larger than in -Pu while the magnetic 

susceptibility stays almost unchanged. For all Pu-phases, local magnetic moments are 

absent
7
 but the Pauli-like magnetic susceptibility and resistivity are an order of magnitude 

larger than for simple metals. This unusual behavior is related to the unique position of 

Pu in the actinides series, which is at the boundary between early actinides with itinerant 

5f electrons and the late actinides with localized 5f electrons
3,4,5

.   

Strong correlations among electrons in Pu result in a failure to predict the 

equilibrium volume of non-magnetic -Pu within conventional local density 

approximation (LDA)
8
. Naïve attempts to account for f-electron correlations within the 

LDA+U technique result in a non-magnetic ground state close to f
6
 configuration when 

the so-called “fully-localized” (FL) double counting together with the constrained spin 

polarization
9
 is used.  The use of different form of the double counting, “around-the-

mean-field” (AMF) – LDA+U,
10  

results in “quenching” of the spin and orbital magnetic 

moments and shows an admixture of the f
5
 and f

6
 configurations. The -Pu equilibrium 



volume is calculated
9, 10

 in good agreement with experiment. However, this static mean-

field approach is not able to reproduce experimental photoemission spectra (PES) of Pu, 

where a high peak, attributed to f-states, is clearly observed in the vicinity of the Fermi 

level.  

The LDA+U technique takes into account only the static part of the self-energy 

and that is not sufficient to correctly reproduce spectral properties of strongly correlated 

systems. The full frequency dependence of the self-energy requires improved methods 

such as dynamical mean field theory (DMFT)
13,14

 that enables treatment of band-like and 

atomic-like behavior of electrons on the same footing. The first application of DMFT to 

Pu was performed by Savrasov et al.
5
 who explained the origin of volume expansion 

between -Pu and -Pu phases in terms of competition between Coulomb repulsion and 

kinetic energy.  The authors assumed that Pu has a 5f
5
 configuration with an open f

5/2
 

subshell resulting in a local magnetic moment that is further screened by valence 

electrons via Kondo mechanism. Although the double minimum on the energy vs. 

volume curve, derived in this paper, provided a possible explanation for the volume 

collapse that accompanies the  transition in Pu, the calculated density of states 

(DOS) did not include the realistic multiplet structure seen in photoemission 

experiments
15

. Taking into consideration that all DMFT calculations
5
 were actually 

performed only for the fcc lattice, more realistic interpretation of this double minimum, 

as an origin of the negative thermal expansion (Invar effect) in -Pu, was presented 

later
16

. 

The non-magnetic configuration, suggested in the AMF-LDA+ U calculations by 

Shick et al.
10

, served as a “starting point” for several DMFT studies. Pourovskii et al.
17

 

tried to correct the deficiency of LDA+U DOS by adding dynamical fluctuations by 

means of DMFT in conjunction with the fluctuating exchange T-matrix technique (T-

matrix FLEX)
18

. A similar LDA+DMFT approach, but employing the Hubbard-I 



approximation (HIA)
19

 for the quantum impurity solver, was used by Shick et al.
20

 to 

reproduce the distinct three-peak structure experimentally observed on PES of -Pu
15

.   

       Later, Pourovskii et al.
12

 were able to reproduce the experimentally observed large 

increase of the electronic specific-heat coefficient of -Pu as compared to the -Pu phase. 

In this study the T-matrix FLEX method was also used for the quantum impurity solver.  

Shim et al.
21

 employed a vertex corrected one-crossing approximation for the quantum 

impurity problem
14

 and obtained 5f occupancy of ~ 5.2 in calculations which also 

properly included multiplet effects.  They concluded that plutonium becomes non-

magnetic due to Kondo screening below ~ 800 K.  Moreover, they also confirmed the 

suggestion
10,20

 that the fractional 5f occupancy in -Pu arises from a mixture of two 

different atomic configurations (f
5
 and f

6
) in the ground state.  Finally, Zhu et al.

22
 used 

both an exact quantum Monte Carlo (QMC) method within the Hirsch-Fye scheme
23 

(without multiplet effects) and the Hubbard-I approximation
19

 (with multiplet effects) for 

the quantum impurity solver.  They demonstrated sensitivity of the spectral properties of 

Pu to the 5f occupancy and suggested on the basis of comparison to experimental data 

that the 5f 
5  

“open shell” Pu configuration was more likely than the “closed shell” 5f
6
 

configuration.  Nevertheless, according to Refs.
20-22

, the three-peak multiplet structure 

observed in the DOS of bulk -Pu metal is induced by non-vanishing admixture of atomic 

f
6
 configurations into the ground state. 

Quantum Monte Carlo methods represent an exact tool to solve the quantum 

impurity problem. There are, however, several issues to be addressed when these 

methods are applied to systems like -Pu. The often employed auxiliary-field Hirsch-Fye 

QMC algorithm is computationally expensive for multiorbital calculations at low 

temperature,
14

 since the required computer time scales as Norb
2
/T

3
, where Norb is the 

number of orbitals on the impurity and T is the temperature. Even more importantly, the 

Hirsch-Fye algorithm has an inherent limitation on the form of the electron-electron 



interaction that can be included in the Hamiltonian. Out of the full Coulomb interaction 

vertex 
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can be treated with this method. In the case of the Pu f-shell, for instance, the full vertex 

has 377 non-equivalent terms and only 91 of them have the diagonal density-density 

form. The remaining non-diagonal part consists of 42 spin-flip terms and 244 integrals of 

the most general four-index form. These non-diagonal contributions can reduce the 

effects of large spin-orbital splitting in relativistic density functional calculations of -Pu 

and produce a multiplet structure near the Fermi level. Notably, T-matrix FLEX, 

Hubbard-I and one crossing approximations used in Refs.
12,20-22

 examine the full f-f 

Coulomb interaction and its consequent term structure, so that the Hund's rule exchange 

is included in these models. 

Recently, a new class of continuous-time QMC (CT-QMC) impurity solvers has 

been developed
24-26

. These diagrammatic QMC approaches rely on a perturbation 

expansion of the partition function into Feynman diagrams and on re-summation of these 

diagrams into determinants. The weak coupling method
24

 uses a perturbation expansion 

in the interaction part of the Hamiltonian and its determinantal formulation originates in 

the Wick’s theorem. The strong-coupling or hybridization expansion method
25,26

 treats 

the local interactions exactly and expands in the impurity-bath hybridization; the 

determinants emerge naturally from the trace over the bath states. Both weak and strong 



coupling CT-QMC methods can treat the full Coulomb interaction vertex and do not 

suffer from discretization problems inherent to the Hirsch-Fye QMC in the low 

temperature regime. Therefore, the CT-QMC formalism has an essential advantage 

compared to auxiliary-field methods when complex systems like -Pu are considered. 

The application of hybridization expansion CT-QMC to the electronic structure of -Pu
27

 

shows an importance of complete rotationally invariant Coulomb interaction among 5f-

electrons.  

In this Letter we apply the weak coupling CT-QMC scheme to investigate effects 

of full Coulomb interaction on the electronic spectrum of -Pu. We start from the 

relativistic LDA Green’s function for f-electrons
28

, which is a 14x14 matrix. We take 

advantage of the rotational invariance of the Coulomb interaction and work in the natural 

relativistic basis of spherical harmonics in order to avoid the so-called three orbital terms 

like c
+

ic
+

jcick that cause a large fermion sign problem in the weak-coupling CT-QMC 

scheme. In low-temperature simulations, we still encountered a sign problem related to 

odd numbers of small but negative non-diagonal Coulomb matrix elements. Since these 

processes were very rare (of the order of 1% of accepted QMC steps) we simply 

restricted the QMC process to even numbers of non-diagonal Coulomb terms of the 

general form c
+

ic
+

jclck. We parameterize the matrix Uijkl with the aid of four Slater 

integrals F0=4 eV, F2= 8.34 eV, F4= 5.57 eV, F6=4.12 eV in concord with the general 

LDA+U scheme
9,10

. The numerical values correspond to the screened average Coulomb 

integral U=4 eV and the exchange interaction parameter J=0.7 eV. The CT-QMC 

simulations are computationally very demanding due to the presence of the full Coulomb 

vertex, and we therefore perform only a single solution of the impurity problem with the 

LDA Green’s function (the first iteration of the DMFT procedure). In order to increase 

accuracy of analytical continuation of the CT-QMC data to the real energy axis, we use a 

novel stochastic approach starting directly from quantities at Matsubara frequencies 



(measured in the course of the CT-QMC simulation) and not from the imaginary-time 

axis
29

. 

We check first the influence of spin-flip terms in the Coulomb vertex and 

compare the spectral function of -Pu with results of diagonal-only Coulomb vertex for 

relatively high temperature of the order of 5000 K in Fig. 1. The main effect of the spin-

flip terms is related to much stronger interaction between the j=5/2 and 7/2 subbands at 

the same energy, demonstrated as an increase of the j=7/2 signal around -2 eV where the 

j=5/2 component has a strong peak, and as an analogous enhancement of the j=5/2 signal 

around 1 eV. Broadening of the spectral function maxima due to multiplet splitting is 

observed as well. 

The final result for the spectral function of -Pu with the full Coulomb vertex at 

relatively low temperature of the order of 600 K is shown in Figs. 2 a,b.  The position of 

the quasiparticle peak near the Fermi level as well as the spin-orbit splitting of the 

multiplet structure (Fig. 2b) in our CT-QMC simulations well reproduce the main 

features of the experimental photoemission spectra
11,15

. Note that a large contribution to 

the lower Hubbard bands (around -1.7 eV in the Fig. 2b) comes from the high energy 

j=7/2 states. 

Since the CT-QMC data presented here are limited to the first iteration towards 

the complete DMFT solution, it is illustrative to make a comparison with the results of 

charge-density self-consistent LDA+HIA calculations.
30

 ForbulkPu (shown in Fig. 3) 

we find a reasonable semi-quantitative agreement between full-Coulomb vertex 

calculations within CT-QMC and HIA. There are two j=5/2 peaks, one close to the Fermi 

edge and the other at approximately -1 eV in HIA, which are consistent with two j=5/2 

peaks shown in Fig. 2b. In addition, there is a peak around -0.7 eV of j=7/2 character in 

Fig. 3 that corresponds to the j=7/2 peak at -0.2 eV in CT-QMC (cf., Fig. 2b).  

Furthermore, an extra j=7/2 satellite peak around -1.7 eV is seen in both the HIA and CT-



QMC calculations.  The j=7/2 structure centered at about 0.5 eV in the HIA originates 

from f
5
 → f

6
 transitions and lies completely above the Fermi edge with a tail slightly 

extending to negative energies only due to our use of a 0.06 eV FWHM broadening 

function. The HIA spectral function above the Fermi level (not shown) continues to 

exhibit significant j=5/2–7/2 mixing analogous to Fig. 1 obtained with the CT-QMC 

method. 

One may wonder if the j=7/2 satellite at -1.7 eV is related to the experimental 

peak at about the same energy in the Pu-surface PE spectrum.
15

 To clarify the comparison 

between the theory and experiment, we performed LDA+HIA calculations for a free-

standing Pu monolayer. Resulting j=5/2-7/2 orbital resolved spectral function is shown 

in insert in Fig. 3. The f-states localization is clearly seen in the Pu-monolayer as the f-

spectral weight is shifted away from the Fermi level, in particular the main j=5/2 peak is 

now located at -1.6 eV. These calculations therefore suggest that the peak around -1.6 eV 

apparent in the experimental 1 ML PE spectrum (Fig. 2b, green curve) is of j=5/2 and not 

j=7/2 character. 

        In spite of quite reasonable agreement between CT-QMC and HIA, which supports 

the atomic-like origin of the observed PE three peak structure, one needs to keep in mind 

that the hybridization between f- and conduction electrons is not accounted for very 

accurately in the Hubbard-I procedure. To examine possible effects of the hybridization 

more thoroughly, we studied a model consisting of a correlated f-shell explicitly coupled 

to several bath spin-orbitals that mimic the hybridization with conduction electrons. We 

used band-Lanczos algorithm
31 

to find the ground state as well as to calculate the one-

particle spectral function shown in Fig. 4. We were able to include up to 12 bath spin-

orbitals in addition to the 14 that represent the f-shell, at which point the corresponding 

many-body Hilbert spaces reached dimensions of the order of 10
7
. Arguably, such sparse 

discretization represents only a rather crude approximation of the actual environment the 

Pu f-shell experiences in the real solid. Nevertheless, the solution of this model possesses 



several important properties. The ground state of the cluster {f-shell + bath} is a singlet 

that correlates with the absence of local magnetic moments observed in plutonium. The 

corresponding f-shell occupation is fractional (~5.4) and even configurations with 4 and 7 

f-electrons have appreciable weights. Despite this indication that the hybridization with 

the conduction electrons is relatively strong, the spectral features in the first 1-2 eV 

below the Fermi level (Fig. 4) still strongly resemble the atomic f
6
→f

5
 transitions 

characteristic for the Hubbard-I approximation (Fig. 3). This observation further justifies 

the interpretation of the photo-emission spectral features located near the Fermi edge as 

atomic-like multiplet transitions. Moreover, there is a large contribution of j=7/2 states 

below the Fermi level near -1.5 eV in a good agreement with our CT-QMC calculations 

that incorporate the full bath Green’s function. 

To conclude, we emphasize that the present calculations, using full rotationally-

invariant Coulomb interaction vertex, have been able reproduce the spectral properties of 

-Pu in agreement with recent photoemission experiments. The large peak of f-character 

in the density of states near the Fermi level as well as multiplet-like structure with spin-

orbital splitting is obtained. The success of the CT-QMC calculation for a “simple” 

element further opens the way for its application to a host of fascinating compounds that 

challenge condensed-matter theorists. 
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Figure captions: 

 
 

Fig. 1: Orbital resolved spectral function of Pu for high temperature with non-diagonal 

spin-flip Coulomb vertex (lower panel) and diagonal density-density interaction (upper 

panel). 



 

Fig. 2a: The f-electron spectral function of -Pu calculated with the full Coulomb vertex 

at the temperature of 600 K (black) compared to two measurements of bulk 

photoemission spectra, Ref. [15] (violet) and Ref. [11] (green). 

 

Fig. 2b: Orbital resolved f-electron spectral function from Fig. 2a (j=5/2 contribution 

blue, j=7/2 component red) in comparison with experimental photoemission spectra of 

bulk (green, solid line) and surface (green, dashed line) of -Pu [15]. 



 

Fig. 3: Orbital resolved spectral function of Pu in the Hubbard-I approximation. The full 

Coulomb interaction causes strong admixture of high-energy j=7/2 and low-energy j=5/2 

states. Insert shows the total and orbital resolved spectral function of the Pu-monolayer .  

 

Fig. 4: Ground-state (T = 0 K) spectral function of a Pu f-shell coupled to 12 spin-orbitals 

representing the hybridization function. 


