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ARTICLE INFO ABSTRACT

Keywords: The efficacy of calcium sprays for improving fleshy fruit resistance to abiotic/biotic stress and enhancement of
Abscisic acid fruit shelf life has increasingly been explored. However, because calcium is a powerful secondary messenger in
Anthocyanin ) many signaling pathways, including those driven by abscisic acid (ABA) and jasmonates, it may interfere with
Cell wall metabolism the biosynthesis of specialized metabolites highly important for fruit and wine quality, such as phenolic com-
Methyl jasmonate . - . . . .

UFGT pounds. In this study, a combination of biochemical and molecular biology approaches were applied to grape cell

cultures and detached grape berries, in order to investigate the effect of calcium in the modulation of enzymes
involved in the biosynthesis of phenolic compounds and in cell wall organization. Concentrations up to 10 mM
CaCl, did not affect cell growth, size or viability, but triggered modifications in total phenolics content, parti-
cularly in anthocyanin levels in grape cell suspensions. The effects of calcium applied alone or in combination
with ABA or methyl jasmonate (MeJA) were visible in several branches of specialized metabolic pathways,
confirming that the calcium-hormone interplay regulates the expression of phenylalanine ammonia lyase (PAL),
stilbene synthase (STS), dihydroflavonol reductase (DFR) and UDP-glucose:flavonoid 3-O-glucosyltransferase
(UFGT). The activity of PAL and UFGT enzymes was also specifically modulated by calcium, ABA and MeJA.
These results closely correlated to the modifications observed in the expression of VWAM1 and VWABCCI en-
coding vacuolar anthocyanin transporters. Modulation of the expression and activity of pectin methyl esterases
(PME) and polygalacturonases (PG) by calcium was also evident, confirming an important role of calcium in cell
wall organization via the regulation of enzyme activity, besides its well-known role in the formation of cross links
between pectin molecules. Overall, this study uncovers important biochemical mechanisms induced by calcium
and stress hormones on grape berries, and highlights the need to consider the consequences of calcium treat-
ments and stress for fruit quality.

Vitis vinifera

1. Introduction both before and after harvest. This is particularly critical in cultivars

with thin skin, resulting in limited storability and lower incomes.

Achieving an optimal balance betweenproductivity and fruit quality Because the use of fungicides is increasingly raising concerns for the

is a major aspiration in viticulture that is particularly challenging in the environment and human health (Taylor, 1993; Martins et al., 2014a,

context of ongoing climate changes. Steady rains before harvest cause 2014b, 2015), the exploitation of alternative environmentally friendly
fruit swelling, diluting the flavors and causing cracking of the skin, and sustainable treatments is of utmost importance in viticulture.

making fruits more prone to spoilage and infection by microorganisms, With a central role in maintaining cell turgor, cell wall resistance,
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and fruit firmness (Hocking et al., 2016), calcium has been used effi-
ciently in post-harvest food supplements for extending fruit shelf-life
(Hopkirk et al., 1990; Martin-Diana et al., 2007), and its efficacy for
improving fruit firmness when applied at pre-harvest stages has been
tested in a few crops, including papaya, sweet cherry, apple, and table
grapes (Siddiqui and Bangerth, 1995; Bonomelli and Ruiz, 2010; Wéjcik
et al.,, 2013; Madani et al., 2016). The mechanisms of calcium in-
corporation in grape berry cells are so far largely uncharacterized.
Being phloem immobile, calcium is taken up by fruits through the
xylem, thus depending greatly upon transpiration rates (Martins et al.,
2012). Besides the cell wall, the grape berry vacuole constitutes a major
sink for calcium, and several transporters including ACA- and CAX-type
proteins account for its movement to and from the cytosol (Martins
et al., 2017). These movements underlie calcium signatures involved in
signaling responses to specific stresses and cell processes (Dodd et al.,
2010). Importantly, calcium is known to act as secondary signal mes-
senger in phytohormonal pathways responding to abiotic and biotic
stresses, such as the ABA response to drought stress and the onset of
anti-herbivore responses mediated by jasmonates (Dodd et al., 2010;
Fortes et al., 2015). Therefore, given the interplay of ABA and jasmo-
nates observed during grape berry ripening, the direct or indirect effects
of calcium on other fruit properties such as color and aroma bouquet
cannot be disregarded, particularly in grape berry where color quality
and aroma bouquet are determinant for commercial value (Conde et al.,
2007).

Moreover, besides mediating the cross-linking of cell wall poly-
saccharides and having structural roles in the cell wall and membranes,
calcium acts as a counter-cation for both organic and inorganic anions
in the vacuole of grape berry, further meddling in the composition of
key solutes for grape quality (Martins et al., 2012).

Hence, the present study firstly aimed at understanding the effect of
calcium on basic features of grape cell dynamics including growth rates,
size and viability, and secondly, its effects on the pathways leading to
the formation of phenolic compounds important for grape berry quality,
with special emphasis on anthocyanin biosynthesis and accumulation,
and on the regulation of cell wall enzymes involved in pectin organi-
zation. As these processes are tightly regulated by hormones during
fruit ripening and stress responses (Conde et al., 2007), the combined
effects of calcium and ABA or methyl jasmonate (MeJA) were also ex-
plored, both on grape cell cultures and intact detached berries.

2. Material and methods
2.1. Growth, size and viability of grape suspension cells

Cells of V. vinifera L. cv. Gamay Fréaux var. Teinturier, gently pro-
vided by Prof. Serge Delrot (University of Bordeaux, France), were
grown in liquid mineral medium supplemented with 58 mM sucrose,
according to Decendit and Merillon (1996), on a rotatory shaker at
100 r.p.m., under an 8 h dark/16 h light (200 umol photons m~2 s~ 1)
photoperiod, at 24 °C. Cells were subcultured weekly by transferring
15 mL aliquots into 30 mL of fresh medium. To study the effect of cal-
cium on cell growth, size and viability, cells were subcultured in
medium supplemented with increasing concentrations of CaCl,: 1 mM
(basal levels), 5, 10, 50 and 100 mM. Three biological replicates were
performed per CaCl, concentration. Cell growth was determined
through dry-weight measurements: aliquots (1-3mL) were filtered
through pre-weighed GF/C filters (Whatman), washed with deionized
water and weighed after 24 h at 80 °C. Ten days after subculture, cell
viability was tested with the fluorescent dye fluorescein diacetate (FDA,
Sigma), in a Leica Microsystems DM-5000B epifluorescence microscope
with appropriate filter settings. Images were acquired with a Leica
DCF350FX digital camera and processed with LAS AF Leica Micro-
systems software. Cell size was estimated by measuring the average cell
diameter.
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2.2. Induction of secondary metabolism in cell suspensions and treatments

To study the effect of calcium on secondary metabolism and its
possible interactions with hormones associated to fruit ripening and
stress response, cells were transferred to induction medium that sti-
mulates secondary metabolism pathways in this cell line, as described
by Larronde et al. (1998), and grown for 3 d. For gene expression and
enzyme activity studies, filter sterilized stock solutions were added to
the cultures at day 3, to achieve the following final concentrations:
10 mM CaCl,, 20 uM ABA, 20 uM MeJA, 10 mM CaCl, + 20 uM ABA, or
10mM CaCl, + 20 uM MeJA. The selected ABA and MeJA con-
centrations were optimized following previous studies (Noronha et al.,
2015). Non-treated cells were used as control. Three biological re-
plicates were performed per treatment. After 12 h, cells were collected
by vacuum filtration, ground in liquid N and stored at -80 °C for further
experiments. For assessments of the effect of calcium/hormones in
metabolite levels, cells were grown for 4 d in induction medium sup-
plemented at day 1 with the concentrations of calcium and hormones
detailed above.

2.3. Short-term culture of intact detached grape berries and treatments

Berries cv. Vinhao were collected at veraison stage (Coombe, 1995)
from 3-year-old grapevines located in the DOC region of Vinhos Verdes,
and cultivated in vitro as previously described (Dai et al., 2014), with
minor modifications. Briefly, berries with a pedicel ~5 mm long were
excised from clusters, submerged in 70% ethanol for 10 s and then in a
1% NaClO solution for 2 min. After rinsing with deionized water, the
berries pedicel was quickly dipped into liquid mineral medium sup-
plemented with the same treatments used in cell cultures, on 96-well
plates, and berries were incubated at the same temperature and light
conditions described previously, for 4 d. Each treatment was performed
in eight berries. Fruits were then ground in liquid N and stored at
—80 °C for further experiments.

2.4. Quantification of total phenolics and anthocyanins

Total phenolics were extracted from 200 mg f.w. of cells or grape
berry tissue with 1 mL of 100% methanol, and quantified by the Folin-
Ciocalteau colorimetry method (Waterhouse, 2002). Total anthocya-
nins were extracted from 200 mg f.w. of cells or grape berry tissue with
1 mL of 100% acetone and quantified by the differential pH method
(Nicoue et al., 2007). Results were expressed as mg of gallic acid per g
of d.w. and mg of anthocyanin per g of d.w.

2.5. Enzyme activity assays

Total protein extraction was performed according to the method
described by Deytieux-Belleau et al. (2008), using 300 mg f.w. and
800 uL of ice-cold buffer containing 0.3M Tris-HCl pH 7.0, 13 mM
EDTA, 5mM dithiothreitol, 1 M NaCl, 1% (w/v) polyvinylpyrrolidone,
20% (v/v) glycerol and 1% Triton X-100. Total protein was quantified
with the Bradford method (Bradford, 1976). Absorbance measurements
were performed in a Shimadzu UV-1700 Spectrophotometer.

The activity of PAL was assessed as previously reported (Conde
et al., 2016), with minor modifications. The reaction mixture contained
100 mM Tris—HCI pH 8.9, 4.3 mM NacCl, 19.2mM r-phenylalanine as
substrate, and 50 pL of protein extract, in a final volume of 1 mL. The
production of trans-cinnamic acid was followed at 39 °C for 15 min and
recorded at 290 nm. UFGT activity was determined according to the
method described by Mori et al. (2005), with some modifications. The
assay mixture consisted of 20 mM sodium phosphate buffer pH 8.0, 50
UM quercetin, 0.5 mM UDP-glucose and 50 pL protein extract in a final
volume of 2 mL. The mixture was incubated at 30 °C for 30 min, under
shaking, and the production of quercetin-3-glucoside was recorded at
350 nm. Results were calculated using an extinction coefficient (e) for
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quercetin-3-glucoside of 21,877 M cm ™. The activity of PME was as-
sayed following an adaptation of a previously described method
(Hagerman and Austin, 1986). The reaction mixture contained 700 uL
of 0.5% (w/v) pectin solution, 50 uL of 0.01% (w/v) bromothymol blue
and 200 pL of protein extract. The mixture was incubated at 25 °C and
absorbance was recorded at 620 nm. Enzyme activity was determined
using a standard curve with HCL. PG biochemical activity was assessed
according to Lohani et al. (2004). The reaction mixture contained
60 mM sodium acetate buffer pH 4.5, 20 mM NaCl, 1% (w/v) poly-
galacturonic acid and 100 pL of protein extract, in a final volume of
1 mL. The mixture was incubated at 37 °C for 15 min and the reaction
was stopped in a boiling water bath for 5 min. Next, 100 pL of the re-
action mixture were added to 100 puL of 3,5-dinitrosalicylic acid and
incubated at 100 °C for 15 min. The formation of reducing sugars was
measured at 540 nm and determined by interpolation with a D-glucose
calibration curve.

2.6. RNA extraction and expression studies by real-time PCR

Total RNA was extracted from 300 mg of ground samples following
the classical method described by Reid et al. (2006) and mRNA was
converted to cDNA by reverse transcription with an Omniscript’ RT Kit
and oligo (dT) primers (Qiagen). Quantitative real-time PCR (qPCR)
was performed in 96-well plates with Quantitect SYBr green” Master
Mix (Qiagen). Briefly, for each biological replicate (n = 3), qPCR re-
actions were performed in triplicate (technical replicates) using 10 uL
MasterMix, 300 nM of each primer, 1uL of cDNA and nuclease-free
water to a final volume of 20 pL. The following cycler conditions were
used: 15min at 95°C and 45 cycles of 15s at 94°C, 30s at 55 °C and
30s at 72 °C. The annealing temperature for VwPG1 and VwPG2 ampli-
cons was lowered to 52°C according to previous reports (Deytieux-
Belleau et al., 2008), and extension occurred for 1 min. Fluorescence
was measured at the end of each amplification cycle. The sequences of
gene-specific primers were retrieved from previously published studies,
and are detailed in supplementary table I. Gene expression was nor-
malized to the VWGAPDH reference gene (NCBI/Genbank database ac-
cession no. XM 002263109, Gainza-Cortés et al., 2012). The specificity
of PCR reactions was checked through dissociation curves at the end of
each qPCR reaction, by heating the amplicons from 65 to 95 °C. Data
were analyzed using the CFX Manager Software (Bio-Rad laboratories,
Inc.).

2.7. Statistical analysis

One-way ANOVA was used to statistically analyze the results in
Prism° 6 (GraphPad Software, Inc.). In graphs, significant differences
are marked by different letters (a, b, c, d, e).

3. Results
3.1. Effect of calcium on growth, size and viability of grape cells

As shown in Fig. 1A, the growth of suspension cells of V. vinifera L.
cv. Gamay Fréaux var. Teinturier was modulated by calcium in a dose-
dependent manner, remaining unaffected in concentrations up to
10 mM. A similar behavior was observed for cell size and viability, with
higher calcium concentrations causing a significant decrease in cell
diameter and a reduction in esterase activity measured by FDA staining
(Fig. 1B). Therefore, subsequent studies were performed with 10 mM
calcium.

3.2. Effect of calcium on secondary metabolism of grape cells
Although cell growth, size and viability were not affected by the

selected calcium dosage, modifications in the pigmentation of Gamay
cells were clearly visible (Fig. 2A). Hence, after ruling out possible
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interference of the medium pH, total phenolics and anthocyanins were
quantified. As shown in Fig. 2B, the content of total phenolics was not
affected by the presence of calcium alone, in comparison to control
cells. Likewise, in cells treated with ABA, the addition of calcium did
not affect the production of total phenolics. However, in cells treated
with MeJA, which led to the production of higher levels of phenolics,
calcium caused a significant reduction in the levels of these metabolites.

The effects of calcium were more pronounced in total anthocyanin
content than in total phenolics, and a significant reduction was ob-
served, particularly when cells were treated with MeJA (Fig. 2B), cor-
relating well with the cell pigmentation profile. Overall, calcium
showed a consistent tendency for an inhibitory effect of the measured
pathways of secondary metabolism.

Gene expression and enzyme activity studies were then performed
on key intermediates of the biosynthetic pathways of phenylpropa-
noids, stilbenes, flavonoids, flavonols and, specifically, anthocyanins.
PAL is the enzyme that catalyzes the first step of the phenylpropanoid
pathway and, therefore, is the starting point for the biosynthesis of
phenolic compounds. As shown in Fig. 3A, calcium upregulated VWPAL1
when added alone and in cells treated with ABA. However, in cells
treated with MeJA, which induced a strong expression of VwPALI,
transcript levels decreased by 65% in the presence of calcium. Likewise,
a stimulatory effect of calcium was observed when PAL enzyme activity
was measured in protein extracts, and calcium also inhibited the ac-
tivity of the enzyme in cells treated with MeJA. As depicted in Fig. 3B
the expression of VwCHS3 coding for a chalcone synthase, a key enzyme
of the first step of flavonoids biosynthesis, was consistently upregulated
in the presence of calcium, either when added alone or in combination
with ABA or MeJA, showing a remarkable induction of 15-fold in cells
treated with both MeJA and calcium, in comparison to cells treated
with MeJA only. The expression of VWSTS coding for a stilbene synthase,
the first enzyme for the biosynthesis of stilbenes, was similar in control
cells and ABA-treated cells, remaining unaffected by calcium, either
when added alone or in combination with ABA (Fig. 3B). In MeJA-
treated cells, VvSTS was significantly upregulated, but this increase in
VWSTS transcript levels was significantly prevented by calcium (70%
reduction). The expression of VVFLS1 encoding an isoform of the first
enzyme of flavonols biosynthesis was repressed by calcium (37%), ABA
(34%), and MeJA (93%) (Fig. 3B), with calcium further repressing
VVFLS1 transcription when added in combination with ABA.

Studies were then directed towards the steps catalyzing anthocyanin
biosynthesis and accumulation. As shown in Fig. 4A, calcium alone
upregulated VvDFR expression. The same trend was observed when
cells were treated with ABA alone and MeJA alone. While calcium did
not affect the expression of VWDFR when cells were treated with ABA, it
strongly repressed the expression of the gene when combined with
MeJA. The expression of VWUFGT was also upregulated in the presence
of calcium alone, as well as in cells treated with MeJA alone. Calcium
did not affect the expression of VWUFGT in combination with ABA, but
again sharply repressed the expression of the gene when combined with
MeJA. UFGT catalyzes the limiting step towards anthocyanin bio-
synthesis, hence its enzyme activity was also studied in grape cell
protein extracts. Surprisingly, UFGT enzyme activity was consistently
inhibited in the presence of calcium (55-88%), either added alone or in
combination with ABA or MeJA, revealing that calcium may have op-
posite effects at the levels of transcription and protein activity regula-
tion.

The expression of VWAM1, which encodes a MATE-type protein that
mediates the antiport of acylated anthocyanins with H™ across the
vacuole membrane (Gomez et al., 2009) is depicted in Fig. 4B. The
treatment of cells with ABA or MeJA downregulated the expression of
VvAM1, but while calcium did not affect the expression of VWAMI,
neither in control cells nor in cells treated with ABA, it strongly de-
creased the steady-state transcript levels in cells treated with MeJA. The
expression pattern of VWABCC1, encoding an ATP-binding cassette-type
protein which transports glucosylated anthocyanidins into the vacuole
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Fig. 1. (A) Growth of grape cell cultures cv. Gamay in the presence of increasing Ca®>* concentrations (n = 3). (B) Cell diameter and viability (estimated by FDA
staining) 10 days after subculturing in media supplemented with different Ca>* concentrations; bar = 100 ym. In graphs, results indicate mean * SD and different

letters indicate statistically significant differences.

and is dependent on the presence of reduced glutathione —GSH
(Francisco et al., 2013) is depicted in Fig. 4B. Calcium alone was able to
stimulate VWABCC1 transcription, which was also induced by MeJA
alone, while the treatment with ABA alone did not affect gene expres-
sion. The presence of calcium in cells treated with MeJA prevented the
upregulation of gene expression observed in cells treated with MeJA
alone.

3.3. Effect of calcium on the expression and activity of cell-wall enzymes
involved in pectin organization in grape cells

The enzyme PME generates hydrolysable sites in pectin poly-
saccharides, that either become available for crosslinking with calcium,
strengthening the cell wall, or become susceptible to the action of PG,
that cleaves the molecules causing softening of the cell wall. As shown
in Fig. 5A, treating grape cells with ABA alone did not affect the ex-
pression of VWPMEI, while MeJA caused a sharp upregulation of gene
expression. Calcium did not significantly affect the expression of
VVPME], either when applied alone or in combination in each hormone.
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However, the biochemical activity of PME enzyme was inhibited by
calcium in cells treated with ABA, while no differences were observed
in the remaining conditions. In contrast, the inhibition of VvPGs ex-
pression mediated by calcium was very consistent in all experimental
conditions (Fig. 5B). Thus, the expression of VvPG1, which was only
measurable in cells treated with ABA, was downregulated in the pre-
sence of calcium, and the expression of VwPG2 was downregulated in
the presence of calcium applied in combination with ABA or MeJA. The
treatment with MeJA alone decreased the steady-state levels of VvPG2
transcripts in comparison to control cells, contrarily to ABA which did
not affect gene expression. Accordingly, PG enzyme activity was con-
sistently inhibited in the presence of calcium, either when added alone
or in combination with ABA or MeJA.

3.4. Transcriptional reprograming in intact detached berries in response to
calcium

Intact detached grape berries were incubated with ABA or MeJA, in
the presence and in the absence of calcium, to mimic the experimental



V. Martins et al.

A

control ~ Caz ABA l(\;Bz’: Mesa MeJA
B — e e S ey S
m 3 20 a
o
< -
O "o 161 b
-g 4 12+ c c
3R o
& o B8 d
£ =
28 4
g o
s E
= 8
e
£
-~ 6-
S 3
c © c
=) d cd
So 4 d
zo |2
o E ol b
£
pren)
c
< 0-
O e *
) > Q 2> ) >
& oy O @ L©
Sl W
v 4

Fig. 2. (A) Pigmentation and (B) total levels of phenolics and anthocyanins in
grape cells cv. Gamay 4 d after subculturing in media supplemented with dif-
ferent combinations of calcium and hormones: [Ca®?*] = 10 mM, [ABA] = 20
uM and [MeJA] = 20 uM. Results indicate mean = SD of three biological re-
plicates and different letters indicate statistically significant differences.

conditions used to study gene expression and enzyme activities in grape
cell cultures. As shown in Fig. 6, VWPAL1 was not significantly affected
by calcium treatment. However, an apparent stimulatory effect was
driven by MeJA, in accordance to the effects observed in cell suspen-
sions. VWDFR expression was highest in non-treated berries, and con-
sistently inhibited in the remaining conditions tested, in a similar de-
gree. The expression of VWUFGT and VWABCCI was not significantly
affected by hormonal treatment, but calcium significantly down-
regulated VWUFGT expression in cells treated with MeJA (Fig. 6), in
accordance to the pattern observed in grape cell cultures (Fig. 4). The
expression of VWPMEI was upregulated in berries treated with MeJA
alone, but this stimulation of gene expression was prevented by calcium
(Fig. 6), in agreement with the results obtained in cell cultures. The
repression of VWPG1 and VvPG2 mediated by calcium, which was very
clear in cell cultures, was only apparent in some conditions in intact
detached berries (Fig. 6). The above transcriptional reprograming oc-
curring in intact detached berries did not promote substantial differ-
ences regarding total phenolics and total anthocyanin content (sup-
plementary Fig. 1).
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4. Discussion
4.1. Calcium levels modulate grape cell growth, size and viability

Unravelling the mechanisms of calcium incorporation in fleshy
fruits is particularly important given its key role in cell wall structure
and fruit firmness. Hence, high calcium levels may be beneficial to
ensure maintenance of fruit health during development and extend self-
life (Martin-Diana et al., 2007). However, for being such a powerful
secondary messenger in many cellular processes including phyto-
hormonal pathways (Fortes et al., 2015; Hocking et al., 2016), possible
collateral effects in other determinants of fruit quality cannot be dis-
regarded, particularly in the grape growing and winemaking industries
that greatly rely upon color quality and phenolic richness. Suspension
cells of V. vinifera L. cv. Gamay Fréaux var. Teinturier produce con-
siderable amounts of anthocyanins, consisting of a good model to in-
vestigate calcium effects not only in basic cell parameters such as
growth, but also in secondary metabolic pathways. Notwithstanding the
necessary caution when extrapolating results obtained using cultured
grape berry cells to tissue or whole-plant levels, the cultured berry cells
offer a number of distinct advantages over plant tissues, since problems
associated with bulk diffusion, tissue penetration barriers and cell
heterogeneity can be avoided (Martins et al., 2012). Moreover, studies
were complemented with the experimental model of intact detached
berries in culture.

Initial toxicological studies showed that up to 10 mM calcium no
deleterious effects arise for cell growth, viability and size, suggesting
that grape cells are able to cope with these concentrations, possibly by
sequestering excess calcium in safe storages such as the vacuole, as
previously suggested (Fontes et al., 2010; Martins et al., 2017). The
observed inhibition of cell growth and viability and decrease in cell size
at higher calcium concentrations may primarily arise from the dis-
turbance of the osmotic potential, and deregulation of signaling pro-
cesses in the cell wall, membranes and organelles (Martins et al., 2012).

4.2. Calcium-hormone interplay regulates key enzymes involved in
secondary metabolism pathways

Calcium effects were visible from the earliest steps of secondary
metabolism pathways as summarized in Fig. 7, affecting PAL gene ex-
pression and enzyme activity concordantly, depending on the presence
of ABA or MeJA, suggesting a strong calcium-hormonal interplay in the
regulation of this enzyme, and also of VvSTS, VWDFR, VWUFGT, VvAM1
and VWWABCCI. In many cases, calcium seemed to block MeJA signaling
processes by decreasing the degree of upregulation of gene expression
triggered by this hormone. Given the myriad of processes in which
these two signaling agents participate, it is difficult to ascertain exactly
which pathways are subject to calcium interference. Nonetheless, a few
previous studies have reported a strong link between calcium and MeJA
signaling pathways (Hamilton et al., 2000; Pei et al., 2000; Suhita et al.,
2003, 2004; Sun et al., 2006). The influx of calcium is necessary for
elicitor-induced jasmonic acid synthesis and secondary metabolite ac-
cumulation (Hu et al., 2009; Wasternack and Hause, 2002). However,
the direction of the effect of jasmonic acid, for instance, on Ca®*-AT-
Pase (stimulation or suppression), depends on the tissue physiological
state and the phytohormone concentration (Ladyzhenskaia and
Korableva, 2008). Hence, further studies are required to fully under-
stand the mechanisms underlying the interplay of calcium and MeJA.

In contrast to the enzymes reported above, the effects of calcium on
VYCHS3 stimulation and VWFLSI downregulation did not seem to be
hormone-dependent, therefore, the calcium-MeJA connection seems to
be prominent only in some branches of secondary metabolism path-
ways.

In general, results further suggested that, upon calcium treatment,
the metabolism was directed towards flavonoid biosynthesis in detri-
ment of stilbene synthesis, by upregulation of VvCHS3 and
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Fig. 3. (A) Transcript levels of VWPALI and enzyme activity of PAL in grape cells cv. Gamay treated for 12 h with different combinations of calcium and hormones:
[Ca?*] = 10 mM, [ABA] = 20 UM and [MeJA] = 20 uM. (B) Transcript levels of VwCHS3, VvSTS and VVFLS1 in the same cells. Gene expression was normalized to the

transcript levels of GAPDH (internal standard). Results indicate mean +
significant differences.

downregulation of VWSTS. Moreover, flavonol biosynthesis could be
partially halted as suggested by VvFLS1 downregulation, probably fa-
voring the synthesis of other flavonoids. These results highlight the
intricate signaling pathways in which calcium is involved and the in-
terplay with other signaling processes. Accordingly, recent studies de-
monstrated that calcium can modulate stilbene biosynthesis in Vitis, in
mechanisms that require the involvement of calcium-dependent and
mitogen-activated protein kinases (Aleynova et al., 2015; Jiao et al.,
2017). Few studies on Arabidopsis, strawberry and grape also suggested
a link between calcium and anthocyanins, where Ca®>*, calmodulin,
sugars, and protein kinases/phosphatases are key players, possibly by
modulating anthocyanin biosynthetic genes (Vitrac et al., 2000; Shin
et al., 2013; Xu et al.,, 2014; Peng et al., 2016; Zou et al., 2017).
Minimal calcium levels are necessary for anthocyanin biosynthesis in
carrot cells, in a mechanism that involves increased Ca®*-ATPase ac-
tivity (Sudha and Ravishankar, 2003). In grape cells, a steady upregu-
lation of DFR expression by increasing CaCl, levels up to 100 mM was
demonstrated (Gollop et al., 2002). Accordingly, in the present study,
the expression of the anthocyanin biosynthetic genes VvDFR and
VWUFGT, and the anthocyanin transporters VwvAM1 and VwABCCI1 was
enhanced upon treatment with calcium alone. However, this response
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SD of values of three biological replicates. In bars, different letters indicate statistically

was not observed when ABA or MeJA were also present, the combi-
nation of MeJA + Ca®* causing a great downregulatory effect. Despite
these results, post-translational regulation mechanisms prevailed, as
calcium triggered a sharp inhibition in UFGT enzyme activity, likely
explaining the decreased total anthocyanin content in grape cells and
consequent lower pigmentation. This reduction in anthocyanin pro-
duction and accumulation may greatly account for the decreased con-
tent in total phenolics observed in these cells. The repressive trend on
VVUFGT and VWWABCC1 expression was also observed in intact detached
grape berries treated in vitro, although total anthocyanin content was
ultimately not affected. This result may be explained as whole fruits
consist of a much more complex system, with interference of intrinsic
levels of calcium, hormones and other solutes. Nonetheless, the effects
observed on gene expression confirmed that calcium may have a great
influence on berry secondary metabolism. Overall, results demon-
strated that calcium can block anthocyanin biosynthesis by inhibiting
UFGT at transcriptional and enzyme activity levels, and by down-
regulating transport genes involved in anthocyanin storage and stabi-
lization in grape vacuoles (Gomez et al., 2009; Francisco et al., 2013).
Other genes and enzyme isoforms likely play a role in these processes,
and their combined actions ultimately determine the outcomes of



V. Martins et al.

>

Relative expression
(a.u.)

(a.u.)

ac

Relative expression

UFGT enzyme activity
C

min"' mg™! protein

pmol quercetin 3-glucoside

Journal of Plant Physiology 231 (2018) 57-67

B
12
c VWAM1
S
7
7y
o
o Weary
X 3
9 s
w N
=
-
S
)
14
24
c VVABCC1
o
‘n 18-
b7
g —
S35 124
9 g
0 —'
=
5 &
O
14 a
0' T
> < - ¥ > v
L 2 D 2 > 2
000\ o v xo @0 xo
o ¥
v W
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to the transcript levels of GAPDH (internal standard). Results indicate mean =

tically significant differences.

calcium action on phenolic content.

4.3. Calcium regulates the expression and activity of cell wall enzymes
involved in pectin organization

In parallel to these effects, calcium also exerted significant regula-
tion of the expression and activity of cell wall enzymes involved in
pectin metabolism, as summarized in Fig. 7. The expression and activity
of PG was consistently inhibited by calcium in grape cell cultures, and
this effect was also frequently observed in whole fruits, demonstrating
that this enzyme is extremely susceptible to calcium action. These re-
sults are in accordance to the competition of PG and calcium for
binding pectic polysaccharides, that can either be degraded by PG or
cross-linked by calcium. In addition, calcium can directly inhibit PG by
competing with the substrate binding site, or by interacting with the
substrate itself making it unavailable for the enzyme (Martins et al.,
2012). These mechanisms are in line with ripening processes in fleshy
fruits where calcium is required to inhibit premature softening (Wills
and Rigney, 1980); green grape berries accumulate high levels of
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calcium and thus are strong and hard, however, as ripening progresses,
a rise in PG activity occurs together with the cease on calcium flow to
the fruits, in most cultivars, loosening the cell walls and promoting loss
of cell cohesion, thus resulting in fruit softening (Martins et al., 2012).
Interestingly, VWPG1 was only expressed in the presence of ABA (either
fed to cell cultures, or intrinsically present in berries), in line with
previous studies reporting its marked increase during veraison and
close correlation with berry softening and maturation (Deytieux-
Belleau et al., 2008), where ABA has a major role by participating di-
rectly in the cell wall catabolism via the upregulation of the expression
of a suite of important genes including PGs (Conde et al., 2007; Sun
et al., 2012). In contrast to VvPG1, VvPG2 starts accumulating before
veraison and its expression is kept at low levels during skin ripening,
possibly being involved in triggering the ripening process (Deytieux-
Belleau et al., 2008). The downregulation of VvPG2 by MeJA is in line
with studies in tomato fruits demonstrating that MeJA may stimulate
PG degradation (Saniewski et al., 1987). The effects of calcium on PME
were not so linear, which could be explained by the fact that PME first
acts on the de-esterification of polygalacturonans, and only then these
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become available for cross-linking with calcium or degradation by PG
(Hocking et al., 2016). Hence, a feedback regulatory mechanism may
not occur in this step. Nonetheless, as in berries treated with MeJA
VVPME] was strongly downregulated by calcium, perhaps a regulatory
mechanism arises from the calcium-MeJA link, as reported previously
for other enzymes in this study. Furthermore, as enzyme activity de-
creased in cell cultures treated with ABA, a calcium-ABA link may also
be apparent. Hence, different isoforms of PME could be expressed at
specific stages of development, each having specific functions and
regulatory modes (Barnavon et al., 2001).

5. Conclusion

The present study exposed the strong interplay between calcium and
the phytohormones ABA and MeJA in modulating the major pathways
involved in secondary metabolism and pectin cross-linking in grape
berry cells, at gene expression, enzyme activity and metabolite levels,
with emphasis on anthocyanin biosynthesis and accumulation. Studies
involving the exogenous application of calcium sprays in the field,
which are in progress, will allow the characterization of these effects on
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the overall solute composition and physical properties of grape berries,
including color quality, cell wall structure, fruit firmness, and the
consequences for berry microbiome and wine aroma.
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