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A Biomaterial Composed of Collagen and Solubilized

Elastin Enhances Angiogenesis and Elastic

Fiber Formation Without Calcification

WILLEKE F. DAAMEN, Ph.D.,1 SUZAN T.M. NILLESEN, M.Sc.,1 RONNIE G. WISMANS, M.Sc.,1

DIETER P. REINHARDT, Ph.D.,2 THEO HAFMANS, B.Sc.,1,3 JACQUES H. VEERKAMP, Ph.D.,1

and TOIN H. VAN KUPPEVELT, Ph.D.1

ABSTRACT

Elastin is the prime protein in elastic tissues that contributes to elasticity of, for example, lung, aorta, and
skin. Upon injury, elastic fibers are not readily replaced, which hampers tissue regeneration. Incorporation
of solubilized elastin (hydrolyzed insoluble elastin fibers or elastin peptides) in biomaterials may improve
regeneration, because solubilized elastin is able to promote proliferation as well as elastin synthesis. Porous
biomaterials composed of highly purified collagen without and without elastin fibers or solubilized elastin
were prepared by freezing and lyophilization. Solubilized elastin formed spherical structures that were
incorporated in the collagenous part of the scaffolds and that persisted after chemical crosslinking of the
scaffolds. Crosslinked scaffolds were subcutaneously implanted in young Sprague Dawley rats. Collagen-
solubilized elastin and collagen scaffolds showed no calcification in this sensitive calcification model, in
contrast to scaffolds containing elastin fibers. Collagen-solubilized elastin scaffolds also induced angio-
genesis, as revealed by type IV collagen staining, and promoted elastic fiber synthesis, as shown with
antibodies against rat elastin and fibrillin-1. It is concluded that scaffolds produced from collagen and
solubilized elastin present a non-calcifying biomaterial with a capacity for soft-tissue regeneration, espe-
cially in relation to elastic fiber synthesis.

INTRODUCTION

ELASTIN IS THE MAJOR INSOLUBLE PROTEIN present in elas-

tic tissue, contributing to the elasticity of lung, aorta,

ligaments, and skin. Elastic fibers are not readily replaced

upon injury,1 probably because of difficulties in recapitu-

lating normal developmental expression patterns of tropo-

elastin and associated molecules.2,3 This seriously hampers

tissue regeneration.

Solubilized elastin (obtained by hydrolyzing insoluble

elastin) maymarkedly improve tissue regeneration, because it

exhibits multiple biological effects. These include enhanced

cell migration,4 cell proliferation,5 and elastin synthesis.6,7

Solubilized elastin interacts with the elastin-laminin receptor,

which is composed of 3 subunits: 2 transmembrane subunits

of 61 and 55 kDa and 1 extracellular subunit of 67 kDa, the

latter binding tropoelastin and other elastin-like molecules.

The receptor is present on a large number of cells, including

fibroblasts, vascular smooth muscle cells, endothelial cells,

chondrocytes, monocytes, lymphocytes, and polymorphonu-

clear leukocytes, and its signal transduction pathway is me-

diated through a pertussis toxin–sensitive G-protein.8–11 In
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addition to the elastin-laminin receptor, other receptors may

play a role as well (e.g., integrins).12 Biomaterials containing

solubilized elastin may thus exert biological effects on a wide

variety of cell types.

We have previously prepared biomaterials composed of

highly purified type I collagen and elastin fibers and studied

their tissue reaction.13,14 In young Sprague Dawley rats (but

not in adult rats), implantation of these scaffolds resulted in

calcification of elastin fibers. Although initiation of tissue

calcification does not require a cellular response,15 the

in vivo milieu can accelerate the process16 (e.g., through the

extracellular release of enzymes by macrophages and giant

cells involved in elastin degradation).17–20

We here hypothesize that porous scaffolds containing

solubilized elastin may improve synthesis of elastin through

interaction with the elastin-laminin receptor.6 Furthermore,

if enzymes involved in elastin degradation play a role in

increasing calcification, application of solubilized elastin

may reduce the presence of macrophages and giant cells

and thus reduce calcification. In addition, solubilized elas-

tin is less hydrophobic and more charged than insoluble

elastin. Negative charges from C-terminal carboxylic groups

may prevent positively charged calcium ions from precipi-

tating in the same way, because negatively charged sulfate

groups have been shown to suppress calcium binding to, for

example, polyurethane.21 In this study, we therefore pre-

pared and characterized collagen, collagen–elastin fibers,

and collagen-solubilized elastin scaffolds and studied cal-

cification, angiogenesis, and elastin synthesis after subcu-

taneous implantation.

MATERIALS & METHODS

Materials

Mouse anti-bovine elastin immunoglobulin (Ig)G clone

BA-4 was purchased from Sigma Chemical Co. (St Louis,

MO); goat anti-rat alpha-elastin from Elastin Products Co.

(Owensville, MO); rabbit anti-bovine type I collagen, rabbit

anti-rat type I collagen, and rabbit anti-rat type III collagen

IgGs from Chemicon (Temecula, CA); and goat anti-human

type IV collagen IgG from Southern Biotechnology Inc.

(Birmingham, AL). Rabbit anti-human fibrillin-1 (pAb-rF6H)

and rabbit anti-human fibrillin-2 (anti-rFBN2-1) anti-sera

were prepared as described previously.22,23 Alexa488- and

Alexa594-labeled secondary antibodies were from Mole-

cular Probes Europe (Leiden, The Netherlands), and rabbit

anti-goat peroxidase and 3,3-di-aminobenzidine tetrahydro-

chloride (DAB) were from DAKO (Glostrup, Denmark).

Isolation of scaffolds components

Insoluble type I collagen was purified from bovine

Achilles tendon. Briefly, tendons were cleaned from non-

collagenous tissue, pulverized under liquid nitrogen con-

ditions using a Pulverisette 19 with a 0.5-mm sieve (Fritsch,

Idar-Oberstein, Germany), and consecutively rinsed ex-

tensively with 0.1M sodium chloride (NaCl) in 50mM

Tris-hydrochloric acid (HCl) pH 7.2, 1.0M NaCl in 50mM

Tris-HCl pH 7.2, 4M urea in 0.5M acetic acid, 0.5M acetic

acid, acetone, and demineralized water.24

Insoluble elastin fibers (ELfiber) were isolated from equine

ligamentum nuchae. Non-elastinous tissue was removed,

and ligaments were pulverized under liquid nitrogen con-

ditions through a 1.0mm sieve. The pulverized ligament

was then washed and treated with 1M NaCl in 10mM

phosphate buffer pH 7.4 (PB), various organic solvents,

formic acid with cyanogen bromide, 4M urea plus 1M

2-mercaptoethanol in 0.1M PB, trypsi, and 1M NaCl in

10mM PB.25 Solubilized elastin (ELsol) was prepared from

insoluble elastin fibers using oxalic acid hydrolysis.26

Briefly, 10 g of elastin was hydrolyzed for 1 h with 75mL

0.25Moxalic acid at 958C. Then the preparationwas quickly
cooled on ice and centrifuged, and the supernatant was

collected. The pellet was hydrolyzed again for 1 h with

oxalic acid, followed by cooling and centrifuging. This pro-

cedure was repeated until all insoluble material was solu-

bilized (generally after a total of 14 steps). Supernatants

were pooled, dialyzed against 10mM PB, and subsequently

dialyzed against MilliQ water using Amicon Ultra-15

10 kDa MWCO filter tubes (Millipore, Billerica, MA).

Characterization of solubilized elastin preparation

The amount of solubilized elastin in the elastin pool was

determined according to the method develop by Lowry,27

size of elastin using 1-dimensional gel electrophoresis (4%

polyacrylamide gelwith silver staining),28 andgel permeation

chromatography29 [column material: Sephacryl S-500, ref-

erence samples: ferritin (0.88MDa), dextran blue (2MDa),

and Helix pomatia hemocyanin (9MDa)], size-charge dis-

tribution using 2-dimensional gel electrophoresis,30 amine

group content after reaction with 2,4,6-trinitrobenzene sul-

fonic acid,31 and amino acid composition using a Biochrom

20 amino acid analyser (Amersham Pharmacia Biotech,

Uppsala, Sweden).32

Preparation of scaffolds

Various scaffolds were prepared composed of collagen

only (COL); collagen plus insoluble elastin fibers in a 1:1

ratio (COL-ELfiber); and collagen with solubilized elastin in

97:3, 9:1, and 1:1 ratios (COL-ELsol).

Briefly, a 2% (w/v) protein suspension (collagen without

or with elastin fibers) was shaken overnight in 0.5M acetic

acid at 48C. If appropriate, ELsol was added and the sus-

pension diluted to 1% (w/v) with cold MilliQ water and

homogenized on ice using a Potter-Elvehjem homogenizer.

Air-bubbles were removed by centrifuging at 250 g for

10min at 48C. The suspension was then slowly poured into

a plastic mould, frozen in a bath of ethanol and solid carbon
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dioxide (CO2) (–808C) and lyophilized in a Zirbus lyoph-

ilizer (Bad Grund, Germany). For scaffolds composed of

collagen plus ELsol in a 1:1 ratio, a suspension with a final

concentration of 1.6% was used as well.

Scaffolds were applied as such (non-crosslinked) or

crosslinked. For crosslinking, 200mg of scaffold was

incubated for 4 h at 228C with 20mL 33mM 1-ethyl-3-

(3-dimethyl aminopropyl)carbodiimide (EDC) and 6mMN-

hydroxysuccinimide (NHS) in 50mM 2-morpholinoethane

sulfonic acid (pH 5.0) containing 40% ethanol. EDC/NHS

crosslinked scaffolds were then washed with 0.1M diso-

dium hydrogen phosphate (twice for 1 h), 1M NaCl (twice

for 2 h), 2M NaCl (once overnight, 5 times for 30min), and

MilliQ water (6 times for 30min). The scaffolds were then

frozen in ethanol/CO2 again and lyophilized.
14,33 For in vivo

experiments, EDC/NHS-crosslinked COL and COL-ELfiber

1:1 scaffolds from a 1.0% suspension were used along with

COL-ELsol 1:1 scaffolds from a 1.6% suspension.

Characterization of scaffolds

The amine group content was measured to evaluate the

degree of crosslinking.31 The amount of Elsol bound to col-

lagen was established by estimating the protein content in

the solution after crosslinking. Proteins in this solution were

precipitated with 10% 2,4,6-trichloreacetic acid on ice for

2 h and centrifuged. The pellet was then dissolved in 10mM

sodium hydroxide and the protein amount assayed according

to the method developed by Lowry.27 The same proce-

dure was applied to evaluate the in vitro release of ELsol

from the scaffolds. Neither non-crosslinked nor EDC/NHS-

crosslinked collagen scaffolds gave any release of protein

from the scaffolds after 24 h or 7 days in PBS, and therefore

the protein release from COL-ELsol scaffolds could be at-

tributed to ELsol only. Water-binding capacity of scaffolds

was determined as previously described.14 Scanning elec-

tron microscopy was used to analyze the morphology of

the scaffolds,14 transmission electron microscopy to deter-

mine the ultrastructure of the scaffolds,25 and immunofluo-

rescence microscopy to study the distribution of ELsol in

the scaffolds using mouse anti-bovine elastin (1:1000) as a

primary antibody.13

In vivo evaluation of scaffolds

The Ethics Committee of the Radboud University Nij-

megen Medical Centre approved the study. Sprague-Dawley

rats (male, 3 weeks old) were purchased from Harlan (Zeist,

The Netherlands) and housed 2 per cage. The animals were

fed pelleted diet andwater ad libitum. Scaffoldswerewashed

in 70% (v/v) ethanol and sterile PBS. Rats were anesthetized

with isoflurane, and subcutaneous pockets were made to the

right and left of 2 midline incisions on the back.

Punches (ø 6mm) of the scaffolds were implanted in the

pockets at a distance of approximately 1 cm from the inci-

sions (4 implants/rat). In this study, 6 COL, 6 COL-ELfiber,

and 12 COL-ELsol scaffolds were implanted (2 COL, 2

COL-Elfiber, and 4 COL-ELsol per time point), and a total of

6 rats was used. Lower numbers of COL and COL-ELfiber

scaffolds were used because these were compared with pre-

vious results.13 All scaffolds were crosslinked using EDC/

NHS. Implants with surrounding tissue were harvested at 3,

7, and 21 days after implantation. Immediately after ex-

plantation, scaffolds were divided in half. One half was

processed for conventional histology and the other half for

immunohistochemistry.

For conventional histology, explants were fixed in 4%

(v/v) formaldehyde in PB for at least 24 h at 48C and

embedded in paraffin. Five-mm sections were stained with

hematoxylin-eosin, Elastin Van Gieson (visualization of

elastin and collagen), or Von Kossa (visualization of cal-

cium deposits).34 The total area of calcification in the scaf-

fold was determined using Neurolucida software (MBF

Bioscience, Williston, VT) and expressed as a percentage of

the total implant size. Values were compared using the

Student t-test, and p< 0.05 was considered to be statistically

significant. At least two persons performed histological

evaluation independently.

Immunohistochemistry (immunofluorescence and DAB

staining) was used to study the biodegradation of scaffold

components and the formation of extracellular matrix by the

host. Scaffolds were frozen in liquid nitrogen, and 5-mm
cryosections were mounted on superfrost slides and air-

dried. Immunofluorescence assay was performed as pre-

viously described.13 Primary antibodies used were mouse

anti-bovine elastin (1:1000), rabbit anti-bovine type I col-

lagen, goat anti-rat elastin, rabbit anti-rat type I collagen,

rabbit anti-rat type III collagen (all 1:100), rabbit anti-human

fibrillin-1, and rabbit anti-human fibrillin-2 (both 1:500).

Antibodies were visualized with Alexa488- or Alexa594-

conjugated secondary antibodies diluted in PBS containing

5% normal rat serum. The antibody to bovine elastin also

reacted with equine elastin, the antibodies against human

fibrillin also reacted with rat fibrillin, and the antibody to

bovine type I collagen did not substantially cross-react with

rat type I collagen or vice versa. For immunohistochemistry

with the DAB-staining method, cryosections were fixed with

4% paraformaldehyde in PBS for 20min. Endogenous per-

oxidase was inhibited with 0.3% hydrogen peroxide (H2O2)

for 10min. After blocking for 30min with 2% bovine serum

albumin in PBS containing 0.1% Tween (PBST), sections

were incubated with goat anti-human type IV collagen

(1:50) for 1 h, washed, incubated for 1 h with rabbit anti-goat

IgG peroxidase (1:100), and washed. Antibodies were di-

luted in PBST containing 5% normal rabbit serum; wash-

ings were with PBST. Sections were washed with 50mM

Tris-HCl (pH 7.6) and incubated for 10min with DAB

(0.5mg/mL) and ammonium nickel sulfate (7.5mg/mL) in

Tris-HCl. Finally, the reaction substrate was added (0.2 ml
30% H2O2/mL). Sections were washed, counterstained with

hematoxylin, dehydrated, and embedded. The antibody to

human type IV collagen cross-reacted with rat type IV
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collagen. The total area of blood vessels (including the lu-

men) in the scaffold was determined and expressed as a

percentage of the total implant size using Neurolucida

software. Values were compared using the Student t-test,

and p<0.05 was considered to be statistically significant.

RESULTS

Analysis of solubilized elastin preparation

The solubilized elastin preparation was analyzed using

sodium dodecyl sulfate polyacrylamide gel electrophoresis,

which revealed that the molecular mass of the solubilized

elastin ranged from 70 to over 880 kDa. Gel permeation

chromatography gave a mean molecular mass of the solubi-

lized elastin of approximately 1100 kDa. Two-dimensional

gel electrophoresis showed that the elastin peptides had an

isoelectric point of approximately 6. The mean amine group

content� standard deviation of the solubilized elastin was

292� 5 nmol amine groups per mg of protein. Amino acid

composition of solubilized elastin was similar to that of

elastin fibers for all amino acid residues, including desmo-

sine and isodesmosine (both 0.5� 0.0 per 1000 amino acid

residues).

Analysis of scaffolds containing solubilized elastin

Porous scaffolds were prepared using various ratios of

collagen with ELsol. After 4 h of crosslinking, less than 5%

of ELsol could be retrieved from the remaining crosslinking

solution. Hence, the crosslinking efficiency of ELsol to the

scaffolds was at least 95%. The biochemical characteristics

of the scaffolds are summarized in Table 1. EDC/NHS

crosslinking coupled ELsol firmly to the scaffolds, because

the in vitro release was only 2% after 7 days in the case

of EDC/NHS-crosslinked collagen plus ELsol scaffolds,

whereas it was 60% after only 24 h when crosslinking was

omitted.

Collagen and ELsol each possessed approximately

300 nmol amine groups per mg. Therefore, scaffolds made

from these components had the same amount of amine groups

for all ratios before crosslinking. After EDC/NHS cross-

linking, approximately 60% of the amine groups remained

for all scaffolds, indicating that 40% of the amine groups

was used in the crosslinking reaction.

ELsol did not contribute to the water-binding activity

of scaffolds. At a higher percentage of ELsol, the water-

binding capacity of COL-ELsol scaffolds was lower.

Using scanning electron microscopy (Fig. 1), non-

crosslinked COL-ELsol scaffolds showed spherical struc-

tures attached to collagenous fibrils or sheets. Spheres of

different sizes (ranging from*200 nm to 10 mm)were found

throughout the scaffolds. After crosslinking, these spheres

deformed to some extent. COL and COL-ELfiber scaffolds

did not show this spherical organization. Immunofluores-

cence staining using an antibody against bovine elastin

demonstrated that the spheres in COL-ELsol scaffolds were

composed of ELsol (Fig. 2A). The same was found based

on the autofluorescence of elastin (Fig. 2B). Transmission

electron microscopy showed that ELsol spheres in EDC/

NHS-crosslinked COL-ELsol scaffolds had a wide size dis-

tribution and were mostly incorporated into the collagen

Table 1. BIOCHEMICAL CHARACTERISTICS OF SCAFFOLDS PREPARED FROM COLLAGEN,

COLLAGEN þ ELASTIN FIBRES AND COLLAGEN þ SOLUBILISED ELASTIN

Crosslinked

Release

after 24 h in PBS

Release after

7 days in PBS

Amine group

content

Water-binding

capacity

Scaffold with EDC/NHS [% of total ELsol] [% of total ELsol] [nmol/mg scaffold] [# times dry weight]

ELsol* 292� 5

COL � 0� 0.0 ND 297� 14 20� 1

COL-ELfiber 1:1 � ND ND 160� 9 16� 2

COL-ELsol 97:3 � 58.0� 11.8 ND 300� 3 19� 2

COL-ELsol 9:1 � 59.3� 9.4 ND 290� 13 19� 1

COL-ELsol 1:1 � 62.3� 53.3 ND 298� 18 13� 1

COL-ELsol 1:1(1.6)** � 66.2� 7.2 ND 290� 10 12� 1

COL þ ND 0� 0.0 189� 5 20� 2

COL-ELfiber 1:1 þ ND ND 98� 6 16� 1

COL-ELsol 97:3 þ ND 2.4� 1.5 190� 15 19� 2

COL-ELsol 9:1 þ ND 1.0� 0.8 171� 4 18� 2

COL-ELsol 1:1 þ ND 0.8� 0.7 163� 5 14� 1

COL-ELsol 1:1 (1.6)** þ ND 0.5� 0.3 154� 12 12� 1

COL ¼ collagen; ELfiber¼ insoluble elastin fibers; ELsol¼ solubilised elastin; ND¼ not determined.

Results are mean� SD of 3 individual experiments.

*No scaffolds could be prepared of ELsol alone.

**COL-ELsol 1:1 (1.6) scaffold was prepared from a 1.6% suspension of collagen and ELsol, whereas all other scaffolds were prepared from a 1.0%

protein suspension.
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network (Fig. 2C, D). The latter figure also shows a sphere

with a less-dense outer core. Crosslinking does not occur

instantaneously, which may cause this effect.

Tissue response to implanted scaffolds

All animals remained in good condition, and no infec-

tions were observed. Macroscopically, a thin capsule was

seen around the scaffolds at explantation. In Table 2, an

overview of calcification behavior and cellular response is

given for the 3 different scaffolds. Tissue response to COL

and COL-ELfiber scaffolds was consistent with previous

results.13

Calcification of scaffolds

In young Sprague-Dawley rats, COL-ELsol and COL did

not calcify at all in the time span investigated, in contrast to

COL-ELfiber (Fig. 3). In COL-ELfiber especially, elastin fibers

calcified from day 7 on. At day 7, 3.5% � 0.1% of the total

scaffold surface had calcified, whereas at day 21, it was

11.5%� 0.7%, whichwas statistically significant ( p< 0.05).

FIG. 1. Morphology of scaffolds as analyzed using scanning electron microscopy. (A, B) Non- crosslinked (NX) collagen with

solubilized elastin (COL-ELsol); (C, D) 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide/6mM N-hydroxysuccinimide (EDC/NHS)-

crosslinked (X) COL-ELsol, (E) collagen only (COL) and (F) collagen plus insoluble elastin fiber (COL-ELfiber) scaffolds. A and C

represent cross-sectional views; B, D, E, and F are enlarged top views. Arrowheads indicate insoluble elastin fibers in COL-ELfiber;

arrows indicate spherical structures that are only present in the COL-ELsol. Spherical structures in EDC/NHS-crosslinked COL-ELsol are

somewhat deformed compared with non-crosslinked COL-ELsol (inserts in B and D). Bar is 100 mm in A and C and 10 mm in other

images.
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Cellular response to scaffolds

At day 3, cellular response to COL-ELsol showed mod-

erate infiltration of neutrophilic granulocytes throughout

the scaffold, whereas at day 7, fibroblasts and other mono-

nuclear cells and few giant cells were found. At day 21,

a greater number of phagocytic cells was observed,

with strong proliferation of fibroblasts. Cellular reactions to

COL and COL-ELfiber were considerably less. COL gave the

mildest reaction; after 21 days, some macrophages and giant

cells were present, mainly at the periphery of the scaffolds.

At day 3, cellular response to COL-ELfiber included some

neutrophilic granulocytes that had entered the outer part of

the scaffold. At day 7, fibroblasts and other mononuclear

cells were found in the scaffold, with some giant cells at the

periphery of the scaffold, and at day 21, phagocytic cells

like macrophages and giant cells dominated the scaffold,

whereas the number of non-phagocytic cells had increased at

the periphery. Although more macrophages were found in

COL-ELsol, the number of giant cells in COL-ELsol and

COL-ELfiber was similar.

Vascularization of scaffolds

Type IV collagen (present in endothelial basement mem-

branes) was used as a marker for blood vessels (Fig. 4). At

day 3, no blood vessels were observed in the scaffolds,

although they were found in the surrounding tissue. At day

7, COL-ELsol showed more blood vessels than COL-Elfiber
and COL, but differences were not statistically significant.

At day 21, blood vessels were also most abundant in COL-

ELsol, both at the periphery and within the scaffold, ac-

companied by more large blood vessels. COL-ELsol now

contained a significantly larger area of blood vessels than

COL-Elfiber and COL. At this time, COL-ELfiber also had

statistically significantly more blood vessels than COL. In

this scaffold, vascularization was also present at the pe-

riphery, but considerably fewer vessels were found within

the scaffold. In COL, blood vessels were found mainly at

the periphery of the scaffolds.

Table 2. GENERAL OVERVIEW OF CALCIFICATION AND CELLULAR EVENTS AFTER SUBCUTANEOUS IMPLANTATION

OF THE SCAFFOLDS IN YOUNG SPRAGUE DAWLEY RATS

Scaffold

Implantation

time (days) Calcification PMNs

Phagocytic

cells

Non-phagocytic

cells*

Blood

vessels**

COL 3 � sp sp � �
7 � � � sp sp

21 � � þ � �
COL-ELfiber 3 � � � sp �

7 � sp þ � �
21 þ � þ� þ þ

COL-ELsol 3 � þ� � sp �
7 � sp þ � þ
21 � � þþ þþ þþ

*Absolute numbers of non-phagocytic cells were lower than of phagocytic cells, e.g. þþ for phagocytic and giant cells refers to more cells thanþþ for

non-phagocytic cells.

**Blood vessels were assessed by immunostaining for rat type IV collagen, present in vascular basement membranes. PMNs¼ polmorphic nuclear

cells, i.e. granulocytes; phagocytic cells include macrophages, giant cells and monocytes; non-phagocytic cells include fibroblasts, lymphocytes and

plasma cells. Events were scored ranging from sporadic (sp) to abundant (þþ). -: not present.

FIG. 2. Microscopical evaluation of spherical structures in col-

lagen with solubilized elastin (COL-ELsol) scaffolds. (A) Im-

munofluorescence staining for elastin and (B) autofluorescence

visualization using ultraviolet optics in 1-ethyl-3-(3-dimethyl

aminopropyl)carbodiimide/6mM N-hydroxysuccinimide (EDC/

NHS)-crosslinked scaffolds show that spherical structures are

composed of ELsol. (C, D) Transmission electron microscopy

images display that ELsol spheres (white arrowheads) are incor-

porated in the collagenous structures (white arrows) of EDC/NHS-

crosslinked scaffolds. Bar is 50 mm in A, B and 0.25 mm in C, D.
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FIG. 3. Light microscopy evaluation of calcification of scaffolds 21 days after implantation in young Sprague-Dawley rats.

(A) Collagen alone (COL), (B) collagen plus insoluble elastin fiber (COL-Elfiber), (C) collagen with solubilized elastin (COL-ELsol)

scaffold. Calcium deposits have an intense black color due to Von Kossa staining and are only found in COL-ELfiber. Bar is 50mm.

FIG. 4. Light microscopical evaluation of angiogenesis in scaffolds 21 days after implantation in young Sprague-Dawley rats.

Sections were stained for type IV collagen as a marker for blood vessels. (A) Collagen alone (COL), (B) collagen plus insoluble

elastin fiber (COL-Elfiber), (C) periphery of collagen with solubilized elastin (COL-ELsol), (D) within COL-ELsol scaffold. Bar is 50 mm.

(E) Quantification of the blood vessels in the scaffold using type IV collagen and expressed as a percentage of the total scaffold area. At

day 21, COL-ELsol had significantly more blood vessels than COL and COL-ELfiber.* p< 0.05.
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Scaffold degradation and new matrix synthesis

Table 3 gives an overview of the immunostaining for

scaffold components and newly formed extracellular matrix

molecules at different times.

Scaffold degradation

Scaffold degradation was studied using conventional

histology and immunohistochemistry with antibodies for

scaffold elastin and collagen. From day 7, elastin staining

in COL-ELsol decreased, and after 21 days, elastin staining

was reduced even more. Elastin spheres were still present at

this time, especially in the central part of the scaffolds (Fig.

5A, B). At the periphery of the scaffolds, staining intensity

was less, and spheres were smaller, suggesting resorption

and degradation. Collagen gradually decreased with time.

Elastin fiber fragments (smaller than the implanted elastin

fibers) were found from day 7 on in COL-ELfiber. At day

21, less elastin staining and more elastin fragments were

observed in these scaffolds. In the same scaffold, thinner

and fragmented collagen structures were visible mainly at

the periphery of the scaffolds from day 7 on.

At day 21, degraded collagen was also found more

centrally, whereas only minor amounts of fragmented col-

lagen were found in COL. Elastin and collagen degradation

in COL-ELfiber and COL was consistent with that found in

previous studies.13

Collagen formation

Generally, most staining for rat type I and type III col-

lagen was found in COL-ELsol, somewhat less in COL-

ELfiber, and least in COL. In all scaffolds, staining for type I

and III collagen started in the fibrous capsule and at the

periphery of the scaffolds from day 7 on (results not shown).

In general, new rat collagen fibers aligned with original

scaffold components. In COL-ELsol, flattened cells aligned

with the lamellar scaffold structures, and this was accom-

panied by extracellular matrix formation (Fig. 5C). Type IV

collagen staining was present in blood vessels as shown

under vascularization of scaffolds (Fig. 4).

Elastic fiber formation

At day 21, COL-ELsol showed most new rat elastin, not

only in blood vessels, but also as thread-like structures

within the scaffold (Fig. 6). In COL-ELfiber, rat elastin was

found mainly in blood vessels present in the capsule around

Table 3. OVERVIEW OF IMMUNOSTAINING RESULTS OF EXPLANTS FOR SCAFFOLD AND RAT EXTRACELLULAR MATRIX COMPONENTS

Scaffold

Days after

implantation

Scaffold

elastin

Scaffold

collagen

Rat

elastin

Rat

type I collagen

Rate type III

collagen

COL 3 � þþ � sp �
7 � þþ sp � �
21 � þ� sp � þ

COL-ELfiber 3 þþ þþ � sp �
7 þþ þþ sp � þ
21 þ þ � þ þþ

COL-ELsol 3 þþ þþ � sp sp

7 þþ þ� � � þ
21 þ þ þ þ� þþ

Events were scored ranging from sporadic (sp) to abundant (þþ). -: not present.

FIG. 5. (A–B) Elastin Van Gieson–stained paraffin sections of collagen with solubilized elastin (COL-ELsol) scaffolds shows that

ELsol spheres from the scaffold are still present 21 days after implantation in young Sprague-Dawley rats. Within the scaffolds, elastin

spheres (arrows) are still quite large (A), but at the periphery of the scaffolds, the elastin spheres are smaller (B). Elastin Van Gieson

stains elastin black and collagen pink or red. Bars represent 20mm. (C) Semi-thin epon sections of crosslinked COL-ELsol scaffolds that

were implanted for 7 days in young Sprague-Dawley rats stained with toluidine blue and basic fuchsin. Flattened cells aligned with the

scaffold lamellar structures and were accompanied by extracellular matrix formation. Cells stain blue, new extracellular matrix stains

light pink, and scaffold material stains dark pink. Bars represent 10mm. Color images available online at www.liebertpub.com/ten.
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the implant, and small amounts of thin elastic fibers

were found sporadically at the periphery of the scaffolds. In

COL, rat elastin was present only in blood vessels in the

capsule.

In blood vessels, rat elastin colocalized with fibrillin-1

and fibrillin-2 staining. Fibrillin-2 staining was mainly

present in blood vessels (Fig. 6J–L), but not all blood vessels

contained newly formed elastin (Fig. 6G–I). Thin fibrillin-1

fibers were formed mainly in COL-ELsol, to a lesser extent in

COL-ELfiber, and scarcely in COL (Fig. 6D–F). To some

extent, these thin fibers showed colocalization with rat

elastin (Fig. 6C, F). Fibrillin-1 staining was found earlier in

time than newly synthesized elastin (results not shown) and

was more abundant than rat elastin staining (Fig. 6C, F).

DISCUSSION

In biomaterials, some principal difficulties are observed,

including limited vascularization and poor elastogenesis.2,35

With regard to the application of elastin as a biomaterial,

another difficulty arises because elastin tends to calcify.13,36

To induce vascularization and tissue formation, an initial

tissue reaction seems to be necessary. COL scaffolds show

less reaction than COL-ELfiber or COL-ELsol, and little

tissue formation was observed after 3 weeks. Tissue reac-

tion is also dependent on the animal model used. In a

previous study, we showed that (young and adult) Sprague-

Dawley rats showed more tissue reaction to subcutane-

ously implanted scaffolds than (adult) Wistar rats.13 As a

consequence, more vascularization and collagen produc-

tion was observed in the Sprague-Dawley rats.13,37 In this

study, COL-ELsol gave more tissue reaction than COL-

ELfiber, and vascularization and tissue formation was even

better in COL-ELsol scaffolds. For example, in normal

wound healing of the skin, chemotactic signals recruit in-

flammatory cells to the wound site, initiating the process of

reepithelialization and connective tissue contraction and

stimulating the angiogenic response. It is important that this

tissue reaction, including the presence of neutrophiles, does

FIG. 6. Fluorescence microscopy evaluation of newly formed elastic fibers in scaffolds, 21 days after implantation in young Sprague-

Dawley rats. Sections were stained for rat elastin (A–C, G–I), fibrillin-1 (D–F), and fibrillin-2 (J–L). Especially in collagen with

solubilized elastin (COL-ELsol) scaffolds, thread-like structures (arrows) positive for rat elastin and fibrillin-1 were observed. Blood

vessels mainly colocalized with fibrillin-2 and to a lesser extent with fibrillin-1 staining. Insert in F shows an example of colocalized rat

elastin and fibrillin-1 in blood vessels; insert in L shows that thin rat elastin fibers do not colocalize with fibrillin-2. C, capsule; S,

scaffold. Bar is 50mm. Color images available online at www.liebertpub.com/ten.
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not persist over time, because it is an indication of a grossly

infected wound.38 In COL-ELsol, neutrophiles were found

only sporadically at day 7. Soluble elastin seems to be able

to trigger a cascade for angiogenesis and tissue regenera-

tion. Robinet et al.39 recently demonstrated that k-elastin
(solubilized elastin prepared using potassium hydroxide

treatment) triggered angiogenesis by promoting cell mi-

gration and tubulogenesis of human vascular endothelial

cells through the elastin receptor.

Elastin synthesis is often an obstacle in tissue engineering

(e.g., dermal substitutes).40 In this study, COL-ELsol scaf-

folds were, in particular, able to stimulate the synthesis of

elastic fibers in vivo, especially as thread-like structures to

which fibrillin-1 staining colocalized. Additional fibrillin-1

staining was found surrounding these structures, suggest-

ing that fibrillin-1 synthesis preceded elastin deposition and

that elastin deposition was still in progress. Fibrillin-2 co-

localized mainly with newly formed elastic fibers in blood

vessels and not with loose thread-like elastic fibers found

in COL-ELsol. Frommice experiments, it has been suggested

that fibrillin-2 directs elastogenesis during embryogene-

sis, whereas fibrillin-1 is more important in tissue homeo-

stasis.41,42 Our experimental setup may resemble tissue

regeneration rather than embryogenesis. Furthermore, our

results indicate that fibrillin-2 may be more involved in

cardiovascular aspects, whereas fibrillin-1 may be more

significant in skin. Another study in which skin biopsies

were taken from healthy volunteers suggests a similar phe-

nomenon; fibrillin-1 was the major contributor to dermal

elastic fiber formation during acute wound repair, whereas

fibrillin-2 was expressed only in wounds of the aged, and

expression was confined to areas proximal to dermal blood

vessels.43 Raghunath et al. also found fibrillin-1 preceding

elastin deposition in new skin developing from keratinocyte

autografts.44 Fibrillin-1 may be the template for elastic fiber

synthesis in thread-like (skin-like) elastic fibers, whereas

fibrillin-2 may be the template for elastogenesis in blood

vessels. However, time-resolved expression patterns of

fibrillin-1 and �2 would be necessary to confirm this. Solu-

bilized elastin may be a means to enhance elastic fiber

synthesis. It has been suggested that elastin peptides stim-

ulate elastin synthesis through the receptor.6 In a porcine

skin excision model, improved extracellular matrix re-

modeling (including elastin regeneration) was found with a

collagen–solubilized elastin dermal substitute.45 In a clinical

study, such a matrix was used in 10 patients as a dermal

substitute in severe burn injuries of the hand; full range

of hand motion was regained after 3 months.46 For a sus-

tained effect of angiogenesis and tissue formation in vivo, a

depot of solubilized elastin is recommended. EDC/NHS-

crosslinked COL-ELsol scaffolds contained solubilized

elastin spheres that could still be detected 21 days after

implantation andmay thus accomplish their biological effect

over a longer period of time.

Calcification is an undesirable phenomenon in soft bio-

material application. Young Sprague-Dawley rats have

proven to be a sensitive model for studying calcification.13

With COL-ELsol, we could not detect any calcification in

the time frame analyzed, whereas COL-ELfiber showed

calcification starting at insoluble elastin fibers. This ef-

fect was not due to the presence of fewer macrophages

and giant cells in COL-ELsol (and therefore a diminished

release of extracellular enzymes involved in elastin deg-

radation). Negative charges from C-terminal carboxylic

groups may be involved in preventing positively charged

calcium ions from precipitating, but other mechanisms

cannot be excluded based on this study alone. Others have

observed calcification of solubilized elastin preparations.

In a similar rat model, Singla and Lee found calcification

with collagen–a-elastin films stabilized using glutaralde-

hyde fixation,36 but this treatment increases calcification of

biomaterials.47 In a cranial lesion in adult rats, a poly-

pentapeptide based on elastin with an amino acid sequence

of (Val-Pro-Gly-Val-Gly)n was also able to initiate calci-

fication in vivo,48 but it only calcified in a rabbit tibial non-

union model with n> 200.49

In conclusion, COL-ELsol scaffolds provide a non-

calcifying biomaterial that stimulates angiogenesis and

extracellular matrix formation (collagens and elastic fibers)

and may be useful in soft tissue engineering.
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