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Abstract. We show that a definition of convexity based on the convexity of the score function does not guarantee preservation
of convexity under intersections and provide a concept of convexity for hesitant fuzzy sets without this backdraw. We study the
relationship between convex hesitant fuzzy sets and convex rough sets as their cuts.

Keywords: Fuzzy sets, hesitant fuzzy sets, convexity, rough sets.

1. Introduction

Hesitant fuzzy sets are one of currently studied gen-
eralizations of fuzzy sets (and in fact a special case of
type-2 fuzzy sets). A natural motivation for such ob-
jects is a mathematical model for an evaluation by a
group of (perhaps mutually dependent) experts. The
potential dependence justifies a hesitant fuzzy set as
a single object, similar to IF-sets, that could also be
studied as pairs of fuzzy sets, but due to their nature
and motivation, this is not the proper case how to un-
derstand an IF-set. Formally hesitant fuzzy sets have
been introduced in [6] and [7], but the idea itself can be
found also in previous works, like [2]. Although they
are a relatively new object of research, they seem to
have high potential for applications, especially in deci-
sion making (see [9,10,11,12]).

Convexity, as one of the crucial geometrical con-
cepts, is important also for fuzzy sets theory and its ap-
plications, like fuzzy optimization. An attempt to de-
fine convexity for hesitant fuzzy sets has been done in
[4], however, as we will show, there are some prob-
lems connected to the concept of convexity used there.
In this work we show an alternative definition that re-
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spect some expected properties of convex sets. As a
basis for our consideration we take the usual defini-
tion of convexity for fuzzy sets (see [1]), i.e. a fuzzy
set f defined on a linear space X is convex, if for each
x,y ∈ X ,λ ∈ [0,1] there is

f (λx+(1−λ )y)≥ λ f (x)+(1−λ ) f (y).

Clearly the convexity of a fuzzy set is equivalent to
convexity of all its α-cuts fα = {x ∈ x; f (x)≥ α}.

2. Basic concepts

A hesitant fuzzy sets (HFS) is defined in terms of
functions that returns a set of membership values for
each element in the domain. Throughout this work we
will use HFS in two different meanings, as an abbrevi-
ation of the words "hesitant fuzzy set" and also as the
set of all hesitant fuzzy sets defined on the real line.
Thus, the expressions " f is a HFS" and " f ∈ HFS"
mean the same. We can define a HFS in two different
points of view. First, a HFS can be defined as an exten-
sion of fuzzy sets, as introduced in [6].

Definition 1 Let X be a reference set, a HFS on X is
a function h that assigns a subset of [0,1] to x ∈ X, i.e.
h : X → 2[0,1].
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Hence HSF provide a general frame, covering e.g.
fuzzy sets, interval-valued sets and formally also IF-
sets.

Sometimes this definition is restricted in some way,
mostly it is assumed that the values h(x) are finite sub-
sets of the unit interval.

Another possible definition of HFS is based on its
concept of (possibly mutually interrelated) set of fuzzy
sets.

Definition 2 Let X be a reference set and A be a set
of membership functions. The HFS associated with A,
hA, is defined as hA : X → 2[0,1] such that

hA(x) =
⋃

µ∈A

{µ(x)}.

Again, the set A can be supposed to be finite. This
definition is quite suitable in decision making, when
experts assess a set of alternatives. In such case, each
element of A represents the assessments of an individ-
ual expert of all alternatives and hA(x) represents the
set of assessments of the the experts for the single al-
ternative x.

To score function for a hesitant fuzzy set h with a
finite set of values at each x has been introduced in [8]
in the following way:

Definition 3 [8] For h ∈ HFS the function sh : X →
[0,1]

sh(x) =
1

lh(x)
∑

γ∈h(x)
γ,

where lh(x) is the number of the elements in h(x), is
called a score function of h.

The score function is also used for the definition of
cuts of a HFS, as by an α-cut of a HFS we can under-
stand the respective α-cut of its score function.

3. Convexity based on a score function

Rashid and Beg in [4] introduced the following the
concept of convexity for HFS.

Definition 4 [4] Let X be a vector space. Then h ∈
HFS with a score function sh is said to be quasi-convex
if for all x,y ∈ X ,λ ∈ [0,1] it holds that sh(λx+(1−
λ )y))≥ min{sh(x),sh(y)}.

In [4] it is also shown that the system of all quasi-
convex HFS is exactly the system of all HFS with con-
vex cuts (e.g. corresponding cuts of the score func-
tion), which means that the definition is at least from
this point of view reasonable. Moreover, if f is a con-
vex fuzzy set, then it is also convex with respect to [4]
as a HFS with singleton values.

However, one of the principal properties, that makes
the collection of all convex sets so important in a va-
riety of applications, like e.g. optimization (see [1,5])
is the fact, that convexity is preserved under arbitrary
intersections. As we will show in a counter-example,
the concept of quasi-convexity defined in [4] has not
this property.

Let us assume that we restrict ourselves to HFS with
finite values. To work with intersections, we will re-
peat the notation form [6]: Suppose f ,g ∈ HFS. Then
f+(x) = max{ f (x)}, f−(x) = min{ f (x)}. The inter-
section of f ,g is the following HFS:

( f ∩g)(x)= {γ ∈{ f (x)∪g(x)};γ ≤min{ f+(x),g+(x)}}

Later we will use the following identities, which are
direct consequences of the above definition:

( f ∩g)+ = min{ f+,g+}, ( f ∩g)− = min{ f−,g−}

In the following example we show that the intersec-
tion of two quasi-convex HFS (using the definition of
quasi-convexity from [4]) need not be a quasi-convex
HFS.

Example 1 Let f ,g be HFS, both defined on the inter-
val [−1,1], each consisting of two membership func-
tions: f1(x) = 0.1, f2(x) = 0.9 (full lines) and g1(x) =
1− |x|5 ,g2(x) = 0.9− |x|5 (dashed lines).

1

0 1−1

Their score functions are s f (x)= 0.5,sg(x)= 0.95−
|x|
5 . Hence, both f ,g are quasi-convex HFS. Their in-

tersection is the following:
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1

0 1−1

The value of its score function at 0 is 1
2 (0.1+0.9) =

0.5, but the value of the score function at both points
−1 and 1 is 1

3 (0.1+0.7+0.8) = 0.533 · · ·> 0.5, hence
this intersection is not quasi-convex.

The previous example shows that it is necessary to
provide an alternative definition of convexity for HFS
– a convexity, which is at least preserved under inter-
sections.

Another weak point of the attitude in [4] is that it
cannot be used for HFS with infinite sets as values,
unless the score function is redefined.

4. Convexity preserved under intersections

Our aim is to provide a definition of convexity for
hesitant fuzzy sets that fulfill the following natural
conditions:

– a convex fuzzy set considered as a HFS with sin-
gleton values is convex,

– an intersection of convex HFS is a convex HFS,
– a (reasonable defined) cut of a convex HFS is a

convex set.

To find the proper definition we may be guided by
the principle of convexity for fuzzy sets on a real inter-
val, which says that a fuzzy set is convex on an interval
[x,z] if and only if for each y such that x < y < z there
is f (y) ≥ min{ f (x), f (z)}. Thus we can consider the
following options for convexity of a hesitant fuzzy set
f , again for points x < y < z:

– all the values of f (y) are greater or equal to all the
values of either f (x) or f (z),

– at least one value of f (y) is greater or equal to all
the values of either f (x) or f (z),

– at least one value of f (y) is greater or equal to at
least one value of either f (x) or f (z).

Although formally we can consider convexity in any
of the above cases, the first one is too restrictive, as
under this condition a HFS consisting of two different
constant membership functions would not be convex.

Also the last option is not too practical, because then
any HFS containing a constant membership function
would be convex. Thus we will concentrate on HFS
fulfilling the second option and of course all three con-
ditions for convexity stated at the beginning of this sec-
tion.

As we will show, the following definition fulfills all
these requirements.

Definition 5 Let f ∈HFS in a vector space X. Then f
is convex if for all x,z ∈ X ,λ ∈ [0,1] there is

f+(y)≥min{ f+(x), f+(z)},

where y = λx+(1−λ )z.

It is immediate, that a convex fuzzy set is also a con-
vex HFS, as in such case f = f+.

In the following proposition we show that convexity
is preserved under intersections.

Proposition 1 Let f ,g∈HFS in a vector space X , f ,g
convex. Then f ∩g is also convex.

Proof. Suppose f ,g are convex HFS on X and x,z ∈
X ,y = λx+(1−λ )z,λ ∈ [0,1]. We will show the in-
equality

( f ∩g)+(y)≥min{( f ∩g)+(x),( f ∩g)+(z)}.

As we have noted at the definition of the intersection
for HFS, we have

( f ∩g)+(y) = min{ f+(y),g+(y)} ≥
≥min{min{ f+(x), f+(z)},min{g+(x),g+(z)}}=
= min{min{ f+(x),g+(x)},min{ f+(z),g+(z)}}=
= min{( f ∩g)+(x),( f ∩g)+(z).
Hence the intersection of two convex HFS is convex.

�
We can also see, that at least one value of f (y) (for

example f+(y)) is greater or equal to all the values of
either f (x) or f (z).

Finally it will also be interesting to establish the
connection between convex HFS and their cuts. If for
α ∈ [0,1] we define an α-cut of f ∈ HFS as the set

fα = {x ∈ X ; there exists γ ∈ f (x);γ ≥ α}

then we have fα = f+α and the equivalence between the
convexity of f and convexity of its cuts is immediate.

If we strengthen the condition of convexity in Defi-
nition 5 adding the condition

f+(y)≥min{ f−(x), f−(z)}
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(note that the analogical statement to Proposition 1 re-
mains valid), we obtain a proper subset of all convex
HFS, which we can call strongly convex HFS.

Also we can define a strong α-cut of a HFS f ∗α as
the set

f ∗α = {x ∈ X ; for all γ ∈ f (x);γ ≥ α}

Now we have a connection of strongly convex HFS
and rough sets, that were defined in [3]. We remind
that by a rough set in a universe X we understand a
pair (A,B) ∈ 2X × 2X such that A ⊆ B. A rough set is
convex if both its parts are convex.

If for some α all the values γ ∈ f (x) exceed α , then
also f−(x)≥ α and vice versa. Thus f ∗α = f−α and we
have the following proposition:

Proposition 2 Let f be a HFS. Then f is strongly con-
vex if and only of all its pairs of cuts ( f ∗α , fα) are con-
vex rough sets.

5. Concluding remarks

We have provided a definition of convexity for hes-
itant fuzzy sets that preserves convexity under inter-
section. Of course it would be better to show imme-
diately, that the intersection of an arbitrary collection
of convex HFS is a convex HFS. In Proposition 1 we
preferred to work with just two HFS, partly or clear-
ness, partly because the intersection in [6] is also de-
fined for two HFS. However, the generalization is ob-
vious. First, for any f ∈ HFS (no condition on values)
we can define f+(x) = sup f (x) and f−(x) = inf f (x).
Then if Φ is an arbitrary set of indices, we put

∩ϕ∈Φ( fϕ)(x) = {γ ∈ ∪ϕ∈Φ fϕ(x);γ ≤ inf f+ϕ (x)}.

The same method as in the proof of Proposition 1
shows that the intersection of arbitrary convex HFS is
a convex HFS.

In Definition 5 we could also use the inequality
f−(y)≥min{ f−(x), f−(z)}, i.e. to require the convex-
ity of the "lower envelope". The convexity of the in-
tersection in such case is even more obvious, as it fol-
lows from the convexity of the minimum of two con-
vex fuzzy sets.

Comparing with the method used in [4] we admit
that the advantage of a score function is that it aggre-
gates all the values of f (x), while convexity in our at-
titude depends only on the convexity of f+, or (in case
of the strong convexity) of f+ and f−. In future re-
search it will be interesting to discuss systems of con-
vex HFS, where the convexity is connected also with
the intermediate values of f (x).
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