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Abstract
Background To evaluate whether there are differences in the phenotype of primary distal renal tubular acidosis (dRTA) patients
according to the causal defective gene.
Methods Twenty-seven non-oriental patients with genetically confirmed dRTAwere grouped according to the identified under-
lying mutations in either ATP6V1B1 (n = 10), ATP6V0A4 (n = 12), or SLC4A1 (n = 5) gene. Demographic features, growth
impairment, biochemical variables and presence of deafness, nephrocalcinosis, and urolithiasis at diagnosis were compared
among the three groups.
Results Patients with SLC4A1 mutations presented later than those with ATP6V1B1 or ATP6V0A4 defects (120 vs. 7 and
3 months, respectively). Hearing loss at diagnosis was present in the majority of patients with ATP6V1B1 mutations, in two
patients with ATP6V0A4mutations, and in none of cases harboring SLC4A1mutations. Serum potassium concentration (X ± SD)
was higher in SLC4A1 group (3.66 ± 0.44 mEq/L) than in ATP6V0A4 group (2.96 ± 0.63 mEq/L) (p = 0.046). There were no
differences in the other clinical or biochemical variables analyzed in the three groups.
Conclusions This study indicates that non-oriental patients with dRTA caused by mutations in the SLC4A1 gene present later and
have normokalemia or milder hypokalemia. Hypoacusia at diagnosis is characteristically associated with ATP6V1B1 gene
mutations although it may also be present in infants with ATP6V0A4 defects. Other phenotypical manifestations do not allow
predicting the involved gene.

Keywords Distal renal tubular acidosis . Genetic analysis . ATP6V1B1 . ATP6V0A4 . SLC4A1

Abbreviations and acronyms
dRTA distal renal tubular acidosis
ATP6V0A4 ATPase H+ transporting V0 subunit A4
ATP6V1B1 ATPase H+ transporting V1 dubunit B1
SLC4A1 Solute carrier family 4 member 1

Introduction

Type 1, distal renal tubular acidosis (dRTA) is a rare disorder
characterized by persistent hyperchloremic, normal plasma
anion gap, and metabolic acidosis in the presence of inappro-
priately high urinary pH and low urinary excretion of ammo-
nium [1]. dRTA is caused by inability of the α-intercalated
cells of the collecting tube to acidify the urine. Proximal leak
of bicarbonate does not occur, and glomerular filtration rate is
characteristically normal [2].

In children, dRTA is usually primary, common presenting
manifestations being growth retardation, vomiting and dehy-
dration, loss of appetite, diarrhea or constipation, and polyuria
[3]. Hypokalemia is often found and may lead to weakness and
paralysis [4]. The association of hypocitraturia and elevated
urine calcium excretion leads to nephrocalcinosis and increased
risk of urolithiasis [5].
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Primary dRTA results from genetic defects, the most fre-
quently implicated genes being ATP6V1B1, located at chro-
mosome 2 (2p13.3), and ATP6V0A4, at chromosome 7 (7q33-
34), which, respectively, encode the B1 and A4 subunits of the
H+-ATPase of the α-intercalated cells [6]. The B1 isoform of
the H+-ATPase V1 domain is also expressed in the inner ear
cells [7]. Loss of function mutations in ATP6V1B1 and
ATP6V0A4 genes causes early onset and severe forms of au-
tosomal recessive dRTA [8]. The SLC4A1 gene, located at
chromosome 17 (17q31.21), codifies the exchanger Cl−

/HCO3− (AE1) placed on the basolateral surface of α- inter-
calated cells and in erythrocyte membrane. Mutations in
SLC4A1 gene cause a milder form of dRTA that follows an
autosomal dominant inheritance and often presents in adult-
hood [9–11], thereby few pediatric cases have been reported.
Autosomal recessive dRTA caused by mutations in SLC4A1
gene have particularly been described in Asian people in as-
sociation with ovalocytosis and spherocytosis [12–14].
Recently, recessive missense mutations in FOXI1 gene,
encoding the transcription factor FOXI1 that regulates a group
of membrane transport proteins in the collecting duct, have
been found in two unrelated consanguineous families as re-
sponsible of sensorineural deafness and dRTA [15].

We used the RenalTube database [16] to better characterize
the phenotypical spectrum of primary dRTA caused by
ATP6V1B1, ATP6VOA4, or SLC4A1 gene defects and find
out whether clinical and/or biochemical manifestations might
help differentiate these three types of dRTA.

Material and methods

Patients

Twenty-seven pediatric patients with primary dRTA aged
from 1 month to 15 years (18 males) and corresponding to
25 families were selected from the RenalTube database and
grouped according to the underlying genetic defect as follows:
ATP6V1B1, ATP6V0A4, and SLC4A1 groups. Sex, age, pre-
senting manifestations, family history, biochemical data, and
image studies at diagnosis were analyzed and compared.

Metabolic acidosis was diagnosed by a blood pH < 7.35
and/or serum bicarbonate concentration < 22 mEq/L.
Hyperchloremia was defined by serum chloride values >
105 mEq/L, and hypokalemia was defined by serum potassi-
um < 3.5 mEq/L. A urinary acidification defect was diagnosed
by urinary pH > 5.5 in the presence of metabolic acidosis.
Hypercalciuria was defined by calcium/creatinine ratio >
0.8 mg/mg in infants aged between 1 and 6 months, >
0.6 mg/mg in those aged 6–12 months, > 0.47 mg/mg in chil-
dren of 1 year of age and > 0.22mg/mg in those aged > 2 years
[17]. The diagnosis of hypocitraturia was made when first
morning urine citrate/creatinine ratio was < 400 mg/g.

Fractional excretion of potassium (FEK) was calculated by
the formula: (urine potassium × serum creatinine/serum potas-
sium × urine creatinine) × 100.

Mutations of ATP6V1B1, ATP6V0A4, and SLC4A1 genes
were identified by next-generation sequencing (NGS) and val-
idated by Sanger sequencing, as described [18].

Statistical analysis

Comparisons among the three groups were performed using
SPSS software (SPSS V15.0 Windows). Age at diagnosis and
Ca/Cr ratio were expressed as median and interquartile range
for being not normal quantitative variables and were com-
pared by non-parametric Kruskal-Wallis test. The normal
quantitative variables, expressed as mean and standard devia-
tion (X ± SD), were compared using one-way Anova. χ2

Pearson or the Fisher exact test was used to relate categorical
variables. P values lower than 0.05 were considered statisti-
cally significant. Height and weight were represented graphi-
cally as boxplots (median and interquartile).

Results

Table 1 shows the demographic, clinical, and genetic data
of the three groups of patients: 10, 12, and 5 cases harbor-
ing mutations in ATP6V1B1, ATP6V0A4, SLC4A1 genes,
respectively. Patients with ATP6V1B1 or ATP6V0A4 gene
mutations (I.1-XX.1) were diagnosed earlier (p < 0.002)
than patients with SLC4A1 mutations (XXI.1-XXV.1), me-
dian ages being 7 (30) months for ATP6V1B1, 3 (9) months
for ATP6V0A4, and 120 (60) months for SLC4A1 patients.
No differences were found in height and weight among
groups (Figs. 1 and 2).

Hearing loss was recognized in eight children with
ATP6V1B1 mutations and two children with ATP6V0A4 mu-
tations. None of the SLC4A1 patients had sensorineural hear-
ing impairment.

Diagnostic laboratory tests are shown in Table 2.
Differences were only found for serum potassium, higher
inSLC4A1 than ATP6V0A4 patients (p = 0.046).

Discussion

This study provides interesting findings useful for the di-
agnosis and phenotypical characterization of primary
dRTA. Few publications [18–21], such as those of
Palazzo et al. [20] and Besouw et al. [22] recently report-
ed, have compared the clinical manifestations of pediatric
patients with dRTA classified according to the underlying
genetic defect. Among the patients here presented, ten had
mutations in theATP6V1B1 gene. Five of these children
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were Africans and harbored the same mutation (c.1228 in.
C; p.I386Hfs.) in homozygosis, according to the founder
effect of this variant proposed by Nagara et al. for dRTA
patients from North-African geographical origin [22]. In
this group, the five remaining patients were Caucasian
and three (V.1, VI.1, and VII.1) carried the same mutation
(g.70960079; Intron 6 + 1 G > A, Splicing), in spite of no
known familiar relationship between them.

As for the SLC4A1 group, it is of note that almost no
data are available in the literature on children of Occidental
origin with this variant form of autosomal dominant dRTA
not associated with hemolytic anemia [23–27]. SLC4A1
variants found in our patients have already been related
with a late clinical onset of dRTA [18, 28, 29]. The median
age at diagnosis of our patients with SLC4A1 mutations
was 10 years. Therefore, patients with this type of dRTA
may present before adulthood, in the late childhood. There
was no overlap in the age of diagnosis between dRTA
caused by SLC4A1 gene mutations and the other two types
of dRTA. Patients with ATP6V1B1 and ATP6V0A4 gene
defects in our series debut in infancy at a mean age of 7
and 3 months, respectively. However, it should be noted
that two children having ATP6V1B1mutations and one
child with ATP6V0A4 mutations were diagnosed after the
second year of life indicating that these forms of dRTA
may not be detected during early infancy. Patients with
SLC4A1 gene mutations had less severe forms of dRTA
and tended to have less marked growth retardation, less
severe metabolic acidosis, and significantly milder hypo-
kalemia which might someway justify the later diagnosis.
Besouw et al. [21] found that children with H+-ATPase
pump defects needed higher alkali doses to correct acidosis
than children with SCL4A1 mutations. It has also been
reported that the degree of acidosis or hypokalemia varies

depending on whether the dRTA is autosomal recessive
(ATP6V0A4 and ATP6V1B1 genes) or dominant (SLC4A1
gene). Battle et al. [29] showed that individuals with
autosomal-recessive pattern had serum potassium levels
lower than those with an autosomal-dominant inheritance.

Neither the frequency of nephrocalcinosis or urolithiasis
nor the urinary calcium excretion was different among the
three groups.

The patient XXIII.1 of the SLC4A1 group had a height Z
score equal to − 2.82 DS, much greater growth retardation
than the other group’s cases. It is worth commenting that this
patient, additionally to the de novo p.R589C mutation, had a
polymorphism (rs148170067 SNP; c.889 C > T, p.V245 M)
inherited from the father, who never manifested any symptom
related to dRTA. Thus, this polymorphism could induce a
synergistic negative effect, enhancing the harmful impact of
the mutation and explaining why this patient had more severe
metabolic acidosis and greater growth retardation.

Another noticeable finding of our study was that eight pa-
tients with mutations in the ATP6V1B1 gene were deaf, out of
ten in whom the symptom was sought, by contrast with only 2
out of 14 children with ATPV0A4 gene mutations. As expect-
ed, none of patients harboring SLC4A1 gene defects had deaf-
ness because the Cl−/HCO3− anion exchanger does not ex-
press in the ears. It was classically assumed that dRTA caused
by defective ATP6V1B1 gene was associated with early nerve
hearing loss [7, 28, 30–33], while ATP6V0A4 mutations were
related with either late-onset deafness or normal hearing,
[34–40]. Vargas-Poussou et al. [41] challenged this assump-
tion demonstrating genetic heterogeneity in dRTA associated
with deafness and emphasizing the importance of mutational
gene analysis for recessive forms of dRTA independent of

Fig. 2 Boxplot showing the height SDS at diagnosis. ATP6V1B1 means
patients with mutation in ATP6V1B1 gene. ATP6V0A4 means patients
withmutation in ATP6V0A4 gene. SLC4A1means patients with mutation
in SLC4A1 gene

Fig. 1 Boxplot showing the weight SDS at diagnosis. ATP6V1B1 means
patients with mutation in ATP6V1B1 gene. ATP6V0A4 means patients
withmutation in ATP6V0A4 gene. SLC4A1means patients with mutation
in SLC4A1 gene
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hearing loss. However, although the early presence of
neurosensorial deafness does not fully discriminate between
the two types of dRTA caused by a loss of function of the H+
ATPase pump, our results indicate that, at early age, the de-
tection of deafness in patients with dRTA is highly suggestive
of an underlyingmutation in the ATP6V1B1 gene. It should be
mentioned that the occurrence of deafness in dRTA has been
related with the expansion of the vestibular aqueduct [42, 43],
a finding unfortunately not explored in our series of patients.

In summary, we here presented clinical and biochemical
data at diagnosis of non-oriental patients with different genetic
forms of primary dRTA. At diagnosis, the patient’s age, the
severity of hypokalemia, and the presence of hypoacusia
might be useful to differentiate the underlying molecular de-
fect which needs to be confirmed by gene analysis.
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