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“Do not go where the path may lead. Go instead where you may leave a trail.”

Ralph Waldo Emerson



Abstract

By 2020, it is predicted that there will be over 5 billion people and 38.5 billion Internet-of-

Things devices on the Internet. The data generated by all these users and devices will have to

be transported quickly and efficiently. Routers forming the backbone of this Internet already

support multiple 100 Gbps ports meaning that they would have to perform upwards of 200

Million destination addresses lookups per second in the packet forwarding block that lies in

the router ‘data-path’. At the same time, there is also a huge demand to make the network

infrastructure more energy efficient.

The work presented in this thesis is motivated by the observation that traditional synchronous

digital systems will have increasing difficulty keeping up with these conflicting demands. Fur-

ther, with reducing device geometries, extremes in “process, voltage and temperature” (PVT)

variability will undermine reliable synchronous operation. It is expected that asynchronous de-

sign techniques will be able to overcome many of these problems and offer a means of lowering

energy while maintaining high throughput and low latency. This thesis investigates existing

address lookup algorithms and investigates the possibility of combining various approaches

to improve energy efficiency without affecting lookup performance. A quasi delay-insensitive

asynchronous methodology - Null Convention Logic (NCL) - is then applied to this combined

design. Techniques that take advantage of the characteristics of the design methodology and

the lookup algorithm to further improve the area, energy and latency characteristics are also

analysed.

The IP address lookup scheme utilised here is a recent algorithmic approach that uses com-

pact binary-tries and was selected for its high memory efficiency and throughput. The design

is pipelined, and the prefix information is stored in large RAMs. A Boolean synchronous im-

plementation of the algorithm is simulated to provide an initial performance benchmark. It is

observed that during the address lookup process nearly 68% of the trie accesses are to nodes

that contained no prefix information. Bloom filter structures that use non-cryptographic hashes

and single-bit memory are introduced into the address lookup process to prevent these unnec-

essary accesses, thereby reducing the energy consumption. Three non-cryptographic hashing
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algorithms (CRC32, Jenkins and Murmur) are also analysed for their suitability in Bloom fil-

ters, and the CRC32 is found to offer the most suitable trade-off between complexity and per-

formance.

As a first step to applying the NCL design methodology, NCL implementations of the hash-

ing algorithms are created and evaluated. A significant finding from these experiments is that,

unlike Boolean systems, latency and throughput in NCL systems are only loosely coupled. An

example Jenkins hash implementation with eight pipeline stages and a cycle time of 3.2 ns ex-

hibits a total latency of 6 ns, whereas an equivalent synchronous implementation with a similar

clock period exhibits a latency of 25.6 ns. Further investigations reveal that completion detec-

tion circuits within the NCL pipelines impair throughput significantly. Two enhancements to

the NCL circuit library aimed particularly at optimising NCL completion detection are pro-

posed and analysed. These are shown to enable completion detection circuits to be built with

the same delay but with 30% smaller area and about 75% lower peak current compared to the

conventional approach using gates from the standard NCL library. An NCL SRAM structure

is also proposed to augment the conventional 6-T cell array with circuits to generate the hand-

shaking signals for managing the NCL data flow. Additionally, a dedicated column of cells

called the Null-storage column is added, which indicates if a particular address in the RAM

stores no Data, i.e., it is in its Null state. This additional hardware imposes a small area over-

head of about 10% but allows accesses to Null locations to be completed in 50% less time and

consume 40% less energy than accesses to valid Data locations.

An experimental NCL-based address lookup system is then designed that includes all of the

developed NCL modules. Statistical delay models derived from circuit-level simulations of

individual modules are used to emulate realistic circuit delay variability in the behavioural

modules written in Verilog. Simulations of the assembled system demonstrate that unlike what

was observed with the synchronous design, with NCL, the design that does not employ Bloom

filters, but only the Null-storage column RAMs for prefix storage, exhibits the smallest area on

the chip and also consumes the least energy per address lookup. It is concluded that to derive

maximum benefit out of an asynchronous design approach; it is necessary to carefully select

the architectural blocks that combine the peculiarities of the implemented algorithm with the

capabilities of the NCL design methodology.
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Chapter 1

Introduction

1.1 Internet - Challenges for the future

The Internet has grown remarkably over the past two decades. From a simple tool of scientists

and engineers, it now influences the lives of a significant percentage of the world’s population.

With the rise of the Internet of Things, it is rapidly becoming a vital component of the world’s

socio-economic infrastructure.

However, this rapid expansion has thrown up numerous challenges, in particular, those arising

due to the large volume of data that needs to be handled efficiently by the individual network

nodes. A 2017 CISCO Visual Networking Index Report [1] estimates global IP traffic to be in

the order of 1.2 ZB per year 1, generated by an average of 2.3 networked devices per capita each

running at an average speed of around 27.5 Mbps. As Figure 1.1 depicts, it is predicted that

by 2021 a person connected to the Internet would have about 3.5 devices, each accessing the

data at an average speed of 53 Mbps generating total traffic of 3.3 ZB. This rapid growth will

inevitably fuel an enormous demand for bandwidth and increasingly complex communication

equipment.

At the same time, there has also been a push towards a more energy efficient (greener) ICT in-

frastructure, requiring the network equipment to handle this increased traffic while consuming

less energy than before. While remarkable energy efficiency gains have been achieved in the

traditional areas of illumination, heating and cooling, the energy density in equipment used to

process and communicate data has been increasing every year [2]. A 2012 Greenpeace report

analysing the energy efficiency of modern data centres found that if the data centres involved

11 ZB = 1000 Exabytes [EB]; 1 EB = 1 Billion Gigabytes [GB]
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Figure 1.1: Projected growth of the internet from 2017 to 2021
Source: CISCO Visual Networking Index Report for 2017

in cloud computing were a country then their total energy consumption would be the 5th high-

est after the US, China, Russia and Japan and about 10% higher than the energy consumption

of India or Germany [3]. The same study has also identified packet routers — the networking

equipment within these data centres — as the single largest consumer of energy per square foot

of space.

It is this conflict between performance and energy requirements in routers that is the primary

motivation for this thesis.
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Figure 1.2: Router block diagram showing the routing and forwarding function
interacting with the Forwarding Information Base (FIB)

1.2 Internet Routers

1.2.1 Overview

Packet routers are the basic building blocks of the Internet and have existed since around 1969

[4], starting off as simple Interface Message Processors (IMPs) designed to transfer messages

between remote computer networks. For something that has been around for so long, the

basic functionality of a router has hardly changed. It is still a deceptively simple collection

of network interfaces and internal logic [5], [6] that performs two fundamental and important

tasks: routing and packet forwarding (Figure 1.2) [7].

The first step in the process is the creation of a topology map, an image of the network topology

based on route exchange packets shared with neighbouring nodes. Routing is the process of

using this map to find the best possible path between two nodes in the network and storing

this information in a database known as the forwarding table. For each packet that enters the

router, the destination address is extracted from the packet header. Packet forwarding is the

process of using the forwarding table to identify the correct egress port for the packet based on

its destination address and moving the packet to the output queue. Routing is thus a control

plane function, while forwarding is a data plane function of the router. The performance of

the forwarding function significantly affects the overall performance of the router offering the

most potential for improvement and is, therefore, the primary focus of this thesis.
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Figure 1.3: Distribution of packet sizes in anonymised internet traces captured at
core routers.

As in the case of a complete router [6], the performance of the address lookup function can be

measured in terms of:

1. Throughput– the number of destination address lookups performed per second, conven-

tionally a complex function of clock frequency and logic complexity.

2. Latency– the delay from when the packet enters the address lookup block to when it exits

with the correct egress port information, which depends on traffic volumes, input/output

queue congestion, memory performance and the number of pipeline stages.

3. Area– including the area of any on-chip memory used to store next hop information and

the logic that is needed to access one or more memory locations for each lookup.

4. Energy– consumed for each lookup. As the address lookup engine in the router is always

on and has to run for every packet, any improvement to the energy consumption of the

address lookup block will significantly improve the energy consumption of the router as

well.

1.2.2 Performance vs Energy

Of the four router performance metrics mentioned above, throughput, latency and energy con-

sumption of the packet forwarding module are all dependent on the size of the packet itself.



1.2. Internet Routers 5

A plot of core router packet size data (Figure 1.3) obtained from anonymised Internet traces

collected by Caida [8] illustrates that IP packets occur in a variety of sizes. However, TCP

ack packets that are 40 bytes in length constitute almost 13% of the total packets handled by a

router. At 100 Gbps line rates, these short, 40-byte packets will be received entirely in the order

of 6.7 ns and must be forwarded as fast as they are received. A router must, therefore, be capa-

ble of looking up the destination address in its forwarding table before the next packet arrives,

suggesting that upwards of 150 Million [5] or perhaps up to 200 Million [9] energy-efficient

address lookups must be performed per second.

At first, when routers were little more than embedded software processors with the lookup

tables residing in standard RAM and the machine programmed to manage the routing rules

this job was relatively easy. The division of the architecture into control and data plane seg-

ments allowed the development of special purpose architectures (ASICs) to perform the most

compute–intensive parts of the routing process. Recently, in an attempt to improve the per-

formance of simple RAM–based routers, Ternary Content Addressable Memory (TCAM)s had

been introduced to perform the IP lookup function [10]–[13]. While these can achieve high

throughput, single cycle lookup operation, they are much more complex than standard SRAMs

and are, therefore, much costlier than SRAMs of equivalent capacity, and they also consume

significantly more power per bit.

The algorithmic lookup techniques that use either a binary tree, bit traversal trie or hashes

stored in SRAMs have been used traditionally for IP lookup and have, however, been around

for as long as the BSD kernel [14]. Numerous variants of the basic binary trie have been pro-

posed and shown to perform IP lookup efficiently [15]–[26]. On the one hand, Bloom filters

have been used to improve the memory access overhead in algorithmic lookup techniques

based on hash tables [27], [28] or binary tries [29]–[31]. Details of the Bloom filter architec-

ture and the existing trie-based schemed are discussed later in Chapter 2. On the other hand,

Compact-trie2 is an example of the sort of trie-based structures that have been proposed to re-

duce the average depth of tries and to improve the memory efficiency of the lookup algorithm

[32]–[34]. These newer algorithmic approaches to IP lookup, while not as fast as TCAMs, have

been shown to be energy efficient and to be able to achieve high throughput while making

effective use of SRAMs and on-chip memory [28].

2This is referring to the specific trie architecture and is, therefore, written as ‘Compact-trie’ and not ‘compact-
trie’.
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However, in spite of these improvements not surprisingly these designs, as all digital architec-

tures face the same problem: power (and energy) consumption is a more-or-less linear function

of logic switching activity. Even as far back as 1998, when clock speeds were around a few

hundred MHz, clock circuits were already consuming 40-—60% of the total power in high per-

formance integrated circuits [35]. This percentage has not improved with time [36]. It is likely

that traditional synchronous digital systems will have increasing difficulty keeping up with

these high transfer speeds while meeting tight energy and latency constraints. In addition,

extremes in “process, voltage and temperature” (PVT) variability at small device dimensions

will increasingly conspire to force excessive timing margins on the clock signal and to prevent

reliable synchronous timing closure.

Asynchronous design techniques may offer a straightforward way to solve these issues, firstly

by operating at a rate determined by the logic itself rather than a fixed, precomputed clock

frequency that must allow for worse-case variability. Secondly, the approach might represent

a way to reduce the density of switching activity, thereby lowering energy while maintaining

high throughput and low latency, although this does not automatically follow. In fact, it entirely

possible for the switching behaviour of an asynchronous system to approach or exceed that of

an equivalent synchronous system 3, resulting in a higher power (albeit with other advantages

such as low latency and un-correlated current waveforms and lower peak power).

1.3 Asynchronous logic

Asynchronous logic systems comprise of blocks of logic separated by registration stages that

synchronise and communicate data using handshaking signals [37]. This is in contrast to

Boolean systems where a global clock signal performs the task of coordinating the outputs

of individual logic expressions that make up the system state [38]. In an asynchronous system,

the outputs of logic expressions are coordinated locally without attempting to have a single

global signal available to every logic expression in the system.

Null Convention Logic (NCL), introduced in 1996 by Fant and Brandt [39], is one such asyn-

chronous logic system. NCL uses a library of circuit templates called threshold gates that (to

quote [39]) “. . . implement logical expressions on sufficiently expressive variables”. Unlike Boolean

variables that have a ‘True’ or ‘False’ value, NCL variables have either a Data or a Null (no
3Wave Semiconductor, personal communication, 2016
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Data) value4. The threshold gates in the NCL library are essentially asymmetric variants of the

fundamental Muller C-elements [40]. The basic idea behind these threshold gates is that when

a certain number of inputs are in the Data state, the output transitions to the Data state and

when all the inputs at the input of the gate transition to the Null state, the output transitions

to the Null state. NCL is considered to be a Quasi Delay Insensitive (QDI) technique because,

under certain circuit delay assumptions, the correct operation of the system is insensitive to the

delay of the individual circuit elements and the system functions correctly by design, without

requiring explicit timing analysis and constraints.

A typical NCL system comprises Null–Convention combinatorial blocks separated by registra-

tion stages all built using the threshold gates, thus creating a network of NCL pipelines. The

registration stages in NCL allow logic functions to be split into smaller blocks to increase the

throughput of the system. Just as for a single NCL gate, when a specific number of inputs (as

specified by the implemented logic function) of the combinatorial block are in the Data state,

the outputs will transition to the Data state. The presence of a Data value at the output is an

indication to the next block in the pipeline that the inputs have been completely processed

and that Data is now available downstream. This ‘output complete’ detection also acts as an

acknowledge (ack) signal for the circuits that source the input variables to this combinatorial

block. On receiving the Data-ack signal, the source circuits may clear the Data value on the in-

puts and transition to the Null state. Once all the inputs to the combinatorial block are at Null,

the output transitions to a Null state and a Null-ack is generated and sent back to the source

circuits. The source circuits will then send the next Data value if available, and the cycle will

continue. This sequence of Null and Data values on the NCL variables appear to flow as waves

through the pipeline, and that is why they are known as Null and Data wavefronts. The wave-

fronts flow downstream from input to output, and their flow is controlled by the acknowledge

signals that flow upstream.

1.4 Motivation and scope

This work is motivated by the observation that traditional synchronous digital systems will

have increasing difficulty keeping up with the high transfer speeds demanded of routers while

still meeting strict energy and latency constraints. It is already clear that the IP address lookup
4In the remainder of this thesis, when referring to the state/value of an NCL variable, the first letter will be in

the capital, as ‘Null’ and ‘Data’.
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function is a critical component that determines the performance of Internet routers and there-

fore the ultimate performance of the Internet itself. This work addresses the bottleneck imposed

by the lookup process at both an algorithmic and a circuit level.

Firstly, the work has investigated techniques that could potentially offer a significant reduc-

tion in the number of memory operations per IP address operation without compromising

the throughput performance. By combining some existing approaches in novel ways, it was

expected that energy efficiency could be improved without affecting lookup performance. Fur-

ther, given the inherent data flow behaviour of routers, asynchronous design techniques such

as NCL seem like an excellent match to the problem of address lookup, offering a means of

lowering energy while maintaining high throughput and low latency. However, as Jens Sparsφ

says in [41] “...it takes more than knowledge to design efficient asynchronous circuits. "Just going asyn-

chronous" will typically result in larger, slower and more power consuming circuits. The key is to use

asynchronous techniques to exploit characteristics in the algorithm and architecture of the application in

question”. Thus, the work in this thesis explores how the existing approaches interact and also

identifies tradeoffs between the characteristics of the underlying algorithm and the capabilities

of the NCL design methodology.

It needs to be noted that the results presented here are based on IPv4 routing tables alone

(rather than IPv6). While it is true that for studies where the objective is to evaluate lookup

algorithms, an approach that works on IPv4 may not work on IPv6 and vice versa, when it

comes to comparing hardware design methodologies, the two will not require significantly

different implementations [27]. Given a specific lookup algorithm, IPv6 will only need more of

every resource rather than mandating an entirely different approach.

1.5 Research questions and methodology

Due to the sheer number of devices that are connected today, the sizes of lookup tables within

the routers have grown huge, making the lookup task even more challenging. As a result, it is

not just the speed at which lookups must be performed, but also the number of entries in the

forwarding table that must be searched in the lookup process that is a challenge. The research

was thus set up to address the following questions:



1.5. Research questions and methodology 9

1. How might existing IP address lookup techniques be adapted to improve their energy

consumption and/or latency?

The majority of existing address lookup techniques rely on the synchronous design method-

ology and an algorithmic SRAM-based trie structure. In all these approaches, memory

accesses contribute most of the latency and energy within the lookup process. There are

two existing approaches that attempt to reduce the number of memory accesses needed

during address lookup. One of them is to combine a Bloom filter with a binary trie struc-

ture to filter out unnecessary memory operations and thus improve either latency or en-

ergy consumption or both. The second approach is to use a Compact-trie that has an

improved mechanism to use memory efficiently thereby reducing the number of accesses

required per lookup. This thesis proposes the idea of combining these two techniques

and evaluates whether a Bloom filter, when used with a Compact-trie, achieves a better

performance than either of them individually.

2. Will applying an NCL-based asynchronous design paradigm further improve energy

and performance compared to an equivalent synchronous implementation and will

these systems have to be structured differently from the original implementations?

Asynchronous techniques have been around for many years and have been shown to be

superior to their equivalent synchronous designs in terms of latency vs throughput trade-

offs and peak energy consumption (e.g., [42]). To further improve the energy performance

of the address lookup process, this thesis proposes and analyses the effect of applying the

NCL design style to the Bloom filter–enhanced Compact-trie design. However, given that

a naive application of NCL was seen as unlikely to offer significant improvements, the

modules used in the asynchronous design are individually enhanced, and novel architec-

tures for NCL memory and acknowledgement generation circuits are introduced. These

individual modules are assembled in various combinations (with and without either the

Bloom filter or the NCL memory) to take advantage of the unique characteristics of the

Compact-trie structure. The performance of these enhanced designs is then compared

against the unmodified NCL designs.
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1.6 Outcomes and Contributions

The work reported in this dissertation has resulted in the following specific outcomes.

1. SRAM-based Compact-trie lookup algorithm with improved prefix handling capability

and energy consumption.

(a) The proposed enhanced algorithm handles a range of prefixes not handled correctly

by the original algorithm and also presents a correct estimate of the resource utilisa-

tion.

(b) A technique to employ Bloom filters with Compact-trie for Longest Prefix Matching

to improve lookup performance. Experiments on a pipelined implementation of the

algorithm show that for cases where the prefix information is small enough to be

stored on-chip, a pipelined Bloom filter can lead to significant power savings.

(c) A “targeted” Bloom filtering approach that has a significantly smaller area overhead

with only a small reduction in the energy savings as compared to filtering at all

levels in the Compact-trie.

2. Analysis of the latency versus throughput performance of a pipelined NCL implementa-

tion of Murmur, Jenkins and CRC32 hashing algorithms for Bloom filters.

(a) NCL implementations of Jenkins, Murmur and CRC32 hash algorithms that have the

same throughput as equivalent Boolean logic implementations, but a much lower

latency.

(b) Two modified NCL threshold gate architectures for use in completion detection cir-

cuits. These gates have a complementary behaviour to conventional gates, but they

can be used to build completion detection circuits that generate outputs in phase

with the input signals while consuming lower energy and occupying a smaller area.

3. Null Convention Logic SRAM design with Null-storage column and early completion

detection.

(a) An NCL SRAM architecture with separate read and write completion detection cir-

cuits that generate the correct handshaking signals to enable its use in NCL pipelines.
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(b) The idea of a single-bit “Null” flag column to indicate whether the stored word is

Data or Null. This feature helps reduce both the cycle time and energy consumption

whenever address locations that store Null are accessed.

4. NCL-based design of a compact-trie with Bloom filters and Null-storage column RAMs

for address lookup.

(a) A complete compact-trie design that assembled the NCL-based hashing algorithm,

the modified completion detection circuits, Bloom filters and the SRAM with Null-

storage column.

(b) Results, showing that unlike the Boolean implementation the best cycle time (through-

put), area and energy consumption is achieved with an NCL implementation that

does not include the Bloom filters but uses only the Null-storage RAMs.

1.6.1 Publications

A few of the outcomes mentioned before have been reported in the following publications.

1. P. Dabholkar, R. Sovani, and P. Beckett, “A low latency asynchronous Jenkins hash engine

for IP lookup,” Proc. - IEEE Int. Symp. Circuits Syst., vol. 2016, July, pp. 2663–2666, 2016.

2. P. Dabholkar and P. Beckett, “A High Throughput, Low Latency Null Convention Logic

16x16-bit Multiplier,” in 10th International Conference on Signal Processing and Commu-

nication Systems (ICSPCS), 2016, pp. 378–385.

3. P. Dabholkar and P. Beckett, “Optimised Completion Detection Circuits for Null Conven-

tion Logic Pipelines”, in 2017 IEEE Asia Pacific Conference on Postgraduate Research in

Microelectronics and Electronics, 2017, pp 1-4.

1.7 Organisation

This Chapter presented the motivation and outcomes of the research and introduced some key

ideas related to IP routers, the address lookup process and energy-efficient logic design. The re-

mainder of this dissertation proceeds as follows. The following chapter (Chapter 2) presents an

analysis of the existing literature on algorithms for IP address lookup in present-day routers.

The pros and cons of the various processes are discussed, and the algorithm that this work
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uses is identified. The theory required to understand the operation of these algorithms is also

presented. This is followed by a discussion of the different types of asynchronous design tech-

niques and current applications of the NCL design approach.

Chapter 3 presents the discussion on the Compact-trie based address lookup algorithm being

evaluated. Enhancements are proposed to the actual trie generation process, and this is fol-

lowed by an exploration of various Bloom filtering schemes to improve the energy consump-

tion of the lookup process. In Chapter 4, an analysis of the latency, throughput and energy

consumption of NCL-based implementations of three hashing algorithms that can be used for

computing Bloom filter indices is presented. Evaluation of the performance of these algorithms

leads to the development of asynchronous circuit elements that use modified NCL gates to im-

prove the area and energy consumption. Chapter 5 proposes and analyses the NCL SRAM

architecture created to improve latency and energy consumption of the prefix lookup process.

Chapter 6 draws together the work of the previous Chapters (3, 4 and 5) and describes the

design of an NCL-based Compact-trie design for address lookup. The cycle time (through-

put), area and energy consumption under different conditions - with and without the specially

designed NCL RAM, and with and without the Bloom filter to control memory access is also

presented.

Finally, Chapter 7 concludes the thesis and offers some directions for future work.

Well begun is half done

Aristotle
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Chapter 2

Background and literature review

Packet processing is the single most critical function that determines the throughput and en-

ergy performance of core routers in the Internet. Most modern routers already include multiple

100 GigE (Gigabit Ethernet) ports [43]. While most of the traditional demand for bandwidth

has been from the computing and entertainment industries, with the proliferation of the In-

ternet of things and cryptocurrencies, there are now even newer data sources. This growth in

demand has come as a challenge to the existing clocked Boolean systems that are finding it

increasingly difficult to scale. This chapter presents an overview of the existing approaches to

address lookup in Internet routers and the theory behind Bloom filters which are used to reg-

ulate memory accesses in address lookup algorithms. This is followed by a discussion on the

working of various types of asynchronous systems. Null Convention Logic which is one par-

ticular type of asynchronous design methodology is studied in detail, and existing literature in

NCL system design is described.
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Table 2.1: Example prefix table

Prefix Next Hop Information (NHI)

1010* Port 1

10101* Port 2

101111* Port 3

01011* Port 2

01* Port 4

1010000* Port 1

1* Port 3

1111* Port 1

2.1 Address lookup in Internet routers

A central component of the forwarding process in Internet routers is the destination address

lookup. In this process, the destination address of an IP packet is extracted and matched against

entries in a prefix table also known as a Forwarding Information Base (FIB). Each FIB entry

consists of a network identifier that corresponds to a contiguous block of IP addresses and next

hop information (NHI) which identifies the router port that the packet should be forwarded

to so that it reaches its final destination. The network identifier is also known as a prefix, and

network identifiers in a FIB may be of different lengths, and they are allowed to overlap. This

means that a destination in the network is reachable through different paths or different egress

ports [44]. The router then has the job of identifying the route corresponding to the prefix entry

that is most specific. This process is known as Longest Prefix Match (LPM) address lookup.

Table 2.1 shows an example prefix table for a small 4-port router using dummy 10-bit IP ad-

dresses. The ‘*’ in the prefix entry implies that the remaining bits of the prefix are a “don’t

care”. The prefix table has 8 entries, and it can be seen that the entries at location 1 and 2 in the

table have prefixes that include a range of overlapping IP addresses. Prefix 1 covers addresses

1010-000000 to 1010-111111, while Prefix 2 covers the more specific addresses 10101-00000 to

10101-11111. For a destination IP address that lies between 10101-00000 to 10101-11111, Prefix

2 would be the longest matched prefix, even though both Prefix 1 and Prefix 2 are matching

and so the packet would be forwarded to Port 2 and not Port 1. A similar situation will also

occur for address between 1010000-000 to 1010000-111 when both Prefix 1 and Prefix 6 match

the addresses in this range, but Prefix 6 is the LPM.
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IP address lookup algorithms implemented on Hardware may be classified into two broad

categories [6]:

1. direct and TCAM based;

2. algorithmic and SRAM based.

2.1.1 TCAM-based IP address lookup

Ternary Content Addressable Memory (TCAM) is a structure that allows its memory to be ac-

cessed by its contents rather than by the address. A single TCAM cell can store a binary “0’,

“1” or a “don’t care” value. To be used for a lookup operation, the TCAM cells are organised

into a multi-bit wide multi-word structure similar to SRAMs. When a binary value is presented

at the input of the TCAM, it is simultaneously compared against all entries in the TCAM, and

it returns with a list of all entries where the data is found. During the comparison operation,

a don’t care value is considered as matched irrespective of the input bit. In some implemen-

tations, TCAMs may also implement some form of arbitration scheme to chose the ‘best’ ad-

dress1. This will require that the TCAM entries be sorted in some order when programmed

[45]. Figure 2.1 shows the TCAM organisation for the prefixes of Table 2.1. For an input IP ad-

dress ‘1010111111’ to be looked up, the TCAM matches the input with the prefix entries present

in its memory and outputs an address, Addr2 in the present case because the longest match is

with the second location in the TCAM. This address is used to obtain the Next Hop Information

(in this case Port 2) from the NHI memory structure which is typically a smaller SRAM.

This capability of a TCAM to match multiple entries makes them attractive for storing pre-

fixes for the LPM address lookup process. TCAMs are designed to store an entire routing table

or a smaller subset of the most commonly accessed entries and allow the simultaneous com-

parison against the destination address of the packet being routed. Using TCAMs to perform

address lookup has been a very popular approach [10]–[13] because of their ability to perform

lookups in a single cycle. This latency gain, however, comes at the cost of a massively parallel

architecture that exhibits significant switching activity in all its cells for each address lookup.

This leads to higher power consumption than conventional SRAMs [29]. The parallel archi-

tecture and the “don’t care” also mean that TCAM cells require more chip area, making them

1For address lookup, best means the entry that matches the most number of bits starting at the MSB and ignor-
ing the don’t care bits
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Figure 2.1: CAM-based implementation of the example prefix table of Table 2.1

costlier than SRAMs. The extra logic and capacitive loading also increase their access times

[33]. Improvements to the performance of IP address lookup using TCAMs have either tried

rearranging prefixes in the TCAM [46] adding extra logic to reduce the number of access to the

TCAM [47] or modifying the TCAM circuit itself [48], [49]. Interestingly, there have also been

attempts to achieve a TCAM-like behaviour using an SRAM-based architecture [50], [51]

2.1.2 Algorithmic SRAM-based IP address lookup

An alternative to the brute force method of TCAMs is the algorithmic approach that stores

prefix information in conventional SRAMs and uses a multi-step algorithm to identify the best

matching prefix and obtain correct next hop information. These algorithmic approaches may be

hash-based [20], involve a binary value search in trees [16], [21], use tree bitmaps [17], [25], or a

bit traversal in binary or multi-bit tries [18], [19], [22], [26] or a combination of these techniques

[23], [24]. Of these various approaches, the bit traversal in trie-based structures is popular. To

illustrate the working of a lookup algorithm employing bit traversal in a binary trie, consider

the binary trie representation of the prefix table in Table 2.1 presented in Figure 2.2. A search

for the IP address ‘101011111’ will start at the head node and examine each bit of the IP address

moving down the trie. The path through the trie is determined by the value of the bit being
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Figure 2.2: Binary trie implementation of the example prefix table of Table 2.1

examined. At the head node, the MSB is examined, and because it is ‘1’, the right branch

out of the head node is followed to its child. At the next level, the next bit in the address is

‘0’ and therefore the left branch is taken and so on until the node with no further children is

encountered (as shown by the green dashed-line). The last node with prefix information in

the path is the best matching prefix (in this case Port 2). A summary of the differences in the

TCAM-based and algorithmic SRAM-based approach is presented in Figure 2.3.

It may be noted that while TCAMs are definitely power hungry, the energy consumption in

the SRAMs can also be significant due to the sheer amount of storage and computation that

may be required. One way of reducing the energy consumption of the algorithmic hardware

based LPM scheme is to employ additional circuits on-chip to minimise the number of memory

accesses [52]. Dharmapurikar et al. [27] introduced the idea of storing prefixes in SRAM hash

tables and using Bloom filters to test membership of a prefix before accessing the hash table in

memory. The idea of combining a binary trie structure with Bloom filters to achieve a reduc-

tion in the number of memory accesses required has also been explored in [28]–[31], [53]. This

scheme was extended by [23], which proposed a hash-tree bitmap scheme using a combination
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Figure 2.3: Difference in the TCAM-based and algorithmic SRAM-based ap-
proaches to destination address lookup

of hash search and standard trie based processing using a Tree Bitmap. This scheme, imple-

mented on an FPGA, demonstrated reduced resource utilisation compared to either TCAM or

Trie-based solutions. Compact-trie is one of the newer trie structures that has been proposed

by Erdem et al. [32]–[34] and has been shown to have a better memory efficiency (bits/prefix)

and a better throughput than some of the other popular algorithms including Tree Bitmap [17]

and Flashtrie [24].

2.2 Bloom filter theory

Bloom filters are named after Burton Bloom who introduced the concept of a probabilistic data

structure to verify if an element being tested is a member of a specific pre-defined set of el-

ements. A useful property of Bloom filters is that if an element is a member of the set, then

the result is always positive, while if the element is not a member, then there is a very low

probability that a false-positive result may be returned, making them very suitable for use in IP

routers to filter out unwanted memory accesses during the address lookup. Bloom filters also

find applications in other areas of networking such as packet classification, filtering, security

and routing [54].

2.2.1 Bloom filter operation

Before a Bloom filter can be used to test membership of a set, it needs to be programmed with

all the members of the set. Consider a set A consisting of n members as follows:
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A = {a1, a2, a3, . . . an}

Each member of A (ai) is x-bits long and is the input ‘key’ for a hash function h that processes

the bits in the ‘key’ to generate a hash value h(ai) between 0 andm−1. The hash value is y-bits,

where m = 2y and x > y. The elements in A are sparsely distributed within the much larger

address space (2x addresses) represented by x bits. A Bloom filter employs an m-bit memory

vector and k hash functions h1( ), h2( ), ... hk( ) to produce k hash values. Each of these k

values addresses one bit in the m-bit vector, and the process of programming the Bloom filter

involves setting each of these addressed bits to 1 for all elements in the set A. At the end of the

programming step then, bits at the following addresses would be set:

h1(a1), h2(a1), . . . hk(a1), h1(a2), h2(a2), . . . hk(a2), . . . h1(an), h2(an), . . . hk(an).

Because hashing is essentially a mapping from the larger 2x address space to the smaller space

with 2y values, multiple elements in A may have the same hash value generated by different

hash functions (e.g., h1(a2) may be equal to h6(a18)). Thus a bit in the m-bit vector may be

set by more than one element of the set A, and therefore it is not possible to delete an element

from a Bloom filter once it is programmed. Figure 2.4 shows a 16-bit Bloom filter. A set of

elements, x1, x2, x3, is programmed into the Bloom filter and the indices for the three prefixes

are denoted by the purple, red and bloom arrows respectively. It can be seen that for x2 and x3,

one of their Bloom filter indices is common (15th bit) 2. The figure also shows a situation when

the Bloom filter is queried for the presence of two keys q1 and q2. The Bloom filter indices for

q1 map to locations in the Bloom filter that have their bits set, thus resulting in a match, while

the querying process for q2 results in a negative result.

Querying a Bloom filter for membership of an element atest starts off in a manner similar to the

programming process. Given atest, the same k hash functions are employed to generate k hash

values. The bits at the k locations in the m-bit Bloom filter are checked. If any of the bits are 0,

then atest is definitely not a member of the set A. The certainty of a non-membership when a

0 is found, is because if the element atest were a member, then the k bits would definitely have

2This Bloom filter diagram has been inspired by a similar figure at https://en.wikipedia.org/wiki/
Bloom_filter

https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
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Programming

0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0

{x1, x2, x3}

Query
q1 (match)

q2 (no-match)

Figure 2.4: Showing bits sets in a 16-bit Bloom filter programmed with three ele-
ments x, y and z and the results of querying the Bloom filter for two test elements

q1 and q2

been set during programming. This is a useful property to filter memory accesses when the

given IP address does not match any of the prefixes in the prefix table. However, when all k

bits are 1, i.e., the test comes out positive, the element atest may be a member. This ambiguity

in membership for a positive test is due to the possibility that some of the k-bits may have

been set by any of the other members of A. This probability of a test element being declared

a member of the set A by the Bloom filter, when in fact it is not, is termed as the false-positive

probability and is given by:

pf = (1− e−kn/m)k (2.1)

The false-positive probability of a Bloom filter is dependent on its size, the number of keys

programmed into it and the number of hash functions. The change in the false-positive value

due to a change of one or more of these characteristics of the Bloom filter is illustrated in Figure

2.5. It can be observed in Figure 2.5a that when the number of elements in a Bloom filter (n) is

fixed, the lowest false-positive probability value for different sizes of Bloom filters is different

and is achieved for different values of k (i.e., the number of hash functions). However, for a

fixed value of k, (possibly dictated by the available computing resources in the system) the

false-positive probability may be improved by increasing the number of bits in the Bloom filter.

Figure 2.5b meanwhile indicates that in systems where the filter memory (m) is fixed, for low

n/m values, a larger k results in a lower number of false-positives. However, as the number of

elements programmed into the Bloom filter starts to increase it is better to have a smaller value

of k to improve the false-positive probability.
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2.2.2 Hash function requirements

Bloom filters used in networking applications typically emphasize worst case over average

performance [55], but at the same time, they are also sensitive to latency. In such a situation it

is essential to carefully choose a hash function that balances the worse case performance with

the complexity of its hardware implementation and latency. As Knuth wrote in [56], “...we need

a great deal of faith in probability theory when we use hashing methods, since they are efficient only on

the average, while their worst case is terrible.”. Similarly, Broder and Mitzenmacher [54] caution

that “The false positive rate (of Bloom filters) assumes that the hash functions are perfectly random.

However, the question of what hash function to use in practice remains an interesting open question.”

Hashing methods available in literature can be classified as cryptographic or non-cryptographic.

The primary purpose of cryptographic hashes is to obfuscate the data in such a manner that

a malicious third party cannot determine the original message by just examining or ‘reverse-

engineering’ the hashed data. Non-cryptographic hashes, on the other hand, exist to provide

collision detection of non-malicious inputs and to detect accidental changes in the data. While

it may be tempting to use a cryptographic hash function for Bloom filtering because of their

superior obfuscation, it has been shown by [55], [57] that simple non-cryptographic hashing

functions can also achieve a low false-positive probability.

Hash functions used in Bloom filters, in fact, have to satisfy the following properties to min-

imise the probability of false-positives:

1. Uniform distribution: the hash value should be uniformly distributed, i.e., each hash

value should be equally likely given a random distribution of the input data.

2. Avalanche property: every input bit should affect every output bit about 50% of the time.

Conversely, every bit of the output should depend on every bit of the input.

3. Multiple hash values: a single implementation of the algorithm should be able to generate

multiple hash values for the same input data through a change in the seed.

Additionally, in a pipelined hardware implementation of the address lookup process in IP

routers, the hash function may need to process a key that is just a bit longer or different from

the previous key processed. A hash function that can store and reuse the value generated

in a previous computation to quickly generate a new hash value reflecting the effect of the

changed/added bit will obviously perform better than one that does not have this capability.
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2.2.3 Hash function selection

Of all the non-cryptographic hashes available in the literature [58]–[62], the vast majority of

networking applications use a limited set encompassing either the Murmur, Jenkins or CRC32

hash [27], [29], [30], [63], [64]. As a result, only these three algorithms have been considered for

evaluation. The basic characteristics of these three algorithms can be described as follows:

1. Murmur hash

The Murmur hash is a non-cryptographic hash function, proposed by Austin Appleby in

2008 [60], that uses a combination of recursive multiply, rotate and exclusive-or (XOR)

operations to arrive at the final hash value. The Murmur hash has excellent avalanche

behaviour.

2. Jenkins Hash (Lookup3)

Jenkins Hash is also a non-cryptographic hash that was initially proposed in 1997 by Bob

Jenkins [61]. A newer version of this hash was released in 2006. Just as in the Murmur

hash, the Jenkins hash also uses a combination of addition, rotate and XOR operations

but no multiplication and is much more regular in its implementation.

3. CRC32 Hash

The CRC32 is the most trivial hashing algorithms of the three. It uses only bitwise XOR

and rotate operations, and a large number of hash indices can be obtained regardless of

input length [64]. It is one of the hashes from a family of Cyclic Redundancy Check func-

tions that are used in communication systems for detecting accidental changes to data

[65] and is used in many popular standardised digital networks such as the IEEE802.3

and the ITU-T G.706 standards [62], [66]. The hash generated using CRC32 does not have

a uniform distribution and also has a poor avalanche behaviour [67], but is very simple

to implement.

The false positive probability computation in a Bloom filter assumes that the hash functions are

perfectly random, but finding a hash function that satisfies this criterion is surprisingly difficult

[54]. A review of the literature comparing the three hashes considered here suggest that Jenkins

and Murmur hash have a very low bias ( 12% and 2.1%) when compared to CRC32 (50%) [67].

This implies that in CRC32 with a change of input, some bits in the output have a 100% chance

while others have a 0% chance of flipping. In Jenkins and Murmur hashes, on the other hand,
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the probability is around 50% for all the bits. This evaluation was, however, performed for

streaming data where the number of bytes that need to be hashed is quite large, and the over-

head in terms of the number of cycles required to compute the hash value is negligible. For

application where one is trying to compute the hash of a small 32-bit or 128-bit IP address, the

overhead of a complex hashing algorithm can be significant. It should also be noted that when

hashing operations are being performed in hardware, a single cycle operation may not always

be possible given the pipelined nature of the hardware and also because synchronisation of

various sections of the circuit can become difficult. Although a study [55] demonstrated that

the Jenkins hash had a much more uniform distribution of values across the complete range of

outputs, it also highlighted that the Jenkins and Murmur hash are more suited to a software

implementation and do not meet the area and latency requirements of a hardware implemen-

tation where speed is of essence and limited chip area is available for the filtering functions. A

detailed discussion on the hardware requirements of a hash and the function eventually used

in the present work is available in Section 4.1

While there has been considerable research effort in implementing cryptographic hashes in

hardware to improve execution times, non-cryptographic hashes have not received the same

kind of attention. In [55], [67]–[69] hardware hash computations have been shown to be a viable

alternative to software hashes. However, the ability of hardware to efficiently implement the

computationally intensive hashing algorithm is a key variable in determining the performance

of the particular scheme. Interestingly, while Bloom filters have generally been found to be

useful, recent research [70] in Bloom filter applications to cache sharing suggest that in some

cases, not using Bloom filters may actually be better.

2.3 Asynchronous logic systems

Asynchronous systems have been around for a number of years as an alternative to the syn-

chronous design methodology to overcome the primary problem with synchronous designs,

which is the global clock tree that is always ‘on’ and toggling. Although most large digital sys-

tems have local clock domains and regional clock trees, the clocks in these local clock domains

are still synchronising a few hundred gates, and hence the switching activity is not trivial.

A further challenge with synchronous systems is the rate at which clock speeds can actually
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Figure 2.6: Simplified block diagram of an asynchronous system with timing di-
agrams showing the signal flow in 2-phase and 4-phase handshaking protocols

increase year-on-year. According to the 2013 International Technology Roadmap for Semicon-

ductors (ITRS) report, the on-chip local clock is expected to increase to just about 6.69 GHz by

2018 and 7.96 GHz by 2020, implying its growth is constrained to no more than 8% per year

[71]. Inevitably, increasing clock speeds would lead to an increase in the power consumption in

these circuits. [72]. It is expected that asynchronous logic design methods could be one of the

alternatives to designing systems that are fast and energy efficient at the same time. In fact, the

2015 ITRS report on system integration expects asynchronous logic design techniques to relax

the timing requirements on circuits, thereby allowing voltages to be scaled down to reduce the

energy requirements [73]

2.3.1 Classification of asynchronous techniques

A digital circuit is asynchronous when there exists no clock signal synchronising the sequence

of events [74]. Instead, all asynchronous systems use some form of handshaking mechanism

to coordinate the flow of data between elements of the circuit. The most basic and intuitive

handshaking signals are request (req) and acknowledge (ack). All asynchronous protocols involve

an active element sending a req to synchronise with a passive element, which issues an ack when

it is ready to communicate [74]. Depending on whether this communication is sensitive to the
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levels or the edges of the handshaking signals, asynchronous protocols are classified as either

4-phase or 2-phase signalling (Figure 2.6). In 2-phase handshaking whenever a new data value

is available for transfer the req signal transitions. Once the data is received by the passive

element, the ack signal transitions resulting in the initiation of a new data transfer. In 4-phase

handshaking, only a high level on the req signal results in a data transfer. Once the data transfer

is complete, the ack signal is asserted, which causes the req and then the ack to be subsequently

deasserted. It is only when the req and ack have transitioned through 4-phases that a new

data value can be transferred. In both 2-phase and 4-phase handshaking, the data and control

signals are arranged into channels, and ‘data’ flows along these communication channels as a

series of entities variously referred to as tokens [37], [41] or wavefronts [38], [75].

Asynchronous techniques may also be classified on the basis of how the data and handshaking

signals are combined, into bundled-data systems or dual-rail systems. These two techniques

are a trade-off between robustness against timing variations, power and performance. In a

bundled-data system, the data is carried in Boolean encoded variables, and the handshaking

signals that form the control path are also encoded in binary and bundled together with the

data. Appropriate delays are introduced in the control path to delay them as much as the data

path signals that implement the logic functions. An advantage of bundled-data systems is that

logic is designed as conventional Boolean systems, and this results in circuits that occupy a

small area. Bundled-data designs, however, require greater design and timing validation ef-

forts to ensure that the timing constraints are met [75]. These systems assume worst case delay

in the data path from one register stage to the other. This is similar to a synchronous system

where the worst case delay in the clock tree determines the maximum operating frequency. A

bundled-data system simply localises the problem by forcing the designer to calculate appro-

priate system delay values. If the systems being designed are complex, then designers would

be required to compute the critical delays of all the paths in the circuit for the bundled-data

technique, something that may be time-consuming and potentially error-prone. Dual-rail sys-

tems, on the other hand, encode the request signal into the data signal itself using two wires

per bit of information [41]. For each Boolean bit in this systems, there are two wires. One wire

is used to signal a logic ‘1’ or true value and the other wire is used to signal a logic ‘0’ or false.

N dual-rail pairs may be used to carry an N-bit Boolean value.

Data signals in dual rail circuits also contain the encoded control signals, and therefore per-

forming computation with these signals requires one to take extreme care in translating the
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functional specifications into circuits. This requirement has led to the creation of different hard-

ware templates as follows:

1. Delay Insensitive Minterm Analysis (DIMS) [41], [76].

2. Weak Conditioned Half Buffer (WCHB) [77].

3. Pre-charged Half Buffer (PCHB) [77].

4. Null Convention Logic (NCL) [39].

At the implementation level, correct operation of asynchronous systems is dependent on these

hardware templates working correctly under appropriate assumptions of circuit delays lead-

ing asynchronous circuits to also be classified based on their delay assumptions as self-timed,

speed-independent (SI) or delay-insensitive (DI) [41]. An exhaustive coverage of the theory

behind these classes of circuits is presented in [76], [78]. Unfortunately, true delay-insensitive

circuits are limited in their functionality because of their stringent requirements on wire delays

as well. Instead, if it is assumed that that wire forks in the system are isochronic, i.e., the delay

of the two prongs of the fork are equal then the result is what is known as quasi-delay insen-

sitive (QDI) circuits. Typically, circuits designed using the 4-phase dual-rail approach are all

quasi-delay insensitive. QDI systems are an important class of asynchronous systems because

they require little timing analysis and can be made to be correct by construction [72].

Achieving delay insensitivity in 4-phase handshaking dual-rail logic systems is typically not

possible using ordinary logic gates and flip-flops available in standard cell libraries used to

design Boolean systems [79]. Instead, these systems use a fundamental state holding element

known as a Muller C-element first introduced by [40]. The C-element and dual-rail encoding

technique, both individually and together, have been used in various popular asynchronous

circuit design techniques. However, as identified by Fant in [38], they do not represent a coher-

ent, easily understandable and adaptable conceptual foundation as they still rely on Boolean

logic. It is possible to devise a coherent logic system that completely and unambiguously ex-

presses the behaviour of the system without depending on any supplemental temporal infor-

mation.
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2.3.2 Null Convention Logic (NCL)

Null Convention Logic (NCL) presents the essential framework for easy adoption of the 4-

phase handshaking, dual-rail, quasi-delay insensitive design technique by completely express-

ing the behaviour of a system in terms of logical expressions and proposes a library of m-of-n

threshold gates [39]. To be precise, NCL operators, also known as NCL gates, may be defined

as a threshold logic function [80] with positive weights assigned to inputs, coupled with a hys-

teresis mechanism that guarantees QDI behaviour [74]. Defined mathematically, a threshold

logic function t is an n-variable unate function with a threshold T, and weight wi assigned to

each variable xi such that:

t =


1 :

n∑
i=1

wi.xi ≥ T

0 : otherwise

Additionally, NCL defines the two states of a rail as ‘Null’ state and ‘Data’ state. ‘Null’ rep-

resents the no Data state, i.e. it acts as a space between two consecutive Data values on the

rail. Two such rails can be viewed together as a dual-rail NCL variable that forms a codeword,

representing the ‘zero’ and ‘one’ value of a conventional single-bit Boolean variable. The two

rails for a Boolean variable A may, therefore, be represented as A.0 and A.1.

{A.1, A.0} = {1, 0} and {A.1, A.0} = {0, 1} represent the ‘logic 1’ and ‘logic 0’ values for

Boolean variable A.

{A.1, A.0} = {0, 0} indicates the absence of a value or a ‘space’ between two consecutive Data

values for A.

{A.1, A.0} = {1, 1} is an illegal value, and the designer has to ensure that this condition never

occurs within an NCL circuit.

If the system contains an m-bit Boolean signal (A0,A1,...Am), then in dual-rail NCL it is coded

as ‘m’ dual-rail signals (A0.0, A0.1, A1.0, A1.1, Am.0, Am.1). However, if the objective of the

system is communication rather than computation, and the Boolean logical variableA is m-ary,

i.e., the variable can have only one of ‘m’ possible value, then it is possible to have an m-rail

NCL variable, (A.0, A.1, ... A.m). For such a variable, only one of the ‘m’ rails can be in the

Data state at any time.
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Data wavefront flow Null wavefront flow

Figure 2.7: Flow of Null and Data wavefronts through an NCL 2-of-3 threshold
gate (TH23)

As mentioned before, NCL also defines a library of operators. Just as with Boolean operators

such as ‘And’ ‘Or’, etc., the purpose of NCL operators is to resolve data sets. Since a single

NCL rail can only have a Null or Data value, the only property that a set of NCL rails can have

is "How many rails have a Data value?" Null Convention Logic is, therefore, a threshold logic,

and its operators are M of N threshold operators with state-holding behaviour [39]. Consider

the ‘2 of 3’ NCL operator shown in Figure 2.7. Bold lines indicate that the rail is carrying a Data

value and thin lines represent a Null value.

If one assumes that the initial condition of the inputs and output of the gate is all Null, the

output will not transition to the Data value, unless 2 out of 3 inputs transition to the Data value.

Once the output transitions to Data, it shall not transition back to Null until all the inputs

have transitioned to Null. The operator thus has a threshold behaviour, when transitioning

from Null to Data and a ‘hysteresis’ or state-holding capability once the output is asserted [81].

This transfer of the Data values from the input to the output of a gate or NCL combinatorial

function is known as Data wavefront flow, while the flow of the Null values is known as the

Null wavefront flow. A transistor schematic of the TH23 gate is shown in Figure 2.8, where A,

B and C are the inputs and Y is the output. The schematic illustrates the basic operation of the

gate (e.g., goto data, goto Null) and how the feedback from the Y output leads to hysteresis

behaviour.

Figure 2.9 shows a few of the operators from the NCL gate library with the equations under

the gates representing the Null to Data transition function. Since NCL utilises 27 fundamental

state-holding gates for circuit design, rather than only C-elements, it has a greater potential for

optimisation than other delay-insensitive paradigms [81]. The NCL library is a covering set

of four-input threshold functions that also map to all four-variable unate Boolean expressions

[38]. Note here that a four-variable NCL function is not the same as a four-variable function in

Boolean logic. A function of four Boolean variables would map into a function of at the most
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eight NCL variables, with one set of four variables being the Boolean complements of the other

set.

A simple pipeline of NCL variables is shown in Figure 2.10. In this figure, the bold line repre-

sents the path along which data flows from left to right through the NCL combinations stages

and NCL registers. The grey lines represent the path for the flow of the acknowledge signals

from right to left. In NCL terms, the part of the circuit between and including two NCL regis-

ters is called a cycle, and it is highlighted in the figure. Each cycle has a wavefront path that

determines the forward latency and an acknowledge path that determines the reverse latency.

A two-dimensional representation of wavefront propagation through a 4-register pipeline is

illustrated in Figure 2.11. In this figure, the bold lines again represent the flow of data, while

the thin grey lines represent the flow of acknowledge signals. The amount by which the data or

acknowledge signals move down the ‘time’ axis when flowing through the individual compo-

nents (R1,P1,R2,P2...) of the pipeline, indicate the delay they experience in those components.

Figure 2.11a shows the situation with a uniform delay for all wavefronts through the various

stages. The wavefronts are pulled into the input of the pipeline and leave the output at a

constant rate. The time from when a wavefront enters the pipeline to when it exits at the

output is the latency of the system. Cycle time meanwhile is defined as the time between two

successive Data or Null wavefronts. The cycle time determines the throughput of an NCL

system and is analogous to the clock period in Boolean systems.

It is well known that delay performance of Boolean gates is dependent in part on the data being

switched, and in the case of multi-input gates, it may also depend on the order in which the
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Figure 2.11: Wavefront propagation in 4-cycle NCL pipeline
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inputs switch. Boolean gates are typically characterised for various input patterns and different

load conditions, and the characteristic data are used to perform static timing analysis of bigger

circuits that use these gates. The maximum frequency of operation of a Boolean circuit is,

therefore, defined by the worst case timing characteristic of the worst gate in the circuit.

In NCL pipelines, however, though the delay of each gate is dependent on the input data and

also on whether the gate is transitioning from Data to Null or Null to Data, the instantaneous

delay does not at design time determine the final performance of the system. It is acceptable

in an NCL pipeline for one of the stages to have a slightly longer delay for one particular data

pattern. This longer delay will propagate through the pipeline, and once it has passed, sub-

sequent Data wavefronts can propagate as fast as possible through the system. This concept

is explained using a hypothetical scenario in Figure 2.11b, where the single slow event in one

of the wavefronts, causes all forward propagating wavefronts and backward propagating ac-

knowledge signals originating from that stage in the pipeline to be delayed. However, after

the single slow event has passed, subsequent forward wavefronts and backward acknowledge

signals flow through the pipeline at the fastest possible rate.

2.3.3 State of the art in NCL-based systems

The NCL paradigm and the asynchronous design approach have been used in a number of

designs commercially developed by Theseus Logic Inc. [82]. A number of case-study circuits

have also been implemented that demonstrate the capacity of complex circuits to be designed

using the NCL approach. In [83], a Multiply and Accumulate Unit in NCL was designed and

characterised. It was concluded that the NCL based design outperformed other synchronous

and asynchronous approaches with respect to average cycle times even though the NCL based

design incorporated additional features such as conditional rounding, scaling and saturation.

It has also been demonstrated [84] that NCL logic-element based reconfigurable devices can

be implemented and conventional Boolean logic designs could be mapped to these devices.

A complete arithmetic logic unit implemented using both dual-rail and quad-rail NCL has

been described [85]. Meanwhile, in the commercial space, Wave Semiconductors (now Wave

Computing) developed their own version of NCL and built a multi-core processor that can

operate at speeds in excess of 5GHz [86].

As far as the storage elements in asynchronous systems are concerned, existing asynchronous

SRAM designs use either a bundled-delay approach or a Speed Independent (SI) approach. The
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bundled delay approach was adopted by [87] and [88], while the speed independent approach

was adopted by [89] and [90]. The bundled delay approach is susceptible to timing and voltage

variations and requires careful timing analysis. The approach in [89] incorporates SI design

principles on the read side, while the write side requires the design to satisfy timing assump-

tions at all PVT corners. The SRAMs developed in this work follow the approach suggested by

[90].

There have also been multiple attempts at developing globally asynchronous locally synchronous

(GALS) as well as fully asynchronous Network-on-Chip routers [91]–[94]. And although the

basic building blocks for asynchronous packet routers were introduced by Nedelchev et al.

[95] in 1994, the commercial 72-port 10G Ethernet switch developed by Davies et al. [96] is

perhaps the only implementation of a fully asynchronous router for IP applications. All these

activities show that complex systems may be built with NCL and the potential advantages in

terms of throughput, latency and immunity to PVT variations are definitely realisable. Table

2.2 presents a state of the art in NCL-based designs.

2.3.4 NCL limitations

NCL was first proposed by Fant et al. in 1996[39]. As illustrated in section 2.3.3 there have been

a number of attempts at designing complex systems using the NCL design paradigm. How-

ever a survey of the literature also suggests that designing with NCL is not particularly easy,

primarily because of the lack of design tools. During this project attempts at using existing

EDA tools to design NCL systems has been particularly challenging. There are no commer-

cial or academic tools available to synthesize a behavioural description of an NCL design to a

functionally correct netlist.

Another potential advantage of NCL is the expected saving in power consumption because of

the absence of the clock tree. However it has been shown in [102] that in NCL circuits, although

the peak power consumption is lower than that observed in conventional Boolean circuits, the

average power consumption is comparable.
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Table 2.2: State of art in NCL-based designs

Authors Year Title Performance Goal/Objective

Smith et al.
[83]

2002 Null convention multiply
and accumulate unit with
conditional rounding,
scaling and saturation

Lowest cycle times in MAC unit (12.7
ns)

Smith S. [72] 2007 Design of an FPGA Logic
Element fir implementing
Asynchronous Null Con-
vention Logic circuits

Design of a NCL logic element requir-
ing the smallest area

Bandapati et
al. [85]

2007 Design and characteriza-
tion of Null Convention
arithmetic logic units

Design of a 4-bit 8-operation ALU in
both dual-rail and quad-rail versions.

Joshi et al.
[97]

2007 NCL Implementation of
Dual-Rail 2S Complement
8x8 Booth2 Multiplier us-
ing Static and Semi-Static
Primitives

Evaluation of the area, power and
speed of the design.

Duggannapally
et al. [98]

2008 Design and Implementa-
tion of FPGA Configura-
tion Logic Block Using
Asynchronous Static NCL

Design of a FPGA configurable logic
block (CLB) using asynchronous
static NULL convention logic (NCL)
Library. The proposed design uses
three static LUT’s for implementing
NCL logic functions.

Moreira et al.
[99]

2013 NCL+: Return-to-one
Null Convention Logic

Modification of the NCL paradigm to
support the return-to-one protocol re-
sulting in an interesting tradeoff be-
tween power and propagation delay.

Pryzbylski et
al. [100]

2016 The Bel array: An asyn-
chronous fine-grained co-
processor for DSP

Design of a single-bit compute ele-
ment based DSP in 28nm FDSOI pro-
cess implementing a FIR filter

Dabholkar et
al. [42]

2016 A high throughput, low
latency null convention
logic 16x16-bit multiplier

A fast 16x16 bit Multiplier in 28nm
FDSOI achieving 609 Mops at a la-
tency of 2.26 ns

Caberos et al.
[101]

2017 Area-efficient CMOS
implementation of NCL
gates for XOR-AND/OR
dominated circuits

Area efficient implementation of NCL
circuits (14% smaller) when com-
pared against conventional gate de-
signs
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Summary

This chapter has presented the background and prior work on address lookup techniques in

modern routers and has discussed the advantages of the algorithmic SRAM-based approaches

over brute-force TCAM-based approaches. The theory of Bloom filters and how they can be

used to reduce unnecessary accesses to memory during the address lookup process has been

explained. The focus of this thesis is to evaluate design methodologies that reduce energy

consumption and area while maintaining the throughput performance. Asynchronous design

techniques have been identified as a technique with the potential to reduce energy consump-

tion. The details of Null Convention Logic - a QDI asynchronous design methodology - follow,

leading to a discussion on state of the art in NCL-based systems. The next chapter will present

details of a recent algorithmic lookup approach and the manner in which Bloom filters can be

used to improve the energy consumption of this algorithm even in the Boolean logic system.

If I have seen further, it is by standing on ye shoulders of Giants.

Isaac Newton
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Chapter 3

Compact-trie with Bloom filters in

Boolean logic

Algorithmic SRAM-based approaches to address lookup have been extensively researched over

a number of years. While there are a number of different memory structures used in these al-

gorithms, the binary trie is a popular ordered tree data structure that is used to store prefix

information. The next hop information for a prefix is stored at the leaf nodes in the trie, and the

lookup algorithm reaches these by traversing the trie on the basis of the bits in the destination

address, looking for the longest matching prefix. While binary tries are simple, they occupy

large memories, are difficult to update, and the lookup process is slow. A number of com-

pressed trie structures have been explored, and the Compact-trie structure proposed by Erdem

et al. [33] has been shown to be an efficient alternative to the binary trie. This chapter presents

enhancements to this original Compact-trie structure and also evaluates the performance of the

address lookup function when Bloom filters are added before the Compact-trie architecture to

reduce the required number of memory accesses.
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3.1 Enhanced Compact-trie with epsilon nodes

3.1.1 Architecture

As outlined above, the Compact-trie is a popular structure for storing IP prefixes associated

with a packet forwarding function. The key idea originally proposed by Erdem et al. in [32]

and extended in [34] is the representation of a prefix p as the concatenation of three sub-strings

xp, yp and zp such that p = xpypzp. MSBp is the value of the most-significant bit of the prefix

and LSBp is the value of the least-significant bit, determined by the length of the prefix. For

example, for a prefix of length 18, the most significant bit is at position 31, while the least

significant bit is at position 14. In Erdem’s algorithm, the sub-string xp is defined as a sequence

of MSBp bits followed by a single complementary bit. Similarly, zp is a string of LSBp bits

preceded by a single complementary bit. The length of these sub-strings is |xp| (also denoted

by Mp) and |zp| (also denoted by Lp) respectively, so that any prefix can then be completely

represented by a 5-tuple p = {MSBp, LSBp, |xp|, y, |zp|}. MSBp and LSBp are 1-bit values

while |xp| and |zp| each can have a maximum length of log2W , whereW is the maximum length

of the prefix. [34] also describes the steps to be followed for prefix insertion and address lookup

in the Compact-trie. However, the mechanism for checking for the longest matching prefix is

complex, and the handling of prefixes of type 111* or 111000* is incorrect. While the number

of such prefixes in real IPv4 routing tables is limited, if these prefixes are not inserted in the

correct location in the Compact-trie, it will result in incorrect lookups. The original algorithm

[32] also underestimates the total memory utilisation of the Compact-trie structure.

A modified version of the original algorithm is proposed here that has the following enhance-

ments:

1. Support for types of prefixes not handled correctly in the original algorithm.

2. A more accurate estimate of the total memory utilisation.

The enhanced algorithm will be referred to as Enhanced Compact-trie (E−Ctrie) to distinguish

the proposed algorithm from the original algorithm in [34]. In this enhanced algorithm, MSBp

and LSBp are once again the bits at the MSB and LSB position of the prefix p, represented as p =

xepyepzep i.e., a concatenation of three sub-strings xep, yep and zep. However, in the enhanced

algorithm, the sub-strings are defined differently from the original and these new definitions
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are shown in table 3.1 along with definitions of the strings xek and yek for the keys. A key

‘k’ to be searched in the Enhanced Compact-trie is represented as a concatenation of these two

sub-strings xek yek, with MSBk and LSBk defined as the bits in the MSB and LSB positions of

the key. In all these definitions, the ‘+’ sign implies a non-zero repetition of a bit value, while ‘*’

implies that the bit is repeated zero or more times (in the sense of a regular expression). When

splitting a prefix p into sub-strings, bits are first allocated to xep followed by the zep sub-string

and finally to yep. This is a key difference between Erdem’s and the proposed Compact-trie

algorithm.

A sample prefix table along with the prefix decomposition into sub-strings is shown in Table

3.2. It can be seen that in the Enhanced Compact Prefix Table (E-CPT), because of the new sub-

string definitions, MSBp, LSBp and |xep| are defined for all the prefixes. This modification

to the sub-string definitions guarantees the correct lookup of some of the prefixes that may

be incorrectly looked up with Erdem’s algorithm. The work presented here also corrects the

resource utilisation calculation presented in [34].

When compared to a binary trie algorithm, the E-Ctrie algorithm uses the active part (AP) of

a prefix alone to determine its location in the trie1. As the AP is a sub-string of the complete

prefix, there may be a number of prefixes in the routing table having the same active part but

Table 3.1: Definition of terms used in the Enhanced Compact Prefix Table (E-CPT)
and the Enhanced Compact-trie (E − Ctrie) algorithm

Term Explanation

xep = MSBp+ a continuous string of bits of the prefix with the same value as the MSB,
including the MSB.

zep = LSBp* a continuous string of bits of the prefix with the same value as the LSB,
including the LSB.

yep = [01]* also known as the active part of the prefix (APp) is a string of ones and zeros
lying between xep and zep. The sub-string yep may be of zero length.

Mp length of xep sub-string

Lp length of zep sub-string

xek = MSBk+ a continuous string of bits in the key with the same value as the MSB, in-
cluding the MSB.

yek = [01]* also known as the active part of the key (APk) is a string of ones and zeros.
The sub-string yek may be of zero length

Mk length of xek sub-string

1This is the same mechanism as Erdem’s original Compact-trie algorithm
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different MSBp, LSBp, |xep| or |zep| values. All such prefixes are stored in the same node

within the trie. However, this approach affects the memory efficiency of a hardware imple-

mentation of the algorithm because memory has to be pre-allocated to each node when it is

first inserted into the trie. This implies that each node has to have the same number of bits

as the node with the greatest number of conflicted prefixes for a particular table. The origi-

nal Compact-trie algorithm already handled this shortcoming through the use of epsilon links

such that if the total number of prefixes to be stored at a node are greater than a threshold value

(Ptrie), the node is split in to sequentially connected small and fixed size nodes, each storing

a maximum of Ptrie prefixes. The connection between these nodes is called an epsilon link.

The enhanced algorithm here also uses the same idea, and the corresponding trie structure is

called Enhanced Compact-trie with epsilon links (E − Ctrieε). This modification improves the

memory efficiency at the cost of a slight increase in depth.

3.1.2 Trie creation and trie search algorithms

Consider the Enhanced Compact Prefix Table (E-CPT) from Table 3.2. To insert the prefixes

from this table into an E − Ctrieε the APp of each prefix is first identified. For a given prefix

the bits in the APp are used to traverse the trie starting at the head of the trie(the current node

Nodecur). If Nodecur does not have an outgoing ε link, the most significant bit in APp is exam-

ined, and the left or right branch out of Nodecur is taken depending on whether the bit is a ’0’

or ’1’. The node so reached is the new Nodecur, and a new APp is created by shifting the old

APp one bit to the left (effectively discarding the MSB that was just examined). The MSB of the

new APp is now examined, and a decision on the branch to be followed out of the new Nodecur

is taken. This process of examining the MSB of the APp, moving to a downstream node and

shifting theAPp a bit to the left is continued, until a node is reached that has no successor nodes

(children) in the direction indicated by the MSB of the APp. A new node is then created and

connected to the last Nodecur, and the trie traversal continues down to the newly created node.

The process so far is similar to a conventional binary trie traversal, except that in the present

case a sub-string (APp) of the prefix is used instead of the complete prefix (Line 3 in Algorithm

1. The special case in Compact-trie traversal occurs when a node with an outgoing epsilon link

is encountered. At this node, the bit value is not examined, and theAPp is not shifted, and only

the search moves to the node at the next level. This is because, at ε connected nodes, there is

only one link out and thus no decision needs to be taken.
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Algorithm 1: Enhanced Compact-trie construction algorithm

Data: Enhanced Compact Prefix Table (E-CPT) consisting of set of prefixes P i where P i =
{AP ip, (MSBi

p,LSBi
p,M i

p,Lip,NHIip)}, 0 6 i < N
Data: Root node Proot of Ctrie, Proot.left = NULL , Proot.right = NULL, Proot.size = 0
Data: Maximum node size Ptrie
Result: CTε trie structure

1 initialise i = 0;
2 foreach prefix pi in CPT do
3 Pnode = binary_trie_traversal (AP ip);
4 where Pnode is the node reached through binary trie traversal
5 Prefix information P i is to be stored at Pnode
6 if Pnode.size < Ptrie then
7 Pnode.info = (MSBi

p, LSBi
p, M i

p, Lip, NHIip) ;
8 Pnode.size ++ ;
9 else

10 if Pnode.εout == TRUE then
11 Pnode = Pnode.left ;
12 Go to Line 5;

13 else
14 Create a new node Pnew ;
15 Copy all prefix and pointer information from Pnode to Pnew ;
16 Pnode.left = Pnew ;
17 Pnode.εout = TRUE ;
18 Pnode.info = (MSBi

p, LSBi
p, M i

p, Lip, NHIip) ;
19 Pnode.size = 1

The trie traversal will finally reach a node, and theAPp has no more bits to be examined. It is at

this Nodecur that the prefix has to be inserted (Lines 3-5 in Algorithm 1) . If the total number of

prefixes stored at this node is less than the Ptrie value, then the new prefix information is stored

at the node (Lines 6-8 in Algorithm 1). However, if the node already contains Ptrie number of

prefixes then a new node is created (Line 14 in Algorithm 1), with an epsilon link from this

node to the Nodecur(Lines 10-12 in Algorithm 1), and the link from the parent of the Nodecur is

now connected to the newly created node (Lines 15-17 in Algorithm 1). The prefix information

is then copied into the new node and the size of the node is set (Lines 18-19 in Algorithm 1).

The algorithm used for the creation of the Enhanced Compact-trie is listed in Algorithm 1 and

an illustration of the insertion process for prefix P10(110111*) is presented in Figure 3.1. The

E − CTrieε as it was before insertion of prefix P10 is shown in Figure 3.1a. The APp of prefix

P10 is examined starting at the head node, moving down the trie, until the insertion location

is identified as shown in Figures 3.1a to 3.1d . Since the node at the insertion location already

contains 2 prefixes and the Ptrie value for the current example is 2, the node cannot hold any
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more prefixes. A new node is created, and prefix P10 is stored in this node and the links

reordered so that the left child of Node(P1,P2) is now Node(P10) and there is an epsilon link

from Node(P10) to Node(P3,P9), denoted by a single thick vertical arrow out of the node in

Figure 3.1e. The trie traversal process during the insertion of prefix P10 is indicated by the

dotted arrows. The complete E − Ctrieε for the E-CPT of Table 3.2 is shown in Figure 3.2.

Algorithm 2: E − Ctrieε search algorithm w/ Bloom filter
Data: Proot is the root node of the E − Ctrieε
Data: Key is the destination IP address to be searched
Result: NHIkey is the longest matching next hop information

For head node with Lp == 0: matchCondition is
((MSBk ==MSBp) and
(Mk >Mp))

For all other nodes: matchCondition is
((MSBk ==MSBp) and
(Mk ==Mp) and
(B0 == Lp) and
(MAPk > Lp > matchLength))

1 Initialise
NHIk = 0,
trielevel = 0,
Pnode = Proot
matchLength = 0 ;

2 while Pnode is not NULL do
3 foreach prefix in Pnode do
4 if matchCondition is TRUE then
5 NHIk = NHIp ;
6 matchLength = Mp + Lp + trielevel ;

7 else
8 no updates to NHIk and matchLength ;

9 if Pnode.εout == TRUE then
10 Pnextnode = Pnode.left ;
11 No updates to matchLength, trielevel or APk;

12 else
13 if B0 == 0 then
14 Pnextnode = Pnode.left

15 else
16 Pnextnode = Pnode.right

17 reset matchLength to 0 ;
18 increment trielevel Shift APk one bit left ;

19 Pnode = Pnextnode
20 Return NHIk
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Figure 3.1: Process of insertion of prefix P10 in the E − Ctrieε structure
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Figure 3.2: Complete Enhanced Compact-trie with epsilon links (E−Ctrieε) after
insertion of all prefixes from the Enhanced Compact Prefix Table of Table 3.2
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Table 3.3: Definition of terms used in the E − Ctrieε algorithm

Term Definition

B0 Most significant bit in APk
MAPk lengthof({B0}*), where {B0}* is a continuous string of bits with the

same value as B0 and including B0

trielevel Current level in the trie search. The head node is level 0

matchLength length of the matched prefix

Pnode.εout condition that the node has an epsilon link to the next stage

The search procedure for the proposed Enhanced Compact-trie algorithm is listed in Algo-

rithm 2, while the terms and definitions used in the Algorithm have been explained in Table

3.3. As an example of the search process, consider that the IP address (key) to be searched

is ‘110001010001’. For this key MSBk = 1, Mk = 2 and APk = ‘0001010001’. IP lookup in an

E − Ctrieε starts from the head node and traverses the trie using the bits in the APk. At each

stage, a node in the trie is examined, and the stored prefixes are checked for a prefix match by

evaluating the matchCondition requirements specified in the Algorithm. If a match is found,

the next hop information is stored, and the search moves on to the next level. The address of

a child node in the next-level of the trie is determined by the ‘left’ or ‘right’ child pointer in

the current node, based on the value of B0. If the node is an epsilon node, then the present B0

value is not checked, and the epsilon link is taken. While progressing the prefix search to the

child node, the APk value is shifted one bit to the left if the child is connected over a regular

link, but is kept unchanged for epsilon-connected nodes.

The discussion so far suggests that the process of decomposing prefixes into the three sub-

strings helps create a trie structure that is shorter than a binary trie although the storage re-

quirement at each node in the trie is higher. The search through this Compact-trie structure is

expected to be faster than a binary trie. However, it may be noted that the search process still

involves accessing the prefix information at each level in the trie. The next section shall discuss

further additions to the design that limit the number of accesses.

3.2 Enhanced Compact-trie with epsilon links and Bloom filters

3.2.1 Architecture

An issue present in the Compact-trie is that, at leaf nodes with more than one stored prefix,

multiple memory access cycles have to be incurred to fetch information for each prefix before a
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decision on LPM can be made. This leads to an increase in the latency, a decrease in throughput

and an increased power consumption per address lookup. In addition, because the Compact-

trie uses only a sub-string of the prefix, there could be prefixes that are not within related IP

subnets stored in the same node or in the same branch of the trie, resulting in unnecessary

memory accesses during the search process. It was shown earlier in Chapter 2 that Bloom

filters can be effective in reducing the number of memory accesses in binary trie address lookup

implementations. It is, therefore, possible that a similar application of Bloom filters might

reduce the number of memory accesses in the Compact-trie.

A regular E − Ctrieε structure was first created as discussed in the previous section. Prefixes

were inserted at the appropriate location in the trie and also programmed into a Bloom filter.

The Bloom filter indices were generated by a hash computation block that receives the follow-

ing bit string as its input dinhash = {MSBpMp APp LSBp}. To illustrate the operation consider

the prefix 1001*. The dinhash has 1 bit for the MSBp, 3 bits for Mp, as many bits as required for

the APp and 1 bit for the LSBp. For the prefix 1001*, the MSBp is 1, the Mp is 001 (in binary),

APp is 00 (in binary) and LSBp is 1, concatenating all these together we get 1001001 which is

the dinhash for the prefix. Also, for the example prefix table with 16 entries (n = 16), a single

CRC8 generator is used, and it is assumed that a 64-bit Bloom filter is available (m = 64). The

CRC8 polynomial used was x8 + x5 + x4 +1. A block diagram of the CRC8 generator is shown

in Figure 3.3. The minimum number of hash indices k required to achieve the minimum false

positive probability pf for Bloom filters given the number of elements n andm bits in the Bloom

filter is given by Dharmapurikar et al. [27] as:

k =
m

n
ln(2) (3.1)

In the present case, the number of Bloom filter indices required is two, and these are obtained

from a single CRC hash value by selecting the lower and upper 6 bits of the CRC8. The dinhash

bit string and the hash indices generated for the prefixes in the E-CPT are shown in Table 3.4

and the final state of the 64-bit Bloom filter after all prefixes have been programmed is shown

beside the CRC8 generator in Figure 3.3. For the example prefix table, the Bloom filter bits at

indices 6, 10, 16, 19, 20, 23, 27, 29, 31, 33, 36, 37, 41, 42, 43, 44, 45 and 51 are set.

In Bloom filters for E − Ctrieε, multiple prefixes with the same Active Parts (APp) are stored

at the same node or at epsilon connected nodes. It is possible that some of these prefixes may
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Figure 3.3: CRC8 generator block diagram and programmed Bloom filter

have the sameMp values as can be seen with prefixes P3, P9 and P23 and also with prefixes P18

and P19. Table 3.4 indicates that for all such prefixes, the Bloom filter indices are the same and

these contribute only one entry to the Bloom filter. This is unlike a binary trie, where no two

prefixes are stored in the same node, and therefore their Bloom filter indices would be different.

Thus in case of binary tries, different bits would be set in the Bloom filter, causing it to fill up

much faster than in the case of the Compact-trie. It can be seen from (3.1) that if the number

of elements that have to be stored in the Bloom filter increase for the same size of Bloom filter,

the false positive probability degrades. Thus, since the number of distinct elements that have

to be stored in Bloom filters for Compact-trie is less than those in Bloom filters for binary trie, it
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may be expected that the number of false positive indications from the Bloom filter would also

reduce.

3.2.2 Operation

The trie creation algorithm for an Enhanced Compact-trie with epsilon links in the presence of

Bloom filters is essentially the same as that in Algorithm 1. The only difference now is that in

addition to inserting the prefix in the Compact-trie, the prefix tuple information is also fed to a

hash computation block that generates the Bloom filter indices and these are used to program

the corresponding bits in the Bloom filter.

Algorithm 3: E − Ctrieε search algorithm w/ Bloom filter
Data: Proot is the root node of the E − Ctrieε
Data: Key is the destination IP address to be searched
Data: BF is the Bloom filter for E − Ctrieε
Result: NHIkey is the longest matching next hop information

For E − Ctrieε with Bloom filters: All matchConditions are the same as those without Bloom
filters

Perform Initialisation

1 while Pnode is not NULL do
2 dinhash = {MSBk,Mk,most significant (trielevel + 1) bits of APk} ;
3 Compute Bloom filter indices hk1, hk2, ... hkn;
4 Check if Bloom filter matches ;
5 if Bloom filter result is TRUE then
6 ACCESS PREFIX INFORMATION;
7 foreach prefix in Pnode do
8 Evaluate matchCondition and update NHI and matchlength if match found;

9 else
10 DO NOT ACCESS PREFIX INFORMATION

11 if Pnode.εout == TRUE then
12 Pnextnode = Pnode.left ;
13 No updates to matchLength, trielevel or APk;

14 else
15 if B0 == 0 then
16 Pnextnode = Pnode.left

17 else
18 Pnextnode = Pnode.right

19 reset matchLength to 0 ;
20 increment trielevel Shift APk one bit left ;

21 Pnode = Pnextnode
22 Return NHIk
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Table 3.5: Illustrating the Bloom filter computation during the search process of
the key ‘110001010001’ (MSBk = 1, Mk = 2 and APk = ‘0001010001’) in the E −

Ctrieε structure of Figure 3.2

trielevel dinhash CRC8 Bloom filter indices BF Match

0 1 010 0 225 56,63 NO

1 1 010 0 225 56,63 NO

2 1 010 00 252 63,60 NO

3 1 010 00 252 63,60 NO

4 1 010 000 126 31,62 NO

5 1 010 0001 179 44,51 YES

The prefix search algorithm for an E − Ctrieε with Bloom filter is also very similar to the

one without the filter and is listed in Algorithm 3. The lookup process starts from the root

node and traverses the trie using the bits in the APk and the ‘left’, ‘right’ and ‘epsilon’ link

information present at each node. However, at each level in the trie, Bloom filter indices are

also computed, and the Bloom filter is accessed. Prefix information is examined only at those

nodes in the trie that return a positive result from the Bloom filter query. As discussed in

Section 3.2.1 the input string to the hash computation block during prefix insertion is given

by dinhash = {MSBp Mp APp LSBp} and the complete APp is used in the hash computation.

However, in the process of prefix search, only the sub-string of APk that is one more than

the length of the APp for prefixes stored at that level is used in the hash computation. Thus

dinhash = {MSBk Mk APk[trielevel + 1bits]}.

As an example, consider that the IP address (key) ‘110001010001’ is to be searched for the

longest matching prefix in the prefix table 3.2. For this key MSBk = 1, Mk = 2 and APk =

‘0001010001’. The Bloom filter computation and the prefix search process through the trie is

illustrated in Table 3.5. For this illustration, please also refer to the E−Ctrieε of Figure 3.2 and

to the programmed Bloom filter in Figure 3.3

In this case, the Bloom filter produces a negative result for the first five levels. Because a Bloom

filter may produce a false positive but never a false negative, the search process continues to

move down the trie without accessing any of the prefixes in the first five levels. It is only at

the sixth level in the trie that the Bloom filter indicates a positive and the prefix information

is accessed. The match condition is then evaluated, and the Next Hop Information is updated

when a match is found.
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3.3 Hardware design considerations

It is necessary to evaluate the memory requirements of theE−Ctrieε and the Bloom filter when

implemented as a fully pipelined design on an FPGA to be able to comment on the effectiveness

of the proposed technique. This section discusses the hardware design considerations such as

the structure of the nodes in the trie, the trade-off between a monolithic and a pipelined Bloom

filter and the complete system architecture that might affect throughput, energy savings and

memory utilisations of the final implementation.

3.3.1 Trie node structure

In a pipelined hardware implementation, memory size is fixed, and there is no equivalent of the

software mechanism of dynamically allocating memory to each node from a large heap when

new prefixes are added to the trie. Instead, fixed memory blocks have to be pre-allocated for

each pipeline stage during the design process. As a result, the size of the node and in turn the

total memory requirement for the E −Ctrieε is a function of the number of bits in the pointers

and the prefix specific information that needs to be stored at each node. Figure 3.4 shows the

structure of a typical node in the E − Ctrieε structure.

The prefix-specific information (shown in blue in Figure 3.4) can be stored in a separate mem-

ory, either on or off-chip. The value in brackets represents the number of bits needed to repre-

sent a particular field. Thus the MSB and LSB require one bit each, the M and L fields require

‘m’ and ‘l’ bits respectively, while the child pointers need ‘lc’ and ‘rc’ bits. The actual number

of bits needed for these fields is determined by the total number of nodes in the routing table,

the distribution of these prefixes and the depth at which a particular node is located in the trie.

If two routing tables exist having almost equal numbers of prefixes but with different distribu-

tions, such that one of the tables results in a deeper trie with a higher number of intermediate

non-prefix nodes, then that routing table would require more memory resources on the FPGA.

This is not just because of the greater total number of nodes in the trie, but also because more

nodes imply a larger address space that, in turn, requires more bits for the pointers in each

node. It is, however, not possible to tweak the number of bits in the node structure for every

routing table and therefore fixed values are chosen.
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Figure 3.4: Node structure in an E − Ctrieε

3.3.2 Pipelined Bloom Filter

A CRC generator is used as the hash function for generating Bloom filter indices to evaluate the

performance of theE−Ctrieε algorithm with Bloom filtering using real routing tables. Because

the input to the hash function consists only of MSBp, Mp APp and LSBp i.e., a reduced and

transformed set of the information uniquely identifying a prefix, there exists the possibility of

a collision in the generated hash values. If all prefixes are programmed in a single Bloom filter

(also referred to as monolithic Bloom filter), a key being searched at a certain level in the trie

will generate Bloom filter indices that match bits set by prefixes at other levels, resulting in a

false positive and therefore unnecessary prefix memory accesses.

It could be expected that setting up a separate Bloom filter for each level in the trie would ex-

hibit better performance, albeit with potentially greater area overheads. This approach lends

itself quite well to a hardware implementation as the Bloom filter, and the address lookup func-

tion can now be pipelined. A separate Bloom filter per pipeline stage means each Bloom filter

can now be much smaller than the single large Bloom filter that would otherwise have been
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needed. This, in turn, results in fewer bits needed to access the Bloom filter memory, thereby

simplifying the design of the address decoder and would also result in a much distribution

of the index values since all indices are generated by selecting sub-strings from a single CRC

value. Setting up a single Bloom filter that can be accessed by all stages in a pipelined imple-

mentation additionally requires a multi-port memory, which is difficult to achieve in an FPGA.

Thus having a pipelined Bloom filter is considered appropriate.

An additional design consideration for the use of a pipelined Bloom filter is the ease of CRC

computation at each stage of the pipeline. It can be seen from the CRC-8 diagram in Figure

3.3 that the value of the CRC shift register after an input bit is received is dependent on the

initial value loaded into the shift register and the value of the input bit. The hash computation

required for Bloom filters uses a key that has MSBk, Mk as its first two fields, followed by the

bits in the APk. At each level in the trie, the key fed to the CRC block is just one bit longer than

the key fed to the CRC block at the previous level. Thus, at each stage in the design, the CRC

value computed in the previous pipeline stage can be used as the initial value for the CRC shift

register and feeding just the one extra bit from the APp or APk allows the new CRC value to be

generated in a single clock cycle. For the first pipeline stage, the CRC of the string MSBk Mk is

computed separately in a single clock cycle before the actual prefix search enters the first stage.

3.3.3 System architecture

Figure 3.5 shows the block diagram of an FPGA implementation of the E − Ctrieε that in-

cludes a Bloom filter. This is very similar to the CTε architecture proposed by [34]. For the

E − Ctrieε hardware implementation, the number of stages in the lookup pipeline is depen-

dent on the maximum number of bits in the active part of the prefixes for a routing table and

also on the Ptrie value. A single ‘match_stage’ in theE−Ctrieε pipeline comprises three parts: a

‘match_module’ that implements the prefix match and trie traversal algorithm, ‘node_storage’

that stores the prefix and trie traversal information at that level and a ‘Bloom filter’ that con-

trols accesses to the prefix information RAM. The ‘node_storage’ module (Figure 3.5), which

includes both the prefix information RAM and the trie traversal information RAM, is imple-

mented on FPGAs in block RAMs (BRAM) or LUT RAMs depending on how the synthesis tool

responds to the required size. The prefix information RAM may also be implemented in an

external off-chip SRAM when a large number of bytes need to be stored per prefix. Bloom filter
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bits are always stored on-chip to ensure fast operation. The present research follows Song et al.

[28] and a number of others where complete tries and prefix storage were implemented inside

FPGA memory. In contrast, the work by Lim et al. [30] and Dharmapurikar et al. [27], both of

whom use Hash Tables to store prefix information, expect these to be held in external memory.

The primary reason for using Bloom filters in these cases then is the underlying assumption

that the cost of an external memory access is high and must be avoided, while the cost of a

Bloom filter access in terms of power consumption and latency is insignificant. All these ad-

dress lookup schemes thus use multiple Bloom filter computations to save memory accesses

and improve latency, throughput and power consumption.

3.4 Results and discussions

The results presented in this section seek to understand the point at which the time and power

consumption associated with hash computations and Bloom filter accesses are no longer trivial

when compared with external SRAM accesses. The performance of the proposed algorithm was

evaluated first through software simulations in Python and then through Modelsim R© simula-

tions of a Verilog design targeted for Xilinx R© Virtex-7 FPGA. The software simulations demon-

strate the effect of the Bloom filter on average and worst case prefix memory accesses and also

reveal the impact that changes in Bloom filter size and Ptrie value have on the lookup per-

formance. The Modelsim simulations for the target FPGA were used to evaluate the resource

utilisation and power consumption of representative pipelined E − Ctrieε implementations.

3.4.1 Experimental setup

Six different IPv4 routing tables downloaded from Packet Clearing House [103] on 01-April-

2017 were used for testing. Two of these tables have more than 300k prefixes (big tables), two

have between 40k and 100k prefixes (medium table), and two have less than 10k prefixes (small

tables). These different sizes are chosen to verify that the algorithm performs correctly over a

range of different table sizes. Table 3.6 shows the number of prefixes in each of the routing

tables. Synthetic packet traces were generated that contained roughly five times the total num-

ber of prefixes in the routing table, with destination IP addresses distributed uniformly over

the range of addresses covered by the prefixes.



56 3. Compact-trie with Bloom filters in Boolean logic

Fi
gu

re
3.

5:
FP

G
A

bl
oc

k
di

ag
ra

m
of

an
E
−
C
tr
ie
ε

im
pl

em
en

ta
ti

on
w

it
h

Bl
oo

m
fil

te
r

w
it

h
de

ta
ils

of
th

e
m

at
ch

st
ag

e
bl

oc
k



3.4. Results and discussions 57

Table 3.6: Sizes of real IPv4 routing tables [103]

Exchange Name Number of prefixes

CAI 3180

MAN 6304

LYS 44426

MGM 96232

IAD 388773

PAO 629539

In the Bloom filter, the hash function generator uses the IEEE 802.3 CRC32 polynomial [104].

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1

The number of Bloom filter indices used has been set to 2, and the indices are obtained by

selecting log2n bits from different locations in the generated CRC, where n is the size of the

Bloom filter. Lookup performance was evaluated for two Ptrie values (2 and 3), five Bloom

filter sizes and a (Mp, Lp) = (3, 5). The Bloom filters are designed Mbf times the number of

prefixes in a routing table N rounded off to the nearest higher power of ‘2’.

BFsize =Mbf ∗ 2dlog2Ne

Thus for a LYS routing table with N = 44426 prefixes, a Bloom filter with Mbf = 2 will require

131072 locations if a single Bloom filter is used. On the other hand, for a pipelined implemen-

tation the Bloom filter sizes will depend on the number of prefixes at each level. While the size

cannot be selected differently for every table that the router needs to handle, based on the un-

derstanding that the number of prefix nodes at shallower levels are much less than the number

of nodes deeper in the trie, the Bloom filter sizes in pipelined Bloom filters may be adjusted.

For the same LYS table, there are 10276 prefixes at the 22nd pipelining stage. The Bloom filter

for this stage will, therefore, have 32768 elements for a Mbf value of 2.

3.4.2 Software simulations

Software simulations were performed with appropriate data structures created for the E −

Ctrieε and Bloom filters in Python 3.6. The simulations were used to evaluate the perfor-

mance of the insertion and search algorithms and were carried out both for the monolithic and
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pipelined Bloom filter. The saving in the number of memory accesses and the overhead in

terms of total memory requirements are reported.

3.4.2.1 Effect of Ptrie on memory utilisation of E − Ctrieε

The memory consumption of the Enhanced Compact-trie (E −Ctrie) and Enhanced Compact-

trie with CTε nodes (E − Ctrieε) were evaluated for the routing tables in Table 3.6. Both these

observations were taken without Bloom filters, and these observations extend the results re-

ported for the Ctrie structure in [34], where the effect of Ptrie variation was evaluated only for

one specific routing table. Figure 3.6a shows a distribution of the number of nodes versus the

number of prefixes per node in E − Ctries for the different routing tables. For the large tables,

98% of the nodes have two or fewer prefixes, while for the medium and small tables, the figure

is nearly 99.8%. Limiting the number of prefixes per node through the use of the CTε structure

can, therefore, improve the memory efficiency.

Memory savings can also be effected by a careful selection of the number of bits allocated to

store the |xep| and |zep| values for prefixes (i.e., Mp and Lp). For the routing tables examined in

this work, Figure 3.6b and Figure 3.6c plot the percentage of total prefixes against the number of

bits required to represent |xep| and |zep| values respectively. It can be seen that for all routing

table sizes, |xep| needs a maximum of three bits, while |zep| requires up to five bits. It can

also be seen that for prefixes in the smaller tables, |xep| values can possibly be represented

with two or fewer bits. The correctness of the algorithm in determining the longest matching

prefix depends on its ability to correctly distinguish prefixes on the basis of their |xep| and |zep|

values. The choice of the number of bits allocated for |xep| and |zep| in prefix nodes is critical

and therefore bound by the maximum number of bits typically required for any routing table.

Table 3.7 shows the number of nodes, total memory required and the minimum, maximum

and median number of PM stages encountered during a lookup in an E−Ctrieε for one small,

medium and large routing table using different Ptrie values and (Mp, Lp) = (3, 5) and assuming

8 bits of storage for the output port information (i.e., NHIp) in prefix nodes [32],[30]. The

total memory required is dependent on the number of bits in the child pointers required to

correctly address downstream nodes in the trie. If the complete trie structure is stored in a

single memory module, the address width is dependent on the total number of nodes. As an

example, in the CAI table with about 6000 nodes (3180 prefixes), a child pointer will need 13
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Figure 3.6: Distribution of prefixes, length of |x| and |z| in the E − Ctrieε imple-
mentation of real routing tables
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Table 3.7: Total node count, memory utilisation in Mbits and the depth in the
E − Ctrieε (min/median/max) where the LPM is found for various Ptrie values

Table Metrics
Ptrie

1 2 3 4 5 10

Nodes (K) 6.00 5.82 5.78 5.77 5.77 5.77

Memory bits (M) 0.23 0.33 0.39 0.41 0.43 0.41CAI

LPM found depth 9/25/42 9/24/33 9/23/32 9/23/32 9/23/32 12/23/32

Nodes (K) 21.0 20.8 20.8 20.8 20.8 20.8

Memory bits (M) 1.0 1.4 1.7 2.1 2.5 3.6MAN

LPM found depth 21.17/27 20.86/24 20.85/23 20.80/23 20.79/23 20.82/23

Nodes (K) 90.27 88.25 88.07 88.04 88.04 88.04

Memory bits (M) 4.31 5.84 7.18 7.79 8.24 8.25LYS

LPM found depth 8/24/41 8/23/30 8/23/32 8/23/32 8/23/32 8/23/32

Nodes (K) 188.4 183.7 183.3 183.3 183.2 183.2

Memory bits (M) 10.2 13.2 16.5 19.8 23.1 33.0MGM

LPM found depth 23.04/41 21.54/30 21.29/26 21.26/25 21.25/24 21.25/23

Nodes (K) - 540.45 536.79 536.06 535.89 535.83

Memory bits (M) - 38.19 47.99 57.65 67.04 61.86IAD

LPM found depth - 12/25/53 12/24/43 11/24/40 11/23/37 11/23/33

Nodes (K) 864.2 808.2 800.2 798.5 798.0 797.9

Memory bits (M) 50.1 61.4 75.2 89.4 103.7 146.8PAO

LPM found depth 51/33/116 32/42/64 27/36/47 24/30/38 23/12/35 21/65/31
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bits, including a margin for future increases in the number of prefixes. However, for the IAD

table with 540450 nodes (∼389k prefixes), each child pointer will need to be at least 20 bits

long. The actual number of memory bits required in each case is calculated by inserting the

appropriate numbers in the node structure of Figure 3.4. The size of each node in theE−Ctrieε

may, therefore, be set to vary from 26+(18∗Ptrie) for the smaller tables to 40+(18∗Ptrie) for the

larger tables. The total memory requirement estimated with these expressions is much more

accurate than the memory estimated by Erdem et al. [33], because they do not consider the

effect of multiple prefixes stored at a single trie node. As the Ptrie value is increased, a greater

number of prefixes can be stored at each node, and therefore the total number of nodes required

decreases. However, the memory required per node increases and this, in turn, increases the

total memory for the trie. Smaller values of Ptrie have the opposite effect. If a specific routing

table, say LYS, with Ptrie = 3, is considered, it can be seen from Table 3.7 that the memory

required is 22.8% more than that needed when Ptrie = 2. The Ptrie change, however, does not

significantly alter the average and worst case depth in the trie where lookup finishes. On the

other hand, decreasing Ptrie to 1 brings the memory requirement down by 26.2%. This also

increases the median depth for lookup to finish just slightly but in the worst case the depth at

which lookup finishes increases by almost 27%. A Ptrie value of 2 or 3, therefore, achieves an

adequate balance between memory efficiency and the number of stages in the trie that need to

be traversed.

3.4.2.2 E − Ctrieε versus binary trie search

The proposed enhanced algorithm has also been benchmarked against a binary trie search al-

gorithm in terms of total memory requirement, trie density (ratio of prefix nodes to total nodes)

and the average number of PM stages. The benchmarking is undertaken against a binary trie

search and not against some of the other lookup algorithms in the literature [34],[105], [24] [18]

for the reason that previous reports on the performance of IP lookup algorithms on FPGAs

have been based on a set of routing tables that are quite different from the ones used here.

A direct comparison with these results would be unreliable because both the distribution of

prefixes within the table as well as the overall size of the table significantly affect the mem-

ory requirements. In addition, throughput numbers depend greatly on the characteristic of

the FPGA device and its underlying technology node. While it is sometimes possible to scale
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performance numbers of simple designs from one FPGA device to another based on the aver-

age node performance (perhaps related to the clock frequency), for a complex design such as a

Packet Lookup algorithm there are far too many variables such as pipeline depth, memory or-

ganisation, storage requirement per node that can affect the throughput, latency and memory

utilisation results. To keep the evaluation fair, the present implementation is compared against

a basic binary trie (BT) implementation applied to the same set of routing tables and targeted

on the same FPGA, just as complex circuit delays in microprocessors are benchmarked against

the delay of an inverter with a fanout of 4 (FO4) in the same process node. A direct com-

parison with the original Compact-trie algorithm in terms of throughput and area is also not

undertaken because the original algorithm cannot handle all types of prefixes and the memory

calculations are incomplete.

Table 3.8 illustrates the performance of the enhanced algorithm versus a binary trie search. It

can be seen that the proposed algorithm exhibits from 17% to 50% improvement in memory

utilisation while encountering a marginally lower number of PM stages during a prefix lookup

operation. It can also be seen that the E − Ctrieε structure has a much higher density than a

conventional binary trie for all routing table sizes and the density is in fact much better for the

larger tables. A comparison of the original Compact-trie algorithm against a Binary trie [34]

has also demonstrated similar improvements in memory utilisation. The memory efficiency as

measured by the number of bits required per prefix for the IAD table (388k prefixes) is around

97, while for an equivalent sized table using the Flashtrie algorithm [24] and the Tree Bitmap

algorithm [17] the memory efficient is 39 and ∼70 respectively. A comparison of the memory

efficiencies suggests that the proposed algorithm requires slightly more memory than other

algorithms available in the literature.

3.4.2.3 E − Ctrieε and Bloom filters

The performance of the Enhanced Compact-trie structure is then evaluated with Bloom filters

with the same set of routing tables and the same synthetic packet traces. Figure 3.7 shows the

average number of prefix memory accesses required for one each of the small, medium and

large routing tables for different values of Bloom filters. It can be observed that the average

number of accesses reduce considerably with increasing Bloom filter sizes until a scaling factor

of ‘Mbf ’ = 8. Increasing the Bloom filter size beyond this does not result in any significant
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Table 3.8: Comparison of binary trie and E − Ctrieε implementations (Ptrie = 2)
for all routing tables

Table
Number of Nodes(k) / Total

Memory (Mbits)
Trie density (%) Median number of

PM stages

Btrie E − Ctrieε Btrie E−Ctrieε Btrie E−Ctrieε
CAI 16.2/ 0.6 5.8/ 0.3 19.6 51.5 25 24

MAN 41.3/ 1.7 20.8/ 1.2 15.2 29.5 25 23

LYS 198.8/ 8.7 88.3/ 5.8 22.3 48.1 25 23

MGM 460.7/ 21.2 183.7/12.2 20.8 49.8 25 23

IAD 1517.7/ 75.9 540.5/38.2 25.6 66.5 25 25

PAO 2453.4/127.6 808.2/56.4 25.6 70.9 25 25

reduction in the number of memory accesses. On the contrary, making the Bloom filters any

larger will increase the number of bits required to address the individual Bloom filter locations.

This will adversely affect the frequency of operation of the Bloom filter and also make it difficult

to accommodate the Bloom filter memory on-chip. It is also seen that the number of accesses

required is not affected significantly by the Ptrie value.

Table 3.9 shows a comparison of the number of prefix memory accesses (average and maxi-

mum) for all the prefix tables first without Bloom filters and then with monolithic and pipelined

Bloom filters. The table also shows the number of false memory accesses. It can be seen that

irrespective of the size of the routing table, both the average and the maximum number of

prefix memory accesses required to find the longest prefix match reduce with the introduction

of a Bloom filter. With a monolithic Bloom filter, the reduction in average prefix memory ac-

cesses is around 80% for the small and medium tables, while for the large tables the reduction

is smaller – 67% for IAD and 53% for PAO. The worst case number of prefix memory accesses

improve about 56% for the small tables and about 30% for the large tables. The experiments

on a pipelined Bloom filter demonstrate a greater saving for the larger tables than the smaller

tables. For the IAD table the average and worst case number of prefix memory accesses are

74% and 53% better with Bloom filters, while for the PAO table, the same metrics show an

improvement of 71% and 57%.

As for the false accesses, the first number in these columns are the accesses due to the con-

ventional ‘false positive’ effect of Bloom filters. This is when the Bloom filter indicates a false

positive because the indexed bits have been set by other prefixes in the table. The number of

such accesses ranges from 0.2 per lookup for the small CAI table to about 0.6 per lookup for the
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Figure 3.7: Average number of memory accesses for varying Bloom filter scaling
factors and Ptrie values
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Table 3.9: Comparison of E − Ctrieε implementations for all routing tables
in three cases - without Bloom filter, with monolithic Bloom filter and with

pipelined Bloom filter (Ptrie = 2, Bloom filter scaling factor M = 8)

Prefix
Table

trie nodes
total

lookups

Number of Prefix Memory accesses

total prefix
w/o BF monolithic BF pipelined BF

avg max avg max false avg max false

CAI 5820 3001 15910 22.3 32 5.1 14 0.3, 2.7 4.94 14 0.2, 2.6

MAN 20827 6148 31568 20.9 24 2.4 9 0.4, 1.2 2.30 9 0.3, 1.1

LYS 88259 42413 222215 21.8 31 3.6 14 0.3, 2.2 3.56 14 0.4, 2.2

MGM 183709 91534 482084 21.5 30 4.2 14 0.4, 2.8 3.99 13 0.4, 2.6

IAD 540452 359272 1942110 25.6 52 8.4 36 0.4, 6.8 6.62 24 0.4, 5.0

PAO 808183 573555 3144908 32.4 64 15.1 46 0.1, 13.2 9.31 27 0.6, 7.6

large PAO table with pipelined Bloom filters. The second number in the same column is the

number of false positives that occur due to a peculiarity of the Compact-trie. CRC generators

used to compute the Bloom filter indices in a Compact-trie receive at their input a string com-

posed only of the MSBk, Mk and APk information of the key. With large tables, it is possible

that a key being searched may not have a matching prefix, but may have the same MSBk, Mk

and APk as an existing prefix. As a result, the CRC generator will generate the Bloom filter

indices that would result in a match. This is different from the conventional false positive be-

haviour because here the key used to generate the indices itself is matching and there is nothing

in the Bloom filter to filter out this false access. The number of such accesses ranges from 2.6

per lookup for the small table to as high as 7.6 accesses per lookup for the large table with

pipelined Bloom filters.

3.4.3 Circuit simulations for target FPGA

The idea of using Bloom filtering with external memory has already been shown to improve

lookup latency in lookup algorithms that use hash tables and trie structures [27], [28], [30].

While the present work demonstrated through software simulations that a similar benefit could

be achieved by applying Bloom filters to the Compact-trie, to understand if this approach

would lead to different observations if the on-chip memory was used, it was necessary to target

the algorithm for an FPGA.

Verilog prototypes for pipelined E−Ctrieε structures with and without Bloom filters were cre-

ated for the medium-sized LYS and MGM tables on a Xilinx Virtex-7 xc7vx330tffg1157-3 FPGA

using Vivado 2017.1. This device has 204000 LUTs and 750 blocks of 36Kb RAM, which means
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that the large prefix tables could not be accommodated on this device and were, therefore, not

evaluated. In the FPGA design, trie-traversal information RAM, prefix information RAM and

Bloom filter RAM were all implemented using the on-chip 36Kb block-RAMs. All blocks were

fully pipelined, enabling a prefix lookup every clock cycle. A consequence of using on-chip

RAM blocks and a fully pipelined design is that the time required to access the trie traversal

information and the time required to access prefix memory is the same. This means that while

the trie-traversal information is accessed, the prefix information can also be accessed and the

expected benefit of Bloom filtering to improve latency is not really achieved. However, it was

predicted that the reduced activity in prefix information RAMs as a result of Bloom filtering

would lead to power savings, as was observed in the results.

3.4.3.1 Resource utilisation: Monolithic versus Pipelined Bloom Filter

A comparison of the resource utilisation between a single Bloom filter and a pipelined Bloom

filter is shown in Table 3.10. For the pipelined Bloom filter, the table shows both the largest

Bloom filter in the pipeline and also the total size of all Bloom filters, followed in brackets by the

percentage penalty (+ve) or benefit (-ve) of pipelining. It can be seen that for both the smaller

prefix tables (CAI and MAN), the pipelined Bloom filter actually consumes more memory bits

than a single Bloom filter. However, for the medium sized prefix tables and also for the larger

PAO table, the pipelined Bloom filter consumes less memory than the single Bloom filter as

seen in Table 3.10 while performing better as seen in Table 3.9. For the large IAD exchange

table, however, the pipelined Bloom filter is larger than the single Bloom filter. These results

suggest that the memory penalty of a pipelined Bloom filter is as much a function of the prefix

length distribution as the size of the prefix table.

3.4.3.2 Total Resource utilisation and power consumption with pipelined Bloom filters

The resource utilisation and power consumption of the FPGA implementations with and with-

out filtering are detailed in Table 3.11. As expected, it can be seen that the presence of the Bloom

filter increases the logic as well as block RAM utilisation on the device. However, the effect of

Bloom filtering on power consumption within block RAMs and logic is different. While the av-

erage power consumed by the prefix RAM reduces by around 70%, there is now a new Bloom

filter RAM that contributes to the total power consumption. This new component consumes
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Table 3.10: Comparison of memory requirement of monolithic Bloom filter and
pipelined Bloom filter (BF scaling factor M = 8)

Prefix Table
monolithic BF pipelined BF

Total (kb) largest BF (kb) Total (kb)

CAI 32.7 8.1 35.0 ( 6.9%)

MAN 65.5 16.3 67.6 ( 3.3%)

LYS 524.3 131.1 493.9 (-5.8%)

MGM 1048.6 262.1 1013.0 (-3.4%)

IAD 4194.3 524.3 4595.0 ( 9.6%)

PAO 8388.6 524.3 7246.1 (-13.6%)

Table 3.11: Comparison of E − Ctrieε implementation for LYS and MGM tables
with and without Bloom filters

LYS MGM

w/o BF w/ BF w/o BF w/ BF

LUTs
Logic 6951 8527 6774 8406

Mem 2147 3330 1844 2973

Registers 9460 13191 8674 12404

Block RAMs (36 kb) 259.0 284.5 556.0 595.5

Power
(mW)

LUT 79 105 84 119

Prefix RAM 607 140 1068 324

BF RAM - 155 - 178

Total 1723 1531 2774 2487

Max Freq. (MHz) 318 311 307 304

about 17–26% of the power consumed by the original prefix RAM. The actual CRC computa-

tion increases the logic power by about 35–40%. Overall the addition of Bloom filter decreases

the total chip power including signal power, IO power and clock power by around 10–12% and

marginally decreases the overall operating frequency by 1–2%.

3.4.3.3 Power distribution down trie levels and targeted Bloom filtering

Another important effect to be considered when applying Bloom filtering is illustrated in Fig-

ure 3.8, which shows a map of the power consumption in the RAM components at different

stages in the pipelined E −Ctrieε with and without Bloom filters. The results have once again

been presented for the LYS and MGM tables. For the pipelined E − Ctrieε implementation

without a Bloom filter, the power consumed in the prefix information RAM alone is shown.
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While for the implementation with Bloom filters the power consumption in both the prefix

information RAM and the Bloom filter RAM is shown along with the total RAM power con-

sumption. It is observed that for the ‘with Bloom filter’ case, the total power consumption

in the RAMs is greatest in the stages that have the largest Bloom filter. Figure 3.8 also shows

the difference in total power consumption with and without Bloom filters at each level in the

trie. A negative value for the difference means that the total power consumed with Bloom fil-

ters is less than the total power consumed without Bloom filters. For these prefix tables, the

Bloom filter at levels closest to the head node in the trie add a significant power penalty, while

Bloom filters at levels 10–23 result in power savings. Of the existing modified trie traversal

algorithmic approaches, [18] is one of the few that reports the power consumption of their

non-pipelined, simple-pipelined and memory-balanced pipelined implementations. While it

would be inappropriate to compare the numbers directly, since the results have been obtained

with different routing tables, it can be seen that the minimum power consumption reported in

[18] with optimised parameters is ∼ 1000 mW in the simple pipelined case and ∼ 4000 mW for

the memory-balanced pipelined case. The power consumption of the proposed Bloom filtering

approach is also around 2000 mW, which is roughly the same order of magnitude. A direct

comparison is also difficult because [18] has not reported on the frequency of their clock. An

analysis of FPGA hot-spots was also not undertaken and is outside the scope of the thesis

Finally, in light of the energy consumption gradient observed down levels of the trie, a targeted

Bloom filtering approach was explored, where the filters are instantiated only on specific levels

to achieve a better trade-off between performance, power and area. The experiment was set up

with an E−Ctrieε implementation of the MGM exchange table with Bloom filters instantiated

only from levels 11 to 22, which correspond to the power saving levels of Figure 3.8. For all

other stages in the pipelined trie, the prefix information is accessed without filtering. The re-

sults presented in Table. 3.12 show that the LUT, Register and Block RAM sizes are almost the

same as with filtering at all levels (only 4̃% smaller in each case). Additionally, both the block

RAM and total power consumption are significantly lower in the targeted approach compared

with the corresponding figures without Bloom filtering (75% and 25%, respectively) and sim-

ilarly lower compared to the total Bloom filtering case (37% and 16%, respectively). Further,

the resulting small increase in the average number of prefix memory accesses will not affect

the throughput as the system is still able to achieve one lookup per clock cycle because of the

pipelined design.
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Table 3.12: Comparison of an E − Ctrieε implementation for the MGM routing
table in three cases - with targeted Bloom filtering, with total Bloom filtering and

without Bloom filtering

BF instances

none targeted all levels

LUTs
Logic 6774 7921 8406

Mem 1844 2954 2973

Registers 8674 11901 12404

Block RAMs (36 kb) 556.0 579.5 595.5

Power
(mW)

LUT 84 111 119

Prefix RAM 1068 206 324

BF RAM - 106 178

Total 2774 2081 2487
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Summary

This chapter has first provided an enhanced prefix decomposition technique for an existing

algorithm to ensure that the correct next hop information was looked up for incoming IP pack-

ets in all IPv4 routing tables. Comprehensive software simulations show that the Enhanced

Compact-trie with epsilon links (E − Ctrieε) performs significantly better than a binary trie

implementation. A Modelsim simulation for the target FPGA with real IPv4 routing tables

achieves a throughput of ∼300 million lookups per second while requiring on an average the

same number of prefix match stages as a binary trie implementation.

The performance of the trie search algorithm was further improved by the addition of Bloom

filtering. Software simulations demonstrate that an appropriately sized filter reduces worst

case memory accesses to prefix storage RAM by about 50-60% and the average access rate by

almost 80% in some routing tables. If it is assumed that prefix storage is in external mem-

ory, then the experiments presented here suggest that the application of Bloom filters to the

Compact-trie could result in an improvement in latency.

The specific implementation of the algorithm with Bloom filtering on FPGA, however, assumed

on-chip storage only and so latency improvements were not available. However, in cases where

the prefix information is compact enough to be stored on-chip, a pipelined Bloom filter can lead

to useful power savings. An important observation from the experiments is that power saving

with Bloom filters is not uniform down the trie. A targeted Bloom filtering approach can be

used to further reduce power consumption while using fewer on-chip resources and without

affecting lookup performance.

It is essential to evaluate if an NCL implementation of the Compact-trie demonstrates a sim-

ilar improvement in power consumption after the addition of a Bloom filter. While the final

NCL design evaluation is discussed in Chapter 6, the next chapter discusses the latency ver-

sus throughput tradeoff in NCL circuits and proposes a small number of modified NCL circuit

designs to improve throughput.

It doesn’t stop being magic just because you know how it works.

Terry Pratchett, The Wee Free Men
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Chapter 4

Bloom Filters and Hashing Functions

Since its invention almost 50 years ago, the Bloom filter has been applied to a wide variety

of memory intensive processes, from advanced cache controllers to search algorithms for ex-

tremely large databases. As outlined in Chapter 2, this probabilistic data structure has an im-

portant characteristic that makes it particularly useful in IP address lookups: false positive

matches are possible, but false negatives are extremely unlikely. As a result, it can be used to

greatly reduce the number of lookups required compared to a system that does not use them

while eliminating the risk of missing an address that is actually present.

This chapter describes specifics of the NCL implementation of hashing algorithms used in

Bloom filters for address lookup in IP routers. The algorithms are first evaluated for their ap-

propriateness to an NCL implementation, and the latency, throughput and energy performance

of the NCL designs are contrasted against equivalent metrics obtained for Boolean circuits. The

effect of pipelining on the latency and cycle time of specific blocks within the NCL design has

also been explained.

NCL systems, in common with all other asynchronous logic systems, do not require low-skew,

high performance, high-power clock trees. However, they do have the local Completion Detec-

tion (CD) tree structures that generated the signals required for handshaking. The throughput

of NCL systems is thus dependent not only on the delay of the forward path but also on the de-

lay of these Completion Detection circuits in the reverse path. The CD circuits span the width

of the data path and can result in extremely large fan-in, path delays and occupy a large area

on the die. Going by the guiding principle of not just applying ‘asynchronous techniques’ to

synchronous designs, optimisations to the completion detection circuits are also explored and

evaluated in this chapter.
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4.1 Hash function implementation

The focus of the present work is the lookup of 32-bit IPv4 destination addresses and therefore

only 32-bit truncated versions of all mathematical operations are implemented1. It is assumed

that the hash values index into a 1024-location Bloom filter. The hash output, therefore, needs

to be 10 bits long. Hashes used in Bloom filters should be able to generate multiple hash values

from the same key value. Kirsch et al. [106] has shown that if there exists a set of hash val-

ues, generated using a class of hash functions; newer hash values can be generated by specific

mathematical and logical operations on these hash values or by selecting subsets of a single

hash value without having to design multiple function generators. Interestingly, the three hash

generators considered here (Jenkins, Murmur and CRC32) already have the ability to generate

multiple hash values from the same key with different seeds, without needing a new generator

implementation.

Taking into consideration arguments based on the available literature, it became clear that the

CRC32 hash has an acceptable hashing performance, its latency and area utilisation is appro-

priate, and its avalanche behaviour may be sufficient for the particular application studied

in this thesis. However, it was also considered possible that an NCL implementation of the

Jenkins and Murmur hash might throw up some unexpected results with regards to the circuit

operation and timing characteristics and so, along with the CRC32 hash, these were also imple-

mented in Null Convention Logic and their cycle time and latency measured and compared.

Boolean and NCL circuits were designed for the individual building blocks in the hashes and

assembled to build the complete hash function. The XOR function is relatively simple to im-

plement while hardware rotate and shift functions involve only a reordering of the nets. The

adder used in the designs has a Kogge-Stone architecture. The multiplier, however, is the most

complex block and has the greatest latency. The multiplier consists of a Booth partial product

generator, Wallace-Tree adder and a Kogge-Stone adder. The Wallace-tree adder is truncated

at 32 bits, which reduces its complexity and latency, as the number of compressor stages is re-

duced [42]. Three different pipelined versions of the multiplier were designed to control the

1While IPv6 is outside the scope of the work, it is possible to make some specific observations about the Jenkins,
Murmur and serial CRC32 algorithms. Hashing an IPv6 address would involve feeding in the 128-bit IP address
in 32-bit chunks, increasing the latency to 4× the latency of the IPv4 implementation. For the parallel CRC32
implementation the latency would be the same for IPv4 and IPv6. However, an implementation of the latter would
need a significantly larger area as the XOR operations performed at each stage of the CRC32 shift register would
now have a greater number of inputs. However, the overall organisation of the architecture will remain the same.
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cycle time in the final design. One of the versions had no internal registers but only had the

input and output registration stages. Another version was the coarse-pipelined multiplier that

had, in addition to the registers at the input and output, registers after the Booth encoder, Wal-

lace tree adder and the Kogge-Stone adder. The final version was the fine-pipelined multiplier

that had registration stages inside the adders and partial product generators. The multiplier

served as a useful test system for evaluating the effect of pipelining granularity on the cycle

time and latency of NCL circuits.

Figure 4.1 is a block diagram of the Murmur hash engine implemented as an NCL pipeline.

The block diagram shows a registration stage after each complex block such as a multiplier or

an adder. The XOR and rotate functions are not registered individually. Registration stages are

instead added after a combination of two or three such low latency stages. This helps main-

tain uniform cycle time. The multiplier used in the final design is the non-pipelined multiplier.

The Jenkins hash engine has a structure very similar to the Murmur hash engine, but it uses

only addition, XOR, rotate and shift operations. The Jenkins hash can, therefore, be expected

to be faster than the Murmur hash due to the absence of the multiplication operation. A block

diagram of the Jenkins hash is shown in Figure 4.2 while a block diagram of a serial implemen-

tation of the CRC32 hash algorithm is shown in Figure 4.3. Of course, one problem with the

serial implementation is that the 32 bits of the IP address (key) have to be fed in serially and

would, therefore, need 32 Data and Null wavefronts to pass through before the CRC32 value is

obtained. In the final design, the CRC32 is instead generated using a parallel implementation

of the CRC32 polynomial as in [107].

The ‘auto-produce’ and ‘auto-consume’ modules are important components of the NCL test

infrastructure that were also developed for these designs. While the basic concept has been

explained by Fant [38], the idea has been extended here so that it generates multi-bit wide

pseudo-random Data and Null wavefronts to the DUT. The auto-produce block is important

because it generates and makes test vectors available to the ‘Device Under Test’ (DUT) as soon

as the technology and operating conditions will allow. This functionality is achieved by de-

signing a multi-bit NCL shift register/memory that is loaded with a sequence of Data and Null

vectors through a separate data port immediately after reset as part of the initialisation process.

The ports used to load the test vectors are seen on the top left side of the block in Fig. 4.4. While

the test vectors are being loaded, the DUT is kept under reset. Once the test vectors have been
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Figure 4.4: Test setup for measuring latency and throughput of an NCL design

loaded, the DUT is taken out of reset. Since the DUT is initialised to an all Null condition, the

moment it comes out of reset it requests a Data value from the test bench. The auto-produce

block in the test bench is ready to supply this value with negligible latency. The Data wavefront

is processed within the DUT, and after it passes the first registration stage, the Null request is

generated for the Test bench, which is also supplied immediately. This sequence of Data and

Null wavefronts then flow continuously and automatically without requiring any additional

inputs from the test bench.

The auto-produce block on its own is, however, not enough to achieve a self-timed operation.

Unless a Data value is being requested at the output of the DUT the wavefront produced by

the auto-produce block will not be pulled through the input ports. For this reason, an ‘auto-

consume’ block that tests for output Data completeness and generates the appropriate request

signals for the DUT is needed. The auto-produce and auto-consume blocks together ensure that
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the flow of Data and Null wavefronts in the NCL pipeline are self-timed and not synchronised

to an external signal (e.g., a test clock), as is the case in synchronous test benches.

4.2 Hash function - performance evaluation

For the purpose of this study, all three hash functions were coded as behavioural NCL in a pro-

prietary Hardware Description Language known as “NELL”, and translated using a synthesis

tool into structural Verilog netlist instantiating components from a library of NCL threshold

gates. Both the HDL and the synthesis tool were provided by Wave Semiconductor [108]. The

threshold gate circuits were themselves designed in-house (not by the author) in Cadence Vir-

tuoso using a 1V, 28nm ultra-thin body and BOX silicon-on-insulator (UTBB-SOI) process [109].

Synchronous implementations were also created in Verilog and translated using Cadence RTL

Compiler R©and synthesised using the digital standard cell library from the same UTBB-SOI

process kit to enable a comparison of the performance of the NCL circuits with their Boolean

counterparts. The netlists were then imported into Cadence Virtuoso R©and simulated using

Cadence UltraSim R©at 0 ◦C, 27 ◦C and 85 ◦C. The absolute cycle times and latencies of the NCL

and Boolean implementations were then measured. In the NCL implementation, the DUT is

initialised to the Null state immediately after reset and is fed test vectors from the auto-produce

block in the test bench. The test vectors are 32-bit pseudo-random values.

Figure 4.5 shows a comparison of the spread of cycle times for the Jenkins and Murmur hash

engines at 0 ◦C and 85 ◦C and two different process corners. It can be seen that cycle times vary

between a maximum and minimum value for different input vectors and also vary for the Data

and the Null wavefronts. It is also clear that for the Jenkins hash engine, the cycle times are dis-

tributed uniformly around a mean value, and the spread of the Data wavefront is higher than

the spread of the Null wavefront. For the Murmur hash engine, the cycle times for the Data

wavefronts are clustered towards the left (shorter cycle times), and the spread has a long tail to

the right (longer times). This behaviour is due to the presence of the multiplier stages followed

by the XOR and rotate stages in the Murmur hash. The multiplier stages exhibit extended cy-

cle times for some input vectors, whereas the XOR and rotate stages have a much smaller and

uniform cycle time for all input vectors. It is also clear that the cycle times of all three engines

are dependent on the operating condition. The ‘fast 0C’ timing model results in a smaller cy-

cle time for both the Data and Null wavefronts than the ‘slow 85C’ timing model. It is to be
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expected that the cycle times for typical operating conditions would lie between these two ex-

tremes and the throughput of the system is ‘self-regulated’. This is in contrast to synchronous

systems, where the operating condition that results in the worst case timing as obtained by

static timing analysis would dictate the maximum allowable clock frequency. The CRC32 im-

plementation while demonstrating different cycle times at the different operating conditions,

did not the kind of spread demonstrated by the Jenkins and Murmur hash implementations

because of the relatively simpler structure.

An important consideration in the cycle time and latency of NCL circuits is the number of

pipeline stages in the design. This idea can be explained better by observing the behaviour of a

single multiplier in the circuit as shown in the wave propagation in Figure 4.6. In this case, as

the number of pipeline stages in the multiplier is increased, the forward delay increases only

slightly by an amount equal to the delay of the additional registration stage. However, the total

cycle time reduces significantly. The latency and cycle times for each of the three pipelining

cases have been plotted in Fig. 4.6. It can be seen for the non-pipelined cases, that the latency

is extremely low, but the cycle times are high. Interestingly in the case of a fully-pipelined

design, the cycle times have improved, but the degradation in latency is small. Latency and

cycle times for the coarsely pipelined design sit somewhere in between these two extremes.

A comparison of the latency and cycle times for the non-pipelined and fully-pipelined designs

also suggests that in NCL systems with wide data paths, the delay in the reverse (acknowledge)

path is comparable to the delay in the forward paths. The completion detection network is the

only logical component in the reverse path and therefore improving its performance presents

an opportunity to improve the throughput of the overall system.

In the fully pipelined multiplier design, which includes 15 pipelining stages the cycle time

is half of the non-pipelined design, equivalent to a doubling of the throughput. However,

the latency increases to only ∼1.4 times the cycle time (i.e., 2.26 ns in this case). This can be

compared with a clocked Boolean system, where the addition of 15 pipelining stages would

increase the latency to 15 times the clock period. If we assume the Boolean system to work

with a clock period of 1.6ns, i.e a throughput of ∼610 Mops/sec, it would have a latency of

approximately 25 ns, an order of magnitude larger than the asynchronous case.

When comparing the behaviour of the complete hashing algorithms, it is to be expected that

both the Jenkins and the Murmur hash implementations will behave in an almost identical
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(c) fine pipelining

Figure 4.6: Latency and cycle time of a 32-bit Booth Wallace multiplier for three
different pipelining conditions
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Table 4.1: Comparison of NCL implementation of Jenkins and CRC32 hash

Hash cycle time(ns) latency peak supply
current (mA)

size

Jenkins 3.1 5.2 11.9 42549

CRC32 2.3 0.8 5.7 11545

manner as their structures are similar. Because the Jenkins hash implementation has a better

average cycle time and latency, it was chosen for further evaluation below. A comparison of

the Boolean and NCL implementations of the Jenkins hash is shown in Figure 4.7. Under sim-

ilar operating conditions and for similar throughput targets, the latencies of the NCL circuits

are much smaller than those of the Boolean circuits. It is seen that for the same average cy-

cle time of approximately 3.2 ns, the NCL implementation has a latency of just over 5.1 ns ,

while the synchronous latency is 25.6 ns, made up of eight pipeline stages of 3.2 ns each. The

latency of the NCL implementation is thus almost a fifth that of the equivalent synchronous

implementation (∼5.4 ns vs ∼25.6 ns).

A comparison of the supply current drawn by the synchronous and NCL implementations is

presented in Figure 4.8. It is interesting to note that the peak supply current for the synchronous

design is almost 18 times the peak supply current of the NCL design. This is because in an NCL

system different sections of the circuit are switching at different times, unlike a synchronous

system in which all gates toggle in response to the clock edge. This is a significant advantage

of the NCL approach and implies that an NCL design would not require the large decoupling

capacitors that are typically needed in synchronous systems.

Table 4.1 then shows the average cycle times and supply current in NCL implementations at

27 ◦C for the Jenkins and CRC32 hash implementations. The sizes of the two hash implemen-

tations measured as a multiple of the area of an NCL TH22 gate are also mentioned. It can be

seen that the CRC32 has a 25% better cycle time, a 52% better peak supply current and almost

a quarter of the area of a Jenkins hash implementation, suggesting that for the final implemen-

tation, using a CRC32 hash for computing Bloom filter indices may be advantageous.

The following sections present a discussion on the enhancements made to the threshold gate

designs and completion detection circuits to improve the system performance.
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(a) synchronous implementation

(b) asynchronous implementation

Figure 4.8: Jenkins hash - supply current drawn during hash computation
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4.3 Completion Detection circuits - architecture

4.3.1 Conventional Completion Detection circuits with NCL gates (CoCD)

NCL systems essentially comprise multi-bit data paths made up of combinational functions

and registers built using NCL gates. For the sustained flow of data through the pipeline, the

inputs of the combinational logic block have to monotonically transition from the complete

Null state to complete Data state and back. These transitions are known as wavefronts, and

their flow from input to output is controlled by the acknowledge signals that flow between

NCL registers in the reverse direction. An NCL pipeline register is a bank of TH22 gates span-

ning the data path that allows a Data or Null value at the input to flow out based on the Data

or Null request received from downstream registers. This bank of gates is followed by a Com-

pletion Detection (CD) circuit. The CD circuit, as its name suggests, detects whether all the

outputs are in the “complete Data” or “complete Null” state and denotes this through a single-

rail acknowledge signal. The acknowledge signal is inverted and fed as a Null or Data request

into the upstream registers. In this way, the registers enclose NCL combinational functions in a

so-called logical determination boundary. For lightly pipelined systems with large combinational

functions and narrow data paths, the CD circuit delays are insignificant. However, as the data

path widths increase and systems are heavily pipelined to improve throughput, the delays of

these circuits may be comparable to combinational path delays.

A conventional completion detection (CoCD) circuit comprises an array of TH12 gates followed

by stages of cascaded TH44 and TH22 gates. The number of stages is determined by the width

of the data path. For example, a CoCD circuit on a 32-bit data path requires a total of 32 TH12

gates (Fig. 4.9b) to generate 32 completion signals, followed by two stages comprising eight

and two TH44 gates respectively that reduce it down to two signals. These two signals are then

combined in the final TH22 gate to produce a single rail acknowledge signal.

Fig. 4.9a shows the schematic of an NCL TH44 gate used in the conventional completion de-

tection circuit. The gate has five sections - Drive 1 (Data) Drive 0 (Null), Hold 1 (Data), Hold

0 (Null) and an inverter. The inverter stage is necessary to generate outputs in phase with the

input, i.e. if the inputs are in the Null state, the output also need to be in the Null state, and if

the ‘threshold’ number of inputs are in the Data state, the output should be in the Data state.

In an NCL circuit, these in-phase outputs are necessary, when they have to be fanned out to
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Figure 4.9: (a) Conventional TH44 gate schematic (b) Completion detection cir-
cuit using conventional THxx gates
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other combinational blocks. However, in a completion detection circuit, the outputs of the first

stage are only being fed to the next stage, and the outputs of the next stage are fed to the third

stage till a single rail acknowledge signal is generated. It is only at the output of the completion

detection circuit that the output needs to be in phase with the input. If it is ensured that the

completion detection circuit as a whole meets the “completeness of input” and “observability”

criteria[38], then the individual NCL gates may be redesigned with outputs, not in phase with

the inputs. This work presents two enhanced architectures for completion detection circuits for

32-bit dual-rail pipelines that explore this idea. The emphasis being on reducing the area, and

energy consumption of the circuit, while maintaining throughput performance.

4.3.2 Completion Detection with complementary gates and external feedback (CD-

CG)

The proposed completion detection circuit will make use of ‘complementary’ TH12, TH22 and

TH44 gates to achieve the required functionality. These ‘complementary’ gates do not have

the final inverter normally present in conventional THxx gates. As a result, they generate a

Null output when the required number of inputs as specified by the threshold condition are

in the Data state, and they generate a Data output when all the inputs transition to a Null.

This modification to the gate operation, however, implies that the output of the gate cannot

be fed back to the hysteresis transistor shown in red in Figure 4.9a. Instead, the hysteresis

(state holding) behaviour for the TH44 gate with ‘complementary’ output (TH44Co) has to be

achieved through an additional input (ZNIN) as shown in the schematic of Figure 4.10a. This

input needs to be driven by a signal capable of maintaining the correct phase relation inside

each gate. When referring to the outputs of these gates, we will refer to the in-phase output as

conventional output and the out-of-phase output as complementary output. The gate symbol

for the complementary gates is drawn with a bubble on its output to signify the inverted phase

of the output and a separate ZNIN port as shown in Figure 4.10b.

The input and output waveforms of a complementary output TH44 gates are shown in Fig.

4.11. In the waveforms, a ‘high’ value indicates the Data state, while a ‘low’ value indicates the

Null state and the behaviour of the gate may be explained as follows.

1. At time ‘t0’, all inputs except B and the state holding input ZNIN are in the Null state.

The output is therefore pulled down through the Hold ‘1’ part of the circuit and remains

at Null
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Figure 4.11: Input and output waveforms for the Complementary TH44 gate

2. At time ‘t1’, all inputs are now in the Null state. And though ZNIN is still high, the Drive

‘0’ section of the circuit pulls up the ZOUT line to a ‘high’ (Data) value.

3. At time ‘t2’, two of the inputs have transitioned to the Data state. However, the output

ZOUT remains in the Data state.

4. It is only at time ‘t3’ when all inputs are in the Data state that the output transitions to the

Null state.

5. At time ‘t4’ the Data value on the ZNIN input maintains the output at Null because input

D is still in the Data state. This is similar to the behaviour at time ‘t0’.

6. Finally at time ‘t5’, when all inputs have again transitioned to the Null state, the output

goes up to the Data state.

Moreira et al. [110] recently proposed an NCL+ gate, which is similar to the complementary

gate idea described here. The objective of NCL+ gates is to simplify NCL design akin to what

is being attempted here and to allow conventional synthesis tools to be able to handle NCL

behavioural code.

The circuit diagram of completion detection with complementary output gates is similar to the

conventional completion detection circuit, except for the external feedback paths through the
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circuit to drive the correct phases into the hysteresis transistors. Thus a Data-complete at the

input of the CD-CG circuit generates the following signals in the downstream stages: a Null-

complete at the TH12 stage, a Data-complete at the first TH44 stage, a Null-complete at the

second Th44 stage and finally a Data-complete at the last TH22 stage. The final TH22 gate needs

to generate both the inverted and non-inverted value of the output. The complementary output

is fed back to the second TH44 stage and is also the final Completion Detection signal. The

regular output is fed back to the first TH44 stage. For a data path width N , this integrated CD

circuit has log2(N)− 1 fewer inverter stages, potentially resulting in a smaller area and higher

throughput performance. The completion detection circuit using complementary output gates

is shown in Figure. 4.10c

4.3.3 Completion Detection with Complementary Smith-gates and external feed-

back (CD-CSG)

In [111], Parsan and Smith proposed a static gate architecture that merges the “Drive” and

“Hold” sections of a gate into a single circuit to improve the delay characteristic and area.

Gates that follow this architecture shall be referred to as Smith-gates in the rest of this work. A

somewhat similar idea of merging sections of completion detection circuits for QDI PCHB de-

signs was proposed by Ho et al. [112]. In the original design of [111], the switching impedances

for the various inputs in a TH44 gate are not uniform, and therefore the delay performance de-

pends on the order in which the inputs transition to the all-Data or all-Null state. Additionally,

no attempt was made to balance the propagation delays in the rise and fall directions. The

modification proposed here borrows the idea of the merged drive and hold circuits, but re-

designs the two arms of the pull-up and pull-down networks, so that the impedances in each

of the arms is uniform. The inverter stages have also been removed, and finally, four TH12 and

one TH44 have been merged into a single structure to generate a completion signal spanning 4

dual-rail signals (THC4D). These modified Smith gates all have a complementary output and a

ZNIN port to feed the correct phase of the completion signal to the hysteresis transistors. Fig.

4.12a shows the schematic of the THC4D gate and Fig. 4.12c shows the completion detection

circuit built using the complementary Smith gates.

4.4 Completion detection circuits - performance evaluation
The performance of the proposed completion detection circuits is evaluated in Cadence Virtuoso R©

using the same 1V, 28nm ultra-thin body and BOX silicon-on-insulator (UTBB-SOI) process kit
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Figure 4.12: (a) THC4D gate schematic (b) THC4D gate symbol (c) Completion
detection circuit using complementary Smith gates (CD-CSG)



4.4. Completion detection circuits - performance evaluation 93

from ST Microelectronics mentioned previously. Schematics for all three gate styles were cre-

ated, and the gates were then assembled into the completion detection circuits so that latency

and throughput performance could be evaluated. Note that the CD-CSG gate has a stack of 8

PMOS transistors. Such a tall stack while prohibitive in bulk CMOS technology is possible in

UTBB-FDSOI as the substrate bias effect that prevents it in bulk CMOS does not exist in fully

depleted SOI. The average propagation delays were estimated using Cadence UltraSim R© simu-

lations at 27 ◦C. Simulations were also performed at 0 ◦C and 75 ◦C and over a range of voltages

between 0.7V and 1.2V. The proposed completion detection circuits were observed to operate

correctly over the full voltage and temperature ranges outlined above. Each of the individ-

ual gates was also laid out using Cadence Virtuoso Layout-XL R© to create standard cells. The

layouts of the TH44 complementary gate and the THC4D gate are shown in Figures 4.13a and

4.14a. The total area of the complete circuit was then obtained by running a trial Place and Route

through Cadence Encounter Digital Implementation R© (EDI) using these standard cells. Tool

(license) limitations did not allow extraction and back-annotation of electrical characteristics of

the EDI layouts into circuit simulations.

A target propagation delay of approximately 240 ps was set and the transistor sizes (width/length)

adjusted to achieve the target for both the Null-Data and Data-Null transitions to achieve a fair

comparison between the three styles. Energy per operation and peak supply current measure-

ments, as well as actual propagation delays for all three circuits, were obtained through circuit

level simulation. The comparison results are presented in Table 4.2. The percentage improve-

ment for CD-CDG and CD-CSG over the original CoCD circuit have been specified in brackets

next to the absolute values. It can be seen that both the CD-CG and CD-CSG circuits occupy

a smaller area than the original CoCD circuit and also have a lower energy consumption per

operation. The area of the CD-CSG circuit is smaller than the CoCD circuit even though the

number of transistors is higher, because of the careful sizing of the transistors in the THC4D

gate. It may also be noticed from the circuit diagrams and the layouts that the circuits of the

individual CD-CG gates are simpler and smaller than those of the CD-CSG gates. The CD-CSG

gates are much more complex, and the presence of the ZNIN-fed hysteresis gates between the

two arms make them harder to lay out within the strict height restrictions of standard cells.

However, the energy-delay product of the CD-CG circuits is higher than the CD-CSG circuit.

An interesting characteristic of the proposed circuit styles is the peak current drawn by these

circuits. In a conventional completion detection circuit, because the outputs of all the gates
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Table 4.2: Comparison of proposed completion detection circuit architectures
against conventional architecture with transistors sized for a fixed delay value

of ∼230 ps

CoCD CD-CG CD-CSG

Delay (ps) 230 237 (-3.04) 221 (3.91)

Transistor Count 404 320 (20.7) 420 (-3.96)

Area (µm2) 67.2 50.4 (25.0) 46.8 (30.3)

Energy per operation (fJ) 200 130 (35.0) 100 (50.0)

Peak supply current (mA) 2.15 0.58 (73.0) 0.54 (74.8)

are in phase, the dynamic current waveform exhibits significant peaks. On the other hand

in the CD-CG and CD-CSG circuits, the outputs are allowed to transition out of phase from

the inputs, and therefore the peak currents are much smaller. Fig. 4.15 shows the supply

current waveform for one Null-Data-Null cycle of the input for all three CD circuit designs. It

is observed that the peak supply current drawn in CD-CG and CD-CSG circuits is ∼75% lower

than that measured in conventional completion detection circuits. This results in significant

savings (∼35% and ∼50% respectively) per completion detection operation in both the CD-CG

and CD-CSG circuits. Fig. 4.15 illustrates the improvement observed in CD-CG and CD-CSG

circuits over the conventional design with respect to peak current consumption.



4.4. Completion detection circuits - performance evaluation 97

21 22 23 24
time (ns)

−2.0

−1.5

−1.0

−0.5

0.0

su
p
p
l 
 c
u
rr
e
n
t 
(m

A
)

min = -2.07 mA

min = -0.57 mA min = -0.50 mA

CoCD

CDCG

CDCSG

0

1

in
p
u
t 

si
g
n
a
l

Figure 4.15: Supply current drawn by the three completion detection circuits dur-
ing the Data-to-Null and Null-to-Data transitions at the input
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Summary

This chapter has discussed the background work and infrastructure development that was

undertaken before tackling the main problem of packet lookup in IP routers. Three hashing

algorithms were analysed for their suitability to NCL implementations. The appropriateness of

the hash functions themselves in terms of their uniform distribution and avalanche behaviour

was not evaluated as part of this work, and instead, the existing literature was relied upon.

A comparison of the NCL implementations of Jenkins and Murmur hash demonstrated how

cycle times vary over a range of values with changing inputs. The experiments also demon-

strated that NCL demonstrates a robustness in the face of Process and Temperature variations

and that NCL circuits work correctly without requiring any additional timing constraints. A

comparison of Boolean and NCL implementations of the Jenkins hash algorithm then showed

that for a given throughput, the latency of the NCL implementation is almost 1/5th that of the

equivalent synchronous implementation (5.4ns vs 25.6ns). Finally, it was seen that a CRC32 im-

plementation was better than a Jenkins or Murmur hash implementation in terms of the cycle

time, peak supply current as well as area.

Experiments undertaken on hashing algorithm implementations also led to the identification

of one of the primary bottlenecks in NCL data paths - completion detection circuits. Two op-

timised completion detection circuits, Completion Detection with Complementary gates (CD-

CG) and Completion Detection with Complementary Smith Gates (CD-CSG) were proposed.

The performance of these circuits was evaluated, and it was observed that both the CD-CG and

CD-CSG circuits demonstrated an improvement in area (25% and 30%) and energy/operation

(35% and 50%) over conventional completion detection circuits. The Complementary Smith

Gates, however, have a complex circuit as well as layout. It is concluded that the CD-CG

circuits with their right balance of energy saving and design and layout complexity are appro-

priate for use in complex circuits needed for the address lookup operations.

Absorb what is useful, reject what is useless, but most importantly add what is

specifically your own.

Bruce Lee
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Chapter 5

NCL SRAM with early completion

detection and Null-storage column

An important class of destination address lookup algorithms encompasses those based on a

trie or tree data structure. These algorithms rely implicitly on the availability of numerous

and fast SRAMs to achieve throughput comparable to alternative approaches based on costly,

power-hungry but fast TCAMs. While these SRAMs have traditionally been external to the

chip performing the actual computation, it is possible to place most of the packet forwarding

information for small, medium and even for some large routing tables within on-chip memory.

Only the actual packet data is so large it still needs to be stored off-chip in external SRAM.

In this chapter, a static RAM organisation is proposed and analysed that works in a manner

similar to other NCL circuits, in that it executes the read or write operation only when all the

inputs signals are in the complete Data state, and it holds the output in the Data state, till all

inputs transition to the Null state. The proposed RAM can, therefore, be instantiated wherever

a storage element is required. It also does not require any complex interfaces to transform NCL

to Boolean logic and vice versa. The addition of the early completion detection and the special

Null-storage column results in a small cycle time and low energy consumption when address

locations containing Null values are accessed.
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Figure 5.1: Circuit diagram of the 6-Transistor SRAM cell and organisation of the
SRAM cell array

5.1 NCL SRAM32x16 unit

The NCL compatible RAM cell is based on the conventional 6-transistor (6T) cell widely used in

existing SRAMs, comprising the 6T cross-coupled storage elements and bit-line access transis-

tors enabled by the decoded word line (WL) signal. These cells are organised into fundamental

units of 32 words x 16 bits (SRAM32x16), which include precharge and bit-line driver circuits,

out of which larger more complex SRAM structures can be built. The 6-transistor SRAM cell

and the SRAM cell array is shown in Figure 5.1. The number of 6T cells required in an NCL

SRAM is the same as that required in conventional Boolean SRAMs. This is because the com-

plementary bit lines in the 6T cell serve as the ’zero’ and ’one’ rails of an NCL variable.

Two important enhancements are proposed to this conventional SRAM structure:

1. Read and Write completion detection;

2. a Null-storage column.

Both these are described in detail in the following sub-sections.
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Figure 5.2: Block diagram of the 32 words x 16 bits SRAM unit

5.1.1 Read and Write completion detection

An important requirement for an NCL RAM is the ability to handle requests for Null and Data

wave-fronts from downstream elements and generate the appropriate acknowledge signals to-

wards the upstream elements in the pipeline. The SRAM must, therefore, be capable of detect-

ing when the read and write cycles are completed. In this work, instead of using a combined

read/write controller for each bit, as for example in [90], the read and write circuits have been

separated. This is based on the observation that during a write operation the cycle ends when

the data is written into the SRAM cell so that write completion can be detected at the cell or

unit level. On the other hand, a read operation cycle is complete only when data is read from

the cell and, if necessary, multiplexed with the output data from other SRAM32x16 units in the

bank. Thus the read completion circuit for an SRAM bank has to encompass the whole depth

and width of the bank and not just the individual SRAM32x16 units and is therefore external to

the units. In fact, the read completion circuit is similar to the regular completion detection cir-

cuits that are discussed in Chapter 4. For this reason, the write and read completion detection

systems can be developed and optimised separately.
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An architectural block diagram of an SRAM32x16 unit with the write completion detection

circuit is shown in Fig. 5.2. If x denotes the bit number in the word, DIN0[x] and DIN1[x]

are the ‘zero’ and ‘one’ rail of one bit of the input word. These input rails are passed through

inverters to generate signals DIN0n[x] and DIN1n[x] that are fed to the write driver block.

While there are many possible designs for the write driver, the circuit proposed by Dama et al.

[89] was found suitable for the proposed design. BL0n[x] and BL1n[x] are the internal ‘zero’

and ‘one’ bit lines for column ‘n’. When neither a read or write operation is active, these lines

are pulled up by the precharge circuit and thus are active low. During an SRAM access, these bit

lines may be driven either by the write driver during a write cycle or by the SRAM cell array

during a read cycle. The BL(0/1)n[x] are therefore also the outputs of the SRAM unit. The

SRAM32x16 units are generally not used in isolation, but a number of these units are combined

to build wider and deeper SRAM blocks. It is at the output of these combined structures that

the active low data outputs are merged and the levels inverted to enable the downstream NCL

blocks to receive the correct logical values.

The write completion detection circuits, shown in Fig. 5.3 are placed one per column within

the SRAM cell array. These circuits operate on the active low BL0/1n and DIN0/1n signals

and produce two active high outputs WRCMPLT and WRINCMPLT. Table 5.1 gives the truth

table for the write completion detection circuit. It can be seen that the WRCMPLT signal is not

simply the inverse of the WRINCMPLT signal, and both the signals are necessary for the correct

operation of the SRAM. The situation when both BL1n and BL0n are ‘zero’ is considered illegal,

whereas when both these signals are ‘one’ means the write data is not available and therefore

WRINCMPLT and WRCMPLT are both ‘zero’.

The case where either of DIN0n and DIN1n is low indicates that the SRAM is in its write

cycle. In the write cycle, the WRINCMPLT signal goes high when either DIN0n 6= BL0n or

DIN1n 6= BL1n, while the WRCMPLT signal high when both DIN0n = BL0n and DIN1n =

BL1n. A careful analysis of the circuit shows that there will be periods when the BL0n and

BL1n are transitioning from their old values to their new values when both WRCMPLT and

WRINCMPLT may be high. However, this period is extremely short and once the bit lines

transition to the new value, the WRINCMPLT signal would go low. The WRCMPLT outputs of

the write completion detection circuit for all columns are combined using a bank of THxx gates

(e.g., TH12, TH14) to generate the final write complete signal for the SRAM32x16 unit.
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Figure 5.3: Schematic of the circuits generating the WRCMPLT and WRINCMPLT
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Table 5.1: Truth table for write completion detection circuit

Inputs Outputs
Comments

DIN0n BL0n DIN1n BL1n WRCMPLT WRINCMPLT

0 0 1 1 1 0 Write is complete

1 1 0 0 1 0 Write is complete

0 1 1 0 0 1 Write initiated.

1 0 0 1 0 1 Write initiated.

0 x 0 0 - - Illegal inputs

1 x 1 x 0 0 write inputs unavail-
able. WRCMPLT and
WRINCMPLT at Null

Any other input
combination

inputs transitioning. Write in progress

As mentioned above, the read completion detection circuit is not included in the SRAM32x16

unit. The read completion signal is generated after the outputs of all the individual units in a

bank are multiplexed and inverted.

5.1.2 SRAM unit with NULL storage

The second proposed enhancement to the SRAM is the addition of a Null storage column that

stores a single bit Null flag (WNULL) per word indicating whether the word contains a Null

value (WNULL = 1) or a valid Data value (WNULL = 0). This idea was somewhat inspired

by the cache ‘dirty-bit’ concept, which flags whether the corresponding block of memory has
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Figure 5.4: Architecture block diagram of the SRAM unit (32 words x 16 bits) with
a Null storage column

been modified and therefore requires further action before replacement. Although it imposes

a small overhead on the memory system, the operation of this Null flag may result in shorter,

more energy efficient read and write cycles in certain scenarios and can result in an overall

reduction of the latency and cycle times in the address lookup function.

The architectural block diagram of the SRAM32x16 unit with the Null storage column is shown

in Figure 5.4. DNIN is the input port of the Null storage column and DNIN0 and DNIN1 are

the ‘zero’ and ‘one’ input rails of this input variable. A high value on DNIN0 indicates that

the ‘Word is not Null’ (WNULL = 0), while a high value on DNIN1 indicates a ‘Word is Null’

condition (WNULL = 1). DNIN0n and DNIN1n are the inverted versions of DIN0 and DNIN1

and are the inputs to the Null column write driver block. The outputs of the write driver block

are the inverted bit lines BLN0n and BLN1n connected to the 6-transistor storage elements in

the Null storage column. When the WL input for an address in the SRAM unit is asserted,

the corresponding WNULL bit is checked first and used to gate the WL signal to the SRAM

cell array. This ensures that during the read and write operations, unnecessary accesses to the

main array are avoided, thereby reducing the energy consumption of those operations.
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An essential difference between the SRAM cell array and the SRAM Null storage column is the

drive strength of the 6T cells and the write driver. Because the output of the Null column is

used to gate the address line towards the 6T cell array and the write drivers, the transistors need

to have a higher drive strength. However, it is only the BLN0n bit line that has the additional

load and so additional buffers are needed along the BLN0n line to be able to drive the long

line of the ‘address gate’ circuitry. In contrast, the BLN1n line only has the read completion

detection circuit and the external read data multiplexer as its load, so it does not require these

additional buffer stages.

In SRAM32x16 units with Null storage column, if a Data value is being written (WNULL =

0), the write completion signal is generated by combining the WRCMPLT signals generated

per column as discussed in section 5.1.1. On the other hand, if a Null value is being written

(WNULL = 1), only the WRCMPLT signal of the Null storage column is used to generate the

WRCMPLT for the entire unit. Similarly, the read completion is detected either on the whole

data word if WNULL = 0 or only on the output of the Null storage column if WNULL = 1. A

detailed description of the read/write operation of the SRAM32x16 unit and the behaviour of

its various signals follows next.

5.1.3 SRAM32x16 unit Write and Read operation

The general read/write operation of an SRAM cell array can be explained as follows. In the idle

state, BL0n and BL1n lines are pulled high by a precharge circuit controlled by the read/write

select (RWSEL) signal of the SRAM32x16 unit. When an SRAM location is to be read, RWSEL

goes high, and the precharge is disabled, allowing the bit lines to float. A specific address in

the SRAM unit is accessed by enabling the appropriate WL. Depending on the value stored in

the 6T cell, one of the bit lines will be driven low, while the other stays high. Conventional

synchronous SRAMs use sense amplifiers to detect the difference between these bit lines and

drive a single bit output. However, in the asynchronous SRAM for dual-rail systems, correct

voltage levels are required on both the bit lines and so sense amplifiers are not used [89]. Dur-

ing a write operation, a strong SRAM write driver is enabled, which drives the bit lines to the

required state. This value gets latched in the SRAM cell array when the Word Line goes low.

The SRAM32x16 unit with Read and Write Completion Detection and the Null-storage column

operates as a conventional SRAM cell array with some additional circuitry that controls how

the read and write completion signals and the data outputs are generated in specific cases.
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5.1.3.1 Write operation

Starting in the idle state with all inputs Null, both the WRCMPLT and WRINCMPLT signals

will also be NULL. The write cycle starts with the data to be written being asserted on DNIN0n,

DNIN1n, DIN0n and DIN1n along with RWSEL, WEN and the correct WL. The RWSEL asser-

tion disables the precharge circuit while the WL signal enables the pass transistor for a specific

word in the SRAM cell array.

Write Operation

When a Data value is to be written to the SRAM, the {DNIN1, DNIN0} lines have a value {0, 1},

while the 16 data bit lines are driven to the correct Data values.

1. Address to be written currently has WNULL = 0

When the WL corresponding to this address is driven high, the pass transistors of the

SRAM cell are enabled, and the stored bit values flow out on the BL0n and BL1n lines.

Now there are two possible scenarios for each bit in the word - either the bit value being

written {DIN0n, DIN1n} is different from the value already present in the storage element

{BL0n, BL1n}, or the values are the same. If the DIN1n and DIN0n values for a bit are dif-

ferent from the value of the corresponding BL0n and BL1n lines, the WRINCMPLT signal

for that bit will be asserted. This per-bit WRINCMPLT signal plus the WEN input of the

SRAM unit are fed to the bank of TH22 gates which generate WR_EN. The output of the

WR_EN gate is the write enable signal (WEN_G[x]), for each column x in the SRAM ar-

ray (SEL input of the write driver). When both WEN and WRINCMPLT[x] are high, the

WEN_G[x] goes high and stays high till both inputs are de-asserted. Once de-asserted,

the WEN_G[x] does not go high if the WEN goes high, but the WRINCMPLT remains low.

The presence of the TH22 gate, therefore, prevents the write driver from being enabled

immediately on the assertion of the external WEN input, but only if the data being writ-

ten is different from the data already present in the SRAM word. Once enabled, the write

driver will drive the BL1n[x] and the BL0n[x] lines to the same value as the DIN1n[x] and

DIN0n[x] causing the WRCMPLT signal to go high and the WRINCMPLT signal to go

low. The WRCMPLT signal is used to indicate when the write operation is complete. In

the case when the DIN0n,DIN1n value is equal to the {BL0n,BL1n} value for any column,

the WRCMPLT signal will be generated immediately, without the write driver being en-

abled. Thus, in this case, the write operation is shortened, and the completion detection

signal is generated earlier than would have been otherwise.
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Figure 5.5: Waveforms showing the order in which the data and control signals
in the SRAM32x16 unit toggle when a Data value is being written to a location

that initially contained a Null value
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2. Address to be written has WNULL = 1

In this case, enabling the WL input of the SRAM32x16 unit allows the Null storage col-

umn to be written with the new WNULL = 0 value, but the WL to the SRAM cell array

now remains disabled until the write to the Null storage column completes. Once this

value is written, the address line is enabled, and the write cycle proceeds as in the pre-

vious case with WNULL = 0. The waveform in Fig. 5.5 shows this behaviour. A Data

value on the WL and Write data lines at the input of the SRAM32x16 unit triggers the

WRINCMPLT signal of the Null column high, which enables the write driver for the Null

column. Once the Null column is written with a non-Null value, the Word Line for the

SRAM array is asserted. In this specific case, the bit value being written is different from

the bit value already stored, which causes the WRINCMPLT signal for the SRAM array

bit to go high, enabling the write driver for the column. When the data is correctly written

i.e., the bit lines have the same value as the write data lines, the WRCMPLT signal for the

column will go high, ultimately triggering the write complete signal for the SRAM32x16

unit.

Write Null value

Writing a Null value to a memory location involves changing the state of the WNULL bit in

the Null storage column word from WNULL = 0 to WNULL = 1. To achieve this, the {DNIN1,

DNIN0} lines are driven with the value 1,0. The other 16 data lines are kept in the Null state i.e.,

{DIN1[x],DNIN0[x]} = {0, 0}. The corresponding WL signal is asserted, and the Null state bit

is stored in the Null storage column cell. Because the 16 data bits are Null, no write operation

is performed on the SRAM cell array. The write cycle can, therefore, be ‘short-circuited’ and

marked complete by the write-complete detection on the Null column alone, without consid-

ering the state of the WRCMPLT signal for other bits in the word. This results in shorter cycle

times as well as savings in energy.

5.1.3.2 Read Operation

During a read cycle the Word Line for the address to be read is asserted and the value of the

WNULL bit is available. Depending on this value, there are two possible scenarios:

Read Data

If the address being read has WNULL = 0, then the WL towards the SRAM cell array is asserted,
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which causes the pass transistors to open, and the stored value flows out on the BL0n and

BL1n lines as in the case of a conventional SRAM. This data flows through the multiplexing

and inversion logic and then to the regular completion detection circuit, and the read cycle is

completed.

Read Null

If the data being accessed has WNULL = 1 in the Null storage column, the WL towards the

SRAM arrays remains de-asserted, none of the rows in the SRAM cell array are enabled, the

BL0n and BL1n lines remain in the Null state (high, because they have an inverted sense) and

the output of the SRAM32x16 unit remains at Null. The RAM unit, however, still needs to

indicate that the read cycle is complete. This is achieved by routing the read complete of the

Null storage column alone instead of the completion detection output of the wide data path to

the upstream nodes. Because this is a faster path, the read cycle completes sooner when a Null

value is read.

5.2 1024x16 SRAM with address decoder, read-write completion and

Null-storage column

The SRAM32x16 unit designed in the previous section can then be used to build larger SRAM

designs, such as the 1kx16 block that is examined here. The SRAM1kx16 block includes the re-

quired pipeline stages, plus an address decoder to decode dual-rail address into individual WL

signals that are input to the SRAM32x16 blocks. The additional circuitry required to combine

the read and write completion signals is also a part of the SRAM1kx16 block. All these details

have been shown in the architectural block diagram of Figure 5.6.

The incoming dual rail address ADDR 0/1 [9:0] bus is first registered to ensure that all bits

of the address are in the Data state before the address is decoded. The lower five bits of the

address are decoded into 32 single rail address lines AD0-AD31, while the upper five bits are

decoded into 32 UNIT_SEL rails. The set of addresses AD0-AD31 are fanned-out into 32 ad-

dress latches each enabled by one UNIT_SEL line, generating a total of 1024 single rail word

select lines AIN0–AIN1023 for the SRAM1024x16 bank. The address is completely decoded

instead of fanning out the AD0-AD31 lines directly to the SRAM32x16 units to avoid unnec-

essarily enabling the WL in all SRAM32x16 units, which would lead to an increase in energy
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Figure 5.6: Block diagram of the 1024x16 bit NCL RAM
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consumption. For a given address, only one UNIT_SEL rail will go high, and this is used to

enable the corresponding SRAM32x16 unit. The UNIT_SEL signal is also used to suppress the

DIN inputs of the SRAM32x16 unit that are not being addressed, which helps save energy dur-

ing write operations. The DIN inputs are also disabled if the DNULLIN input bit is true further

increasing the energy savings.

On the read side, the output data from each of the four SRAM32x16 units are combined using

banks of NAND4 gates to give a total of eight sets of 16-bit dual rail data. The SRAM32x16

units drive their bit lines active low so only one of the four data inputs to the NAND4 gate will

have valid active-low data, while all other buses will be pulled high by their precharge circuits.

The outputs of the NAND4 gates are registered to split the single long read cycles into multiple

smaller cycles to reduce the cycle time and improve throughput. The outputs of these NCL

registers are then combined using cascaded TH14 and TH12 gates. The final 16-bit dual-rail

output data is again latched in an NCL register. There are thus a total of three registration stages

on the read side and one registration stage on the write side. The improvement in throughput

comes at the cost of a marginal increase in latency. If this increase in latency is not acceptable

in a particular application, then one of the registration stages on the read side can be removed.

It is likely that the read and write cycle times can be further improved with minimal impact on

latency by introducing an additional pipelining stage after the address decoding unit, although

this idea has not been investigated as part of the current work.

5.3 Simulation and Performance Measurements

As with the hashing and completion detection circuits, the SRAM designs were implemented in

Cadence Virtuoso R© using a 1V, 28nm ultra-thin body and BOX silicon-on-insulator (UTBB-SOI)

process kit from ST Microelectronics. The threshold gates used in the SRAM had been designed

and tested separately [113], while the Boolean gates are from a standard cell library from ST

Microelectronics. Two different 32x16 units were designed: one with Null Column storage

(SRAM32x16N) and the other without (SRAM32x16). The SRAM units were then combined to

build 1kx16 banks - one with the Null storage column (SRAM1kx16N) and the other without

(SRAM1kx16). Both the designs had write completion detection. The SRAM designs were

simulated using Cadence UltraSim R© at 27 ◦C. The average propagation delay, cycle time and

energy consumption per operation for both the read and write cycles were determined using

Virtuoso R© Visualisation and Analysis XL Calculator.
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5.3.1 Write Performance

There are two primary effects that need to be considered when evaluating the write perfor-

mance of the SRAM: firstly, the effect of the early completion detection circuit and secondly

the effect of the Null storage column. Intuitively, it can be expected that the early completion

detection should improve write latency and cycle times, while the addition of the Null-storage

column should negatively affect the same. Two separate experiments were conducted to dis-

tinguish between these effects. The effect of the early completion detection was evaluated by

simulating the two 1k SRAM designs for the following cases:

A) SRAM word overwritten by new word where all bits have changed;

B) SRAM word overwritten by new word where none or a small number of the bits have

changed.

In the second set of experiments, the following data vectors were generated and fed to only the

SRAM1kx16N (1K SRAM with Null storage column) in order to evaluate the effect of the Null

storage column:

C) SRAM word location containing valid data changed to Null;

D) SRAM word location initially at Null changed to Not-Null with the remaining data bits not

changed;

E) SRAM word location initially at Null changed to Not-Null with a corresponding change in

the actual data bits stored. in the SRAM cell array.

Cases D and E together are the inverse operation of Case C but have to be treated as two distinct

cases because of the way the NCL SRAM with Null storage is constructed.

It has been discussed in section 5.1.3 that whenever a WNULL = 1 value is present in the Null

storage column, write access to the SRAM array is disabled. This ensures that the data value

that was originally present in the particular word location in the SRAM array is not disturbed.

Consider that at a subsequent time such a word location is to be reverted back to a WNULL

= 0 value and the data to be stored at this location is the same as the old data value. Now,

as soon as the WNULL = 0 value is written, the write access to the SRAM array would be

enabled, and the write operation would complete sooner compared to the case where the data

bits were changed because of the early write completion detection feature in the main SRAM
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Table 5.2: Write operation: Effect of per-bit write completion detection circuit on
latency, cycle time and energy per operation

w/o Null Column w/ Null Column

All bits
changed

No bits
changed

All bits
changed

No bits
changed

Cycle Time (ps) 1348 1269 (5.8%) 1445 1373 (5.0%)

Latency (ps) 787 715 (9.1%) 886 818 (7.7%)

Energy (pJ) 2.64 2.41 (8.7%) 2.81 2.47 (12.1%)

array. This is why the two situations have to be evaluated separately. The particular benefit of

this organisation will become apparent in a later section, in which SRAM accesses in tries used

for address lookup are discussed.

Table 5.2 shows the write performance of the SRAM banks (SRAM1kx16 and SRAM16x16N) for

case A and case B. Two observations can be made from these data: firstly for both the SRAM

banks (with and without Null storage column) there is a small but useful reduction in through-

put delay, latency and energy when none of the bits in a word are being overwritten, compared

to the situation when all the bits in the word are changing. This is an effect of the per-bit com-

pletion detection circuits. In practice, for most of the writes, the number of bits that change

their value would be somewhere between the two extremes so that the average performance

will also be between these two extremes. Thus, the effect on cycle times, latency and energy

consumption will be marginal, at best. It is worth noting, however that this difference implies

that the average throughput and latency of the SRAM will not be dependent on the worst case

propagation delays as is the case in clocked SRAMs, but will vary with the input data pattern.

Secondly, it can be seen that for SRAMs with the Null storage column, the overheads incurred

by the additional per-bit write completion detection hardware are of approximately the same

order (∼5% throughput, ∼7% latency and ∼12% energy).

The measurements from the second set of experiments involving the Null storage column are

presented in Table 5.3. The numbers reported in this table for the SRAM1kx16 bank i.e., SRAM

without Null-storage column, correspond to the average value obtained for input data having

a random number of bits different from the value already in the SRAM. For the SRAM bank

with the Null-storage column SRAM1kx16N, in the case where existing data is overwritten
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Table 5.3: Write operation: Effect of Null storage column on cycle time, latency
and energy consumption per operation

w/o Null column
w/ Null column

Data to Data Null to Data Data to Null

Cycle Time (ps) 1334 1436 (-7.6%) 1491 (-11.7%) 1141 (14.5%)

Latency (ps) 775 878 (-13.2%) 930 (-20%) 673 (13.1%)

Energy (pJ) 2.52 2.64 (-4.7%) 2.68 (-6.3%) 1.25 (50%)

with new data (both Null → Data and Data → Data conditions), a random number of bits is

assumed to be changing.

It can be seen that the presence of the Null column slightly increases the cycle time and energy

consumption during Data write operations but results in comparable savings in latency and cy-

cle time and significant energy savings during a Null write. However, in routing applications,

the SRAM will be written only when the IP table is initially constructed or updated. Further,

the rate of updates is much slower (at most a few hundred updates per second [114]) than the

rate at which address lookup operations are performed (∼ 200 Million per second [9]). The

write operations will, therefore, be only a minor component of the overall performance and the

additional latency and energy consumption because of the Null storage column, or the write

completion detection circuit will be largely insignificant.

5.3.2 Read Operation

As with the write performance, the read performance also depends on whether a Null or Data

location is being accessed. Table 5.4 shows a performance comparison of the two SRAM de-

signs during a read operation. The absolute values in the table for the SRAM1kx16N bank

are followed by the percentage gain (+ve) or penalty (-ve) over equivalent values obtained

from the SRAM1kx16 bank. It can be seen that the SRAM with Null columns exhibits signif-

icantly shorter cycles consuming much lower energy whenever Null locations are accessed.

Conversely, accessing regular (non-Null) locations incurs a slight penalty due to the additional

gating of the Null bit. While it may seem wasteful to have to spend more energy and time to

access data location to be able to access Null locations faster, it will be shown in Chapter 6 that

this specific property of being able to store Null values and associating a lower penalty with

Null accesses offers significant advantages in the design of a packet lookup engine.
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Table 5.4: Read operation: Effect of Null storage column on cycle time, latency
and energy consumption per operation

w/o Null
column

w/ Null column

Data Read Null Read

Cycle Time (ps) 1649 1733 (-5.1%) 1016 (38.4%)

Latency (ps) 747.5 824 (-10.2%) 547 (26.8%)

Energy (pJ) 2.69 2.75 (-2.2%) 1.10 (59.1%)
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Summary

This chapter has presented the architecture and performance evaluation of an NCL-based RAM

design that includes read and write completion detection and a single-bit storage to indicate the

Null state of each word in the SRAM. Although NCL uses two rails to represent one Boolean

variable, an NCL SRAM has the same number of 6T cells as a Boolean SRAMs and this is a sig-

nificant advantage of the architecture. The only additional resources in the NCL SRAM are the

6T cells in the Null Column and the completion detection circuit. These additional hardware

blocks allow the RAM to be used in pipelined NCL circuits without having to undergo NCL

to Boolean transformation and vice-versa. Secondly, the additional hardware results in situa-

tions where there is marginal penalty (-5.1%) in accessing regular data elements in the SRAM,

while resulting in a significant benefit when reading (38.4%) Null locations. The energy saving

while accessing the Null locations in RAM structures without the Null-storage column is also

significantly lower (59.1%) than in structures where the Null-storage column is not present. A

comparison with Boolean SRAMs is not appropriate as the benefits of using the NCL SRAM

can only be achieved inside a system that is completely designed in Null Convention Logic.

It is predicted that an SRAM1kx16N based design of the address lookup function in a router

will exhibit better performance than a design based on the SRAM1kx16 block because of the

number of Null locations that are accessed in a binary-trie based lookup, and this is discussed

in Chapter 6.

While technology is important, it’s what we do with it that truly matters.

Muhammad Yunus
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Chapter 6

Compact trie with Bloom filters in Null

Convention Logic

The work presented in Chapter 3 showed that a Boolean implementation of the Compact-trie

Lookup algorithm results in a memory structure that has a better memory efficiency without

compromising on the lookup performance. It was also demonstrated that Bloom filters could

be used to prevent unnecessary accesses to the prefix storage SRAMs in these tries. A careful

selection of the levels in the trie on which Bloom filtering was carried out can result in addi-

tional power saving compared to a total Bloom filtering approach. This chapter demonstrates

that in an NCL-based design while, the addition of Bloom filters does result in improvement

in the energy consumption as it did in the Boolean design, a greater improvement is achieved

through the use of NCL RAMs with Null-storage column to store prefix information without

using a Bloom filter. This suggests that a straight translation of a Boolean logic design to Null

Convention Logic is not necessarily the best possible approach.
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6.1 Design considerations

The design and the theory of operation of a Compact-trie have already been discussed in Chap-

ter 3. Before ‘ncl-ising’ the complete Compact-trie, its components such as the hash function,

completion detection circuit and memory were implemented using the NCL approach and

their performance evaluated and presented in Chapters 4 and 5 respectively. The final step

in the process is to incorporate the appropriate individual elements in different combinations

and identify the one combination that demonstrates the best balance of energy, area and per-

formance.

The architecture of an Enhanced Compact-trie with epsilon links (E − Ctrieε) implemented in

NCL is no different from that implemented in Boolean logic and follows the block diagram of

Figure 3.5. The Bloom filter in the NCL implementation also uses a CRC32 hash algorithm for

generating the indices. The CRC32 algorithm is preferred because it can use the hash value

from the previous trie level and the MSB of the prefix’s active part to complete the hash com-

putation in a single cycle. The complete E − Ctrieε is pipelined, and the registration stages

use the completion detection circuits with complementary gates (CD-CG) instead of using the

completion detection circuits with conventional gates (CoCD) as it has been shown in Chapter

4 that the CD-CG circuits have a better energy performance.

The decision on whether to use SRAMs with or without the Null-storage column is, however,

critical because the Null-storage column has an area overhead and the SRAM with Null-storage

column should be used only in situations where the energy savings due to Null location ac-

cesses are expected to be significant. In the case of a Boolean SRAM storing any information,

a zero value and a ‘no data’ (Null) value are either considered the same or the ‘no data’ value

has to be stored as a unique bit pattern not present in regular data values. In the case of NCL,

however, the ‘no data’, i.e. the Null value is readily available and may be used to indicate the

absence of the requested information.

The E − Ctrieε has three memory elements - the next child information RAM, Bloom filter

RAM and prefix storage RAM. An analysis of the trie density numbers in Table 3.8 reveals

that for the trie-traversal information RAM, all the internal nodes will have at least one valid

child address and it is only the final node of a path in the trie that has a Null value. It is

therefore expected that implementing this memory with the extra Null-storage column will
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not provide any significant energy or throughput improvement. The Bloom filter memory also

does not need the additional Null storage as it is only a single-bit wide memory. For the prefix

information memory, however, a large percentage of internal nodes store a zero or Null value

in their prefix information fields. Experiments conducted on the NCL SRAM have already

shown that accesses to locations that have a Null value in the RAM can be completed much

faster and consume less energy than accesses to locations containing a Data value. It is possible

therefore that the prefix information memory implemented with NCL SRAMs having Null-

storage column will lead to a better performance than that observed in Boolean logic.

To test system performance, the blocks in the hardware block diagram of Fig. 3.5 are imple-

mented in NCL in either of the following two ways.

1. The behaviour is coded in a proprietary Hardware Description Language known as “NELL”1,

and translated using a proprietary synthesis tool into a structural Verilog netlist. The

synthesis process instantiates components from a library of NCL threshold gates. The

‘key_stripper’ module and the CRC computation block within the ‘bloom_filter’ module

were designed in this manner.

2. If the behaviour of a block is better expressed as a flow of Data and Null wavefronts

through NCL threshold gates, registers, or existing NCL modules, then the block is de-

scribed as a structural netlist of these NCL components using Cadence Virtuoso R© schematic

capture. The match_stage, match_module and next_child modules were designed in this

fashion.

The energy consumption and latency of the complete NCL-based implementation of the E −

Ctrieε may be obtained through a circuit-level simulation in Cadence ADE-XL R©. However,

the design has multiple RAM blocks that hold the prefix information, trie-traversal informa-

tion and Bloom filter bits. Since the objective of this work is to evaluate only the latency and

energy consumption in an NCL implementation of an address lookup algorithm and not eval-

uate the lookup algorithm itself, the memory is pre-configured with prefix and trie-traversal

information at the start of the simulation. Performing this initialisation in Cadence ADE-XL R©

will increase simulation times and the complexity of the testbench infrastructure in Cadence

ADE-XL R©. To work around this situation each of the individual modules in the design were

simulated in Cadence ADE-XL R© under different input conditions and the delay and energy
1supplied by Wave Semiconductors Inc.
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consumption for each operation were characterised. It was observed that for all the modules

except the key_stripper, the input to output delay and input to ko (completion detection sig-

nal) delay are uniformly distributed around a mean with the mean and standard deviation for

the Null and Data wavefronts being different. These values obtained through circuit simula-

tions are incorporated into delay and energy models for the individual modules and are used

subsequently.

It may be noted that Boolean implementations of the modules in the E − Ctrieε have already

been designed and tested to obtain the results reported in Chapter 3. These Boolean modules

take in a clock signal and single-rail inputs and generate single-rail outputs ‘x’ clock cycles after

the input, where ‘x’ is the number of registration stages in the Boolean design.

It is then possible to wrap each Boolean module in the E − Ctireε in NCL wrapper modules

to create as many ‘NCL-in-Verilog’ modules. This new module is written in Verilog but has

an NCL behaviour instead of the conventional Boolean behaviour. For the registration stages,

instead of wrapping Boolean registers in NCL wrappers, the ‘NCL-in-Verilog’ modules were

created as a structural Verilog netlist instantiating behavioural models of the NCL threshold

gates. Both of these ‘NCL-in-Verilog’ modules were used to build the complete E − Ctrieε

design in Verilog but with an NCL like behaviour and use it for simulation in Cadence NC-

Verilog R©. Figure 6.1 shows a block diagram of the NCL wrapper instantiating the Boolean

design. As shown, the wrapper also contains a converter that translates dual rail signals to

single rail signals at the input (d2s_reg) and a single rail to dual-rail converter (s2d_reg) at the

output. The d2s_reg and s2d_reg modules also detect the ‘complete Data’ or ‘complete Null’

state on the input or output signals as appropriate and generate the handshaking signals.

The ‘complete-Data’ and ‘complete-Null’ signal at the input enables the NCL delay and en-

ergy model that generates a random output delay and a random ack-signal delay value drawn

from the uniform distribution models created previously through Cadence ADE-XL R© simula-

tions. These delays are of the order of 100s of picoseconds and are introduced in the outputs

and the ack-signal using the ‘#delay’ facility in Verilog. The completion signal at the input is

also passed to a clock generator that generates the appropriate number of clock pulses for the

Boolean module. The Boolean design needs a clock to function correctly, while the NCL de-

sign does not have any clock. The local clock generator when triggered, generates the clock

signal with a period (typically 1 ps) that is much smaller than the delay of the NCL design.
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This clock generator ensures that the Boolean module generates the functionally correct single

rail outputs. The clock generator is triggered by the input-complete detect signal because the

Boolean module should receive the clock signal only when the input is complete and not oth-

erwise. The functionally correct single rail output is passed to the s2d_reg block that produces

the dual-rail outputs with the appropriate delay only when the inputs are complete, and the

next stage in the pipeline is requesting a Data value as indicated by the ki input. The outputs

when produced also cause the generation of the ‘output-complete’ signal which is delayed in

the delay insertion block (Figure 6.1) to generate the ko (ack) signal towards the upstream node.
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Figure 6.1: NCL wrapper around a Boolean module to produce the ‘NCL-in-
Verilog’ modules used for simulations

6.2 Results and Discussion

6.2.1 Simulation setup

The performance of the proposed algorithm was evaluated using a combination of software

simulation in Python, and Cadence NC-Verilog R©with delay energy and area numbers obtained

through designs generated in Cadence Virtuoso R© and simulated using Cadence UltraSim R©.

In the simulations of the synchronous design in Chapter 3, of the six IPv4 routing tables down-

loaded from Packet Clearing House [103] on 01-April-2017, two (MGM and LYS) were used as
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representative tables for evaluating the effect of Bloom filtering. In the present NCL simula-

tions, the same two tables have been used. Synthetic packet traces were also generated that

contained roughly five times the total number of prefixes in the routing table, with destination

IP addresses distributed uniformly over the range of addresses covered by the prefixes.

It has been demonstrated in Chapter 3 that for an enhanced compact trie lookup, the addition of

Bloom filters improved the energy consumption in the trie. The Bloom filters, however, occupy

additional area resources and also increase the latency of the system. Meanwhile, in Chapter

5, it was shown that accessing a Null location results in shorter cycle times and lower energy

consumption, while increasing the cycle times for Data accesses and also occupying additional

area. The performance of the following four designs that include different combinations of

Bloom filter and Null-storage column SRAM are evaluated:

• WOBF_WONC: without Bloom filter, without Null-storage column in prefix memory;

• WBF_WONC: with a Bloom filter, without Null-storage column in prefix memory;

• WOBF_WNC: without Bloom filter, with Null-storage column in prefix memory;

• WBF_WNC: with Bloom filter, with Null-storage column in prefix memory.

6.2.2 Simulation Results

6.2.2.1 Cycle Time

The cycle time behaviour of the NCL pipelined structure can be analysed keeping in mind the

following important characteristic of NCL pipelines mentioned by Fant in [38] ”As a general

rule an occasional fast cycle in the pipeline will always be shadowed by other cycles in the pipeline except

in cases where many such fast cycles occur together and do not fall in the shadow of cycles with regular

cycle-times.”

If we consider the specific case here, the module that can have an occasional fast cycle is the

SRAM with Null-storage column used for the prefix information storage. Figure 6.2 is a wave-

front propagation diagram that demonstrates the situation when a Null value is read. In this

figure P1, P2, P3, P4 are the combinational stages in the pipelines, while R1, R2, R3, R4 and R5

are the registration stages. The Data and Null wavefronts are indicated by the solid black lines,

while the ack signals are indicated by the solid red lines. To distinguish between the flow of
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signals between the same registration and combinational stages,R1f andR1b denote the wave-

front and ack signal flow respectively through the registration stage R1. Similar terms may be

defined for the combinational stages.

The wavefronts thus flow from left to right as:

R1f → P1f → R2f → P2f → R3f → P3f → R4f → P4f → R5f → P5f ,

and the ack signals flow from right to left. At each registration stage, the ack signal received

from the downstream stage has to first flow left to right through the registration stage, along

with the wavefront and the new acknowledge signal generated then continues to flow right to

left. The path for the acknowledge signal is thus:

R5b → P4b → R4b → R4f → R4b → P3b → ...→ R2f → R2b → P1b → R1b,

and is shown as a blue dashed line in Figure 6.2.

If it is considered that stage P3 is the prefix storage RAM, and that for the second and third

data wavefronts, the prefix RAM reads a Null location, then it is seen that the corresponding

cycles complete much quicker than for the other data wavefronts when Data locations are read.

However, the ack signals flow back through R4b → P3b → R3b and wait for the next wavefront

to arrive. In effect, the fast cycle is shadowed by the slower cycles that come after it, and its

presence does not significantly affect the cycle times at the input.

A plot of the cycle times (as seen at the input) for a set of ten thousand IP addresses fed to

two E − Ctrieε implementations of the MGM routing table are presented in Figure 6.3. The

first implementation is when the prefix information memory has the Null-storage column and

the second is when it does not. The distribution of the cycle times for both implementations is

presented in Figure 6.4. It is apparent from the two Figures 6.3 and 6.4 that the average cycle

times with and without Null-column storage is almost the same (∼ 3065 ps), with about the

same standard deviation (∼ 60 ps). The distribution of cycle times is left-skewed with a long

tail to the right suggesting that there are only a few instances when cycles with short periods

occurred at multiple stages in the pipeline resulting in overall short cycle time for the system.

While in a large number of instances, the slow cycles dominated the system and the cycle time

of the complete system was longer. It may also be concluded that though NCL RAMs with
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Null storage have a smaller cycle time when Null locations are accessed, their presence in the

system does not affect the overall average cycle time.

6.2.2.2 Energy Consumption

The energy consumption of the address lookup process is also measured with the same set of

random test vectors. The energy consumed on average per address lookup for both the LYS

and MGM tables is presented in Table 6.1.

Table 6.1: Comparison of energy consumption per lookup in NCL implementa-
tions of the E − Ctrieε for the (a) LYS and (b) MGM routing tables

w/o Bloom w/ Bloom

w/o Null 38.35 pJ 29.80 pJ

w/ Null 22.69 pJ 29.23 pJ
(a)

w/o Bloom w/ Bloom

w/o Null 37.48 pJ 30.05 pJ

w/ Null 22.61 pJ 29.30 pJ
(b)

For both the routing tables, the highest energy consumption per lookup is seen in the case

where neither the Bloom filter nor the Null-storage column is present in the design. In the re-

sults obtained with the synchronous Boolean logic implementation of the E−Ctrieε presented

in Section 3.4.3.2, the presence of the Bloom filter helped reduce the energy consumption. An

identical behaviour is seen in the NCL implementation, where the addition of the Bloom fil-

ter alone results in a reduction in the energy consumed per lookup (22.2% for LYS and 19.5%

for MGM). With the Bloom filter present, adding a Null-storage column to the prefix storage

memory does improve the average energy consumption slightly from 29.80 pJ to 29.23 pJ in

LYS and from 30.05 pJ to 29.30 pJ in the MGM routing tables. However, this improvement is

not significant because the Bloom filters have already filtered out the unnecessary accesses to

the prefix storage memory. The only memory reads happening now are either the ones needed

to access the correct prefix information or those arising due to the false positives of the Bloom

filter. The saving in the energy consumption through accessing Null locations in memory is

thus marginal. The least energy consumed per lookup is achieved in the case where instead of

using the Bloom filter for filtering out accesses, only the Null-storage column RAM is used for

the prefix storage. The energy consumed per lookup, in this case, is significantly less than the

case when neither Bloom filter nor the Null-storage column RAM is used (∼ 41% less for LYS

and ∼39% for MGM). This happens because the Bloom filter prevents unnecessary accesses

to prefix locations containing Null. However, it consumes energy to compute the Bloom filter
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indices. The Bloom filter RAM also consumes power. With a Null-storage column RAM alone,

there is no additional energy being consumed by the Bloom filter, and the prefix storage RAM

anyway consumes less energy whenever a Null location is accessed resulting in a much larger

reduction in the energy consumption.

This result is significant as it suggests that in case of an NCL implementation, it is not necessary

to have the Bloom filter to reduce energy consumption. Better energy savings can be obtained

by utilising the capabilities of the NCL design methodology.

Figure 6.5 also illustrates the energy consumption for all prefixes together at each level in the

trie for all four cases. The first four levels of the trie have been omitted from the figure and also

from the energy numbers presented in Table 6.1 because at these levels in the trie, there are not

much energy savings to be achieved through either technique, as the number of prefixes stored

at this level is limited.

6.2.2.3 Area

The final metric on which the four cases are compared is the area. Because of limitations of the

tool, the area figures are not obtained through a place and route of the whole design. Instead,

the area of each component used in the design was first estimated through an approximate

placement performed in Cadence Layout-XL R©. The total area of the designs was then obtained

through calculations that used these individual area estimates.

Figure 6.6 illustrates the area overhead because of the Bloom filter and the extra Null-storage

column in the prefix RAM as we move down levels of the trie. The tables also list the ratio of

the two overheads expressed as a percentage. It can be seen that as we move down the trie,

the overhead because of the Null-storage column is much smaller than the BF area (as low as

∼5.5% of the Bloom filter area at level 15 of the trie for the MGM routing table). It has already

been shown in Section 6.2.2.2 that the energy consumption per lookup with Null-storage RAM

is lower than the energy consumption with Bloom filters, the area overhead numbers suggest

that deeper in the trie, the amount of additional on-chip area required to reduce energy con-

sumption through the use of the Null-storage column is only a small percentage of the area

needed to achieve a poorer energy consumption through the use of the Bloom filter.
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Figure 6.5: Energy consumption down trie levels in an E − Ctrieε im-
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Trie 

Level

BF area 

overhead (um2)

Prefix RAM area 

overhead (um2)

Ratio 

PFX RAM / BF 

(%)

0 3303.1 2108.6 63.8

1 3303.1 2108.6 63.8

2 3303.1 2108.6 63.8

3 3303.1 2108.6 63.8

4 3303.1 2108.6 63.8

5 3303.1 2108.6 63.8

6 3303.1 2108.6 63.8

7 3303.1 2108.6 63.8

8 5987.3 2108.6 35.2

9 11355.8 2108.6 18.6

10 22092.7 2108.6 9.5

11 43566.7 4217.2 9.7

12 43566.7 4217.2 9.7

13 86514.5 6325.9 7.3

14 86514.5 8434.5 9.7

15 172410.2 10543.1 6.1

16 172410.2 12651.7 7.3

17 172410.2 16869.0 9.8

18 344201.5 21086.2 6.1

19 344201.5 25303.4 7.4

20 344201.5 27412.1 8.0

21 344201.5 25303.4 7.4

22 344201.5 23194.8 6.7

23 86514.5 8434.5 9.7

24 22092.7 2108.6 9.5

25 11355.8 2108.6 18.6

26 3303.1 2108.6 63.8

27 3303.1 2108.6 63.8

28 3303.1 2108.6 63.8

29 3303.1 2108.6 63.8

30 3303.1 2108.6 63.8

(a) LYS

Trie 

Level

BloomFilter area 

overhead (um2)

Prefix RAM area 

overhead (um2)

Ratio 

PFX RAM / BF 

(%)

0 3303.1 2108.6 63.8

1 3303.1 2108.6 63.8

2 3303.1 2108.6 63.8

3 3303.1 2108.6 63.8

4 3303.1 2108.6 63.8

5 3303.1 2108.6 63.8

6 3303.1 2108.6 63.8

7 3303.1 2108.6 63.8

8 5987.3 2108.6 35.2

9 11355.8 2108.6 18.6

10 22092.7 2108.6 9.5

11 43566.7 4217.2 9.7

12 86514.5 6325.9 7.3

13 172410.2 10543.1 6.1

14 172410.2 14760.3 8.6

15 344201.5 18977.6 5.5

16 344201.5 27412.1 8.0

17 687784.3 35846.6 5.2

18 687784.3 42172.4 6.1

19 687784.3 50606.9 7.4

20 687784.3 54824.1 8.0

21 687784.3 56932.8 8.3

22 687784.3 52715.5 7.7

23 172410.2 10543.1 6.1

24 22092.7 2108.6 9.5

25 11355.8 2108.6 18.6

26 3303.1 2108.6 63.8

27 3303.1 2108.6 63.8

28 3303.1 2108.6 63.8

29 3303.1 2108.6 63.8

(b) MGM

Figure 6.6: Area overhead of the Bloom filter approach and the Null-storage col-
umn approach at each level in an E − Ctrieε implementation for both the LYS
and MGM tables. The difference between the two approaches is expressed as a

percentage of the Bloom filter area overhead.
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It may be concluded that in an NCL implementation of the lookup algorithm using the E −

Ctrieε structure, the most energy saving is achieved with the least area overhead without af-

fecting the throughput of the system when the system uses a prefix memory storage that has a

Null-storage column and no Bloom filter.
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Summary

This chapter has provided an analysis of four NCL implementations of an existing SRAM based

compact trie algorithm. The simulation results demonstrate that the behaviour of the NCL im-

plementations is different from the Boolean implementation where the addition of Bloom fil-

ters reduced worst-case memory accesses to prefix storage RAM thereby improving the power.

NCL allows the use of a Null-storage column in the RAM, which can act as a flag to indicate a

Null location. This capability of the RAM can be exploited in the prefix storage memory that

is typically only sparsely filled because the number of prefix nodes is smaller than the total

number of nodes in the trie. The use of the Null-storage RAM for prefix information results in

the same throughput as would be achieved without this RAM. However, the advantage of the

Null-storage RAM is that it uses much less area and consumes less energy as compared to a

Bloom filter.

Every once in a while, a new technology, an old problem, and a big idea turn into an

innovation

Dean Kamen
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Chapter 7

Conclusion and the way forward

Since it first came into being, the growth of the Internet has been relentless, and one of the key

drivers of this growth has been the capability of the packet router. The router that started off

as a software program running on a general purpose microprocessor handling a few kilobits

per second is now a standalone system transporting hundreds of terabits of data streaming in

through multiple ports. The energy consumption of routers and other networking equipment

in modern data centres has now reached alarming proportions and therefore a router not only

has to handle immense amounts of data, but it also has to do it fast and in a way that consumes

the least energy. In this thesis, an asynchronous Null Convention Logic based solution for

performing the critical destination address lookup function in routers has been presented. The

solution demonstrates that taking advantage of the unique characteristics of the algorithm and

the asynchronous methodology can achieve energy consumption much lower than would have

been possible by a naive translation of the Boolean logic design to NCL.

Existing algorithmic SRAM-based approaches to destination address lookup in IP routers were

first explored and a recent algorithm, the Compact-trie lookup, was chosen for its superior per-

formance over other RAM–based approaches. The work in this thesis extends the capabilities

of the original algorithm through enhancements to the prefix decomposition technique and the

application of Bloom filters to improve lookup performance. Current state-of-art in the appli-

cation of Bloom filters to binary trie structures points to improvement in the lookup latency

when the number of memory accesses is reduced. Experiments presented here demonstrate

that the application of Bloom filters to a Compact-trie result in a similar reduction in the num-

ber of prefix memory accesses When evaluated on FPGA devices where the prefix information

is stored on-chip, the presence of the Bloom filter increases the memory utilisation and the logic

power as expected. However, the reduction, due to filtering, in the average power consumed
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by the prefix RAM is also significant. An evaluation of the effect of Bloom filters on power con-

sumption in trie-based lookup with on-chip storage as presented here has not been attempted

before and is, therefore, a contribution of this thesis. Another important observation from these

experiments is that power saving with Bloom filters is not uniform down the trie. A targeted

Bloom filtering approach can be used to reduce power consumption further while using fewer

on-chip resources, without affecting lookup performance. This experiment thus answers the

first research question:

How might existing IP address lookup techniques be adapted to improve their energy

consumption and/or latency

by demonstrating that the energy consumption of an existing algorithmic address lookup al-

gorithm can be improved by the selective application of a Bloom filter to control the number of

memory accesses required.

In the future, with denser and deeper tries, the complexity and the number of hash computa-

tions must increase. This implies a non-trivial increase in the delay and power of the Bloom

filter necessitating a careful evaluation of the power and delay trade-off in the Bloom filter in-

dex computation and prefix memory access. A useful extension to the current work, therefore,

would be to produce an a priori ‘quality factor’ that would determine the advantage of Bloom

filtering at a level in the trie, using a more analytical approach.

It is clear from the applications of NCL and other asynchronous design techniques in the lit-

erature that just ‘going asynchronous’ does not really improve the performance. It is essen-

tial to understand the algorithm being implemented and uncover its characteristics that can

take advantage of the asynchronous design methodology. To evaluate the performance of an

NCL-based address lookup system, three popular non-cryptographic hash algorithms, Jenk-

ins, Murmur and CRC32, were first selected, implemented and compared with an equivalent

synchronous version. The objective was to identify whether in an NCL implementation the

more complex Jenkins or Murmur hash would perform better than the CRC32 algorithm. It

was found that even with NCL, the CRC32 implementation had a much smaller cycle time and

latency and was, therefore, the most suitable of the three for generating the Bloom filter in-

dices. The analysis of the Murmur and Jenkins hash algorithms showed that even in complex

systems, for a given throughput, the latency of the NCL implementation could be as low as
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20% of the equivalent synchronous implementation (5.4ns vs 25.6ns in the specific experiments

here). The NCL implementation also demonstrates an 800% improvement in the peak current

characteristics. The result leads to the conclusion that in case of a Bloom filter, translating the

Boolean design into an NCL design improved the latency and peak power consumption while

demonstrating a robustness in the face of temperature and process variations.

The experiments also demonstrated that with increasing data path widths and fine-grained

pipelining, there is a need for completion detection circuits that occupy a smaller area, con-

sume less energy and have small propagation delays. Two optimised completion detection

circuits that used modified threshold gates were then proposed to satisfy this need. The first of

these designs was based on complementary threshold gates and exhibited a propagation delay

of 238 ps with an area reduction of 25% and an energy/operation improvement of 35% over

traditional completion detection schemes. The performance gains were increased further in

the second design where the TH12 and the first level of TH44 gates were combined into one

THC4D gate and the “Drive” and “Hold” sections of a threshold gate were merged into a single

composite network. These changes to the design resulted in a circuit that is about 30% smaller,

consumes ∼50% less energy per operation and draws a peak current around 25% that of the

conventional Completion Detection circuits while exhibiting a marginally smaller propagation

delay (i.e., ∼4%).

Because the present work uses an algorithmic SRAM-based lookup algorithm, an NCL mem-

ory was proposed conforming to NCL behaviour. The proposed architecture had completion

detection circuits and single-bit “Null” flag per location. The architecture resulted in shorter,

energy-efficient read and write cycles for empty locations in memory. In the example imple-

mentations presented with Null-storage column, designed using a 28 nm FDSOI process, the

technique results in a cycle time reduction of approximately 38.4% and an energy reduction of

59.1% when a Null location is read over the equivalent numbers obtained in memories that do

not have the Null-storage column. This saving in the individual memory accesses will reflect

in an overall improvement in the performance of the systems only when the memory accesses

that encounter such Null locations are a significant proportion of the total memory accesses.

An evaluation of the complete Compact-trie address lookup system with and without these

Null-storage column RAMs for the prefix memory, plus the Bloom filters, reveals a rather in-

teresting characteristic. It is seen that for both the routing tables evaluated, the architecture not
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employing any Bloom filters, but having only the Null-storage column RAMs for the prefix

storage exhibit the smallest area on the chip and also consume the least energy per address

lookup. This is because the Null-storage column saves much more energy while consuming

lesser area than that saved by the Bloom filter with a larger area overhead. This observation

is important because it answers the second research question that this thesis set out to answer,

which is:

Will applying an NCL-based asynchronous design paradigm further improve energy and

performance compared to an equivalent synchronous implementation and will these systems

have to be structured differently from the original implementations?

It may be concluded that the application of an NCL design methodology does improve the

energy consumption and area utilisation of the IP address lookup function in Routers when

compared with synchronous implementations. However, it is not just a straight translation of

the synchronous design that results in these gains, but a careful selection of the architectural

blocks that combine the peculiarities of the underlying algorithm with the capabilities of the

NCL design methodology. This result is indeed significant and non-obvious and is a major

finding of the thesis. The initial hypothesis was that an NCL implementation of a Bloom filtered

trie implementation would lead to a significant saving in terms of power and latency. However

it was realised that in fact the NCL SRAM itself filtered off the accesses to trie locations that did

not contain any prefixes and therefore the Bloom filter was not necessary

A complete IP packet forwarding block in Internet router includes in addition to the address

lookup function, packet classification, filtering and flow control. The present work chose to

evaluate the performance of an NCL-based implementation of the address lookup function.

Hardware based packet classification and filtering use trie-structures similar to the ones used

for destination address lookup, with the difference being in the size of the lookup key and the

information stored per prefix/entry. The results reported here for address lookup to obtain

next hop information suggest that the application of NCL or an equivalent asynchronous de-

sign method to the algorithms and structures used for packet filtering, classification and flow

control in the packet processor in Internet routers may also result in similar performance im-

provements. The capability of the Null-storage column RAM may be used in other areas of

computing where sparsely populated RAM structures are frequently accessed. Both of these

paths of exploration could be an activity for the future.
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Thus, although synchronous Boolean systems are the norm at present, it is extremely likely that

the routers of the future would be (at least partially) asynchronous to meet the ever-growing

demand for more bandwidth, higher performance and lower energy.

The perfect is the enemy of the good.

Voltaire
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Appendix Chapter A

Code listing

Simulations of the complete NCL design are performed on Boolean implementations of the

individual modules of the compact trie wrapped in NCL wrapper modules to create a ‘NCL-

in-Verilog’ module. These modules are written in Verilog but have an NCL behaviour instead

of the conventional Boolean behaviour. The code used for the NCL simulations is available at

https://gitlab.com/pdabholkar/IPLookup and is organised as follows.

IPLookup

ncl

All design modules written in NELL

ncl_as_v

Nell-in-Verilog modules

python

Python scripts for parsing routing tables

Python scripts for analysing simulation results

memMap_LYS - memory initialization files for the LYS routing table

memMap_MGM - memory initialization files for the MGM routing table

routeFiles

routing table downloaded from PCH

rtl

RTL designs in verilog for the compact trie with epsilon links

https://gitlab.com/pdabholkar/IPLookup
http://www.pch.net
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