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ABSTRACT 

Rapid growth in telecommunication and related technologies has resulted in increased 

exposure of human population to low power non-ionising Electromagnetic Radiation (EMR). 

This research is focussed on studying biological effects of low power EMR at the molecular 

and cellular levels. Radiofrequency/Microwave (RF/MW) radiation has been integrated into 

modern telecommunication systems, health (medical devices) and even food technology. 

However, the increasing rate of exposure to RF/MW radiation (especially exposures from 

mobile phones) has raised a health concern and stimulated much research into biological and 

health effects of MWs and the mechanisms of interaction between MW radiation and living 

matter. The primary objectives of this project are: (i) to improve our understanding of the 

impact of low power MWs (1.8 GHz - 2.6 GHz) emitted by handheld mobile communication 

devices on ion channel proteins, isolated enzymes and yeast cells; and (ii) determine the safe 

thresholds of induced biological effects.  

This project has two arms (computational and experimental) and is undertaken via the 

sequentially linked four sub-studies: (i) Molecular simulation of Conotoxin protein exposed to 

low strengths static and oscillating electric fields; (ii) in-vitro evaluation of MW radiation 

(frequencies 2.1 GHz, 2.3 GHz and 2.6 GHz and powers -10, 0 and 17dBm) on biological 

activity of L-Lactate Dehydrogenase and Catalase enzymes; (iii) in-vitro evaluation of changes 

in growth rate of yeast cells exposed to MW radiation (frequencies 1.8GHz and 2.1GHz and 

powers -10, 0d, and 17dBm, and (iv) in-vitro evaluation of MW radiation (frequency 1.8 GHz 

and powers -10, 0, 17 dBm) on bioactivity of TRP ion channel proteins (expressed in epithelial 

cells). The findings are summarised as follows:  

(i) in-silico analysis show that conformational changes in Conotoxin occur under the exposure 

to weak static and oscillating electric fields of particular strengths;  

(ii) low power MW radiation induces modulating (inhibition and promotion) effects on LDH 

and Catalase enzyme kinetics at the particular frequencies and powers of exposures. The results 

indicate the frequency- and power-dependence of the observed biological effects;  

(iii) low power MW radiation induces cell proliferation or inhibition on yeast cells growth 

depending on the exposure parameters, and  
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(iv) effects of MW exposures at the particular powers induce n Ca2+ ion influx and affects 

gating function of TRP ion channel proteins.  

In essence, this study demonstrated that even non-thermal microwave exposures 

produce modulating effects at the molecular and cellular levels. The outcomes of this study 

will assist in understanding the bioeffects of low power MWs and their interaction with 

biological media. It will also assist in identifying thresholds of MW exposures affecting the 

selected proteins and cells, and will be useful in providing much-needed evidence on defining 

safe exposure limits. Further investigation of the mechanism of action of microwaves of 

different frequency and power combinations is proposed for future work as an extension of this 

project. 

.  
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CHAPTER 1: INTRODUCTION  

1.1 Motivation 

There is a proverb, do not believe your doubt, and do not doubt your belief. Technology 

usually plays a twin role, to serve and make life easier, and to protect from any predicted 

undesirable effects, natural or artificial. Most scientific investigations or even discoveries are 

initiated from doubt and concluded as knowledge. Today there is a doubt about the safety of 

the radio frequency wireless technology. Is modern mobile communication 

equipment/technology affecting biological systems? 

Penetration of mobile communication technology in everyday life is alarming. Leading 

public health organisations, such as the World Health Organisation (WHO) and National 

Health and Medical Research Council (NHMRC), Australia, are sceptical about safety 

assurances coming from mobile phone manufacturers and telecom service providers. Effects 

of low power radiofrequency (RF) and microwave (MW) exposure depend upon the nature of 

the exposure, proximity to the source, and the time of exposure. However, the fact that constant 

exposure to low power microwaves is affecting every part of our day-to-day life and 

influencing over 85% of the global population cannot be denied. 

We are familiar with effects of long-term exposure to high power RF and MW radiation, 

i.e. heating effects on body and tissue, but there is little or negligible information about the 

health effects of long-term exposure to low power RF and MW radiation. Modern mobile 

communication operates at low power RF and MW frequencies (3G, 4G), which do not produce 

any heating effects [1]. Affordable advanced RF wireless technology revolutionised various 

industries and found applications in defence, medicine, food technology, and mobile 

telecommunication. From 2005 to 2015, mobile phone penetration increased by 200%. In 2015, 

the mobile phone penetration was 60%, 5 billion worldwide mobile users are expected by 

2019[2], and it will reach the 6 billion mark by 2020. It is also expected that in 2020, the global 

penetration of mobile phone will be 100%, meaning that the number of mobile phone 

subscriptions will be equal to the number of inhabitants. The exponential rise in penetration of 

mobile technology in our daily life creates a pressing need to investigate and evaluate the 

impact of long-term exposure to low power RF and MW radiation at the cellular and molecular 

levels on biological systems, including humans. 
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Mobile phone radiation is a subset of the non-ionizing part of the electromagnetic 

spectrum. Non-ionizing radiation does not have sufficient energy to break chemical bonds to 

produce its effect. Hence, the mechanism by which non-ionizing radiation, especially at low 

powers, interacts with biological material is still a matter of research. It is considered that 

tissues nearest to the mobile antenna can absorb this energy, which may contribute to changes 

in the standard biological functioning of the living organism [3] [4] [5]. There is evidence 

suggesting that, even at low powers, RF and MW radiation can affect the normal biological 

processes in the human body. In addition, anecdotal and scientific studies show biological and 

possible health effects associated with mobile phone towers and antennas. However, the 

research data available are still insufficient to reach conclusions regarding the health issues 

related to low power radiation. Many studies have been conducted to examine the relationship 

between RF radiation and biological effects [6] [7]; however, to date, the results have been 

inconclusive. 

There is an ongoing scientific debate about the existence of “non-thermal” effects 

induced by long-term exposure to low-level RF and MW emitted by mobile phones. With 

recent advancements in telecommunications, the exposure to RF and MW radiation has raised 

to a level never before seen. The operating frequency of commercial mobile communication is 

in the range of 450-2700 MHz, with peak powers ranging from 0.1 to 2 Watts. The existing 4G 

network operates within the frequency range of 1800-2600 MHz. To accommodate the 

meteoric rise in the usage of mobile communication and to provide quality and reliable 

services, telecom industries have to employ a higher frequency band, known as a 5G network, 

which will include frequency bands currently used in 4G (1800-2600 MHz) and frequencies 

above 5000 MHz. This further raises an ongoing concern among scientific and public 

communities about the safety of low-power exposure and its long-term biological and possible 

health effects on various biological systems, including humans and other animals.  

Possible health effects of increased exposure to weak (low-power) RF/MWs has 

received significant media coverage and raised concerns among the public, the scientific 

community and healthcare regulatory bodies [8-10]. In response to public concerns, in 1996 

the WHO established the International Electromagnetic Fields (EMF) Project to assess the 

scientific evidence of possible health effects of EMFs (low-frequency and high-frequency 

EMFs). Specific studies have been identified to address the problem of localised exposure. The 

project has established a formal mechanism for reviewing the research results and conducting 

risk assessments of EM exposures. It is also developing public information materials and 
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bringing together standards groups worldwide in an attempt to harmonise international 

exposure standards.  

A committee on Electromagnetic Energy Public Health Issues (CEMEPHI) under the 

Australian parliamentary committee, the Environment, Communications, Information 

Technology and the Arts References Committee, received submissions and evidence from 

some scientists and health professionals as well as community organisations and individuals 

[11]. Some claimed that there is ample evidence of biological and adverse health effects 

associated with non-thermal levels of exposure to electromagnetic radiation (EMR), while 

others concluded that no clear relationship had been established. 

The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) specifies 

exposure limits to RF electromagnetic energy (EME) at the frequencies used in mobile phones 

[12]. On 4 July 2003, ARPANSA commenced the centralised Electromagnetic Radiation 

(EMR) Health Complaints Register. The Register collects reports of health concerns related to 

possible EMR field exposures in the range of 0-300 GHz. Since its commencement, it has 

received 126 reports. The register collected more than 70 reports in 2012-13 and 2013-14 alone 

[13]. These data indicate that, with a spike in technology, exposure-related health issues are 

increasing and need further detail investigation. 

Based on the body of evidence on biological effects induced by low-power MWs, there 

is a general agreement within the scientific community that a new approach to protecting the 

public health is required. The scientific community has built these conclusions upon published 

reports documenting the following [14]: 

1. Bioeffects and adverse health effects are demonstrated using low-power microwaves at 

levels significantly below the existing exposure standards. 

2. Public safety limits issued by the International Commission on Non-Ionizing Radiation 

Protection (ICNIRP) ICNIRP, Institute of Electrical and Electronics Engineers (IEEE) 

and American National Standards Institute (ANSI) [15] [16, 17] are not sufficient to 

protect the public from prolonged, low-intensity exposures. 

3. Exposure standards require urgent attention and revisions to protect public health 

worldwide. 

It is worth mentioning here that the Bio-initiative report (last updated in March 2014) 

describes that 88% of papers published show adverse effects of radiation and just 12% of 
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published papers show that there is no effect of RF/MW radiation. The report also warns about 

risks based on the specific evidence of bio-effects, including a change in behavioural response, 

cardiovascular disorders, inflammatory responses, and brain tumours [18]. Research activities 

focused on studying the effects of RF/MW exposure and its possible bio-effects can be 

classified into five major categories, each addressing a specific question: 

1. Understanding the mechanism by which low-level MW radiation produces bioeffects. 

2. Determining the specific bioeffects due to MW radiation, which may be helpful to identify 

a related response mechanism in biological systems. 

3. Determining whether the biological effects can impact human health. 

4. Determining whether there is an association between mobile phone radiation and cancer. 

5. Identifying indirect/secondary effects on human health which do not result directly from 

an interaction between the mobile phone radiation and biological systems. 

It is, therefore, essential to improve our understanding of the biological effects of low-

power RF/MW radiation used in 3G and 4G mobile networks at the molecular and cellular 

levels. Furthermore, it is equally critical to confirm that the currently used safety standards for 

the operating frequency range are indeed sufficient to protect living organisms from ever 

increasing electromagnetic pollution.  

Responding to public concern, the Australian Centre for Electromagnetic Bioeffects 

Research (ACEBR) embarked on a 5-year research program to promote Australia's EME health 

both in the immediate future and through the development of human research capacity in this 

field into the future [19]. The ACEBR is a National Health and Medical Research Council 

(NHMRC) Centre of Research Excellence. This research project is a part of a more extensive 

research program initiated by the ACEBR and through the collaborative efforts of leading 

Australian universities and research institutes. 

1.2 Objective 

The current body of knowledge is not sufficient to reach a consensus and draw conclusions 

explaining adverse effects of low-level RF/MW radiation. There is an increasing need to study 

and evaluate the impact of weak RF radiation at cellular and molecular levels.  

The primary objective of conducting the present research is to investigate the effects of 

low-power electromagnetic radiation in the range of 900MHz-2.6GHz on proteins and cells, 
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and in particular enzymes and ion-channel proteins. In this research project, a study was made 

of conformational and functional changes taking place in selected enzymes, yeast and 

mammalian cells due to the effects of MWs of different frequencies, power, and exposure 

duration (given energy dose).  

Laboratory studies on animals in-vivo and cell cultures in-vitro have shown that weak 

static and varying electric fields may have effects on several biological processes. For example, 

they may alter hormone and enzyme levels and the rate of movement of some chemicals 

through living tissue. Although these changes do not appear to constitute a health hazard, they 

need further investigation in order to elucidate the possible mechanisms of actual effects, 

including the long-term effects. Some effects of RF radiation on biological processes can be 

reversible and, thus, do not impact human health. However, the significance of investigating 

non-thermal RF biological effects at the molecular level should not be underestimated.  

This PhD research is focused on recent reports confirming that even weak RF/MW 

radiation can induce modulating effects on various biological systems [20] [21]. The author 

has studied the biological effects of low-power static and electromagnetic fields (RF/MW 

radiation used in 3G and 4G mobile networks) on selected model systems: proteins, yeast cells, 

and human cells. This research work includes irradiation of selected enzymes and cells with 

low-power MW used in 3G and 4G networks. Powers used were 17, 0 and -10 dBm, and 

frequencies of 1.8GHz, 2.1GHz, 2.3GHz and 2.6GHz, and their different combinations. In vitro 

evaluation of thermal receptor sensitivity of Transient Receptor Potential (TRP) ion channel 

proteins are of particular interest to the project, because members of this channel superfamily 

play an essential role in sensory transduction processes in vertebrates, including humans [22] 

[23] [24]. 

This research project has two arms, computational and experimental; and investigation 

includes in silico and in vitro sub-studies as follows: 

- In silico study to evaluate the effects of applied external static and oscillating electric fields 

of different strengths on the conformation of Conotoxin peptide (2efz.pdb) at the nanoscale 

level.  

- In vitro studies to evaluate experimentally the effects of MW radiation of different 

frequencies and powers on the biological activity of the selected enzymes (L-Lactic 
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dehydrogenase and Catalase), yeast (Saccharomyces cerevisiae) cells and TRPV4-ion 

channels proteins expressed in Hek-293 cells.  

1.3 Computational Study 

A computational method such as Molecular Dynamic (MD) simulation presents a 

useful insight into the analysis of effects of external electric field (stressor) on a protein’s 

structure and its functional properties. In the computational study presented here, the effects of 

applied static and oscillating fields of different strengths on Conotoxin protein are simulated 

using MD technique. The simplicity of Conotoxin structure, i.e. 16 amino acids in length, and 

its wide range of therapeutic applications [25] makes it an ideal model to study its 

conformational changes under the electric field of different strengths.  

The author studied the protein structure at the nanoscale range, as the structure of the 

biomolecule is directly related to the change in its function. This means that any change in the 

final structure of the Conotoxin protein due to static electric or electromagnetic fields may 

complement the change in functionality of the protein. This is crucial to this study, as proteins 

are the building blocks of any living organism and play a vital role in maintaining the normal 

biochemical reactions inside the body. 

Conformational changes in the Conotoxin protein exposed to the electric fields were 

evaluated using multiple parameters, comprising Ramachandran Angles (phi and psi), Root 

Mean Square Deviation (RMSD), Radius of Gyration (Rg), and peptide water interactions 

represented by Radial Distribution Function (RDF). The author also studied protein unfolding 

which affects the formation of hydrogen bonds between residues during simulations, and which 

in turn affects RMSD and Rg values. A novel Dynamic Time Warping (DTW) method was 

introduced and employed to evaluate the conformational changes in exposed Conotoxin 

proteins and to compare these with the protein under standard un-exposed conditions. 

Conotoxin’s structure was evaluated to establish the relation between applied external EMF 

and change in protein structure under the influence of applied EMFs. 

1.4 Experimental Investigation 

Within the experimental in vitro studies, the effects of low power MW exposures have 

been evaluated on the kinetics of L-Lactic dehydrogenase and Catalase enzymes irradiated at 

the frequencies of 1.8, 2.1, 2.3 and 2.6 GHz and powers 0dBm, -10 dBm and 17dBm, using the 
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commercial Transverse Electro-Magnetic (TEM) cell. The selected metabolic enzymes play an 

essential role in the biological processes in living cells. Enzymes control several complicated 

biochemical reactions and maintain the overall health and well-being of living organisms. 

Lactic dehydrogenase (LDH) enzyme is extensively present in blood cells and heart muscles 

and is a marker of common injuries and disease. Catalase is a crucial enzyme: it helps to protect 

the cell from oxidative damage by reactive oxygen species (ROS), hence protects living cells 

from unstable oxidising molecules. It is found in all types of living organisms. Catalase helps 

to catalyse the decomposition of hydrogen peroxide into water and oxygen. Kinetics of 

Catalase was studied under the low power MW exposure at the frequencies of 1.8 GHz and 2.1 

GHz, and powers of -l0dBm, 0dBm, and 17dBm. Absorption coefficients of Catalase were 

measured at a fixed time interval in test samples and compared with control samples to analyse 

modulating effects of applied irradiation. Furthermore, we also tested the relationship between 

the frequency and power of applied exposures on the enzyme reactions. The inhibitory and 

excitatory effects observed at the frequencies of 2.1, 2.3, and 2.6 GHz and selected powers 

indicate that power and frequency of applied irradiation induce effects on the enzymatic 

reactions independently of each other.  

In addition to the studies mentioned above, evaluation was also made of the effects of 

the specific MW exposure on the structural and functional behaviour of Saccharomyces 

cerevisiae yeast. The objective of this study was to test the hypothesis that low-power MW 

radiation can produce modulating effects on cell growth. Previous research using 

photospectroscopy assessment shows that low-power RF/MW exposure induces modulating 

effects on the studied biological models [19, 26, 27]. Here, the author used (TEM) to investigate 

further the changes in the cell wall and internal organelles of selected yeast cells induced by 

low-level mobile phone radiation. Yeast cell samples were exposed at the frequency of 1.8GHz 

and three powers -10 dBm, 0 dBm and 17 dBm. Cell growth rate and morphology of yeast cell 

samples were compared to non-irradiated samples. S. cerevisiae yeast type II (YSC2-Sigma) 

was selected for its fast growth rate (~120 min doubling time). The SAR values of the MW 

exposures used in this study were below and above the standard safety limit (SAR of 2.0 W/kg) 

based on the International Commission on Non-Ionizing Radiation Protection (ICNIRP)’ 

standards [16]. The safety limit for exposure to mobile phone emissions is set by determining 

the lowest level of exposure known to cause health hazards and then adding a safety margin. 

Yeast cell growth was analysed based on cell count, optical density and cell viability, 

population doubling time, cell circularity and cell elongation. The growth cycles of yeast cell 



8 
 

samples (test and control) were captured at regular intervals for photospectroscopy and 

scanning electron microscopy (SEM) assessments. The obtained results were analysed 

statistically using two-way repeated ANOVA. 

Research studies suggest that different cells respond differently to applied radiation. 

Non-thermal radiation does not have enough energy to influence the cell chemistry directly but 

may alter biological pathways affecting specific biological actions. Thus, the author extends 

her research work to study the effects of low-power MW exposure on mammalian cells. 

Transient receptor potential cation channel subfamily V member 4 (TRPV4) is an ion channel 

protein encoded by the TRPV4 gene. TRPV4 channel is a calcium-permeable cation channel 

that is detectable in both sensory and non-sensory cells. TRPV4 is a non-selective cation 

channel that is expressed in various tissues, including epithelial and endothelial cells, which 

can be activated by different stimuli such as heat, hypotonic stress, GSK1016790A, derivatives 

of arachidonic acids and shear stress. TRPV4 is identified as an osmotically activated channel. 

For its wide range of implications from osmoregulation to thermo-sensing, the author used 

TRPV4 stably expressed in Hek-293 cells to better understand the thermal/non-thermal nature 

of the interaction between the applied MW exposure and cells.  

The present sub-study was aimed at evaluating the effects of low-power MW radiation 

at 1.8GHz and powers of 17, 0 and -10 dBm (47, 6 and 2 V/m, respectively). In this study, Ca2+ 

imaging and confocal microscopy were used to investigate the effects of MW at the frequency 

of 1800 MHz and power of 17dBm on TRPV4 channel gating in response to its selective 

agonist GSK1016790A and hypotonic stress. To understand the effects of exposure on the 

bioactivity of TRPV4 channel proteins, the channel response was recorded at a pre-defined 

time interval. Gating function of an exposed TRPV4 sample of variable concentrations (40 

mOsm, 80 mOsm, 160 mOsm, 280 mOsm) was recorded and compared with a control sample 

to establish whether there are any changes in the thermal sensation and thermoregulation. 

Summarising the above-presented experimental and computational studies conducted 

within this PhD research, the author aims to answer the following research questions: 

1. Whether low power RF/ MW frequencies can affect the catalytic activity of enzymes L-

Lactate dehydrogenase (LDH) and Catalase; proliferation and conformation of yeast cells 

and bioactivity of TRP ion channels? 
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2. What is the relation between frequency and power of applied radiation and how it affects 

the activity of the selected proteins and cells? 

3. Relation and the relative effect of parameters including frequency, power, exposure 

duration (dose/energy) absorbed by cells in the biological activity of TRPV4 ion channel 

proteins? 

4. What are the safety thresholds of powers used in the studied MW exposures? 

 

The expected outcomes of this research are to identify the particular effects of low-power 

MW on selected model systems and whether there is any relationship between frequency and 

power and their effects on irradiated samples. This research will open up areas for further 

investigation and thus assist in providing inputs to guidelines on identifying the safety limits 

for long-term exposure to low-power MW radiation.  

1.5 Thesis Composition 

This PhD thesis is primarily dedicated to improving the understanding of effects of low-

power MW radiation at the frequencies used in the 3G/ 4G mobile networks on selected 

biomolecules and cells. An outline of the chapters of the thesis is presented as follows: 

Chapter 1 – Introduction and motivation 

Chapter 2 - Literature review  

The chapter discusses the basic principles of EMR, mobile phone radiation range and 

associated health effects, and relevant research updates. In this chapter, the author will also 

summarise guidance for various experiments. The author will then present an overview of the 

strategies that are implemented to answer the identified research questions. 

 Chapter 3 - Computational study 

This chapter presents a study of In silico simulation of protein (Conotoxin: 2efz.pdb) 

under the different strengths of static and varying electric fields. In this part, the author studies 

the conformational changes in Conotoxin (3D structure obtained from the protein data bank) 

[28]. Several approaches were applied, including a novel DTW, to evaluate the changes in the 

peptide backbone over the period of simulation. This knowledge can further be extended to 

explore applications of external static or oscillating electric fields and to explain the possible 
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bio-effects of low-power microwaves, radio frequencies, pulsed electric fields and electro-

hydrodynamic drying on the biochemical composition.  

Chapter 4 - Experimental evaluation using enzyme model systems 

The influence of low-power MW radiation on LDH and Catalase enzymes was studied 

to observe the changes in the rate of reactions when exposed to irradiation. It is important to 

evaluate the changes in enzymatic reaction time, as these reactions play a vital role in 

maintaining the standard biochemical and physiological functions of the body. 

 

Chapter 5 – Experimental evaluation using a yeast model system 

The author investigated the effects of selected frequencies and powers on yeast cell 

proliferation and their internal organisation. This study was aimed at evaluating the hypothesis 

that low-power MWs produce modulating effects in Saccharomyces cerevisiae yeast by 

affecting their growth cycle, bioactivity, conformation and viability. The effects of MW 

radiation were investigated at 1800 MHz and powers -10 dBm, 0 dBm and 17 dBm on the 

growth rate, morphology and internal organisation of the yeast.  

Chapter 6 – Experimental evaluation using mammalian cells 

The author investigated the influence of MW exposure on TRPV4 ion channel protein 

expressed in Hek-293 cells, to gain a better understanding of the thermal/non-thermal nature 

of the interaction of MWs with healthy epithelial cells. The author studied the response of the 

Ca2+ ion channel when cells were exposed to electromagnetic radiation and compared with the 

standard response time. Scanning Electron Microscopy (SEM) and Transmission electron 

microscopy (TEM) were employed to evaluate changes in the surface and internal organisation 

of HEK-293 treated with irradiation. 

Chapter 7 – Conclusions and recommended future works. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

In the previous chapter, the author highlighted the importance of studying the effects of 

low-power electromagnetic radiation (EMR) in the radiofrequency and microwave range on 

biological systems. The author further summarised the motivation behind the focus area of her 

PhD research project. In this chapter, the author discusses the current body of knowledge, 

including a subject’s background, theoretical contributions and substantive research findings. 

In the later subsection 2.4, the author also reviews the latest published studies and methodical 

contributions for evaluating the effects of low-power microwave radiation on various 

biological model systems, including on humans. Based on the available literature and research 

work, the author progressively attempts to identify the existing research gaps that have 

motivated the present research. This chapter is organised into the following sections: 

2.2 A brief overview of Electromagnetic Spectrum and EMR 

2.3 Low-power EMR and mobile communication technology 

2.4 Health concern and exposure guidelines: 

a. In-Silico Molecular modelling and studies. 

b. In-vitro studies. 

c. In-vivo studies 

2.2 A brief overview of the electromagnetic spectrum and EMR 

Electromagnetic radiation (EMR) is a specific form of the more general electromagnetic 

field, where energy is emitted and absorbed by charged particles as it travels through space in 

waveform [29]. Accelerated atomic particles produce a time-varying electric and magnetic 

field. EMR is associated with an electromagnetic field that moves away from its source. EMR 

has both electric and magnetic field components, oscillating with a 90o degree phase difference 

from each other perpendicular to the direction of wave propagation or energy. 

Electromagnetic waves are typically described by any of the following three physical 

properties: frequency (f), wavelength (λ), and photon energy (e). Frequency is defined as the 

number of oscillations or cycles per second, whereas the term wavelength is defined as the 

distance between consecutive corresponding points of the same phase, such as crests or troughs 

of a wave. Plank’s equation defines the inversely proportional relationship between wavelength 

and frequencies [5]: 

https://en.wikipedia.org/wiki/Lambda
https://en.wikipedia.org/wiki/Phase_(waves)
https://en.wikipedia.org/wiki/Electromagnetic_spectrum#cite_note-em-spectrum-5
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   𝒆 = 𝒉𝒇 = 𝒉𝒄/𝝀    Equation 2.1 

where c = 299792458 m/s is the speed of light in a vacuum; and 

h = 6.62606896(33)×10−34 J·s = 4.13566733(10)×10−15 eV·s is Plank’s constant. 

Figure 2.1 describes the interaction between the electric field (red) and magnetic field 

(blue) in electromagnetic waves.  The interaction between electromagnetic field, charges and 

currents are defined by the Lorenz force law shown in Equation 2.2. 

   𝑭 = 𝒒 ∗ (𝑬 + 𝒗 ∗ 𝒙 ∗ 𝑩)   Equation 2.2 

where force, F, enforced on a particle of electric charge, q, with an instantaneous 

velocity, v, E is an electric field, B is a magnetic field.  

 

Figure 2.1: Electromagnetic radiation – the propagation of energy in the form of 

electromagnetic waves through a medium [30]. 

Depending on their frequency (measured in cycles per second (Hertz) and 

corresponding wavelength (measured in meters), EM waves are mapped onto the 

electromagnetic spectrum. The electromagnetic spectrum is divided into seven broad 

categories: Radio waves, Microwave, Infrared, Visible light, Ultraviolet, X-rays, and Gamma 

rays. Some of these classifications are further divided into subcategories. The electromagnetic 

spectrum, as shown in Figure 2.2, covers the frequencies ranging from 1 Hz to above 1025Hz, 

which corresponds to wavelengths from thousands of kilometres down to a fraction of the size 

of an atomic nucleus. 

https://en.wikipedia.org/wiki/Speed_of_light
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Figure 2.2: Electromagnetic spectrum showing the entire range of wavelength and frequency 

[30]. 

The electromagnetic field (EMF) is viewed as the combination of an electric field and 

a magnetic field. The electrical field is produced by a voltage gradient and is measured in volts 

per meter. The magnetic part is generated by any flow of current and is measured in Tesla. 

Electromagnetic power is the rate at which energy is consumed or produced, and it is the 

product of voltage and current [16]. Power density, also known as the power flux density, is a 

distribution of power over a particular area (mW/cm2). The unit used to measure how much the 

body absorbs EMF radiation is called the Specific Absorption Rate (SAR). The SAR is usually 

expressed in units of watts per kilogram (W/kg) or milliwatts per gram (mW/g). The 

international exposure guidelines’ limit level is reported as a maximum SAR of 2 W/kg by 

ICNIRP [17] and 1.6 W/kg by IEEE [15]. According to ICNIRP, the threshold for biological 

effects is seen at SAR values above 4 W/kg [17]. However, this temperature rise falls within 

the normal range of human thermoregulatory capacity. A SAR value of 4 W/kg is associated 

with a temperature increase of more than 1ºC. Although the sensitivity of tissues to thermal 

damage varies widely, irreversible effects occur above SAR of 4W/ kg. 

One of the main characteristics that define an electromagnetic field (EMF) is its 

frequency or its corresponding wavelength. These properties also determine their ability to 

travel through objects, their heating effects and their effects on living tissue. EMR is described 

as a stream of mass-less particles called photons. Each photon has a certain energy level and is 

travelling in a wave-like pattern at the speed of light. Oscillation rate in Hertz defines the 

energy level of each type of photon. The rate of oscillation is inversely proportional to the 
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distance each photon travels in meters. Higher photon energy means higher frequency of 

oscillation and shorter wavelength. Thus, radio waves contain photons with the lowest energy 

level, while Gamma rays have the highest energy level in the spectrum [31]. 

Energy transmitted through EM waves is broadly divided into two categories: 

1. Ionising Radiation:  is electromagnetic waves that carry enough energy to break 

molecular/ chemical bonds between molecules and ionise atoms; whereas 

2. Non-ionising radiation: is low-frequency EM Waves that do not have sufficient 

energy to break molecular/ chemical bonds and ionise atoms.  

Gamma rays and X-rays are examples of ionising radiation, whereas radiation from 

microwaves, radiofrequency fields and the ELF is found at a relatively long wavelength and 

classified as non-ionizing radiation. Non-ionizing radiation ranges from 0 to approximately 

3x1011 Hz. Radiation above 3x1011 Hz is considered as ionising radiation [32]. 

The scope of this PhD research work is limited to investigating the effects of radio 

waves and microwaves which fall under the non-ionizing radiation range. The focus of the 

study is biological effects of non-ionizing EMR in the frequency range used for mobile 

communication technologies. 

2.3 Low-power EMR and Mobile communication technology 

Since the evolution of the Universe, there has been electromagnetic radiation.  We are 

always surrounded by different types of natural electromagnetic radiation. Naturally occurring 

radio waves are generated by lightning or by astronomical objects, whereas artificial 

radiowaves and microwaves are generated, transmitted and received for any and all wireless 

communication, electrical generators and even home appliances. Artificially generated 

radiowaves are used for fixed and mobile radio communication, broadcasting, radar and other 

navigation systems, communications satellites, computer networks and many other 

applications. Radiowaves have a frequency ranging from 3KHz to 300GHz for wavelength 

ranges from 100km to 1mm. Radiofrequency radiation, more commonly known as radiowaves, 

can be artificially generated, controlled, transmitted and received. Moreover, radiowaves can 

penetrate haze, rain, cloud, snow and smoke without any distortion, so they are used for 

transferring data and audio/ video transmission.  

Similar to infrared (IR), the primary effect of absorption of radiowaves by materials is 

to heat them. However, IR causes surface heating, whereas radio waves penetrate and deposit 
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the energy inside the body or biological tissues [33]. In today’s world, we are regularly exposed 

to numerous sources of radiowaves such as powerlines, smart meters, computers, conductive 

water pipes, microwave ovens, mobile phones, cordless communication devices, phone 

towers, and even devices in our neighbours' homes. The comforting part is that the radiowaves 

are very low-power EMR and the heating effect is same as any other form of heat; thus, the 

focus of the present study is directed to non-thermal effects of radiowaves/microwaves.  

As discussed in Section 1.1, the exponential worldwide increase in usage of wireless 

telecommunication devices, mainly mobile phones, has resulted in increased human exposure 

to radiofrequency (RF) fields. Mobile phones (3G and 4G mobile networks) are low-powered 

radiofrequency transmitters, operating at frequencies between 450MHz and 2700MHz with 

peak powers in the range of 0.1 to 2 watts. Mobile phones communicate by transmitting 

radiowaves through a network of fixed antennas, called base stations. For broadcasting, high 

RF power is generally required to maximise the area of coverage. Close to the antennas, electric 

field strengths can reach several hundred volts per meter. Cellular networks cause low levels 

of electromagnetic fields in public areas. Handsets and cell phones, however, might cause 

significantly higher peak levels of exposure during use. 

 

Figure 2 3: Working Principle of mobile call [34]  

Figure 2.3 describes the working of mobile phones. A mobile phone device converts 

voice, text, multi-media messages or data calls into radio frequencies (RF). Mobile phone base 

stations transmit and receive these RF signals and connect callers to other phones and other 
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networks. The mobile phone network is divided into thousands of overlapping, individual 

geographic areas or ‘cells’, each with a base station. During talks, Global System for Mobile 

Communication (GSM) users are exposed to low-power RF or microwave (MW) radiation 

(depending on the operational frequency range). To maximise the coverage, these frequencies 

of human-made origin have a complex amplitude distribution over time. For instance, there are 

124 different channels/frequencies, which are used in GSM900 technology used in 2G (2nd 

Generation) mobile technology. They differ by 0.2 MHz in the frequency range between 890 

MHz and 915 MHz. The base station supplies frequency to a mobile phone user depending on 

the number of connected users. The base station can change the frequency during the same talk. 

In contrast to GSM phones, mobile phones of the 3G (3rd generation) network use UMTS 

(Universal Mobile Telecommunications System) wideband signal. 3G/ UMTS (in Europe) 

mobile communication technology operates at frequencies between 1900 MHz to 2200 MHz. 

It is anticipated that UMTS may have higher biological effects because of the eventual 

“effective” frequency windows [35]. The 4G (4th Generation) and 5G systems in mobile 

technology are specified to operate in the 2 and 3.6 GHz licensed bands for mobility [36].  

3G mobile phones operate at lower power levels than both GSM and CDMA handsets. 

The maximum power from a 3G phone (2100 MHz) is 0.125 W produced over a 5 MHz 

bandwidth, whereas GSM phones (900 and 1800 MHz) emit an average power of 0.25 and 

0.125 W over a 0.2 MHz bandwidth, and CDMA handsets (800 MHz) have a maximum power 

of 1 W. With adaptive power control technology, handsets operate at the lowest power 

necessary for good quality and reliable radio communications. Typically, handsets are held 

against the head while a call is made. The distance from the antenna to the head is only about 

2 cm or less. Therefore, the user is in the near-field of the source, and simple field calculations 

are not appropriate to assess the exposure level. RF exposure limits for mobile phone users are 

given regarding the Specific Absorption Rate (SAR) – the rate of RF energy absorption per 

unit mass of the body [37] [38]. 

In Australia, the current mobile frequency bands can be broken into 800, 900, 1800 and 

2100MHz (2G and 3G networks). As the demand for data transmission, speed and coverage 

increased significantly over the years, the carriers moved from 2G (900/1800 MHz bands) to 

3G (1900- 2200MHz) frequency bands. With the introduction of the 4G mobile network, the 

carriers began turning off their GSM 1800 MHz service and using the space to operate a 4G 

service. The Australian Radiation Protection and Nuclear Safety Agency (ARPNSA) specifies 



17 
 

exposure limits to RF at the frequencies used for mobile phones [39]. The SAR limit in 

Australia for mobile phone handsets is set at 2W/kg of tissue averaged over 10 grams. 

2.4 Health Concerns and Exposure Guidelines 

As discussed in Chapter 1, the mobile phone radiation is non-ionising radiation and 

does not have sufficient energy to break chemical bonds, so the mechanism by which this low-

power radiation interacts with biological material is still a matter of research. It is considered 

that tissues nearest to the mobile antenna can absorb this energy and may contribute to the 

changes in the standard biological functioning of a living organism [3] [4] [5]. There is 

circumstantial evidence described in various scientific reports suggesting that even low-power 

RF and MW radiation can affect the standard biological processes in human body. Furthermore, 

anecdotal and scientific studies show biological and possible health effects associated with 

mobile towers and antennas. A large number of research studies had been conducted worldwide 

to elucidate the effects of low-power RF radiation from mobile phones on biological processes, 

which can ultimately affect human health. In this section, the author has gathered and 

categorised the recent relevant research reports to identify research gaps in the current state-

of-the-art literature, and to develop and guide the present study.  

The tissue heating is the principal mechanism of interaction between RF energy and the 

human body. The heating effects produced by RF and MW are well known, extensively studied 

and well characterised. There is a number of different applications developed based on the 

heating effects produced by high-power RF/MW radiation which is used in the food industry, 

defence and medical applications (i.e. RF ablation). However, radiation emitted by mobile 

phone devices and other telecom technologies is at a low-power level and complies with safety 

standards (no heating effect requirement, <1ºC in surface heating).  

Mobile phones operating at various frequency bands and low powers produce RF 

energy which is absorbed by the skin and other superficial tissues, resulting in negligible 

temperature rise in the brain or any other organs of the body [40]. It has been reported that the 

increasing use of smartphone possibly targets several biochemical processes leading to health 

problems [11]. These effects vary from those as simple as behavioural changes, which can be 

corrected by changing lifestyle, to those as complex as the development of brain cancer [41]. 

Despite this information, knowledge of the exact mechanisms underlying interaction between 
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biological systems is crucial for understanding physiology as well as for possible prevention, 

diagnostics and therapy of pathological state. 

In the last twenty years, a particular interest arose in the weak (low-level) non-thermal 

and non-ionising EMR [42]. A significant number of peer-reviewed papers were published 

exploring the harmful effects of ionising EMR, but still very little is known about the effects 

of low-level, non-ionising radiation. Our level of understanding of the mechanisms of 

interaction of EMR with biological systems decreases as we move from extracellular 

(membrane) to intracellular (protein, DNA) components. 

There is evidence that long-term exposure to low-level RF and MW radiation can be 

dangerous to health [15] [39] [43] [44]. According to a study conducted by Brazilian 

researchers, RF radiation may result in the development of cancers in humans [45]. According 

to the study, more than 80 percent of the people who have died in Belo Horizonte, Brazil from 

brain cancer lived less than 500 meters away from 300 identified cell phone base stations in 

the city. 

In response to public concerns, in 1996 the WHO established the International 

Electromagnetic Fields Project to assess the scientific evidence on the possible health effects 

of EM fields. The WHO also identifies and promotes research priorities for radiofrequency 

fields and health to fill gaps in knowledge through its research agendas. Specific studies have 

been identified to address the problem of localised exposure. The project has established a 

formal mechanism for reviewing the research results and conducting risk assessments of EM 

exposure. The WHO promotes dialogue among scientists, governments, industry and the public 

to raise the level of understanding about the potential adverse health risks of mobile phones. 

The WHO is also developing public information materials, and bringing together standards 

groups worldwide in an attempt to harmonise international exposure standards. The WHO FSo 

193 suggests that there is evidence that long-term exposure to low-level radiofrequency and 

microwave radiation can be dangerous to health [46]. 

Epidemiological research examining potential long-term risks from RF exposure has 

mostly looked for an association between brain tumours and mobile phone use [47] [48] [49]. 

As epidemiological studies can only assess those cancers that become evident within shorter 

time periods, it was reported that no association had been suggested. Though it is a fact that 

many cancers remain undetectable for many years after the interactions that led to a tumour, 
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results of animal studies consistently show there is no increased cancer risk of long-term 

exposure to RF fields. 

 However, the WHO 2010 RF Research Agenda included cellular research aiming to 

elucidate the potential impacts of new, emerging technologies on health through the associated 

mechanistic understanding. It recommends dosimetry and cellular studies aimed at better 

communicating the current state of understanding of the biological and health effects of RF at 

the genetic and protein levels [46] [39] [50]. The call for in vitro cellular research acknowledges 

the current lack of understanding regarding the potential of low-level (non-thermal) RF to 

interact with the healthy functioning of an individual. Moreover, this knowledge will help to 

anticipate the potential impacts of new and emerging technologies on health through the 

associated mechanistic understanding.  

The WHO also conducted a large-scale multinational epidemiology study coordinated 

in over 13 countries through the International Agency for Research on Cancer (IARC). In 2014, 

WHO reported the epidemiological studies that have been completed or are ongoing, including 

case-control studies and prospective cohort studies examining a number of health endpoints in 

adults. The most extensive retrospective case-control study to date on adults, by Interphone, 

coordinated by IARC, was designed to determine whether there are links between use of mobile 

phones and head and neck cancers in adults [51]. While an increased risk of brain tumours is 

not established, the increasing use of mobile phones and the lack of data for mobile phone use 

over time periods longer than 15 years warrant further research on mobile phone use and brain 

cancer risk [41]. In particular, with the recent popularity of mobile phone use among younger 

people, and therefore a potentially longer lifetime of exposure, the WHO has promoted further 

research on this group. 

Increased public concern has also promoted further investigation of biological and 

associated health effects of exposure to low-power RF radiation emitted by mobile phones (3G 

and 4G mobile networks) [52] [53] [54]. Studies have been focused on effects of RF radiation 

in the range of 800MHz -2400MHz at a relatively low exposure density (average SAR near 2.0 

W/Kg) on biochemical processes in various biological systems [55] [56] [57].  

Researchers have investigated the effects of RF fields on brain electrical activity (EEG), 

cognitive function, sleep, heart rate (ECG) and blood pressure in volunteers [43]. To date, the 

research does not suggest any consistent evidence of adverse health effects from exposure to 
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low-power RF fields at the levels below those that cause tissue heating. Furthermore, research 

has not been able to provide support for a causal relationship between exposure to RF fields 

and self-reported symptoms, or “electromagnetic hypersensitivity”. There are some indications 

of an increased risk of glioma for those who reported the highest 10% of cumulative hours of 

mobile phone use, although there was no consistent trend of increasing risk with greater 

duration of use. The researchers concluded that biases and errors limit the strength of these 

conclusions and prevent a causal interpretation [43]. 

Intensive international research has found no conclusive or convincing evidence of 

adverse health effects of mobile phone use. However, an increasing number of research studies 

have demonstrated the existence of biological effects of low-power RF and MW radiation at 

the molecular and cellular levels. Barnes and Greenebaum in 2017 presented that low-power 

FR/MW waves may affect a biological system, causing a biological effect, without necessarily 

causing an adverse change in health [58]. Hence, the concern remains, and it is unclear whether 

the accumulative biological effects caused by long-term exposure to low-level/power RF can 

lead to health effects, adverse or therapeutic [46]. As such, there is a need for more research 

focussing on the mechanism of interaction of RF fields with bio-molecules and cells. 

Since 1996, the Australian Government has provided $1 million per year to the 

Electromagnetic Energy (EME) program. This program supports research into and provides 

information to the public about health issues associated with mobile phones, mobile phone base 

stations and other communication devices and equipment. The Australian government 

conducted an inquiry into the safety of mobile phone technology[59]. The inquiry found no 

substantiated scientific evidence of health effects from mobile phones and their base stations. 

The inquiry reiterated that mobile phones must comply with strict safety guidelines established 

by the government.  

ARPANSA commenced centralised the Electromagnetic Radiation (EMR) Health 

Complaints Register on 4 July 2003. The Register collects reports of health concerns related to 

possible EMR field exposure in the range of 0-300 GHz. Since its commencement, it has 

received 126 reports. The register collected more than 70 reports in the year 2012-13 and 2013-

14 alone [60]. This data indicates that, with a spike in technology, exposure-related health 

issues are increasing and need further detail investigation.  
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2.4a In-silico (molecular modelling) studies 

Electric and time-varying electric fields can affect biological systems. An external 

current field increases the permeability of the cell membrane in the course of several biological 

processes [61] [62]. Exposure to radio waves at the frequencies used in communication 

technology may affect the proteins in many different ways. For example, via the interactions 

of the receptor protein, dipole moments change with the external oscillating electric fields [63] 

[64]. In general, charged and polar residues can directly interact with an oscillating electric 

field, and this may lead to some perturbation in proteins. Computational studies, based on MD 

simulations, suggest that proteins exposed to high static electric fields undergo significant 

conformational changes sufficient to produce functional changes [65] [63] [66]. 

In recent years, it has been shown that weak static electric fields could be used in 

various food technology and therapeutic medical applications (pain relief and chronic 

inflammatory autoimmune disorders) [67] [68]. However, for the development of an effective 

treatment, a better understanding of the influence of static electric fields at the molecular and 

cellular levels is required. In recent years, several in-silico studies were conducted to 

investigate the effects of varying static [63, 69, 70] and oscillating electric fields [25, 71] [72] 

on selected proteins and peptides. These studies were aimed to elucidate the mechanistic 

response of selected proteins to applied electric field exposure. In-silico approaches were also 

helpful in studying the effects of electromagnetic fields on proteins’ denaturation and stability. 

It is worth mentioning here that experimental monitoring of these effects is very challenging, 

due to the short time frame of a nanosecond (ns) [69] [73] [74] [75] [76]. Computational or in-

silico methods present powerful tools that enable a mechanistic understanding of interactions 

between external fields and molecules or cells [70]. 

Molecular modelling methods are now used routinely to investigate the structure, 

dynamics, surface properties, and thermodynamics of inorganic, biological, and polymeric 

systems. The types of biological activity that have been investigated using molecular modelling 

include protein folding, enzyme catalysis, protein stability, conformational changes associated 

with the biomolecular function, and molecular recognition of proteins, DNA, and membrane 

complexes [77] [78].  

With the increase in the strength (power) of the static field, the potential also increases. 

Research shows that external stress related to EMR at different levels can alter a protein’s 

https://en.wikipedia.org/wiki/DNA
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structure [71]. A number of research studies were conducted to evaluate the effects of static 

and oscillating EMFs on the living matter [79]. Research studies investigated mostly acute 

effects of static electric fields, and showed only the effects associated with body hair movement 

and discomfort from spark discharges. However, chronic or prolonged effects of static electric 

fields have not been adequately investigated [80]. Most of the studies done were at high field 

strength, which is beyond the scope of the present study. Of particular interest to this study are 

biological and possible health effects of low strength static electric fields (f = 0Hz). A 

computational modelling approach was applied for the present research to understand the 

mechanism of molecular interaction in the biological system (protein molecule) with applied 

electrical fields.  

Proteins are the building blocks of living cells, and their structure is directly correlated 

to their function(s) [25]. Any change in the conformation of a protein leads to changes in its 

functional performance and thus, may result in altering of a particular biological process. 

Molecular Dynamics, or MD simulation, is a powerful computational tool to study the 

interaction of atoms and molecules under external stimuli for a fixed period. There are only a 

few studies in biological sciences performed using the MD approach [66] [69] [70] that have 

provided a detailed description of the effects of applied exposures at the atomic level within 

the nanoseconds time period. MD simulation can efficiently model atomic and molecular 

interactions occurring in biological systems and effects of external stimuli on molecules and 

cells. NAMD and GROMACS (Groningen Machine for Chemical Simulations) are the two 

most commonly used software applications to simulate and study the effects of peptide and 

proteins at nanoscale level [67] [81] [82] [83].  

The molecular modelling approach could be a breakthrough in this research and can 

help in understanding the mechanistic aspect of low power radiation by capture effects at the 

nanoscale level. Nevertheless, much work needs to be done to design an algorithm to mimic 

the real nature of electromagnetic radiation.  

2.4b In vitro studies 

Experimental research on the effects of RF radiation is extensive and heterogeneous. It 

includes both studies of cell cultures and tissues (in vitro) and laboratory animals (in vivo), as 

well as human subjects (in vivo clinical studies). A number of these studies were focused on 

functional changes in the brain and the effects of RF fields on cognition. Any measurable 
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change in a biological system initiated by a specific stimulus is referred to as the biological 

effect of the stimuli. However, it is not necessary for every biological effect to contribute to a 

biological or health hazard. Several reports indicate that EMR from mobile phones at non-

thermal levels might elicit a biological effect in target cells or tissues. Whether or not these 

biological effects lead to adverse health effects (including cancer) is unclear. To date, there is 

limited scientific evidence of health issues and no mechanism by which mobile phone radiation 

could influence cancer development [59] [84] [77] [85] [86]. The research findings on changes 

at the molecular level associated with the development of cancer are inconsistent and 

contradictory. Nevertheless, other biological effects of low-power RF radiation are neither 

rejected nor denied. 

Yeast cells are frequently used as a model system for in-vitro studies, as yeast is a 

simplest eukaryotic organism with a nucleus. Many essential cellular processes in yeast and 

humans are the same, which makes yeast suitable to study basic molecular processes 

transferrable to biological process in humans [87]. There have been a number of experiments 

conducted to study the growth pattern of yeast cells exposed to MW radiation [88, 89]. For 

instance, researchers [90, 91] evaluated the effects of low-power MW radiation on bacteria and 

yeast strains and reported that the yeast cell growth rate was affected by applied exposure. It 

was shown that microwave radiation induces frequency-specific effects on the yeast growth 

rate, i.e. increase up to 15% at the frequency 41.6 GHz and decrease to 38% at 41.8 GHz.  

French et al. [92] developed a theoretical mechanism by which RF radiation from 

mobile phones could induce cancer, via the chronic activation of the heat shock response. 

Upregulation of heat shock proteins (HSPs) is a standard defence response to cellular stress. 

However, chronic expression of HSPs is known to induce or promote oncogenesis, metastasis 

and resistance to anti-cancer drugs. The authors suggest that repeated exposure to mobile phone 

radiation acts as repetitive stress leading to continuous expression of HSPs in exposed cells 

and tissues, which in turn affects their normal regulation, and thus cancer can result. This 

hypothesis provides the possibility of a direct association between mobile phone use and 

cancer, and thus provides a principal focus for future experimentation [93] [94]. 

Studies at the cellular level have shown that non-thermal effects of MWs at levels lower 

than the ICNIRP (International Commission for Non-Ionizing Radiation Protection) safety 

standards depend on several physical and biological parameters. Frequency-dependent effects 

of non-thermal MWs from GSM mobile phones on 53BP1/γ- H2AX foci and chromatin 
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conformation in human lymphocytes were observed [95] UMTS MWs induce significant 

adverse effects in human lymphocytes, similar to effects of heat shock and GSM MWs at the 

particular frequencies. The obtained results are in line with the hypothesis that UMTS MWs 

may affect cells more efficiently than GSM MWs, because of the nature of the signal [95]. The 

effects of MWs from mobile phones on 53BP1/γ-H2AX foci persisted up to 72 hrs following 

exposure of lymphocytes. Long-lasting adverse effect on these critical cells of the immune 

system can have a relationship with health risk from mobile telephony [96]. 

A number of studies report that EMFs alter the proliferation rate of cells, as well as the 

rate of DNA, RNA, and protein synthesis [53, 59, 93, 97-100]. The biochemical processes are 

strongly affected by changes in cytosolic ion concentrations (especially calcium), and such 

changes can be induced by RF microwave radiation [101, 102]. It has been shown that RF 

fields modulated by extremely low frequencies (ELF) decrease cytosolic calcium ion 

concentration [103]. In some experiments, this effect was at the maximum power densities 

between 0.6 and 1mW/cm2 [103]. In one study [104], the GSM signals tested were the RF 

carrier signals, pulsed at ELF and the power densities 0.436-0.060mW/cm2. It is known that 

cell proliferation, DNA, RNA, and protein synthesis are connected with increased cytosolic ion 

concentrations (especially calcium) and with depolarisation of the plasma membrane. The 

effects of external EMFs on the cytosolic ion concentrations appear to be connected with the 

interaction between the external field and the cation channels of the plasma membrane, which 

results in irregular gating of these channels [104]. A biophysical mechanism for this interaction 

has been proposed [104]. According to this mechanism, ELF fields of the order of a few V/m 

can gate electro-sensitive channels on a cell’s plasma membrane irregularly and therefore 

disrupt cell function. In addition, pulsed fields are shown to be more bioactive than continuous 

ones. Therefore, according to one study [105], the ELF component of a GSM signal, due to the 

pulse repetition frequency at 217 Hz, with a mean electric field intensity of the order of 6 V/m, 

can disrupt cell function and consequently affect the reproductive capacity of a living organism. 

Two significant findings of these studies are that the effects of EMF are waveform-specific and 

cell type-specific [106]. 

The limited number of studies on oxidative enzyme systems has yielded mixed results. 

Exposure of suspension of the membrane-bound enzyme Cytochrome oxidase to sinusoidal 

modulated MWs at 2.45 GHz with SAR of 26 W/kg did not significantly affect its activity 

during the exposure [107]. Findings of other in vitro studies reveal that MWs at particular 

frequencies and powers induce changes in the enzyme’s kinetics. The modulation of the rate 
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of change in corresponding biochemical reactions which these enzymes catalyse is directly 

affected by the change in enzyme kinetics [108] [109] [110]. In vitro studies also show that 

membrane structure and functionality could be altered upon exposure to RF fields [111]; and 

hence it is safe to suggest that low-power radio waves may affect a biological system, without 

necessarily causing an adverse change in health [58]. Findings of a few relevant in vivo studies 

investigating effects of low-power MW are summarised in Tables 2.1 and 2.2. 

In the last five years, an increased number of in vitro studies have been conducted to 

evaluate the health effects of low-power RF radiation [27, 35, 37, 38, 112]. Interestingly, a 

more significant number of published studies have reported health effects associated with 

mobile phone radiation as opposed to studies reporting no effects [18]. In one recent study 

[113], researchers investigated the effects of mobile phone radiation on semen parameters 

(semen volume, sperm concentration and count). The effects of MW exposure at 2.4 GHz were 

studied on ejaculated semen donated by healthy volunteers (20-30 years old). The researchers 

screened and documented the information from a total of 794 young men in 2013, followed by 

666 and 568 in 2014 and 2015, respectively. The findings of this three-year study reveal that 

semen quality, concentration, motility and morphology were all significantly affected by 

exposure [113]. It was also reported that mobile phone radiation damages DNA indirectly, by 

the leakage of digestive enzymes from lysosomes or by the production of reactive oxygen 

species (ROS) [114].  

 

 

 

Table 2.1 Effects of low power MW radiation in the frequency range of 450MHz –2GHz 

Frequency Power 

density  

Cells/Tissues Effect 

915 MHz 1mW/g Human 

Neuroblastoma [115] 

A significant increase in the efflux of 

calcium ions 

450 MHz  0.29 

mW/g 
Calcium efflux from 
awake cat cerebral 
cortex [104] 

Increased end-tidal CO2 excretion  
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837 MHz to 

1909.8 MHz 

5mW/g Chromatin in human 

cells [116] 

The microwave irradiation of human cells 

induces the significant increase of 

Heterochromatin granules quantity 

parameter 

905 MHz  0.5 mW/g Saccharomyces 

cerevisiae  [89] 

Significant reduction of colony growth 

compared to non-irradiated strains after all 

exposure times 

1800MHz 0.06mW/g Deoxyribonucleic 

Acid Damage Vis-à-

vis Genotoxicity in 

Brain of Fischer Rats 
[117] 

Chronic microwave radiation exposure at 

low-level induces DNA damage 

9.9 GHz 1mW/g Biochemical Changes 

in Rat Brain Radiation 
[118] 

Decrease activity of protein kinase  

It is evident from research studies that different cells respond differently to applied 

radiation, which may lead to alterations in complex biological processes [119]. Cellular and 

animal studies reveal that EMFs produce both thermal and non-thermal biological effects [120]. 

Non-thermal radiation does not have enough energy to influence the chemistry of cells directly 

but plays a vital role in altering particular biological pathways, which indirectly affects specific 

biological actions. It is reported that RF radiation could affect cell membrane proteins and 

trigger an increase in intracellular Ca2+ ions [121] [122]. Changes in Ca2+ signalling occurs 

almost immediately after EMR exposure [123]. The thermal mechanisms that may convey 

detection of microwaves by mammals are the heating of tissues by microwave exposure, which 

can be detected by thermal receptors in the skin and elsewhere in the body and central nervous 

system (CNS) [58]. The identification of a family of transient receptor potential (TRP) ion 

channels which are gated by specific temperatures has been a significant advance in the 

elucidation of the molecular mechanisms of thermo-sensitivity. Research has revealed a family 

of TRP proteins that sense heat and cold at the cellular level [124].  

Table 2.2. Effects of MW of varying SAR and duration at the cellular level 
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Study Exposure power, 

SAR and time 

Exposure 

Temp. 

Effects 

[125] SAR of 1, 2 and 4 

W/kg for 1,2, and 3 

days respectively 

37.06 +/- 0.5oC 1. mRNA and protein expression of proneural 

genes NGN1 and NEUROD were decreased 

with UP-regulation of their inhibitor HES1 

after exposure.  

2. Neurite outgrowth of eNSC differentiated 

neurons was inhibited after 4 W/kg RF 

exposure for 3 days. 

[126] The power density 

of 50 mW/cm2 

37.0 oC  1. The structure of BBB has damaged, and 

permeability of ions and low molecular 

weight molecules were increased.  

2. Decreased in occluding mRNA and protein 

along with increased Tyr phosphorylation 

[56] Power density of 10, 

30, 50 and 100 

mW/cm2 

37+/-0.5 oC Microwave Radiation induces apoptosis in the 

neural cell through the mitochondria-mediated 

caspase-3 pathway. 

[57] SAR of 0.607W/kg 

for 4 and 24 hr 

37oC 1. Cell viability decreased  

2. Cell proliferation inhibited and apoptosis 

induced  

3. Mitochondrial membrane potential 

decreased  
 

   

It is important to note that there are a number of studies showing biological effects of 

RF exposure, whereas studies focused on investigating the direct health effects of RF radiation 

are inconclusive. The possibility of a direct relationship between mobile phone use and 

carcinogenic processes, reproduction and development, the cardiovascular system and 

longevity, are ruled out by a good number of researchers. These studies have found minimal 

and reversible biological and physiological effects which do not necessarily lead to diseases or 

injuries. In addition, the research findings on changes at the molecular level associated with 

the development of cancer are inconsistent and contradictory [127]. In vitro studies of non-

thermal effects of RF often report conflicting results [128] [129] [130]. Some studies suggest 

that RF exposure, even at a power lower than the standard recommended exposure levels, can 

change processes of gene and/or protein expression in certain types of cells. However, the 

biological consequences of most of the changed genes/proteins are still unclear and need to be 

further explored to make an evidence-based conclusion on their health effects. There is a lack 

of understanding of the long-term accumulating effects of RF radiation at the genetic and 

protein levels which might lead to health effects [131] [6] [132] [133]. The potential sources 

of inconsistency in reporting of research findings include differences in experimental protocols, 
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temperature control, exposure parameters, cytogenetic techniques, and sensitivity of different 

cell types to applied radiation. 

2.4c In vivo animal and human studies  

Since 1990, until the first decade of the 21st century, about 93% of in vivo studies 

published have shown no significant short- or long-term effects of applied irradiation. 

Furthermore, the average survival of irradiated groups of animals was not affected in some 

96% of studies [134]. No convincing evidence has been presented for acute or chronic effects 

of RF on other physiological and biochemical parameters in animals. Thus, during the first 

decade of the 21st century, the general conclusion has been that no consistent or essential effects 

of RF could be demonstrated in whole animals at the radiation level below the international 

safety standards. However, a surge in the usage of mobile phones and unprecedented 

development in telecommunication technology have forced the scientific community to review 

the effects of RF exposures. Extended hours of mobile phone usage, penetration of mobile 

phones, and higher frequency and power density are some new parameters used by the 

scientific community to analyse the effects. In 2014, the WHO stated: "With a large number of 

mobile phone users, it is important to investigate, understand and monitor any potential public 

health impact [135]." WHO also recognise that the research done to date shows some 

connection between mobile phone use and health effects [135]. 

Recent in vivo studies [18, 37, 112-114] demonstrate that anthropogenic RF radiation 

is capable of eliciting post-neurotomy pain in animals. Experimental rats were exposed at 915 

MHz and a power density 756 ± 8.5 mW/m2 for 10 minutes, once per week for eight weeks. 

The RF exposure was attenuated to deliver an average power density equal to that measured at 

39 meters from a local mobile phone tower. In another study [47], single- and double-strand 

DNA breakages were observed in brain cells of rats exposed to continuous and pulsed MWs at 

2.45 GHz and a power density 2mW/cm2. This field provided an average whole-body SAR of 

1.2 W/kg, which is below the safety standard (the SAR limit in Australia for mobile phone 

handsets is 2W/kg of tissue averaged over 10 grams). The authors conclude that the observed 

cumulative DNA damage in cells in the central nervous system could lead to accelerated ageing 

and neurodegenerative disorders [136].  

Microarray analysis was performed on the ovaries of 4 days-old female Drosophila 

melanogaster exposed to mobile phone radiation for 30 mins at SAR of 0.15 W/kg. The 
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findings reveal that ROS cellular content was increased, with 168 genes being differentially 

expressed. As reported, the applied radiation is capable of inducing critical cytopathic effects 

and altering fundamental genetic programs and networks in Drosophila melanogaster [6]. In 

another study [137], researchers irradiated mouse NIH/3T3 and human U-87 MG cells by MW 

radiation at 1800 MHz and a power density of 1209 mW/m2. The results show that MW 

exposure induces apoptosis-related events such as ROS burst and more oxidative DNA 

damage, which lead to p53-dependent caspase-3 activation through release of cytochrome c 

from mitochondrion [138]. This finding is critical, as it is known that ROS can damage various 

cellular compartments resulting in DNA damage and apoptosis. 

A study on monoamine neurotransmitters and their vital regulating enzymes in a rat 

brain show that low-power MWs alter the level of brain monoamine neurotransmitters at 

mRNA and protein levels, which may cause learning and memory disturbances [37]. In this 

study, rats were exposed to MWs at 900 MHz and 1800 MHz for 30 days, 2 hours/day and five 

days/week. The levels of monoamine neurotransmitters were detected using LC-MS/ MS in 

the hippocampus of all experimental animals [37]. In an in vivo animal study [139], the effects 

of 935 MHz radiation were studied on fertilisation and embryonic development in mice. The 

ovulating mice were irradiated for 4 hours and 2 hours per day for three consecutive days, and 

then ova were harvested for in vitro fertilisation, to observe the changes if any in fertilisation 

rate. Compared to control groups, a reduction in fertilisation rate was observed in exposed 

groups [139]. The effects of MWs on body hormones in pregnant rats have also been reported. 

When four groups of rats, including forty new off-springs, were irradiated at of 900, 1800 and 

2450 MHz, it was observed that the levels of plasma prolactin, progesterone and oestrogen 

were decreased, whereas the levels of uterine oxidative stress in pregnant rats and their 

offspring were increased [114]. However, the mechanisms underlying the observed effects 

have not been reported. It was also shown that long-term use of mobile phones could have 

various health problems ranging in their severity from headaches to brain cancer [136]. DNA 

damage due to lower-power MW radiation may be the cause of cancer and also the loss of 

fertility, as previously reported [4]. Table 2.3 summarises some of the recent In-vivo research 

on the effect of low-power MW radiation. 

 

Table 2.3: Findings of the latest research studies on the effects of low-power MW 

radiation 
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Study Exposure 

(SAR or power 

density) 

Frequency Effect 

Tang J et al., 

2015 [140] 

0.016 W/Kg 900 MHz Impaired spatial memory and damages BBB 

permeability in rats 

Eris AH, et al., 

2015 [141] 

608 mW/m2 900 MHz Retarder learning and deficit in special memory 

in rats. 

Li HJ, et al., 

2015 [142] 

5, 10, 20 

mW/cm2 

2.856 GHz Long-term, chronic MW exposure could induce 

dose-dependent deficit of spatial learning and 

memory in rats 

Aydogan F, 

Unlu, 2015 

[56] 

0.4 W/kg 2.1 GHz Exposure to 2100 MHz RF radiation causes 

salivary gland damage to some extent and 

especially with more prolonged exposure 

duration. 

TRPV ion channel proteins play a significant role in the sensory function in our body. 

TRPV1 ion channel protein was investigated for long-time exposure at 900 and 1800 MHz in 

a rat model [114]. In the study, 24 adult rats were divided into control, and test groups irradiated 

at 900 MHz and 1800 MHz exposure. Samples were irradiated for 6 min/5days of the week for 

one year. The study concludes that mitochondrial oxidative stress, programmed cell death and 

Ca+2 entry pathway through TRPV1 activation were increased.  At 2450 MHz, the response of 

the brain was studied in rats. Single- and double-strand DNA breakages were observed in brain 

cells of rats exposed to continuous and pulsed MWs at 2.45 GHz and a power density 2 

mW/cm2 [47]. The study reports detrimental changes in the rat brain leading to lowering of 

learning and memory and expression of anxiety behaviours, with falls in brain antioxidant 

enzyme systems.  

A study group of human volunteers has been selected for various demographic data 

including age, gender, dietary pattern, smoking habit, alcohol consumption, duration of mobile 

phone use and average daily mobile phone usage [143]. The objective of the study was to 

analyse various antioxidants in the plasma of individuals exposed to low-power EM radiation. 

The analysis reveals significant attrition in glutathione (GSH) concentration (p< 0.01), 

activities of catalase (CAT) (p < 0.001) and superoxide dismutase (SOD) (p < 0.001), and rise 

in lipid peroxidation (LOO) when compared to controls. Multiple linear regression analyses 

reveal a significant association between reduced GSH concentration (p < 0.05), CAT (p < 
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0.001) and SOD (p < 0.001) activities and high MN frequency (p < 0.001) and LOO (p < 0.001) 

with increasing RF power density [143]. 

The results of a recent research study conducted in the USA by the National Institute 

of Health (NIH) under the National Toxicology Program (NTP) reveal that there is higher 

confidence in the association between the mobile phone radiation and development of cancer 

in rats [114] [144]. This study shows that about 2 to 3 percentage of male rats exposed to cell 

phone radiation developed malignant glioma brain tumours, and 5 to 7 percentage of exposed 

rats developed schwannoma tumours in their heart. 

Several questions need to be answered at the genetic and protein levels. For example, 

there is a lack of scientific research and information on whether mobile phone radiation initiates 

any biochemical changes/responses in human volunteers. Studies have been done using a wide 

range of biological model and exposure protocols, resulting in a pool of research articles, but 

it is impossible to compare results obtained from different types of study. Secondly, there is 

limited research on gene and protein expression, individual sensitivity, and effects on DNA 

and the blood-brain barrier. Few studies have been conducted using human volunteers to 

examine the related biochemical responses [35, 145]. This is the reason why the effect of 

radiation from handheld wireless communication devices on human physiology is considered 

to be still unknown.  

Some studies report the effects of EMR exposure on embryo development, behaviour, 

and biochemical and immune systems in animals and humans. However, the health 

consequences of these biological changes are still unclear and need to be further explored [18]. 

The health effects of low-power RF and MW radiation need to be further researched, as 

findings of different studies remain inconclusive and are sometimes conflicting. The reasons 

for inconsistent results are due to difficulties in comparing and validating reported research 

studies. In RF radiation research studies, researchers employ different research methods, 

including different experimental protocols of radiation exposure and its dosimetry. Often, the 

parameters of exposure (generated field strength, SAR, and power density) are not reported, 

and the temperature not monitored, resulting in difficulty in comparing published results. 

Furthermore, currently there is no clear understanding of the mechanism(s) underpinning the 

interaction of low-level RF radiation with biological processes, which is a considerable 

constraint in directional studies of non-thermal effects of RF radiation [145]. Despite the 

inconsistent nature of the observed effects, in 2011, based on an increased risk for glioma, a 
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malignant type of brain cancer associated with wireless phone use [94], the WHO/ IARC 

classified RF EM fields as possibly carcinogenic to humans under Group 2B, a category used 

when a causal association is considered credible but when chance, bias or confounding results 

cannot be ruled out with reasonable confidence. 

2.5 Summary  

In this chapter, the author has discussed the fundamental principles of electromagnetic 

radiation with a focus on non-ionizing radiation. The author has also discussed in detail the 

frequency range used for mobile telecommunication. Based on the current body of knowledge, 

the author discussed research on the possible health effects and regulations for service 

providers to use such radiation protectively. Later in this chapter, various research approaches 

used by the research community have been discussed in detail. In the next chapters, the author 

will discuss an in-silico study conducted to investigate the effects of static and oscillating 

electric fields on the conformation of Conotoxin protein, and in vitro evaluation of RF radiation 

on selected proteins and cells. 
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CHAPTER 3: EFFECTS OF STATIC AND TIME-

VARYING ELECTRIC FIELDS ON THE 

CONFORMATION OF CONOTOXIN PROTEIN: A 

MOLECULAR MODELLING STUDY 

3.1 Introduction 

This chapter presents in silico studies performed to model the conformation of a 

selected peptide, Conotoxin, under the influence of applied external static and time-varying 

electric fields.  

Molecular Dynamics (MD) simulation is a computational method frequently used in 

biological science to study the interaction of atoms and molecules under a fixed period. MD 

simulation can efficiently model atomic and molecular interactions occurring in biological 

systems and effects of external stimuli on molecules and cells. Computational studies, based 

on MD simulations, suggested that proteins exposed to high strength static electric fields 

undergo significant conformational changes sufficient to affect the functionality of these 

proteins [65] [63] [66].  

Initially, the author studied the effects at 0.01, 0.001 and 0.0001 V/nm on the 

conformation of Conotoxin peptide. In this work, a novel Dynamic Time Warping (DTW) 

method was employed to evaluate the conformational changes [146]. In the follow-up study, 

the author further simulated the effects of the static electric fields of three different strengths 

1e+9, 0.00123 and 0.000055 V/nm on the structural stability and conformation of Conotoxin 

peptide [146]. The effects were also studied when Conotoxin was simulated under time-varying 

electric fields of strengths 2e-9, 6e-9 and 4.7e-8 V/m and the calculated frequency equivalent 

to 1800 MHz. The findings showed that applied time-varying (oscillating) electric field of 4.76-

8 V/m (the highest strength) produced changes in conformation of Conotoxin, whereas at 6e-9 

V/m minor changes were observed, which were then stabilized during the simulation. The 

results show that the applied field at the lowest strength 2e-9 does not induce any change in the 

conformation of Conotoxin. 
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3.2 Computational modelling study 

3.2.1 Model System: Conotoxin Peptide 

Conotoxin generally consists of 15-30 amino acids and includes between 2 and 3 

disulphide bridges. Conotoxins are a family of Cys-enriched peptides found in several marine 

snails from the genus Conus. Many neurological diseases are being associated with functional 

changes within specific subclasses of nicotinic acetylcholine receptors. α-Conotoxins act as 

competitive antagonists of the nicotinic acetylcholine receptor and express significant 

painkilling effects. Conotoxin target and block potently a wide range of ion channel proteins 

(a type of cell membrane proteins), such as voltage-gated sodium channels (Nav), voltage-

gated calcium channels (Cav), voltage-gated potassium channels (Kv), nicotinic acetylcholine 

receptors (nAchRs) as well as other membrane receptors. The simplicity of Conotoxin 

structure, i.e. 16 amino acids in length, and its wide range of therapeutic applications [25] make 

it an ideal model to study its conformational changes under the electric field of different 

strengths. It is a useful molecular tool to study the properties of their target in healthy as well 

as in diseased states. In this study, we downloaded Conotoxin (2efz.pdb) from the Protein data 

bank. This Conotoxin belongs to M-superfamily and has typical Cys framework (-CC-C-C-

CC-), and one of the eight major superfamilies found in the venom of cone snail. Conotoxin 

has an increasing therapeutic interest in peptide-based drugs. 

3.2.2 Parameters of external static and time-varying electric fields 

Table 3.1 presents electric field parameters used in this computational study for 

simulating Conotoxin peptide.  As can be seen from Table 1, the SAR values employed here 

were below and above the standard safety limit (SAR of 2.0 W/kg - introduced by the 

International Commission on Non-Ionizing Radiation Protection (ICNIRP)). The safety limit 

for exposure to mobile phone emissions is set by determining the lowest level of exposure 

known to cause health hazards and then adding a safety margin. 
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Table 3.1: The SAR values of the MW exposures limits based on the ICNIRP limit 

Power, 

dBm 

Power density, 

mW/cm2 

Electric field, 

V/m 

Electric field, 

V/nm 

Specific Absorption 

Rate (SAR) 

-10 0.00121 2 2e-9  0.0078 

0 0.01210 6 6e-9 0.0700 

17 0.606 47 4.7e-8 4.314 

Table 3.2 shows the electric field strengths used in this in-silico study to create an 

external static electric field inside the system. The strengths were calculated as the power 

equivalent to the selected powers, as follows: -10 dBm (2e-9 v/nm), 0 dBm (6e-9 v/nm) and 

17 dBm (4.7e-8 v/nm).  

Table 3.2: Microwaves simulations parameters for Static Electric field in the range of 

17, 0 and -10 dBm 

System Electric Field  

Strength 

Temperature (K) Duration 

(ns) 

Conotoxin 

(2efz.pdb) 

2e-9 

6e-9 

4.7e-8 

300 

300 

300 

1 

1 

1 

Table 3.3: Simulations parameters used to simulate Conotoxin for the time-varying 

electric field at the microwave frequency 1800 MHz and electric strengths of 17 dBm, 0 

dBm and -10 dBm 

System Field 

frequency 

(MHz) 

Field 

Strength 

V/nm 

Duration of 

simulation 

(ns) 

Temperature 

(K) 

Number 

of 

replicates 

 

Conotoxin 

(2efz.pdb) 

1800 

1800 

1800 

2e-9 

6e-9 

4.7e-8 

10 

10 

10 

300 

300 

300 

3 

3 

3 

Table 3.3 shows the parameters used to create the time-varying electric field at the 

frequency 1800 MHz field strengths equivalent to the powers 17 dBm, 0 dBm and -10 dBm. 
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The Conotoxin was simulated for 10ns, and three replicates were used to analyse the 

conformation of the peptide for each studied parameter. 

3.2.3 Molecular Modelling Approach: Molecular Dynamics Simulation 

Computations based on molecular models are playing an increasingly important role in 

biology, chemistry, and biophysics. Since only an insufficient number of properties of 

biomolecular systems is accessible for measurements by experimental means, computer 

simulations offer an opportunity to complement experimental studies by providing insights into 

mechanistic aspects of a particular biological process and understanding of interactions 

between biomolecules (cells) and external stimuli. Computational approaches not only provide 

information on the averaged values but also distributions and time series of any definable 

quantity. In this study GROMACS software [83] was used to simulate the Conotoxin under 

static and time-varying electric field, with the changes in the peptide conformation being 

studied. GROMACS is an acronym for GROningen Machine for Chemical Simulations. It is a 

very active programme for molecular dynamics (MD) simulations. Here, it is implemented with 

the static and time-varying algorithms, which provide a suitable environment to study the 

behaviour of the molecular system under the influence of applied stimuli (electric fields) and 

evaluate the changes occurring in the molecule in a fraction of seconds.  

The electric fields (static and oscillating) were introduced through .mdp file described 

in detail elsewhere [147]. GROMACS molecular dynamics package [83] was extended to 

include a pulsed, time-varying electric field [148].  

 𝑬(𝒕) = 𝑬𝟎𝐞𝐱𝐩 [−
(𝒕−𝒕𝟎)𝟐

𝟐𝝈𝟐
] 𝐜𝐨𝐬⁡[𝝎(𝒕 − 𝒕𝟎)⁡   Equation 3.1 

Where, sigma is the pulse width, and t is the time after the pulse maximum at t0. The 

angular frequency ω=2πc/λ was varied in the microwave regime as described above. 

3.2.4 Static and Time-Varying External Electric Fields 

Simulation parameters applied for static and time-varying electric field are discussed in 

detail separately. For static electric field, simulation of Conotoxin was conducted for 1000 ps 

to stabilise the molecule, whereas overall simulation time used for time-varying electric field 

simulation of Conotoxin was 10ns with three repeats for each selected power. When Conotoxin 

was simulated to study the effects of the static electric field on its structure, the higher field 
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strengths were used for which the induced effects can be seen even at the brief period of 

simulation, namely 1000 ps.  

Simulation Parameters for Conotoxin under Static Electric Fields 

MD simulations were performed using the GROMACS software package, version 4.5.3 

[74]. Conotoxin peptide (PDB ID 2EFZ) along with four alpha-Conotoxin peptides were used 

in this study (PDB IDs: 2JUQ, 2JUR, 2JUS, 2JUT) to evaluate and compare the structural 

changes in these peptides under the applied exposures. The CHARMM27 [75, 149] force field 

and TIP3P [150] water models were adopted for the simulation of the peptide and solvent 

respectively. Conotoxin(2efz.pdb). The starting geometry of Conotoxin was taken from the 

Protein Data Bank (PDB ID 2EFZ.pdb) [76] was downloaded from the PDB database and 

placed at the centre of a periodic 6.3X6.3X6.3nm transferable intermolecular potential 3-Point 

(TIP3P) water box [150] containing 21,333 water molecules. Sodium ions (Na+) were 

introduced to neutralise the system. The system was first energy minimised with the protein 

frozen using the steepest descent for 20000 steps. Then, two 600 ps equilibrations were carried 

out at the constant temperature, constant volume (NVT) and constant pressure (NPT) ensemble, 

while keeping the protein fix. The converging criterion of energy minimisation was a maximum 

force value of 10 KJ/nm/mol. All electric fields were applied in the same arbitrary direction, 

i.e. along the x-axis (1,0,0) of the starting equilibrated conformation. Finally, the production 

MD simulations were run for 1000ps with the temperature maintained at 300 K and time 

constant of 0.1 ps. The pressure was maintained at 1atm with a time constant of 0.5ps [151]. A 

2-fs time step was used in all MD simulations. A cut off of 1 nm was applied to short-range 

non-bonded interactions, and for long-range electrostatic interactions, the particle mesh Ewald 

(PME) method [152] was used with a grid spacing of 0.12nm and the 4th order interpolation. 

A novel Dynamic Time Warping (DTW) method was introduced and employed to 

evaluate the conformational changes in Conotoxin exposed to static electric fields of different 

strengths. The DTW method [153] is a dynamic programming algorithm based on warping the 

time scale of one series, S, onto another series, Q [154].  The algorithm consists of the following 

steps:  

1. Firstly, a Distance matrix is calculated using the following process:  

𝑫(𝒊, 𝒋) = 𝒅(𝒊, 𝒋) +𝒎𝒊𝒏{

𝑫(𝒊 − 𝟏, 𝒋)

𝑫(𝒊 − 𝟏, 𝒋 − 𝟏)

𝑫(𝒊, 𝒋 − 𝟏)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  Equation 3.2 
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Where D(i,j) is the Euclidean distance between the points i and j.  

2. Secondly, the DWT algorithm is searching for optimal warping path, and finally calculates 

the DWT distance as follows:  

 𝑫𝑻𝑾(𝑺,𝑸) = 𝒎𝒊𝒏{√∑
𝑾𝒌

𝑲
𝑲
𝟏 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  Equation 3.3 

 

Where Wk and K represent weights for each part and normalising factors. 

Root mean square deviation (RMSD) of the backbone atoms was calculated to 

determine the starting/initial structure of Conotoxin peptide. The radius of gyration (Rg) and 

protein–water molecules interactions were calculated to evaluate the response of the protein to 

the applied electric fields. Structural changes occurring in Conotoxin were analysed during 

simulation using the STRIDE algorithm [155], which is implemented within the visual 

molecular dynamics (VMD) software package [156]. VMD is a molecular graphics program 

designed for the display and analysis of molecular assemblies, such as proteins and nucleic 

acids.  

Simulation parameters for Conotoxin under the time-varying electric fields 

MD simulations were performed to study the structural changes in Conotoxin when the 

time-varying electric field of 2e-9 V/nm, 6e-9 V/nm and 4.7e-8 V/nm (Table 3) were applied 

at frequency 1800 MHz and field strengths equivalent to the powers 17 dBm, 0 dBm and -10 

dBm.  The structures were solvated in an SPC water box. The Conotoxin peptide was centred 

in a cubic simulation box with edge lengths of 111Å × 111Å × 111Å. Overall ionic strength 

was maintained using 150 mM NaCl, 218 Na+ ions and 203 Cl− ions were added to the 

Conotoxin system. The systems were then energy minimised over 2000 steps using the steepest 

descent minimisation algorithm and further equilibrated (with heavy atoms restrained) for 100 

ps of NPT equilibration each using the Berendsen thermostat at 300K. The pressure was 

isotopically maintained at 1.0 bar using the Berendsen barostat [157] [40]. Electrostatic 

interactions between non-covalent atoms were computed using particle-mesh Ewald 

(PME) [75] [41]. All MD simulations were performed using Gromacs (Version 4.5.5) [83] 

[74]. All MD simulations in this study were performed using the Amber 99SB-ILDN force 

https://www-sciencedirect-com.ezproxy.lib.rmit.edu.au/science/article/pii/S1093326316301711#bib0200
https://www-sciencedirect-com.ezproxy.lib.rmit.edu.au/science/article/pii/S1093326316301711#bib0205
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field [158] [43]. All data analysis was performed by using the VMD software package.  

3.3 Results and Discussion  

3.3.1 Study one: External Static Electric Field of 0.01 V/nm, 0.001 V/nm and 0.0001 V/nm 

Presented below are the results obtained when Conotoxin peptide was simulated at three 

different electric strengths 0.01 V/nm, 0.001 V/nm and 0.0001 V/nm. 

A. Ramachandran Angles and DTW Analysis 

The conformational changes in Conotoxin peptide exposed to the static electric fields 

were evaluated using, the distances between the Ramachandran angles (Phi and Psi) sets 

calculated for two different scenarios: static electric field of different strengths vs no-field 

condition (Table 3.2).  

Table 3.4: Distance between the Ramachandran Angles (Phi and Psi) sets calculated for 

static electric fields of selected strengths vs no-field condition 

No-field No-field vs 0.01 V/nm No-field vs 0.001 V/nm No-field vs 0.0001 V/nm 

0 437.1026 10.6668 2.1083 

As seen from data presented in Table 3.4, the most significant change in conformation 

of Conotoxin is observed for exposure at the field strength 0.01V/nm.  

Changes in Ramachandran angles for the particular peptide bonds were also analysed 

statistically to determine the significance of the changes in the exposed vs non-exposed 

Conotoxin. Pairwise t-test analysis was used here. The t-test revealed that conformational 

change in Conotoxin is only significant for the static electric field of 0.01 V/nm: t(14)=1.77, 

p=0.05 for Phi angles; and t(14)=2.53, p=0.01 for Psi angles. The other two strengths of the 

applied static electric field induced no statistically significant conformational change in 

Conotoxin peptide. 

 

B. Root Mean Square Deviation (RMSD) and Radius of Gyration (Rg) Analysis 

The RMSD of the backbone atoms was calculated to determine the conformational 

https://www-sciencedirect-com.ezproxy.lib.rmit.edu.au/science/article/pii/S1093326316301711#bib0215
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changes in Conotoxin under the electric field 0.01V/nm during the MD simulations. Figure 3.1 

represents the RMSD plots for the static electric field vs No-field conditions. As observed in 

Figure 3.1, the applied electric field 0.01V/nm induces conformational changes in the studied 

Conotoxin peptide.  

Conformational changes in Conotoxin were studied further by calculating the radius of 

gyration (Rg). The calculated Rg data for No-field and electric field conditions are plotted and 

shown in Figure 3.2. As can be seen from Figure 3.2, the conformation of Conotoxin peptide 

is affected by the applied electric field 0.01V/nm.  

 

Figure 3.1: RMSD data calculated for No-field vs static electric field of 0.01 V/nm exposure 
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Figure 3.2: Change of the radius of gyration (Rg) during MD simulation for No-field (black line) 

vs electric field 0.01V/nm (red line) conditions. 

C. Distance analysis of Homologues Conotoxin Peptides  

Using the DTW analysis, the effects of static electric fields were further studied on the selected 

four homologues Conotoxin peptides (2JUQ, 2JUR, 2JUS, 2JUT). These homologues peptides 

have similar biological activities and similar structures. Their starting geometries were 

downloaded from the PDB (No-field condition), simulated in the static electric field of the 

different strengths 0.01, 0.001, 0.0001 V/nm. For all sixteen conformations, Ramachandran 

angles (Phi-Psi) were calculated. DTW was used for each pair of Ramachandran angles. The 

distance matrix is constructed: 

   |𝒂|𝒊,𝒋 = 𝑫𝑻𝑾(𝒊, 𝒋)    Equation 3.4 

where i and j are the ith and jth set of Ramachandran angles. 

The cladogram was created to cluster Conotoxin peptides based on the similarity of 

their conformations with respect to the changes in the distances for No-field vs different 

strengths of electric field conditions. 

 

Figure 3.3: Cladogram of Conotoxin peptides conformations: no-field (NF) and different 

electric fields conditions 

Figure 3.3 represents the change in conformations of selected Conotoxin peptides at the 
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different field strengths compared to no-filed condition (NF). From the cladogram, it can be 

seen that analysed four Conotoxin peptides are clustered into four major groups. According to 

the DTW distances the following specific observations were made: 

1. Static electric fields induce different structural changes in peptides having the similar 

structures. For instance, the 2JUQ peptide can be seen in four different groups. This means that 

that applied electric field induces changes in the distance matrix and hence, changes its 

conformation. 

2. The changes in distance matrix are different and dependent on the strength of the applied 

static electric field for each analysed Conotoxin peptides. 

3. The most significant change in distance matrix can be observed (regrouping) with the 

electric field 0.01V/nm. 

3.3.2 Study two: External Static Electric Field of 0.000055 V/m, 0.00123 and 1e+9 

Further to our analysis with static electric fields, we simulated Conotoxin peptide using an 

additional range of electric fields. Three different electric strengths -of 0.000055 V/m, 0.00123 

and 1e+9 V/m were used. 

A. Root Mean Square Deviation (RMSD) and Radius of Gyration (Rg) Analysis 

RMSD for the Conotoxin backbone was calculated to evaluate structural variations in the 

protein under the applied static electric fields. Also, Rg of Conotoxin that represents the 

distribution of atoms in space relative to their centre of mass was calculated. Rg gives the 

information about the changes in the shape and size of a given protein. As can be seen from 

Figure 3.4, when simulated that electric field of 0.000055 V/m produces no change in RMSD 

compared to the no-field condition. However, electric fields of 0.00123 and 1e+9 V/m induce 

significant changes in RMSD.  

It can also be observed from Figure 3.5 that the calculated Rg values are higher for the 

electric field strength of 1e+9 V/m when compared to the other two lower strengths external 

electric field. Higher Rg value is likely due to the loss of secondary structure and unfolding of 

Conotoxin peptide, which is also can be seen in the snapshots taken at 500ps and 1000ps for 

each of the simulation (Figure 3.7B). When Conotoxin is exposed to the electric field 0.00123 

V/m, a minor increase in Rg can be observed, whereas at 0.000055 V/m no change in Rg is 
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visible when compared to the no-field condition. 

 

Figure 3.4: Conotoxin backbone’s RMSD evolution over the 1000 ps simulation time at different 

strengths 0.00123, 0.000055 and 1e+9 V/m compared to the no-field condition 

 

Figure 3.5: The radius of gyration (Rg) of Conotoxin peptide under the stress of external 

electric fields of 0.000055, 0.00123, and 1e+9 V/m compared to the no-field condition 
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B. Radial Distribution Functions (RDFs) and Conotoxin conformation 

Accumulation of water molecule around the protein plays a significant role in protein’s 

final conformation and ultimately contributes to its functions. It is critical to understand the 

protein’s interaction with water molecules when it is exposed to the electric field of different 

strengths. The interaction between Conotoxin and water molecules was evaluated by 

calculating the radial distribution functions (RDFs). Referring to Figure 3.6, the RDFs between 

Conotoxin peptide and water exhibit 2 separate peaks, the first sharp peak at ~0.19 and second 

less significant at ~0.4, that indicate a hydrogen bond between Conotoxin and water molecules, 

which leads to the formation of a hydration shell. The sharp water-protein peak at 0.19 suggests 

the accumulation of water molecules around the protein molecule, which decreases with the 

decrease in electric field strength (Figure 3.6). This result implies that Conotoxin peptide is 

more solvated at the field of the higher strength 1e+9 V/m, whereas at the low field strengths 

peptide folds or coils which make the protein less exposed to water molecules. 

 

Figure 3.6: Peptide-water interactions represented by the radial distribution functions. The line 

colour is representative of the electric field strength: 1e+9 V/m (red), 0.00123 V/m (green), 

0.000055 V/m (blue), no-field (black) 

As can be observed from the snapshot taken at 500 ps and 1000 ps (Figures 3.7A and 

3.7B respectively), for 1ns simulation of Conotoxin at “no-field” condition, there is no change 

in protein conformation during the simulation. However, at the static electric field 0.00123 

V/m, particularly towards the end of the simulation (Figures 3.7E and 3.7F), Conotoxin starts 
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losing its structure. At the electric field 1e+9 V/m, a significant unwinding of Conotoxin can 

be seen (Figures 3.7E and 3.7F), which has resulted in the increased hydrogen bonding between 

the protein and water molecules discussed above and shown in Figure 3.6. These results imply 

that Conotoxin is changing its secondary structure only when exposed to the fields 1e+9 V/m 

and 0.00123 V/m. 

 

 

 

 

 

 

 

 

Figure 3.7: Snapshots of Conotoxin conformation at no-field condition (A, B), electric fields of 

0.00123 V/m (C, D) and 1e+9 V/m (E, F) at 500 ps and 1000 ps respectively. The white colour 
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encodes non-polar residues; green colour encodes polar residues, red colour encodes acidic 

residues and blue - basic residues. The arrow indicates the direction of the electric field. 

3.3.3 Study three: External Time-varying Electric Field at 4.7e-8 V/nm, 6e-9 V/nm, 2e-9 

V/nm 

A. RMSD and Root mean square fluctuation (RMSF) of Conotoxin 

RMSD for the Conotoxin backbone was calculated to evaluate structural variations in 

the peptide under the applied time-varying electric fields (external stressor). RMSF and radial 

distribution curve of Conotoxin were analysed to study the distribution of atoms in space 

relative to their centre of mass. We also studied the accumulation of water molecules around 

the peptide by analysing the distribution of water molecules as it plays a significant role in 

peptide’s final conformation and function.  

 

Figure 3.8: Conotoxin structural deviations vs simulation time at the frequency 1800 MHz and 

different field strengths. RMSD values of peptide's Cα-atoms with a field amplitude of 4.7e-8 

V/nm, 6e-9 V/nm, 2e-9 V/nm and with zero field conditions at 300 K 

The effect of the applied fields on Conotoxin's structure was examined in detail. 

Conotoxin’s structural changes were considered according to the time course of the peptide's 

RMSD (Cα root mean square deviation relative to the Conotoxin's final structure at “no-field” 

condition), in the RMSF of individual residues and the % of peptide's secondary structure. 

Figure 3.8 showed the time evolution of the peptide's backbone deviation under the field at the 
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frequency 1800 MHz and three different powers (P1 = 4.7e-8 V/nm, P2 = 6e-9 V/nm, and P3 = 

2e-9 V/nm) and compared to peptide backbone at “no-field” structure. The field at the power 

P1 (equal to 17 dBm) induces the maximum deviation in backbone structure as compared to 

the fields at the powers P2=6e-9 V/nm (equal to 0 dBm) and P3 = 2e-9 V/nm (equal to -10 

dBm). Fields at P2 and P3 induce no change in the backbone structure and are aligned with the 

structure at “no-field” condition, which suggests that at these powers the generated fields 

produce no effect on the backbone of the Conotoxin peptide structure during the whole 

simulation time (30 sec).  

We have three repeats for 10ns simulations which are represented as Sim-1, Sim-2 and 

Sim-3 (Figure 3.8). As can be seen from Fig.1 the structural deviation occurred during each 

simulation during the last 2ns simulation time, i.e. in between 8 to 10 ns in Sim-1, 18-20 ns in 

Sim-2 and 28-30 ns in Sim-3.  

 

Figure 3.9: Conotoxin structural deviations during the simulations time at the field frequency 

1800 MHz and different strengths.  RMSF values calculated for each amino acid of Conotoxin 

peptide at the field strengths 4.7e-8 V/nm, 6e-9 V/nm, 2e-9 V/nm and “no- fie 

It is important to see which peptide regions undergo the significant structural 

fluctuations induced by the oscillating field and if there is a field-strength dependency effect. 

Figure 3.9 depicts the excess Cα-atom fluctuations ΔRMSF (after subtracting the zero field 

RMSFs). 
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3.3.4 Secondary structure analysis of Conotoxin peptide under time-varying electric fields 

  

  

Figure 3.10: The secondary structure of lysozyme at different field strengths and “no-field” 

conditions. Distribution of secondary structure elements over the Conotoxin sequence at 

frequencies of 1.800 GHz and power of 4.7e-8 V/nm(purple), 6e-9 V/nm (blue), 2e-9 V  

The effect of the external oscillating electric fields on the secondary structure of 

Conotoxin was evaluated using the STRIDE algorithm. Figure 3.10 demonstrates that 

application of electric field with the strengths 6e-9 V/nm and 2e-9 V/nm had no significant 

effects on the helical region of Conotoxin, but minor changes can be observed on turns and 

coils, as compared to “no-field” condition. Application of the field 4.7e-8 V/nm induces minor 

disruptions within the helical region of the peptide. However, these changes may not be 

significant enough to cause any major structural change that can lead to changes in the 
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functionality of Conotoxin.   

Radial Distribution Functions (RDFs) and Conotoxin confirmation 

Accumulation of water molecules around the peptide plays a significant role in 

peptide’s final conformation and ultimately contributes to its function(s). It is critical to 

understand the peptide’s interaction with water molecules when it is exposed to time-varying 

electric fields of different strengths. The interaction between Conotoxin and water molecules 

was evaluated by calculating the radial distribution functions (RDFs) presented in Figure 3.11. 

 

Figure 3.11: Peptide-water interactions represented by radial distribution functions The line 

colour is representative of the electric field strength: 4.7e-8 V/m (blue), 2e-9 V/m (red), 6e-9 V/m 

(blue), no-field (violet). 

From Figure 3.11 the RDFs between Conotoxin peptide (16 aa) and water exhibit two 

separate peaks. The first sharp peak can be seen at ~0.19 and second less significant at ~0.4, 

indicating a formation of the hydrogen bond between Conotoxin and water molecules, which 

leads to the further formation of the hydration shell. The sharp water-peptide peak at 0.19 

suggests the accumulation of water molecules around the peptide molecule, which interestingly 

remains the same at all powers of the applied field (Figure 3.11). This result implies that 

Conotoxin peptide does not show any effects under the selected range of electric field. This 

result also implies that the field at 1800 MHz and strengths of (-10 dBm, 0 dBm and 17 dBm) 

does not affect the peptide folding process. Hence, the applied fields produce no effect on the 

overall structure of the peptide. 
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3.3.5 Conotoxin Cluster analysis 

 

Figure 3.12: Schematic diagram showing the number of clusters sampled at the different field 

strengths during the simulation. 

Cluster analysis was performed to identify the conformational changes in Conotoxin 

induced by the applied field of different strengths. Cluster analysis was performed using the 

respective simulation trajectories using the g_cluster function available in the Gromacs suite. 

The function g_cluster identifies the various conformations based on the C-alpha carbon atoms 

in Conotoxin. An RMSD cut-off of 1.3Å was chosen after various trials. It was observed that 

lower cut-off produced too many unnecessary clusters and hence was uninformative. On the 

other hand, a cut-off higher than 1.3Å produced very few clusters which also did not serve the 

purpose of this study. Figure 3.12 (A-D) shows the results of the cluster analysis, sampled by 

three simulations at the selected field strengths. For the sake of clarity, only prevalent structural 

conformations observed as the clusters are represented.  

From Figures 3.12 (A-D), we observe that the overall conformation of the M-1 

Conotoxin remains relatively intact in the presence/absence of the selected fields. At the field 

strength of 4.7e-8 V/nm, the cluster analysis conformations show a loss in the helicity of the 

peptide (Figure 3.12A). However, with the field strength reduction, the helicity of the peptide 

is recovered. Also, under another field of different strengths, the peptide does not show 
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significant fluctuations in its conformation. For example, at the field strength of 4.7e-8 V/nm. 

At “no-field” condition, the alpha-helix is visible in all clusters (Figure 3.12D). The structure 

also seems to be relatively more rigid and stable in comparison to that exhibited under the field 

strength of 4.7e-8 V/nm.  

The peptide conformations of the most common clusters at all the respective trajectories 

were also compared and superimposed over each other. The clusters that were most prevalent 

at the field strength of 4.7e-8 V/nm again showed a loss of the helicity within the peptide, which 

was also seen in the peptide at “no-field” condition. In the absence of the external field, M1 

showed flexibility at the C-terminal in addition to the flexibility at the N-terminal. This 

flexibility at the C-terminal of the peptide was not affected in the presence of the oscillating 

fields. These results suggest that the applied fields investigated in this study did not produce 

the immediate and significant changes in structural conformation of Conotoxin. On the other 

hand, the results also show that the oscillating fields are indeed ‘disturbing’ residues in the 

peptide, and over time, can result in loss or mutation of a residue or function of the peptide as 

a whole molecule. However, various biological and physical factors will also play a role in 

addition to the presence of the oscillating electric field for any structural disruption to take 

place.  

Figure 3.13 shows the snapshots of Conotoxin for every last frame of each simulation 

run for 10ns. At the field strength of 4.7 V/nm, the peptide is losing its internal structure, 

whereas at other two studied field strengths Conotoxin retained its stable structure. The results 

of the above simulation also reveal that initially due to the effect of the applied oscillating field 

Conotoxin’s structure is being affected at the field of 4.7 V/nm. However, the structure soon 

self-stabilises and returns to its original form. 
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Figure 3.13: Snapshots of Conotoxin conformation at no-field condition (A, B), electric fields of 

0.00123 V/m (C, D) and 1e+9 V/m (E, F) at the last frame of each repeat. 
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3.4 Concluding Remarks  

In this computational molecular study, a range of static and time-varying electric fields 

was applied to Conotoxin system to understand their effects on the peptide’s conformation. 

Results show that at the higher strength external electric fields affect Conotoxin’s structure. 

The findings are summarised and presented below.  

3.4.1 The Conclusion from Study 1 

To evaluate a magnitude/significance of the effects of applied static electric fields on 

Conotoxin’s conformation, we analysed the distribution of Ramachandran torsion angles in the 

peptide backbones before and after the irradiation. As a measure of distance between the 

distributions of the torsion angles, we used the Dynamic Time Wrapping algorithm (DTW) for 

two- dimensional sequences.  In Study 1, we explored the effects of the static electric fields of 

0.01 V/nm, 0.001 V/nm and 0.0001 V/nm on the conformations of homologous Conotoxin 

peptides. In summary, the results obtained from this computational analysis reveal that applied 

static electric fields induce the conformational changes in the studied Conotoxin structure. 

Importantly, different strengths of exposures induce a different degree of changes in Conotoxin 

structures, ranging from no effect to statistically significant effect observed at electric field 

0.01V/nm that may lead to changes in their biological activities. These findings thus imply that 

the effects are field-strength dependent. 

3.4.2 The Conclusion from Study 2 

This study was aimed to investigate the effects of external static electric fields 1e+9 

V/m, 0.00123 V/m and 0.000055 V/m on the structural stability of Conotoxin peptide. Results 

show that application of selected electric fields induced conformational changes in the peptide, 

particularly at 1e+9 V/m and 0.00123 V/nm using the formation of hydrogen bonds between 

amino acid residues. It was also observed that the formation of hydrogen bonds between 

residues during simulation affected its RMSD and Rg values. The number of hydrogen bonds 

formed was increased with the increase in electric field strength, which has been shown by 

RDF analysis between the peptide and water molecules. Snapshots of Conotoxin at two 

selected time points, 500 and 1000 ps, indicate towards the unfolding of the peptide at the 

higher strengths of the electric field, which is the reason for the increase in the formation of 

hydrogen bonds between Conotoxin and water molecules.  
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The RMSD of C-alpha atoms and Rg was calculated to further assess the stability of 

Conotoxin under the static fields of the selected strengths. The findings showed that electric 

field 0.000055 V/m (the lowest strength) produced no effect on Conotoxin’s conformation. The 

electric field 0.00123 V/m induced only minor changes in its structure; while the strongest field 

of 1e+9 V/m produced the major structural disruptions in Conotoxin peptide. 

3.4.3 The conclusions from Study 3 

This study explored the effect of oscillating (time-varying) electric fields of the 

strengths 2e-9 V/nm, 6e-9 V/nm and 4.7 V/nm on the structural stability of Conotoxin peptide. 

Results show that application of selected fields induced conformational changes in the peptide, 

mainly at 4.7 V/ m, whereas no significant effects were observed at other two strengths/powers 

at the frequency of 1800 MHz.  

The results from Studies demonstrate that computational method such as MD 

simulations presents a useful tool in the analysis of effects of external electric fields (stressor) 

on peptide’s structure and its functional properties. Knowledge gained through this 

computational study can aid in understanding the mechanistic aspects of change in 

conformation of a peptide to study the diseased condition under the effects of low strength 

static or varying electric fields. The use of MD simulation techniques can further be extended 

in exploring new applications of external static (or oscillating) electric fields such as explaining 

the effects of novel food processing techniques such as microwave, radiofrequency, pulsed 

electric fields and electro-hydrodynamic drying on the biochemical composition of food 

products. 
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CHAPTER 4: EFFECTS OF LOW POWER 

MICROWAVE RADIATION ON KINETICS OF L-

LACTATE DEHYDROGENASE AND CATALASE 

ENZYMES 

4.1 Introduction 

In Chapter 3, the computational modelling approach, applied to understand the 

interaction between applied static and time-varying electric fields in the MWs range and 

selected Conotoxin protein at the nanoscale/ atomistic level, was presented in great details.  In 

this chapter, the investigation into biological effects of MWs at the molecular level continues 

via experimental evaluation of particular MW exposures on the selected enzymes. This study 

was aimed to improve our understanding of the impact of low power MW radiation at the 

frequencies used in the 4G mobile networks on the kinetics of enzymatic reactions. L- Lactate 

dehydrogenase (LDH) and Catalase enzymes were selected as the model systems to evaluate 

the effects of MW at different frequencies and powers to understand further if the effects are 

frequency and power-dependent.  

The selected enzymes play crucial roles in various biological processes occurring in a 

living system. For example, LDH is extensively present in blood cells and heart muscles and 

is a marker of common injuries and disease. Catalase enzyme can be found in all living 

organisms; it is essential for protecting a cell from oxidative damage by reactive oxygen species 

(ROS). The conducted in vitro study evaluated the effects of MW exposures at the frequencies 

of 1.8, 2.1, 2.3, and 2.6 GHz and powers -10dBm, 0dBm and 17dBm on the kinetics of LDH 

and Catalase enzymes irradiated using the commercial Transverse Electro-Magnetic (TEM) 

cell.  

4.2 Experimental Evaluation in vitro  

4.2.1 Transverse Electro-Magnetic (TEM) cell Exposure System 

The commercial Transverse Electro-Magnetic (TEM) cell (No. TC-5062A UHF-TEM 

Cell) was used in this study to irradiate the selected enzymes. TEM cell is an enclosed box 

made of a conductor material, with its dimensions varied depending on the operating frequency 

used. One end of the box is connected to signal generator from which external signal was 

applied to generate a predictable field inside the TEM Cell. The absorption coefficients of the 
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analysed samples were measured using an Ocean Optics USB2000 spectrometer. All 

measurements performed using the TEM cell are very simple to perform and require minimum 

detection equipment, e.g. no additional antennas are required [159]. Figure 4.1 shows the 

experimental set up of the exposure system. 

 

Figure 4.1: Experimental set up showing exposure camera, signal generator, controller, cuvette 

holder and spectrophotometer [20] 

 

Figure 4.2: The position of the sample and the direction of the electric field inside the TEM cell; 

b. The vertical distance from the top of the cell to the sample is 22 cm. b Field pattern at the 

position of the sample (top view)[109] 
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A TC-5062AUHF TEM cell, operating range 100 kHz–3 GHz (TESCOM Ltd, Goyang, 

Korea) [20], was used to irradiate all model systems used to study in this project. A field, 

generated inside the TEM cell, was calibrated using a broadband electric field probe to 

determine the electric field produced at the sample position inside the camera for given input 

power (Figure 4.2). The calibration test showed the estimated uncertainty in the field is ±1–

3%, depending on the input signal frequency [88]. The RF voltage is applied to one port of the 

cell, while the other port is terminated with a 50Ω resistor, with a 50Ω characteristic impedance 

maintained along the cell. 

The electrical field at the test point inside the TEM cell is calculated as follows: 

    Equation 4.1 

The TC-5062 has a specific pyramidal geometry designed to extend the usable 

frequency range 100kHz – 3GHz [160]. Since the TEM cell produces the TEM waves, there is 

an orthogonal H-field (A/m) proportional to the E-field inside the TEM Cell. The relationship 

between the H- and E-fields is defined by the equation [161]: 

        Equation 4.2 

The electrical field inside the TEM cell can be calculated using the equation: 

     Equation 4.3 

Where E is Electrical field in V/m,  

Z free =377Ω represent free space wave impedance. 

V is Voltage in [V]  

L is the length of the camera in [m]. 

For the model TC-5062, the distance, L, between the top of the TEM cell and a sample 

holder is 0.22m [162]. The TEM cell is an accurate, broadband RF coupler with a high-quality 

shielding wall. The voltage standing wave ratio (VSWR) of the TEM cell was tested and 
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reported to have a maximal value of 1.7 for 3GHz. Therefore, the power propagating through 

the TEM cell can be calculated as follows [162]: 

    Equation 4.4 

where Pp is the power propagating through the cell, and Pg is the generator power. For 

VSWR = 1.7, the ratio Pp=Pg>0.93.  

We used the signal generator Wiltron 68247B, operating range 10 MHz - 20 GHz. To 

measure changes in absorbance of studies samples, a spectrophotometer USB2000 (Ocean 

Optics) was used. The absorption coefficient was set at 600 nm. All experiments were 

conducted at 28C, with the temperature being monitored continuously by a Temperature 

controller (Quantum Northwest) during experimentation. 

4.2.2 Lactate dehydrogenase (LDH) 

LDH enzyme plays a central role in metabolic pathways of almost every cell. It acts as 

a safety valve in our pipeline of energy production [163]. Our cells break down glucose 

completely and release carbon dioxide and water. This process requires a lot of oxygen. When 

the supply of oxygen is low and insufficient, however, the pipeline of energy production gets 

stopped up at the end of glycolysis. Lactate dehydrogenase is the way for cells to solve this 

problem. Lactate dehydrogenase catalyses the interconversion of pyruvate and lactate with 

concomitant interconversion of NADH and NAD+. It converts pyruvate, the final product 

of glycolysis, to lactate when oxygen is absent or in short supply and it performs the reverse 

reaction during the Cori cycle in the liver. At high concentrations of lactate, the enzyme 

exhibits feedback inhibition, and the rate of conversion of pyruvate to lactate is decreased. It 

also catalyses the dehydrogenation of 2-Hydroxybutyrate, but it is a much poorer substrate than 

lactate. 
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Figure 4.3: PDB structure of LDH M tetramer (LDH5) from human[164]. 

LDH catalyses the reversible reduction of Pyruvate to L-lactate using NADH as a co-

enzyme. LDH activity is calculated from the rate of change in NADH absorbance at 340 nm. 

In this experiment, LDH enzyme was irradiated at frequencies of2100 MHz, 2300 MHz and 

2600 MHz at a power of 17 dBm and -10 dBm.       

Measurement Procedure for LDH 

In this sub-study, LDH [EC1.1.1.27] enzyme solutions were prepared according to the 

LDH enzyme Assay (Worthington Biochemical Corporation). Tris HCl, 0.2 M, pH 7.3, 2.8 

ml + 6.6 mM NADH, 0.1 ml + 30 mM Sodium Pyruvate were mixed, and a final aliquot was 

prepared for each of the test and control samples. Amount of 0.1 ml of LDH solution was 

added to the cuvettes (external dimensions are h=50mm; d=25mm, V=20ml). The activity of 

LDH enzyme was measured by calculating a rate of change of absorption of enzyme substrate 

solution at 340nm, and immediately after the cuvettes was transferred to TEM cell for 

irradiation. Five repeats the same sample were irradiated inside TEM. An additional sample 

(pyruvate and same buffer but without LDH enzyme) was also exposed to MW radiation. As 

controls, we used five non-irradiated samples with enzyme and one without enzyme. The 

control samples were kept under the same experimental condition. 

After irradiation, the cuvettes were removed from the TEM cell, and the absorbance 

was measured again at 340 nm. The spectrophotometer was set to record the absorbance at 

every 2 s. This procedure was repeated for both irradiated and control samples after every 5 

minutes. The temperature was maintained at 250C using Temperature Controller (Quantum 

Northwest, Inc.) shown in Figure 4.1. 



60 
 

4.2.3 Catalase enzyme 

Catalase is found in almost all living organisms. Catalase (EC 1.11.1.6) is a very 

important enzyme, which helps to protect the cell from oxidative damage by reactive oxygen 

species, hence protect us from dangerous oxidizing molecules. Catalase helps to catalyze the 

decomposition of hydrogen peroxide into water and oxygen. Catalase activity is calculated by 

measuring a total amount of H2O2 decomposed to form O2. The reaction catalysed by Catalase 

enzyme is comparatively different from other enzymes as the rate of decomposition of H2O2 is 

proportional to the amount of Catalase present. Unlike other enzymatic reaction, Catalase 

undergoes spontaneous decomposition during the reaction. 

 

Figure 4.4: PDB structure of catalase from Saccharomyces cerevisiae[165]. 

Catalase can also accelerate the oxidation, by hydrogen peroxide, of various metabolites 

and toxins, including formaldehyde, formic acid, acetaldehyde and alcohols. It does so 

according to the following reaction:     

2 H2O2                         2 H2O + O2              Equation 4.5     
   

Measurement Procedure for Catalase Reagents 

A standard assay for Catalase (Sigma-Aldrich) was used to analyse the changes in the 

reaction catalysed by Catalase enzyme. Catalase [EC 1.11.1.6] was selected as a model system. 

Potassium phosphate, dibasic (Catalog Number P5504), Hydrogen Peroxide Solution (Catalog 

Number H1009) and Lyophilized powder of Catalase (Bovine) were purchased from Sigma-

Aldrich. Phosphate buffer (50mM Potassium Phosphate Buffer, pH 7.0 at 25±C) was prepared 

Catalase 

 

https://en.wikipedia.org/wiki/Acetaldehyde
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in ultrapure ionized water using potassium phosphate, dibasic, trihydrate (Catalog Number 

P5504). Hydrogen peroxide solution (0.036% (w/w)) was prepared in Phosphate buffer using 

Hydrogen peroxide (30% (w/w), catalogue number H1009). An initial Catalase solution of 10 

mg/ml was prepared and immediately before use; it was diluted to100 units/ml in cold 

Phosphate buffer. 1.45 ml of Hydrogen peroxide solution was pipetted into the test cuvettes, 

and 500 µl of previously prepared Catalase solution was added to the cuvette. 

In this experiment, three Catalase enzyme samples were irradiated continuously for 

5min, and the other three control Catalase samples were kept for the same time period under 

the standard conditions. The absorbance of each sample, i.e. three exposed and three non-

exposed (control) samples were measured in the time interval of 30 seconds for 5 minutes.  

The activity of Catalase was measured using a spectrophotometer, and the absorption 

coefficient values were recorded at 240nm before and after the MW irradiation. Absorption 

coefficients of Catalase enzyme were measured using Ocean Optics USB2000 spectrometer. 

Immediately after the recording of absorption coefficients, the cuvettes were placed inside the 

TEM cell for irradiation. The same procedure was repeated after 2 min, 7 minutes and 9 minutes 

and measurements were recorded. During the experiment, the temperature was maintained at 

25 C (as presented above).  

In order to determine the rate of reaction, the dissociation constant of hydrogen 

peroxide, K, was calculated using the following formula: 

 𝐾 =
1

𝑡
log⁡⁡(

𝐴

𝐴−𝑥
)                                     Equation 4.6 

where t is the time interval of the second reading, A is the amount H2O2 absorbed at the end of 

reaction and x is the H2O2 absorbed at the time of the second reading.  

In this experiment, Catalase enzyme solutions were exposed at the frequencies of 1800 

MHz and 2100 MHz at powers of -10 dBm, 0 dBm and 17 dBm. 

4.3 Results and Discussion 

The experimental evaluation of changes in catalytic activities of LDH and Catalase 

enzymes, exposed to MW of different frequencies and powers, was conducted and the changes 

in the rate of absorption (rate of reaction) of irradiated samples were compared with the 
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absorption coefficient values of non-irradiated samples in order to understand the effects 

induced by applied MW exposures.  

4.3.1 Changes in LDH Enzyme Catalytic Activity 

Relative change in the rate of reaction of NADH was evaluated and compared to control 

samples (non-irradiated) LDH at the frequencies of 2100 MHz, 2300 MHz and 2600 MHz at 

powers of 17 dBm and -10 dBm. 

Figure 4.5 shows the modulating effects of irradiation on LDH enzyme. Consistent 

decrease in the rate of reaction at 17 dBm was observed: a 21% increase at 2100 MHz and 

almost 50% decrease at 2600 MHz in comparison with the control samples. Further, at the 

power of (-) 10dBm under similar experimental conditions, a steep change in the rate of 

reaction was observed. At -10dBM and 2100 MHz reaction rate was increased by 75% and at 

2600 MHz it decreased by 35% when compared to the control samples. Important to note, in 

both cases, the relative changes induce by exposures at -10dBm, and 2300 MHz are not 

significant. At 2600 MHz and power 17dBm the change in the rate of reaction was 25% 

compared to sample exposed to MW at (-) 10 dBm power. This suggests that MW at 17dBm 

adversely affect the enzymatic rate of reaction of LDH. 

 

Figure 4.5: Relative change in the rate of reaction of NADH for irradiated vs non-irradiated 

LDH at different frequencies and powers 
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4.3.2 Changes in Catalase Enzyme 

The experimental evaluation of catalytic activities in selected Catalase enzyme exposed 

to MW of different power and frequency range was conducted. The changes in the rate of 

absorption (rate of reaction) of irradiated samples were compared with non-irradiated samples 

Test samples were exposed to MW at 2100 MHz, 2300 MHz and 2600 MHz and different 

powers. The objective of the experiments was to understand the modulating effects of MW at 

a different combination of frequency and power and to further evaluate the power-dependency 

of enzymatic reaction rate at the particular frequency of MW 

The results are presented in Figures 4.6 and 4.7. Figure 4.6 shows a consistent 

modulating effect of irradiation on the dissociation constant, K, of H2O2. At 17dBm 20% 

increase at 2100 MHz exposure and a 25% decrease at 2600 MHz exposure is recorded. At the 

power of -10dBm, the relative change in K value is inconsistent. As can be seen from Figure 

4.6, at 2100 MHz and 2300 MHz relative change in K was increased by 20% as compared to 

non-irradiated sample, but at 2600 MHz it is reduced by 22%. However, exposure at 2100 MHz 

for both power levels induces maximum increase on the dissociation constant, K. At 2600 MHz 

and powers17 and (-) 10dBm, a consistent 25% decrease in activity was observed.  

 

Figure 4.6: Relative change of Dissociation constant of H2O2 for irradiated vs non-irradiated 

Catalase samples at the frequencies of 2.1 GHz, 2.3 GHz, and 2.6 GHz at 17 dBm and -10 dBm 

Modulating effects at 2600 MHz were further analysed by exposing Catalase enzyme 

test samples at 2600 MHz and different powers of 0 dBm, -20 dBm -30 dBm, -40 dBm and -

50 dBm to elucidate power-dependence effect at the particular frequency. The effects induced 
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by exposures at 2600 MHz were studied because 2600 MHz is a carrier frequency for many 

telecom systems. The dissociation constant, K, was calculated using the same methodology 

as described above. The results are presented in Figures 4. 7.  

An interesting pattern is observed in the relative change of dissociation constant (K) of 

H2O2 for irradiated vs non-irradiated samples. At 2600 MHz and 0 dBm power, the K value of 

the exposed sample was 32% higher than of non-irradiated sample. For -20dBm the increase 

of almost 20% is recorded. For -30dBm, an increase of 9% in K value is observed.  

 

Figure 4.7: Relative change of dissociation constant of H2O2 for irradiated vs non-irradiated 

Catalase at 2600 MHz and five different powers of 0 dBm, -20 dBm, -30, -40, and -50 dBm 

The less significant increase is observed for -40dBm. However, for -50 dBm, K was 

decreased by 25% compared to the non-irradiated sample. These findings confirmed our 

hypothesis that enzymatic activities could be changed by external exposures at low power MW 

irradiation, with the observed effects being power and frequency-dependent. 

Figures 4.8 and 4.9 show the relative change in absorbance of Catalase enzyme samples 

irradiated by applied MWs for 5 min. At 1800 MHz/ -10dBm, the initial change in absorbance 

of Catalase was almost 30% compared to the non-irradiated sample. However, it increased 

steadily for the first 90 sec of irradiation and then became relatively consistent (92% - 97%) in 

comparison to non-irradiated sample (100%). At 1800 MHz/ 0dBm, a small relative increase 

(6% to 7%) in the absorbance during the first 30 sec of exposure compared to the non-irradiated 

sample was observed. Moreover, at 1800 MHz/ 17dBm the relative change in absorbance 

compared to the non-irradiated sample was negligible. Hence, the results imply that enzyme 
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kinetics of Catalase is not affected by MW at the frequency of 1800MHz and powers of 0 dBm 

and 17dBm. 

 

Figure 4.8: Relative change in absorption at 1800 MHz and power of 0, -10 and 17 dBm 

 

Figure 4.9: Relative change in absorption at 2100 MHz and power of 0, -10 and 17 dBm 

The maximum effect of MW exposures on absorbance was observed when Catalase 

samples were irradiated at 2100 MHz and different powers. At 17 dBm the relative absorbance 

compared to the non-irradiated sample was decreased by more than 30% in the first 30 sec of 

reaction and remained at 80% for an entire reaction time of 300 sec. This indicates inhibitory 

effects of MW at 2100 MHz/ 17 dBm on enzyme kinetics of Catalase.  

When Catalase samples were exposed to MW at 2100 MHz/ (-)10 dBm, an increase in 
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relative absorbance (compared to control sample) was observed for the reaction time of 300 

seconds. At 2100 MHZ/ 0 dBm, a sudden increase in absorbance was observed during the first 

30 sec of exposure, and then the absorbance started to decrease and mostly stabilized as the 

reaction progresses. This does not give any conclusive evidence in support of change in enzyme 

kinetics at 2100 MHz/ 0 dBm. Figures 4.10 and 4.11 show the changes in absorbance of 

Catalase in time under MW exposures at the selected frequencies and powers. The results 

clearly show that the selected frequency and power induce significant effects on Catalase’s 

absorbance, thus affecting the rate of reaction during the experiment. At the frequency 1800 

MHz/ (-)10 dBm, we can see the apparent relative increase in absorbance of Catalase (the 

concentration of oxygen is maximum) compared to non-irradiated samples, especially during 

120-180 sec of reaction.  

 

Figure 4.10: Changes in the absorption of Catalase at 1800 MHz and power of -10 dBm, 0 dBm 

and 17 dBm compared with Control (Non-irradiated) sample 

MW exposures at the frequency 1800MHz and power 17 dBm reduces the absorbance 

of Catalase, which remains consistently low when compared to a non-irradiated sample. This 

implies that these particular exposure parameters induce the inhibitory effects on Catalase 

enzyme. However, at the frequency 1800MHz and power 0 dBm, no significant change in 

absorbance was observed.  
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Figure 4.11: Changes in the absorption of Catalase at 2100 MHz MHz and power of -10 dBm, 0 

dBm and 17 dBm compared with control (non-irradiated) samples. 

Interestingly, the consistent and similar results were observed in Catalase for MW 

exposures at the frequency 2100 MHz (Figure 4.11) and three selected powers. At 2100 MHz/ 

(-) 10dBm the increase in Catalase absorbance was evident. However, the significant decrease 

in absorbance (minimum concentration of oxygen) was recorded upon MW exposures at 2100 

MHz/ 17 dBm. Exposure at 2100 MHz/ 0dBm induced no significant change in absorbance 

(oxygen concentration) when compared to non-irradiate sample. These findings indicate that 

MW irradiation at the selected frequencies and powers produce modulating effects on the 

dissociation constant of Catalase. 

4.4 Concluding Remarks  

In the previously reported study using L-Lactate dehydrogenase (LDH) and Glutathione 

Peroxidase enzymes [109], the effects of frequencies 1800 MHz, 2100 MHz and 2300 MHz 

and power of 10 dBm were evaluated on the selected enzyme reactions.  The findings of this 

work reveal that MWs at the studied parameters induce changes in the enzyme’s kinetics which 

lead to modulation of the rate of change in corresponding reactions these enzymes catalysed. 

The presented study was aimed to test further the hypothesis that the external low power MW 

radiation can affect the catalytic activity of LDH and Catalase enzymes by expanding the range 

of exposure parameters, especially the powers to investigate if the observed are effects are 

power-dependent.  The results obtained and discussed above suggest that the applied MW 

radiation at selected frequencies of 1800 MHz, 2100 MHz and 2300 MHz at a power of (-)10 
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dBm can produce modulating effects on the catalytic activity of LDH and Catalase enzymes by 

either increasing or decreasing the reaction rates.  

The study using LDH assay, was aimed to test the hypothesis that the external low 

power MW radiation can affect catalytic activity of LDH enzyme at frequencies of 2100 MHz, 

2300 MHz and 2600 MHz at power of 17 dBm and -10 dBm can produce modulating effects 

on the catalytic activity of LDH by either increasing or decreasing the rate of reaction.   

Kinetics of Catalase was studied under the MW exposures at the frequencies of 2100 

MHz and 1800 MHz, and powers of 0dBm, -l0dBm and 17dBm. The most significant effects 

were observed at 2100 MHz and powers of -10 dBm, 0 dBm and 17 dBm. The inhibitory and 

excitatory actions observed at the frequency of 2100 MHz indicate the dependence of chemical 

reaction on power and frequency of MW exposure. At 1800 MHz and different powers, no 

significant modulating effects were observed.  

The results of the experiments suggest that both frequency and power parameters 

contribute separately to produce modulating effects on the catalytic activity of the selected 

enzyme. The experimental findings highlight the finding that even at low powers MW can 

induce modulating effects at the frequencies used in 4G mobile phone networks. However, it 

requires further detailed investigation on a wide range of combinations of frequency and power 

to establish safe limits of MW exposures.  
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CHAPTER 5: EFFECTS OF MICROWAVES AT 

1800MHZ AND DIFFERENT LOW POWERS ON 

YEAST CELLS 

5.1 Introduction 

In Chapter 4, the author studied the effects of the selected frequencies and powers on 

the kinetics of LDH and Catalase enzymes. In this Chapter, the author was interested in 

studying whether microwave radiation affects the growth rate of Saccharomyces cerevisiae 

cells and their morphology. Initially, the effects of applied microwave exposures (6 h of 

irradiation) on yeast cells were studied using spectrophotometry. The obtained results showed 

that at the particular frequency and powers the rate of yeast cells growth was affected [27] [88]. 

To evaluate the dependence of yeast cell growth rate on MW exposures frequency and power, 

statistical analysis (Chi-square test of independence) was performed. The results showed that 

the MW radiation parameters (frequency and power) contribute independently to the observed 

modulating effects on yeast cell growth.  

Furthermore, the effects of MW radiation at 1800 MHz and three powers, -10 dBm, 0 

dBm and 17 dBm on the growth rate and morphology of Saccharomyces cerevisiae cells were 

investigated using TEM. TEM images showed structural disruptions in the exposed yeast 

samples. A significant increase in total cell count and changes in cell viability were observed 

at the powers of 0 dBm and -10 dBm respectively. However, corresponding changes in 

morphology and increased formation of budding cells were observed in samples exposed at -

10 dBm and 17 dBm. The findings suggest that low power MW radiation can induce 

modulating effects on yeast cell growth and affect their internal structural organisation.   

5.2 Experiments and Analysis  

5.2.1 Model System: Yeast 

Micro-organisms are the most accessible and most convenient objects to study the effects of 

various types of stress factors. Among different model organisms the yeast, Saccharomyces 

cerevisiae, is of most importance. Yeast type II (Sigma) was selected as the model system in 

this study. It is well documented that yeast cells are representative of eukaryotes, including 

human cells, in many aspects of fundamental cellular processes [166] [87]. The budding yeast, 
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Saccharomyces cerevisiae was selected as a model organism to study the effects of 

electromagnetic radiation (EMR) and conduct experiments under controlled conditions [167].  

5.2.2 Yeast Growth Phases  

As with most micro-organisms, when a yeast inoculum is added to a rich nutrient broth 

and allowed to grow under favourable conditions, there are three main growth phases (Fig. 1) 

[166]. Initially, cells enter into the lag Phase in which they are biochemically active, but 

conditioning themselves to the new surroundings, often coming from a limited nutrient 

environment into a rich one. During this phase, cells are actively metabolizing in order to 

prepare themselves for the cell division. The second phase of yeast growth is an exponential 

growth phase, in which cells divide exponentially resulting in the increase in the total cell count 

in a culture medium. The third phase of yeast cells growth is a stationary phase, in which the 

cells stop cell division; this condition is reached due to changes in the environmental condition 

caused by high cell density, such as a lack of a critical nutrient or the build-up of toxins.  

In this study, we compared the normal exponential growth phase of yeast cells (control) 

with that of yeast cells irradiated by MW at the selected frequencies and powers. [166]. 

Saccharomyces cerevisiae type II (YSC2-Sigma) was selected on the basis of its fast growth 

rate (~120 min doubling time).  

 

Figure 5.1: Typical Yeast Growth Curve of Saccharomyces [87] 
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5.2.3 Microwaves Exposure Parameters 

Specific absorption rate (SAR) is a measure of the rate at which energy is absorbed by 

the human body when exposed to a radio frequency (RF) electromagnetic field. The SAR 

values of the MW exposures used in this study (Table 5.1) were below and above the standard 

safety limit, SAR of 2.0 W/kg, which is based on the International Commission on Non-

Ionizing Radiation Protection (ICNIRP) limit. The safety limit for exposure to mobile phone 

emissions is set by determining the lowest level of exposure known to cause health hazards and 

then adding a safety margin. Our previous research using photo spectroscopy assessment 

showed that low power MW exposures (frequencies used in 3G and 4G networks) induce 

modulating effects on the studied biological models [27]. 

Table 5.1. Exposure System and Sample Preparation for Spectrophotometric Analysis 

Power, dBm Power density, mW/cm2 Electric field, V/m SAR 

-10 0.00121 2 0.0078 

0 0.01210 6 0.0700 

17 0.606 47 4.314 

In order to measure the absorption coefficients of the yeast cell sample solution, an 

Ocean Optics USB2000 spectrometer was used. The exposure system consists of Transverse 

Electro-Magnetic (TEM) TC-5062AUHF cell (100 kHz–3 GHz) from TESCOM Ltd, and the 

signal generator (Wiltron 68247B), operating range 10 MHz to 20 GHz [160]. The exposure 

system is discussed in details in Chapter 4. The wavelength for measurement of absorption was 

set at 600 nm; a value commonly used to measure absorbance due to scattering and the 

molecular absorption of radiation, as a function of frequency. S. cerevisiae yeast powder was 

purchased from Sigma (Australia). The solution for the experiment was prepared as follows: 

50 g/l of YPD broth (Sigma, Australia); 20 g/l of S. cerevisiae yeast and ionized water. The 

solution was incubated at 37oC for 48 h with shaking at 608 ppm. The yeast samples were 

prepared by diluting the experimental solution 100-fold using ionized water. The yeast samples 

were placed in 2 ml cuvettes for measuring the total transmittance. In this experiment, three 

replicates yeast cultures were irradiated for 6 hours, while another three control yeast cultures 

were kept for the same period without irradiation. The absorbance of each (3 exposed and 3 

non-exposed) sample was measured every hour for 6 hours. Cell growth was monitored by 

spectrophotometric analysis using OD600. All experiments were conducted at 28C. 
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5.2.5 Yeast cell sample preparation for TEM 

Samples for TEM assessment were prepared from yeast irradiated at -10 dBm and 17 

dBm (the lowest and highest power values used in this study). Samples were centrifuged in a 

PCR tube to obtain concentrated cell pellets. The cells were suspended in fixative overnight. 

Cell pellets were washed with Karnovsky’s fixative in 2% paraformaldehyde +2.5% 

Glutaraldehyde in 0.1 M Cacodylate buffer. The cells were then rinsed thrice in 0.1 M 

Cacodylate buffer. Following rinsing, the cells were post-fixed at room temperature in post-

fixative solution [168]. The cells were then washed thrice with distilled water. After washing, 

the samples were dehydrated with increasing ethanol gradients from 50 to 90% followed by 

100% ethanol for 30 mins. Following ethanol dehydration, the samples were completely 

dehydrated in acetone and infiltrated with 1:1, 1:2, 2:1 and 100% acetone: Spurr's resin mixture 

[169];  the samples were placed in the oven at 70˚C for polymerization. Ultrathin sections (90 

nm thicknesses) were cut with a diamond knife using an ultramicrotome (Leica Microsystems, 

Wetzlar, Germany). The sections were observed at 80 kV with a Jeol Jem 1010 (Japan) 

Transmission Electron Microscope (TEM), and images were examined using the Gatan 

Microscopy Suite software, version 2.3.  

5.2.6 Cell Count and Viability  

Total cells were determined hourly using a BioRad automated cell counter (TC20 

automated cell counter) over 6 hours. Cell counts and viability of control samples and test 

samples were assessed immediately after the simultaneous exposure. Three technical replicates 

were taken to confirm the consistency of the test conditions and to identify any discrepancy/ 

error during the experiment. Cell viability was determined using the equation: 

Viability⁡[%] =
(total⁡counted⁡cells⁡–⁡total⁡counted⁡dead⁡cells)⁡x⁡100⁡

total⁡counted⁡cells⁡
  Equation 5.1 

5.2.7 Fluorescence Microscopy 

Fluorescence-based (NIS-AR-version 4) apoptosis was determined by using Propidium 

Iodide (PI) staining method. Yeast cells (0.5 ml) were placed in 24-well plates at 28˚C. Cells 

were washed separately with PBS and treated with PI (10 µg/ml). Cells were observed under a 

fluorescence microscope using a red dye filter, and images were taken.  

Image Analysis 
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Image analysis was performed using ImageJ software (Version 1.45) [170]. Cell 

morphology was studied through analysis of area, circularity and elongation in selected live 

cells in control and test (irradiated) samples. Yeast morphological data was captured by 

thresholding. A description of a self-developed image analysis procedure for S. cerevisiae 

morphology evaluation is presented in [170]. Cells were selected manually to minimise the 

noise, and the images were focused on enhancing the cell counters. Figure 2a shows an initial 

microscope image and Figure 2b shows processed final image reflecting the improvement in 

image quality for further analysis. The images were focused on enhancing cell contours (Fig 

2a). Morphological operations such as erosion (noise removal) and reconstruction produced 

the final image, which was used to study the morphological changes (Fig 2b). 

 

Figure 5.2 A) Initial image from the microscope B) Final image generated by ImageJ software 

Yeast Cell Circularity  

Circularity or isoperimetric quotient is a common shape factor. A measure of cell 

circularity is related to the compactness of a cell. It is determined as a function of the perimeter, 

P, and the area, A [171] 

𝐹𝑐𝑖𝑟𝑐 =
4𝜋𝐴

𝑃2
     Equation 5.2 

Cell circularity and elongation data were collected using image analysis techniques as 

described above and TEM. 

 

Yeast Cell Elongation 

https://en.wikipedia.org/wiki/Isoperimetric_quotient
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Cell elongation is defined as the ratio between the major axis length and the minor axis 

length. Image analysis determines the cell size distribution at selected powers, thus allowing 

determining if the observed effects are power-dependent. 

5.3 Results and Discussion 

5.3.1 Spectrophotometric Analysis of Yeast Samples 

Yeast cells were exposed to MWs at 1800 MHz and 2100 MHz and powers of -10 dBm, 

0 dBm and 17 dBm. The cell growth of exposed yeast cells was observed for the period of 6 h 

and compared with a control group of non-irradiated (NR) yeast samples under the standard 

experimental conditions. The results are presented below.  

Optical Density (OD) and Cell Viability 

The experimental results show that OD600 of all test samples increased throughout the 

course of the experiment except the 5th hour of exposure for the test sample exposed at 1800 

MHz and -10 dBm (Fig. 3). However, at the 6th hour of exposure, cell count normalised and 

was almost equal to the total cell count, which indicates recovery of the irradiated cells. OD600 

measured at the exposure of 1800 MHz, and 0 dBm also showed the increase in the last 2 h of 

irradiation. At 1800 MHz and 17 dBm, the irradiated samples showed constant low OD600 

values, suggesting an inhibitory effect of the treatment. 

 

Figure Error! No text of specified style in document.3: OD600 of control and a test sample of yeast 

cells irradiated at 1800MHz and selected power of 0, -10 and 17 dBm 
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Figure 5.4: Cell viability of control yeast vs test yeast samples irradiated at 1800MHz and 

powers -10, 0, and 17 dBm 

As shown in Figure 5.4, the cell viability of each set of control samples consistently 

showed a maximum increase of up to 15% in the 5th hour followed by 10% decrease in the 6th 

of yeast growth. The viability of control samples was over 50% but the average viability of 

samples exposed at -10dBm was 75%, at 0 dBm it reduces down to 55% and at 17dBm - 

viability is reduced further down to 45%. The decrease in cell viability of the exposed yeast 

samples with the increased powers of irradiation indicates an inhibitory effect of the applied 

exposure. The decrease in cell viability of test samples exposed at 1800 MHz and -10 dBm, 

after an initial increase (Figure 5.4), suggests possible DNA damage, which has been 

previously reported [5]. TEM images show that yeast cells lost their internal organisation after 

being exposed continuously at 1800 MHz and -10 dBm for 6 h. Also, cell wall disruption can 

be clearly seen in TEM images (Figure 5b-5d). MW exposures have also affected budding of 

new cells.  

Cell viability of the control and test samples, exposed at 1800 MHz and 0 dBm, follows 

almost the same pattern except for the 3rd hour of the yeast growth (statistically insignificant 

effects). Hence, we suggest that MW exposure at 1800 MHz and 0 dBm has a negligible effect 

on yeast growth rate. As can be observed from Figure 2, as opposed to 0 dBm exposure, the 

irradiation at 1800 MHz and 17 dBm clearly affects yeast cell viability; the viability of exposed 

yeast cells decreases in the 2nd and 4th hours of irradiation and then increases in the 5th and 6th 

hour from 27% up to 56%. These results imply that MWs at 1800 MHz and 17 dBm induce 
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modulating effects in yeast cells ranging from inhibiting to proliferating (the last 2 h of the 

yeast growth). 

Yeast Cell Growth Rate and Absorbance 

 

Figure 5.5: Change in yeast cells growth under MW exposures at the different frequency, and 

power  

Figure 5.5 shows that in comparison with the control group of non-irradiated yeast cells 

(100%), the MW exposures at the frequencies 1800 MHz and 2100 MHz induce changes in 

yeast cell growth/proliferation. A consistent decrease in the rate of cell growth was observed 

at all combinations of frequency and power except at 1800 MHz and a power of 0 dBm, where 

an l3.5% increase in cell growth was observed. At 17 dBm the maximum decrease in yeast 

growth was observed (64% for 1800 MHz and 69% for 2100 MHz). 

Absorption vs time curve (Fig. 5.6 and 5.7) was plotted to understand the changes in 

absorption coefficients of the irradiated vs non-irradiated yeast samples. The Figure 5.6 

indicates that frequency and power have a significant influence on the absorption pattern, thus 

affecting the growth of the yeast cell during the experiment. At 1800 MHz/ 17 dBm, the rate 

of cell growth is maximum when compared to non-irradiated samples (Fig.5.4). Interestingly, 

more significant modulating effects were observed at 2100 MHz. As shown in Figure 5.5 and 

5.7, at the 4th and 5th hours of irradiation at 2100 MHz and 0 dBm, a sudden decrease in 

absorbance is observed. A possible explanation for this change is cell death. At the power of -

10 dBm, the cells initially show exponential growth and then stop growing towards the 4th 

hour of irradiation. Similarly, at the power of 17 dBm, yeast cells initially show the increased 
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cell growth, but during the 5th hour of irradiation, there is a sudden dip in their absorbance 

indicating the cells death. The absorbance vs time growth curve shows that there is a small 

effect on the growth of S. cerevisiae cells at the frequency of 1800 MHz at the corresponding 

powers of 17, 0, and -10 dBm. A significant modulation in the growth curve was observed at 

the frequency 2100 MHz and the selected powers of -10, 0, and 17 dBm (Fig. 5.7).  

 

Figure 5.6: Changes in absorbance of yeast cells exposed to different frequencies of 1800 MHZ 

and powers of 17 dBm, 0 dBm and -10 dBm6.  

 

Figure 5.7: Changes in absorbance of yeast cells exposed to different frequencies of 2100 MHZ 

and powers of 17 dBm, 0 dBm and -10 dBm. I : Irradiated samples, and NR :Non-irradiated 
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Figure 5.8 and 5.9 shows the relative change (%) in the concentration of yeast cells 

irradiated for 6 hours. At 1800 MHz and 10 dBm a change in concentration was observed, 

especially during the last two hours of irradiation when it increased from 70% to 100%. 

However, at 17 dBm, the relative change in concentration remained almost consistent. 

Maximum effects of MW on cell growth were observed when the samples were 

irradiated at 2100 MHz and different powers. Especially at 0 dBm, the relative change was 

over 150% for the first hour, and it remained high compared to the relative changes at -10 dBm 

and 17 dBm. At the power of -10 dBm, the consistent increase in the concentration of yeast 

cells was observed for the first 3 hours of irradiation, which attained the study state in the 

following hours.  

Similarly, with the frequency of 2100 MHz and power 17 dBm shown in figure 5.7 the 

consistent decrease in cell concentration was observed for almost 4 hours with the inhibitory 

effect in the 5th hour, followed by cell recovery during the last hour of irradiation. These results 

provide further evidence of cell death during the 5th hour of exposure. It is worth mentioning 

here that at 17 dBm the maximum inhibitory effects were observed at the frequency 2100 MHz. 

 

 

Figure 5.8: Change in concentration of yeast over the period of 6 hours; irradiated vs non-

irradiated samples (%)  
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Figure 5.9: Change in concentration of yeast over the period of 6 hours; irradiated vs non-

irradiated samples (%) 

Chi-square test of independence (refer to Table5.2) is usually applied to determine if 

there is a significant relationship between the variables used in the study. Chi-square test was 

performed here to evaluate the null hypothesis (H0): whether two variable parameters, i.e. 

frequency and power, are inducing modulating effects (proliferating of inhibiting) on the rate 

of yeast cell growth in the independent manner. In the Chi-square test, if p > 0.05 (the 

probability of error is less than 5%), we accept the H0.  The calculated p-value (p=0.0577) is 

higher than the significance level (O.OS), which supports our null hypothesis. Thus, we 

conclude that the frequency and power of the MW exposures independently affect the growth 

rate of the studied yeast samples. 

Table 5.2: Chi-square test results 

 -10 dBm 0 dBm 17 dBm Non-Radiated 

1800 MHz  0.383235 1.7644 0.316775 0.099276 

2100 MHz 0.468297 2.156586 0.387187 0.121342 

5.3.2 Image analysis of Yeast Cells 

Cell morphology is intimately correlated with the ability of cells to perform a normal 

biochemical function. Yeast cell circularity and elongation were analysed to observe the 
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changes when exposed under different microwave exposure conditions. In this instance, image 

analysis was only performed on samples irradiated at 1800 MHz and the lowest, -10 dBm, and 

highest, 17 dBm, powers. The data from morphological analysis of three control and three test 

samples taken from the final 3 hours of the yeast growth phase were analysed. 

 

Figure 5.10: Effect of irradiation at 1800MHz and -10dBm on the circularity of yeast sample at 

the end of  6th hour of the growth phase 

 

Figure 5.11: Effect of irradiation at 1800 MHz and 17dBm on the circularity of yeast sample at 

the end of 5th hour of the growth phase  
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Cell circularity represents a growth of the cell from a bud to cell division. Usually, new 

bud cells have a circularity of 1. Reduced circularity suggests that the cell is preparing for 

division [170]. Figure 10 shows circularity at the end of the 6th hour of the growth phase for 

control and test yeast cell samples exposed to microwaves at 1800 MHz and -10 dBm. Exposed 

yeast samples show a reduction in the change of circularity over the cell growth phase in the 

6th hour of incubation. At the end of the 6th hour, only 45% of cells in the control sample has 

circularity over 0.6, whereas 71% cells in the test sample have circularity over 0.6.  

These results suggest an inhibitory effect of the exposure on yeast cells growth. This 

may occur as a result of cell damage that can also lead to a decrease in the cell viability. The 

effects of irradiation at 1800 MHz and 17 dBm on the circularity of yeast cells is presented in 

Figure 11. As can be seen, 80% of the exposed cells have circularity over 0.7 during the 5th 

hour of incubation, whereas only 45% of cells in the control sample have circularity over 0.7. 

Also, only 7.5% of test samples have circularity between 0-0.5 at the end of the 5th hour. This 

result suggests the promotion of early cell proliferation due to the exposure at 17 dBm and 

explains the observed increase in cell viability in the final 2 hr of the yeast cells growth.  

An average elongation factor of 1.5 for S. cerevisiae ATCC 32167 was used to 

discriminate bud cells from single cells [170]. Other authors have suggested an average 

elongation factor of 1.5 for single cells, including both non-budding and also budding mother 

cells, whose bud is not large enough to create a second sub-element [172]. Here, the same 

approach was used for analysis of the significance of the effects of three powers (-10, 0, 17 

dBm) at the frequency of 1800 MHz on yeast cell division.  

 

B A 
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Figure 5.12: Elongation factor distribution among the irradiated vs non-irradiated yeast sample 

at the end of 6th hour of growth phase: [a] irradiated at 1800MHz and -10dBm; and [b] 

irradiated at 1800MHz and 17dBm  

Figure 12a shows cell elongation of S. cerevisiae exposed at -10 dBm. The results 

suggest that by the end of the 6th hour of yeast growth, only 43% of cells in the test sample 

have elongation factor less than 1.5, while 25% of cells have elongation factors between 2 and 

2.5, indicative of an increased number of budding cells. When compared with the control 

sample, exposed samples exhibited 30% more cells having elongation factor above 2. This 

confirms our observation of the cell recovery, as well as the inhibitory effect of exposure at 

1800 MHz and -10 dBm. This finding highlights a phenomenon observed in yeast cell growth 

phase when they were exposed at 1800 MHz and the lowest power of -10 dBm – the initial 

inhibition of yeast cell growth was followed by the cell recovery towards the end of yeast cells 

growth phase.  

Figure 12b shows the effects of 6 h exposure at 1800 MHz and 17 dBm on the 

percentage of S. cerevisiae having elongation factor between 1-1.5 and 1.5-2 cells respectively. 

Around 50% of cells irradiated at the highest power of 17 dBm have elongation factor above 

1.5. That can further be correlated with the increased viability of exposed samples at 17dBm 

as discussed above. 

5.3.3 TEM study of Yeast cells 

TEM was used to see the changes in the internal organisation of yeast cells in control 

and irradiated test samples. The TEM images of control and test samples are shown in Figure 

12. In control samples, cells were spherical or oval, with the majority of observed cells being 

in a budding phase. Their internal structure was intact, and no changes in the internal cellular 

organisation were observed, whereas the significant disruption in yeast cells was observed in 

the exposed samples (Figure 13).  

http://www.sciencedirect.com/science/article/pii/S0168160502005093#FIG6
http://www.sciencedirect.com/science/article/pii/S0168160502005093#FIG6
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Figure 5.13: Transmission Electron Microscope (TEM images of control yeast samples 

(unexposed after 6 hours) with a well-organised nucleus and cell membrane. 

 

Figure 5.14: Transmission Electron Microscope (TEM ) images of yeast cells irradiated at 1800 

at -10 dBm showing dividing cells (DC) after exposure and other cells.  
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Figure 5.15: Transmission Electron Microscope (TEM ) images of yeast cells irradiated at 1800 

at 0 dBm. Loss of cell membrane (CM) and diffused nucleus(N) 

 

Figure 5.16: Transmission Electron Microscope (TEM) images of yeast cells irradiated at 1800 

at 17 dBm. Arrows are showing affected nucleus (N) and cell membrane (CM) after exposure.  

After 6 hours of irradiation at 1800 MHz and -10, 0, and 17 dBm, significant structural 

changes were observed. Most of the yeast cells in the irradiated samples showed raised 

vacuoles and also disruption of the cell membrane. As can be seen from Figure 14b, in yeast 

samples irradiated at 1800 MHz and -10 dBm, after 6 hours of exposure, budding cells were 

observed with highly scattered organelles; disruption of the cell wall was also evident. Similar 

results were obtained for yeast samples irradiated at 1800 MHz and 17 dBm after 6 hours of 

exposure a number of highly distorted budding cells can be seen (Figure 15). Again, similar 
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structural and functional changes were observed at 1800 MHz and 0 dBm (Figure 16). A 

disruption in the cell wall is evident in most of the irradiated yeast cells including dividing 

cells. 

5.4 Concluding Remarks  

This study was aimed to test the hypothesis that low power MW radiation at the selected 

frequencies and powers (1800 MHz and 2100 MHz; and -10, 0, 17 dBm) can affect the rate of 

growth of S. Cerevisiae. The yeast solutions used for the experiment were exposed under the 

controlled conditions with the changes in yeast cell growth pattern, and the temperature is 

continuously monitored. The results obtained show that the MW radiation at the selected 

frequencies and powers induces modulating effects in yeast cells. The findings reveal that MW 

at the particular frequency of 1800 MHz and power of 17 dBm, 0 dBm and -10 dBm can 

increase or inhibit the proliferation of S. Cerevisiae and these effects are not caused by an 

elevation in the temperature. Also, experimental results demonstrate that MW can induce yeast 

cell death followed by their recovery at 2100 MHz and 17dBm. The statistical analysis (Chi-

square test of independence) was conducted to understand the influence and independence of 

frequency and power of MW exposures on the observed effects in the irradiated yeast cells. 

The outcome suggests that both frequency and power contribute independently towards the 

modulating effects in yeast cells growth. 

Despite significant research efforts being directed towards investigating biological and 

health effects of mobile phone radiation, a limited number of studies were focused on non-

thermal effects of MW radiation and these have reported conflicting results [173] [174]  [91, 

174] [78] [175] [55] [176]. Based on the current literature, it can be summarised that particular 

RF/MW exposures can change gene and/or protein expression in certain types of cells, even at 

intensities lower than the standard recommended exposure levels [177]. There have been a 

number of experiments conducted to study a growth pattern of yeast cells exposed to MW 

radiation [89] [178]. Yeast cells are frequently used as a model system in in-vitro studies as 

yeast is a simplest eukaryotic organism with a nucleus. Many essential cellular processes in 

yeast and human are the same, which makes yeast cells suitable to study basic molecular 

processes including a biological process in humans [87]. It was shown that the biological 

effects of mobile phone radiation depend on various parameters such as frequency, intensity 

(power), exposure duration, and power density  [18]. Our previous studies with S. cerevisiae 

yeast cells demonstrated that their proliferation was significantly affected when exposed to 
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MW at the selected frequencies and powers [178]. In another study, we also showed that low 

power MW exposures induce yeast cell death followed by their recovery at 2100 MHz and 

17dBm [27]. 

It was also aimed to study further power-dependent effects of MW exposures by testing 

the hypothesis that radiation at the frequency 1800 MHz and three different powers of -10 dBm, 

0 dBm and 17 dBm can affect the rate of growth and viability of S. cerevisiae yeast cells. The 

morphological data clearly show that the applied exposures induce modulating effects in yeast 

cells. The findings reveal that MWs at 1800 MHz and -10 dBm stimulate the proliferation of 

S. cerevisiae cells which possibly change their cell growth phase. Interestingly, the results also 

showed that S. cerevisiae growth was inhibited at the beginning of the growth phase but 

recovered towards the end of the growth phase in cells exposed at 1800 MHz and -10 dBm. It 

should be noted that our results are in agreement with the findings reported by other research 

studies. For instance, in [179] [91], the authors evaluated the effects of low power MW 

radiation on bacteria and yeast strains and reported that yeast cell growth rate was affected by 

applied exposures. It was shown that microwave radiation induces frequency-specific effects 

on the yeast growth rate, i.e. increase up to 15% at the frequency 41.6 GHz and decrease up to 

38% at 41.8 GHz.  

The findings of our study show a significant interaction between viability and time point 

at 1800 MHz and -10dBm (f (F (2, 8) = 13.6, p=0.0027). Time point was observed to be 

significant at 1800 MHz exposures at both powers of 17 and 0 dBm (p=0.0033, p=0.0058 

respectively). Our results are in accord with the study by Vrhovac [89], where three different 

strains of yeast were exposed to RF radiation at 905 MHz. Their findings revealed a statistically 

significant difference in colony growth at different time points of exposures. The results of our 

investigation also showed that 6 h exposures at -10 dBm and 0 dBm affected cell proliferation 

in S. cerevisiae. A significant increase in total cell count and changes in cell viability were 

observed at the powers of 0 dBm and -10 dBm respectively. This change is due to molecular 

transformations and alterations. Similar observations were reported by Lin et al. [167].  

Further, yeast cell morphology was analysed particularly for circularity and elongation 

at 1800 MHz and two powers, highest power 17 dBm and the lowest power of -10 dBm to 

observe the changes produced by different microwave exposure conditions. The impact of the 

particular powers in selected MW exposures on S. cerevisiae was examined using TEM. TEM 

images revealed changes in the internal organisation of treated yeast samples exposed for 6 
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hours at 1800 MHz and selected powers. TEM images (Fig. 12b-12d) provide evidence of 

structural disruptions and disruption in the overall internal organisation in S. cerevisiae samples 

exposed at -10 dBm, 0dBM and 17 dBm. Assessment of morphological changes in yeast cells 

showed that exposures at -10 dBm and 17 dBm significantly affect the size and shape of the 

irradiated cells when compared to the control groups. TEM images showed visible changes in 

the internal organisation of the yeast cell for all the selected three powers at the frequency of 

1800 MHz. At 0 dBm, although no significant changes were seen in yeast cell proliferation, 

TEM images show disruptions in their internal cellular organisation. These findings imply that 

studied MW exposures induce power-dependent effects on yeast cells. One possible 

explanation for these effects could be the change in the biochemical process of the treated cells 

as proposed by Lin et al. [167]. The obtained results clearly confirm our hypothesis that even 

at low powers of exposures which lead to no elevation in temperature MW radiation can affect 

the normal cellular processes in exposed S. cerevisiae cells. The findings imply that low power 

MW radiation can induce modulating effects on cell growth and internal structural 

organisation. Our findings also suggest that a further study is required to investigate the cause 

of the observed internal disruptions and surface changes in exposed yeast cells. Investigation 

of the effects of the same powers and different MW frequencies, used in mobile phone 

radiation, is also required.  
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CHAPTER 6: LOW POWER MICROWAVES INDUCE 

CHANGES IN FUNCTIONAL PROPERTIES OF 

TRPV4, A MECHANICALLY ACTIVATED ION 

CHANNEL 

6.1 Introduction  

RF radiation can alter the intracellular Calcium homoeostasis and consequently target 

cell proliferation and differentiation as well as modify bioactivity of different enzymes [180]. 

Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable ion channel protein 

encoded by the TRPV4 gene that is detectable in both sensory and non-sensory cells [2]. It is 

widely expressed in kidneys, lungs, heart, brain, endothelial cells, dorsal root and trigeminal 

sensory ganglia. It has a wide range of implications from osmoregulation to thermo-sensing. 

TRPV4 is a non-selective cation channel that is expressed in various tissues, including 

epithelial and endothelial cells, which can be activated by different stimuli such as heat, 

hypotonic stress, GSK1016790A, derivatives of arachidonic acids and shear stress [181] [182].  

In this chapter, the PhD candidate reports on the study conducted to evaluate the effects 

of MW radiation at 1800 MHz and powers 17 dBm, 0 dBm and -10 dBm on TRVP4 channel 

function in HEK-293 cells stably expressing TRPV4, to improve understanding of 

thermal/non-thermal nature of RF-EMF interaction with normal epithelial cells.  

The first series of experiments were performed at room temperature (25oC). At the 

second stage, the experiments were repeated at body temperature (37oC). The idea behind 

studying the effects of MW exposures at two different temperatures is to evaluate whether the 

induced effects/ cellular responses (if any) are caused by applied irradiation alone or are 

temperature dependent. The response of TRPV4-HEK293 to applied irradiation was studied at 

two different time points, i.e. two hours and four hours, to also evaluate whether the effects are 

time-dependent. The changes in the intracellular calcium levels ([Ca+2]i) of TRPV4-HEK293 

cells were assessed using calcium-sensitive dye, Fluo-4AM and confocal microscopy. By 

employing these methods, we measured the effects of the MW exposures at 1800MHz and 

power of 17dBm on TRPV4 channel gating in response to its selective agonist GSK1016790A. 
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6.2 Materials and Methods  

GSK1016790A Agonist  

In this study, HEK293 cells stably expressing TRPV4 (TRPV4-HEK293 cells) [183] 

were exposed to MW radiation at 1800 MHz and powers 17 dBm (electric field 47 V/m, power 

density 0.606 mW/cm2, SAR 4.314 W/kg), 0 dBm (electric field 47 V/m, power density 0.606 

mW/cm2, SAR 4.314 W/kg) and -10 dBm (electric field 47 V/m, power density 0.606 

mW/cm2, SAR 4.314 W/kg). The objective of the study was to elucidate whether the effects 

induced by applied low-power MW exposure on TRPV4 is non-thermal. GSK 101 (GSK 

1016790A) is a novel and selective TRPV4 agonist, which has been shown to be a more 

specific and potent activator than some small molecule agonists such as Phorbol ester 4αPDD 

(at nanomolar levels) [184]. GSK1016790A was used to observe the channel response at four 

different concentrations, 0.1, 1, 10 and 100 nM, diluted in HEPES buffer. For calcium imaging, 

the HEPES buffer consists of 140 mmol/L NaCl, 5mmol/L KCl. 10 mmol/L HEPES, 

11mmol/L D-glucose, 1 mmol/L MgCl2, 2 mmol/L, CaCl2, and 2 mmol/L probenecid, adjusted 

to pH=7.4.  

Cell culture and Ca2+ measurement protocol 

Tetracycline-inducible TRPV4-HEK 293 cell line was generated as reported elsewhere 

[185]. Cells were cultured in Dulbecco’s Modified Eagle’s medium (Invitrogen) supplemented 

with 10% fetal bovine serum, hygromycin (50 mg/ml) and blasticidin (5µg/ml), under 5% CO2 

at 370C. For irradiation experiments, cells were seeded in a 24-well plate for 24 hours at the 

density of 2.5 ×105 cells per well [186], followed by 4 hours of exposure at 1800 MHz and 

powers of 17 dBm, 0 dBm and -10 dBm. After irradiation, TRPV4 expression was induced 

using 0.1 µg/ml of tetracycline overnight. On the day of the experimental exposure, cells were 

loaded with Ca2+ sensitive dye (Fluo-4AM) for 30min in an imaging buffer. Cells then were 

washed with HEPES buffer and imaged immediately. Calcium imaging was performed using 

a Nikon A1 laser-scanning confocal microscope. The cell area was measured by acquiring 

region of interest (ROIs) around each cell automatically using a NIS element viewer (Nikon 

Instruments Inc). The average intensity of at least 100 ROIs has been measured and normalised 

to the time zero, presented as F1/F0 to evaluate the changes in intracellular Ca2+ level. The 

obtained data are shown as mean ±SEM of at least three independent experiments.  
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Preparation of cells for Transmission Electron Microscopy 

To perform TEM assessment, HEK-293 cells were grown on a coverslip inside the 6-

well plate, followed by 4 hours of exposure at 1800 MHz and powers of 17 dBm, 0 dBm and -

10 dBm. The cells were suspended in a Karnovsky’s fixative overnight to fix and immobilise 

any cellular activity. Cells were scraped from the coverslip, and l pellets were washed thrice 

with cacodylate buffer. Following rinsing, the cells were post-fixed at room temperature (25°C) 

in the post-fixative solution following washes with distilled water [168]. After washing, the 

samples were dehydrated with increasing ethanol gradients from 50 to 90% followed by 100% 

ethanol for 30 mins. Following ethanol dehydration, the samples were completely dehydrated 

in acetone and infiltrated with Spurr’s resin mixture [169]. After infiltration, the samples were 

polymerised at 70˚C in the oven. Ultrathin sections (90nM thicknesses) were cut with a 

diamond knife using ultramicrotome (Leica Microsystems). The sections were observed at 

80kV under a Jeol 1010 Transmission Electron microscope (TEM) using the Gatan Microscopy 

Suite software, version 2.3. 

Statistical Analysis 

All Ca2+ responses are presented as mean± SEM, and n represents the number of 

independent experiments, with >- 50 cells analysed in each experiment. Statistical comparisons 

were made by student’s t-test (Prism, GraphPad Software). Calcium response was observed to 

be significant for all the selected concentration of agonist GSK with P<0.05.  

Exposure System Setup 

HEK-293 cells seeded on 24-well plate having 1 million cells in each of the selected 

16-well plates. The exposure system consists of Transverse Electro-Magnetic (TEM) TC-

5062AUHF TEM cell (100 kHz–3 GHz) from TESCOM Ltd, and the signal generator (Wiltron 

68247B) operating range 10 MHz to 20 GHz. All experiments were conducted at room 

temperature of 25C and body temperature of 37°, with the temperature being monitored 

continuously by a digital temperature controller (RS 206-3738) during experimentation to 

observe whether any effects induced in cells are due to the temperature change. Details of the 

exposure system set up, the position of the sample, and the direction of the electric field inside 

was discussed in detail in Chapter 4 and also published previously [27].  
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6.3 Results and Discussion  

As mentioned above, the activity of TRPV4 channels was studied at two-time points 

and two temperatures to evaluate the channel’s response when irradiated at 1800 MHz and 

three powers 17 dBm, 0 dBm and -10 dBm. The results are presented below. 

6.3.1 Agonist (GSK1016790A) response of TRPV4 ion channel protein at room 

temperature when irradiated for 4 hrs and 2hrs at 1800 MHz and 17 dBm 

Figures 6.1 and 6.2 show the dynamics of TRPV4 response to four different 

concentrations of GSK1016790A when exposed at 1800 MHz and 17 dBm, after 2 and 4 hrs 

irradiation. At 4 hrs of irradiation it was observed that, with the increase in the concentration 

of GSK1016790A from 0.1 to 100 nM, the cellular response time was reduced from 0.813 ± 

0.1876 for 0.1nM (p< 0.0216, N=6), 1.166 ± 0.4072 (p< 0.0191, N=6) for 1nM, 2.502 ± 0.7096 

(p< 0.0106, N=6) for 10nM and 2.851±0.9264 (p< 0.0186, N=6) for 100nM. This suggests that 

the MW exposure at 1800 MHz and 17 dBm is sufficient enough to sensitise the TRPV4 

channel response to its selective agonist. 
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Figure 6.1: Agonist (GSK1016790A) response of TRPV4 ion channel protein at 25°C when 

irradiated for 4 hr at 1800 MHz and 17 dBm.  

Figure 6.2 showed the ion channel response when TRPV4-HEK-293 cells were exposed 

for 2hrs. The results indicate that, at low concentration of 0.1 and 1nM, irradiation sensitises 

the response of TRPV4 by 0.461 ± 0.17 (P= 0.0349, value, N=5) for 0.1nM, 0.9773 ± 0.2949 

(p< 0.0349, N=4) for 1nM. However, at higher concentrations of 10nM and 100nM, no changes 

were observed. This could be because the response was already saturated. 
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Figure 6.2: Agonist (GSK1016790A) response of TRPV4 ion channel protein at 25°C, when 

irradiated for 2 hr at 1800 MHz and 17 dBm.  
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6.3.2  Agonist GSK1016790A response of TRPV4 ion channel protein at 25°C 

after 2 and 4 hrs of exposure at 1800 MHz and 0 dBm 

Figures 6.3 and 6.4 show changes in the dynamics of TRPV4 response to 

GSK1016790A when irradiated at 1800 MHz and 0 dBm for 2 and 4 hrs, respectively. At both 

exposure times, no significant difference in channel response was observed, suggesting that 

applied radiation does not affect the function of TRPV4-HEK293 cells.  
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Figure 6.3:  Agonist GSK1016790A response of TRPV4 ion channel protein at 25°C, when 

irradiated for 4hr at 1800 MHz and 0 dBm.  
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Figure 6.4: Agonist GSK1016790A response of TRPV4 ion channel pro attain 25°C when 

irradiated for 2 hr at 1800 MHz and 0 dBm.  

 

6.3.3 The average maximum response of TRPV4 ion channel at 25°C irradiated 

for 4 and 2 hrs at 1800 MHz and -10 dBm. 

Figures 6.5 and 6.6 show the response of the TRPV4 channel to its agonist. Irradiation 

of cells at 1800 MHz and -10 dBm at both time points, 2 and 4 hrs, did not induce any 

significant effect on the TRPV4 channel responses to its selective agonist. 
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Figure 6.5: Agonist GSK1016790A response of TRPV4 ion channel protein at 25°C when 

irradiated for 4 hrs at 1800 MHz and -10 dBm. At all four concentrations of GSK1016790A, we 

do not find any changes in channel response.  

The time dynamics graph of all experiments performed at 1800 MHz and powers 17 

dBm, 0 dBm and -10 dBm clearly show that the power of 17 dBm significantly affect the 

TRPV4 ion channel response, whereas powers 0 dBm and -10 dBm produce no effects on 

channel’s function. 
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Figure 6.6: Agonist GSK1016790A response of TRPV4 ion channel protein at 25°C when 

irradiated for 2 hrs at 1800 MHz and -10 dBm.  The black line corresponds to control and red 

line to irradiated sample. 

6.3.4 The average maximum response of TRPV4 ion channel at room 

temperature (250C ±2°C) when irradiated for 4 hrs and 2 hrs at 1800 MHz 

and 17 dBm. 

As reported above, TRPV4-HEK-293 cells were exposed for 4 and 2 hr at the frequency 

1800 MHz and three different powers (17 dBm, 0 dBm and -10 dBm) to investigate the 

influence of the exposure time on cellular responses at the different radiation powers. Average 

maximum response time was calculated for control and test (irradiated) groups. Figures 6.7A 

and B represent the average maximum response of TRPV4-HEK293 cells to different 

concentrations of GSK1016790A after exposure for 4 and 2 hrs at 1800 MHz and the highest 

power of 17 dBm.  
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Figure 6.7: Effect of different radiation powers and times of exposure on TRPV4 responses to 

its selective agonist. (A&B) show the effect of 1800 MHz and 17 dBm radiation upon 4 hrs and 2 

hrs respectively. (C&D) show the effect of 1800 MHz and 0 dBm radiation upon 4 hrs and 2 hrs 

respectively. (E&F) show the effect of 1800 MHz and -10 dBm of radiation upon 4 hrs and 2 hrs 

respectively.  
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The data show that 4 hrs radiation at 1800 MHz and 17 dBm sensitised the response of 

TRPV4 to its selective agonist by 1.12 ± 0.31 fold (P<0.005, N=6) for 0.1nM, 0.87± 0.40 fold 

(P<0.01, N=6) for 1nM, 1.17 ± 0.43 fold (P<0.023, N=6) for 10nM; while 2 hrs exposure to 

the same power and frequency sensitised the cellular responses to only 0.46 ± 0.17 fold 

(P<0.05, N=6) at 0.1nM GSK101 and 0.97 ± 0.29 fold (P<0.05, N=6); and no difference in the 

cellular response was observed at other concentrations. Furthermore, irradiation at the powers 

0 dBm and -10 dBm at both time points, 2 and 4 hrs, did not produce any effect on Max 

response time of TRPV4-HEK293 cells at any concentration of GSK1016790A, as shown in 

Figure 6.7C-D. Hence, the findings of this study demonstrate that applied non-thermal MW 

exposures affect TRPV4 channel response to its selective agonist in a dose- and time-dependent 

manner.  

6.3.5 Agonist GSK1016790A response of TRPV4 ion channel protein at body 

temperature (37°C ±2.5°C) and 4hrs and 2 hrs of irradiation at 1800 MHz 

and 17 dBm. 

To study the effect of temperature on TRPV4-HEK293 cells responses to low-power 

microwaves, the experiments were repeated at body temperature (37°C). Figures 6.8 and 6.9 

show the dynamics of TRPV4 response to four different concentrations of GSK1016790A 

when exposed at 1800 MHz and 17 dBm, upon 2 and 4 hrs of irradiation. TRPV4 response 

after 2 hrs of irradiation at the same power and frequency sensitised the response by 0.1918 ± 

0.2769 at 0.1 nM and -0.7014 ± 0.3263. For 1 nM and 4hrs of irradiation at 1800 MHz and 17 

dBm, the response was sensitised by 0.7682 ± 0.2954 for 0.1nM, 0.8274 ± 0.3774 for 1nM, 

2.502 ± 0.7096 (Figure 6.8(A-D)).  
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Figure 6.8: Agonist GSK1016790A response of TRPV4 ion channel protein at 37°C when 

irradiated for 4 hrs and 2hrs respectively at 1800 MHz and 17 dBm  

Furthermore, exposure of cells for 4 and 2 hrs at 1800 MHz and 0 dBm did not induce 

any effect on TRPV4 channel’s response to its agonist, similar to the results obtained at 25°C. 

This suggests that low-power exposure does not affect TRPV4 channel’s function (Figure 6.8E-

H).  

Figure 6.8 (I-L) shows the response of TRPV4 to its agonist when irradiated at 1800 

MHz and -10 dBm for four hr and 2hr. It can be seen that, for both times of exposure, the 

response of the ion channel is the same for control and irradiated samples, and no significant 

changes were observed. 

The average maximum response of TRPV4 ion channel at body temperature 
(37°C± 2.0°C) when irradiated for 4 hrs and 2 hrs at 1800 MHz and 17 dBm. 

In the study reported earlier in Section 6.3.4, we exposed TRPV4-HEK-293 cells for 4 

hrs and 2hrs at room temperature 25°C to evaluate the effects of irradiation at 1800 MHz and 

powers of 17 dBm, 0 dBm and -10 dBm powers, and found that only exposure at the power of 

17 dBm is sensitising the response of TRPV4 to its selective agonist independent of the 

temperature.  
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Figure 6.9: Effect of different radiation powers and times of exposure on TRPV4 responses to 

its selective agonist, (A&B) show the effect of 1800 MHz and 17 dBm radiation upon 4 hrs and 2 

hrs respectively. (C&D) show the effect of 1800 MHz and 0 dBm radiation upon 4 hrs and 2 hrs 

respectively. (E&F) show the effect of 1800 MHz and -10 dBm of radiation upon 4 hrs and 2 hrs 

respectively.  
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By conducting similar experiments at body temperature of 37°C, Figure 6.9, it is found 

that irradiation at 4 hrs and 2 hrs at 1800 MHz and 17 dBm (Figures 6.9A and B) sensitises the 

response/bioactivity of TRPV4 ion channels, as follows: Exposure at 17 dBm (Figures 6.9A 

and B) for 4 hrs sensitised the response of TRPV4 to its selective agonist by 0.76 ± 0.29 for 

concentration 0.1nM, 0.82 ± 0.37 for 1nM; exposure at 0 dBm (Figures 6.9C and D) and at -

10 dBm (Figures 6.9E and F) induced no significant effect of the ion channel response at peak 

response time. 

6.4 TEM Analysis of HEK-293 Cells 

To study the effect of selected frequency and power on the internal structure of HEK-

293 cells, we used Transmission Electron Microscopy (TEM). Figure 6.10 (A-D) shows the 

TEM micrographs of the cells irradiated for 4 hrs at 1800 MHz and powers of 17 dBm, 0 dBm 

and -10 dBm at 37°C. TEM micrographs of cells exposed at 17 dBm for 4 hrs (Figure 6.10 B) 

show significant changes at the ultrastructural level, such as vesiculation in the cytoplasm, and 

the leaking of cellular contents compared to control cells (Figure 6.10A). However, exposure 

at 0 dBm (Figure 6.10C) and -10 dBm (Figure 6.10D) induces only minimum changes at the 

morphological level with visible leakage of contents in HEK-293 cells.  

TEM images strongly indicate that irradiation at 17 dBm produces significant effects 

on the regular structural organisation of cells. In contrast, irradiation at other two powers 0 

dBm and -10 dBm, produce no effect on cells - cell remains intact and well organised.  
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Figure 6.10: TEM micrographs show control and HEK-293 cells exposed at 1800 MHz and 

powers of 17 dBm, 0 dBm, -10 dBm exposed at 37 OC for 4 hrs. Figure a: shows control HEK-

293 cells kept at 37 OC, Figure B: HEK-293 cells exposed at 1800 MHz and 17 dBm, Figure C:  

HEK-293 cells exposed at 1800 MHz and 0 dBm, Figure D: HEK-293 cells exposed at 1800 MHz 

and -10 dBm.  

Figures 6.11(A-D) show the TEM micrographs of the cells irradiated for 2 hrs at 1800 

MHz and powers of 17 dBm, 0 dBm and -10 dBm at 37°C. At 17 dBm, 0 dBm and -10 dBm 

(Figure 6.11B, C and D), no significant morphological changes were observed when compared 

to the control (Figure 6.11A). 
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Figure 6.11: TEM micrographs show the control and HEK-293 cells exposed at 1800 MHz and 

powers of 17 dBm, 0 dBm, -10 dBm exposed at 37 OC for 2 hrs. Figure A: shows control HEK-

293 cells kept at 37 OC, Figure B: HEK-293 cells exposed at 1800 MHz and 17 dBm, Figure C: 

HEK-293 cells exposed at 1800 MHz and 0 dBm, Figure D: HEK-293 cells exposed at 1800 MHz 

and -10 dBm 

6.5 Concluding Remarks 

Sub-study 1: 

This study was aimed to investigate the hypothesis that low-power MW radiation can 

affect the bioactivity of TRPV4 channel proteins at room temperature (25°C). The hypothesis 

was tested at two different times of exposure, 4 hrs and 2 hrs. It is found that irradiation for 4 

hrs and 2 hrs at 1800 MHz and 17 dBm sensitises the response/bioactivity of TRPV4 ion 

channels to its selective agonist GSK1016790A when compared to the control samples. This 

response is mainly due to the influx of Ca2+ through TRPV4 channel.  Exposure at the powers 

of 0 dBm and -10 dBm produces no significant effect on ion channel’s bio-activity when 

compared to control samples. The average maximum response was also studied. We observed 

that, at room temperature of 25°, irradiation at 0 dBm and -10 dBm induced no effect on ion 

channel, which is possibly due to saturation in channel response.  

Sub-study 2: 

Similar experiments were conducted at a body temperature of 37°C. In this sub-study, 

ion channel response to its agonist GSK-101 at two concentrations 0.1 nM and 1 nM was 
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studied. At the higher concentration, we could not see any difference in ion channel activity 

because the response was already saturated. It is interesting to note that the results obtained at 

25°C and at 37°C were consistent, which indicates that the channel response was sensitised at 

1800 MHz and 17 dBm because of the applied MW exposure, and that change in temperature 

does not affect the ion channel’s response. We found that irradiation for 4 hrs and 2hrs at 1800 

MHz and 17 dBm sensitises the response/bioactivity of TRPV4 ion channels to its selective 

agonist GSK1016790A when compared to the control samples. Irradiation at the powers 0 dBm 

and -10 dBm produces no significant difference between the control and test samples. The 

average maximum response was also studied at the peak response time, and it was observed 

that exposure for 4 hrs at 1800 MHz and 17 nM sensitised the response of TRPV4 to its 

selective agonist by 0.7682 ± 0.2954 for 0.1nM, 0.8274 ± 0.3774 for 1 nM; while at 10 dBm 

and 100 nM no significant response could be observed because of the saturation in GSK 

response; whereas at 0 dBm and -10 dBm, no significant changes in channel response were 

observed at the peak response time.  

Sub-study 3: 

TEM microscopy was performed on the HEK-293 cells exposed for 4 hrs and 2 hrs at 

body temperature of 37°C. TEM micrographs show significant changes in internal cellular 

organisation in HEK-293 cells exposed for 4 hrs at 1800 MHz and 17 dBm. There were 

significant leakage of cellular contents and blebbing observed. Minor disruptions were 

observed at 2 hrs of exposure; whereas irradiation at 0 dBm and -10 dBm induced minor 

internal changes in cells exposed for 4 hrs and 2 hrs.   

These findings provide evidence that these particular non-thermal exposures induce 

changes in the gating function of TRPV4. Hence, long-term exposure at the power of 17dBm 

could lead to changes in the thermal sensation and thermoregulation, whereas the powers 0 

dBm and -10 dBm do not produce any functional changes in the ion channel, despite minor 

structural changes being observed in TEM micrographs. Based on these results, we can 

conclude that these structural changes are not significant and do not affect the functional 

activity of TRPV4 ion channel proteins expressed in HEK-293 cells.  
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CHAPTER 7: CONCLUSION AND FUTURE 

DIRECTIONS 

7.1 Conclusions 

In the last five years, exposure to microwave (MW) radiation has dramatically increased 

due to advancements and penetration of communication technology, food-processing 

technology, and other industrial applications. The concept of non-thermal effects of MW 

radiation has received considerable attention in recent years and is the subject of intense debate 

in the scientific community. Non-thermal effects of MWs have been postulated to result from 

a direct interaction of the electric field with specific (polar) molecules in the reaction medium 

that is not related to a macroscopic temperature effect. Non-thermal biological effects of MWs 

depend on several physical parameters and biological variables [1]. Therefore, only results 

obtained under the same conditions of MW exposure should be compared in “replication” 

studies. 

Essential features of non-thermal MW effects include the following [1, 2]: 

 Effects of resonance type within specific frequency windows. 

 Dependence on the type of signal, modulation, and polarisation. 

 Decreasing Power Density (PD)by orders of magnitude can be compensated by an 

increase in exposure time. Therefore, duration of exposure may have a more significant 

role as compared to Power Density (PD). 

 Cell density: radical scavengers/antioxidants have a potential to abolish MW effects. 

 Genomic differences influence response to MWs [3]. 

This PhD research project was aimed at investigating the effects of low-power MW 

radiation on the selected cells and proteins, with a specific focus on the frequencies emitted by 

mobile phones. The frequencies selected for this investigation are used in 3G and 4G mobile 

networks. Following sub-studies were completed within the project. 

Effects of static and time-varying electric fields on the conformation of Conotoxin protein: a 

molecular modelling study (Chapter 3) 

In this computational molecular study, a range of static and time-varying electric fields 

was applied to the Conotoxin peptide to understand their effects on the peptide’s conformation. 
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Results show that, at the higher strength, external electric fields affect Conotoxin’s structure. 

The findings are summarised and presented below.  

In Sub-study 1, we explored the effects of the static electric fields of 0.01 V/nm, 0.001 

V/nm and 0.0001 V/nm on the conformations of homologous Conotoxin peptides. Statistically 

significant effects were observed in the conformation of the peptide when Conotoxin has 

exposed to the electric field of the highest strength 0.01V/nm. These structural changes may 

lead to changes in its biological activity. These findings thus imply that the effects are field-

strength dependent.  

Sub-study 2 was aimed at investigating further the effects of static electric fields of 

much lower strengths (1e+9 V/m, 0.00123 V/m and 0.000055 V/m) on the structural stability 

of Conotoxin peptide. Results show that induced conformational changes in the peptide are 

directly affected by the strength of electric field. The electric field of 0.000055 V/m produced 

no effect on Conotoxin’s structure. However, the strongest field of 1e+9 V/m produced major 

structural disruptions in the Conotoxin peptide. The number of hydrogen bonds formed was 

increased with the increase in electric field strength. Snapshots of Conotoxin at two selected 

time points, 500 and 1000 ps, indicate towards the unfolding of the peptide under the exposure 

at 1e+9 V/m electric field, which is the reason for the increase in the formation of hydrogen 

bonds between Conotoxin and water molecules.  

Sub-study 3 explored the effects of oscillating (time-varying) electric fields of the 

strengths 2e-9 V/nm, 6e-9 V/nm and 4.7 V/nm on the structural stability of the Conotoxin 

peptide. Results show that selected fields induce conformational changes in the peptide, mainly 

at 4.7 V/ m, whereas no significant effects were observed at other two strengths/ powers at the 

frequency of 1800 MHz.  

In essence, the above findings demonstrate that a computational method such as the 

Molecular Dynamics (MD) simulation presents a useful tool in the analysis of effects of 

external electric fields (stressor) on a peptide’s structure and its functional properties. 

Knowledge gained through computational study can aid in understanding the mechanistic 

aspects of change in conformation of a peptide, to study the diseased condition under the effects 

of low strength static or varying electric fields. The use of MD simulation techniques can 

further be extended in exploring new applications of external static (or oscillating) electric 

fields, such as explaining the effects of novel food processing techniques, such as microwave, 
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radiofrequency, pulsed electric fields and electro-hydrodynamic drying, on the biochemical 

composition of food products. 

Effects of Low Power Microwaves Radiation on Kinetics of L-Lactate Dehydrogenase 

(LDH) and Catalase Enzymes (Chapter 4) 

The study using the LDH assay verified the hypothesis that the external low-power MW 

radiation could affect the catalytic activity of LDH enzyme at the frequencies of 2100 MHz, 

2300 MHz and 2600 MHz, at the power of 17 dBm and -10 dBm, by either increasing or 

decreasing the rate of reaction. Kinetics of Catalase was studied under the MW exposure at the 

frequencies of 2100 MHz and 1800 MHz, and powers of 0dBm, -l0dBm and 17dBm. The 

inhibitory and excitatory actions observed at the frequency of 2100 MHz indicate the 

dependence of chemical reactions on power and frequency of the applied MW exposure. At 

1800 MHz and different powers (0dBm, -l0dBm and 17dBm), no significant effects on the 

enzymatic activity were observed.  

The results of these experiments suggest that both frequency and power of MW 

radiation contribute separately to modulating effects on the catalytic activity of LDH and 

Catalase enzymes. The experimental findings highlight that, even at the low powers, MW 

radiation can induce modulating effects at the frequencies used in 4G mobile phone networks. 

However, this requires further detailed investigation of a wide range of combinations of 

frequency and power to establish safe limits of MW exposures.  

Effects of Microwaves at 1800 MHz and Different Low Powers on Yeast Cells (Chapter 5) 

This study was aimed at testing the hypothesis that low-power MW radiation at the 

selected frequencies (1800 MHz and 2100 MHz) and powers (-10 dBm, 0 dBm, 17 dBm) can 

affect the growth rate of S. Cerevisiae. The findings reveal that MWs at 1800 MHz and power 

of 17 dBm, 0 dBm and -10 dBm could modulate (increase or inhibit) the proliferation of S. 

Cerevisiae, with no elevation in the temperature being observed during the experimentation. 

The spectrophotometric and morphological assessment data clearly show that the applied 

exposure induces modulating effects in yeast cells. In addition, the results demonstrate that 

MW at 2100 MHz and 17dBm can induce yeast cell death followed by their recovery. The 

statistical analysis (Chi-square test of independence) suggests that both frequency and power 

contribute independently towards the modulating effects observed in yeast cells growth. A 

significant increase in total cell count and changes in cell viability were seen upon exposure at 
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the powers of 0 dBm and -10 dBm, respectively. TEM images of the exposed samples show 

the disruptions in their internal cellular organisation, suggesting that MW exposure induces 

power-dependent effects in yeast cells.  

In summary, the results of this study confirm the hypothesis that, even at the low powers 

of exposure (with no elevation in temperature), MW radiation can affect the standard cellular 

processes in the exposed S. cerevisiae cells. The findings imply that low-power MW radiation 

can induce modulating effects on cell growth and internal structural organisation. A further 

study is required to investigate the cause of the observed internal disruptions and surface 

changes in exposed yeast cells. Investigation of the effects of the same powers and different 

MW frequencies, used in mobile phone radiation, is also recommended.  

Low Power Microwaves Induce Changes in Functional Properties of TRPV4, a Mechanically 

Activated Ion Channel (Chapter 6) 

This study was aimed at investigating the hypothesis that low-power MW radiation can 

affect the bioactivity of TRPV4 channel proteins at room temperature of 25 oC. We tested this 

hypothesis at two different time points, i.e. at two hr and four hr of applied irradiation. Results 

suggest that MW exposure at 1800 MHz and the highest power of 17 dBm sensitises the 

response/bioactivity of TRPV4 ion channels to its selective agonist GSK1016790A, for both 

lengths of time exposure, when compared to the control samples. At the powers of 0 dBm and 

-10 dBm, no significant difference in the average maximum response was observed between 

the control and test samples.  

Similar experiments were repeated at a body temperature of 37oC. In this sub-study, ion 

channel protein was given only two concentrations of its agonist GSK-101,0.1 nM and 1 nM. 

It was interesting to note that the results obtained at 25oC and 37oC were consistent. This 

indicates that the ion channel response was sensitised at 1800 MHz and 17 dBm because of the 

applied MW exposure and that a change in the temperature does not affect its response. The 

average maximum response was also studied at the peak response time. It was observed that, 

for the MW exposure for 4 hr at 1800MHz and 17 dBm, the response of TRPV4 ion channel 

to its selective agonist GSK-101 varied as follows: 0.7682 ± 0.2954 (concentration 0.1nM), 

0.8274 ± 0.3774 (concentration 1nM); whereas, at 0 dBm and -10 dBm, no significant change 

in response was observed at the peak response time.  
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 In addition, TEM assessment was performed on the HEK-293 cells exposed for 4 hrs 

and 2 hrs at body temperature (37°C ± 2°C). TEM micrographs show the significant changes 

in internal cellular organisation, particularly at 1800 MHz and 17 dBm, when cells were 

exposed to 4 hrs. There was significant leakage of cellular contents and blebbing observed. 

Only minor disruptions were observed at two hr of exposure; whereas, at 0 dBm and -10 dBm, 

minor internal changes were observed for both four hr and two hr of irradiation.   

These findings provide evidence that these particular non-thermal forms of exposure 

induced changes in the gating function of TRPV4. Hence, long-term exposure at the power of 

17dBm could lead to changes in the thermal sensation and thermoregulation, whereas exposure 

at the powers of 0 dBm and -10 dBm does not induce any change in the functional activity of 

TRPV4 expressed in HEK-293 cells, despite the fact that minor structural changes were seen 

in TEM micrographs. 

In conclusion, this research project has successfully brought new knowledge to the 

field of bio-electromagnetics in general. As such, the outcomes of this PhD research have 

been published in peer-reviewed conferences, and three journal articles are under preparation. 

A complete list of publications by the author since the beginning of this PhD research project 

is presented as follows. 

7.2 Future Work 

Despite continuing research efforts aiming to understand the biological and health 

effects of low-power radiation on different biological media, the exact mechanisms behind 

non-thermal effects of MWs have not been fully elucidated. When discussing the biological 

and health effects of the radiation emitted by wireless communication devices, it is necessary 

to re-evaluate the meaning of terms, “thermal” and “non-thermal” effects. The following 

recommendations can be suggested:  

1. The majority of published studies evaluating the effects of low-power MW radiation 

show conflicting results. It is apparent that the important parameters of MW radiation 

(frequency, intensity/power, exposure duration, and pulse modulation) are not properly 

controlled in “replication studies” on non-thermal effects of MWs, and therefore the data 

cannot be compared with the original results. 
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2. The mechanisms behind the observed non-thermal effects are not yet elucidated. There 

is a need to establish a national program via collaborative inter-institutional research involving 

biochemists, molecular biologists, engineers and physicists, to conduct interdisciplinary 

mechanistic studies on non-thermal effects of MWs (from mobile phones and base stations). 

3. Based on the mounting evidence of biological non-thermal effects, new in vivo animal 

and human studies should be conducted. For public safety in the changed scenario, currently 

accepted industry standards for mobile phone exposure should be scrutinised. The frequency 

bands and power thresholds for mobile communication which do not affect human health 

should be identified. 

4. Published in vitro studies indicate that the duration of exposure can be more critical for 

non-thermal effects than the intensity, and therefore effects of MWs from base stations on 

primary human cells should be studied [187-189] 

5. There is a lack of studies performed on human volunteers to evaluate changes in 

biochemical reactions due to the applied electromagnetic radiation. 

6. The minimal number of research studies conducted on human volunteers is a primary 

reason for our limited understanding of the effects of exposure of humans to MW radiation 

emitted by wireless communication devices on the physiology of cells/tissues/organs in the 

human body. 
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1] Jain S., Vojisavljevic V., Pirogova E. (2015). Study of change in the enzymatic reaction 
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