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Abstract First-order reversal curve (FORC) diagrams of synthetic binary mixtures with single-domain,
vortex state, and multidomain end-members (EMs) were analyzed using principal component analysis
(FORC-PCA). Mixing proportions derived from FORC-PCA are shown to deviate systematically from the
known weight percent of EMs, which is caused by the lack of reversible magnetization contributions to the
FORC distribution. The error in the mixing proportions can be corrected by applying PCA to the raw FORCs,
rather than to the processed FORC diagram, thereby capturing both reversible and irreversible contributions
to the signal. Here we develop a new practical implementation of the FORC-PCA method that enables
quantitative unmixing to be performed routinely on suites of FORC diagrams with up to four distinct EMs.
The method provides access not only to the processed FORC diagram of each EM, but also to reconstructed
FORCs, which enables objective criteria to be defined that aid identification of physically realistic EMs. We
illustrate FORC-PCA with examples of quantitative unmixing of magnetic components that will have
widespread applicability in paleomagnetism and environmental magnetism.

1. Introduction

Natural samples contain magnetic minerals with a wide range of grain sizes, domain states, coercivity distri-
butions, anisotropies, and interaction fields. First-order reversal curve (FORC) diagrams provide a powerful
method to characterize all these aspects of the magnetic mineralogy (Pike et al., 1999; Roberts et al., 2000,
2014), although their interpretation in the literature is often based on qualitative assessments and empirical
‘‘fingerprinting.’’ Developments in theoretical modeling (Egli, 2006; Harrison & Lascu, 2014; Muxworthy et al.,
2004; Newell, 2005; Roberts et al., 2017), new measurement protocols (Zhao et al., 2015, 2017), and new
analysis methods (Egli, 2013; Egli & Winklhofer, 2014; Heslop et al., 2014) have placed the processing and
interpretation of FORC diagrams onto a firm physical footing, which provides the opportunity for a more
quantitative approach to rock magnetic characterization. Application of principal component analysis
(Jolliffe, 2002) to analyze entire sets of FORC diagrams (FORC-PCA) was introduced by Lascu et al. (2015) as
a quantitative method to unmix a suite of related samples into a linear combination of up to four end-
members (EMs). The method has been applied successfully to unmix the biogenic and detrital magnetic
components of a sediment core from the Rockall Trough (Channell et al., 2016), to characterize glacial/inter-
glacial sedimentation on the Northwest Iberian Margin (Plaza-Morlote et al., 2017), and to unmix the pedo-
genic and detrital magnetic components of Minnesotan soils (Maxbauer et al., 2017). The key advantage of
FORC-PCA lies in the two-dimensional nature of the FORC diagram. Unmixing one-dimensional coercivity
distributions (e.g., by fitting to the sum of standard basis functions) can be ambiguous, especially when
there is strong overlap between the coercivity distributions of different components (Heslop, 2015). The
information provided by the vertical Bu axis of an FORC diagram, however, provides additional sensitivity to
the presence of superparamagnetic (SP), single-domain (SD), vortex (V), and multidomain (MD) states, the
ability to detect the presence or absence of interactions in each EM, and a way to discriminate between
minerals with different types of magnetocrystalline anisotropy. Note that throughout this paper we follow
Roberts et al. (2017) in referring to ‘‘vortex’’ states rather than to ‘‘pseudo-single domain’’ or ‘‘PSD’’ states.
The term ‘‘vortex’’ is broadly defined by Roberts et al. (2017) to include both single-vortex (SV) and
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multivortex (MV) states, which more accurately describe the physics of magnetic particles (Donnelly et al.,
2017) in the intermediate size range between the SD and MD states.

Despite the numerous advantages of FORC-PCA, the method has some shortcomings that currently limit its
usefulness for rock magnetic characterization. First, the FORC distribution is sensitive primarily to the irrevers-
ible component of the magnetic response of a sample to a changing magnetic field. Purely reversible
responses to the changing field (e.g., from superparamagnetic, paramagnetic, antiferromagnetic, or diamag-
netic sources), are strictly absent from the FORC diagram, and cannot be identified as EM components in a
FORC-PCA analysis. Even for ferrimagnetic sources, the magnetization response of any sample can be split
into the sum of reversible and irreversible components, with the ratio of the two depending largely on the
domain state: SD states are dominated by irreversible magnetization, whereas MD states are dominated by
reversible magnetization. In its current form, therefore, the unmixing proportions reported by FORC-PCA may
deviate significantly from the actual proportions (by mass or volume) of the EMs present in the sample, espe-
cially if the EMs represent populations of grains with different domain states. Second, the process of choosing
appropriate EMs (based often on a limited sampling of the unmixing space by a data set) can be subject to
nonuniqueness, user subjectivity, and in the most serious cases, to selection of physically unrealistic EMs.

In this paper, we develop an improved algorithm for FORC-PCA that addresses these issues. We present a
practical implementation that allows the FORC distribution and the FORCs themselves to be reconstructed
simultaneously, and describe objective criteria that can be used to guide the most appropriate EM choice
to enable quantitative unmixing of FORC diagrams. These improvements to the FORC-PCA method are
implemented and integrated into a new version of the FORCem package within FORCinel (Harrison & Fein-
berg, 2008; Lascu et al., 2015), as described in supporting information.

2. Materials and Methods

Three synthetic binary mixtures that contain known proportions of SD, V, and MD magnetite were studied
using FORC-PCA. Binary mixtures of SD-V and SD-MD particles were kindly provided by Bruce Moskowitz of
the Institute for Rock Magnetism. These samples have been used in several previous studies of magnetic
unmixing (Carter-Stiglitz et al., 2001; Dunlop & Carter-Stiglitz, 2006; Lascu et al., 2010). The SD EM is a
freeze-dried sample of a cultivated strain of the MV1 magnetotactic bacterium. The magnetosomes have a
well-constrained grain-size distribution, with particle sizes of 35 3 35 3 53 nm aligned in chains of 10–20
crystals (Moskowitz et al., 1993). Both the V and MD EMs are synthetic magnetites produced by Wright
Industries, with typical grain-size distributions of 1–3 and 8–40 mm, respectively (Carvallo & Muxworthy,
2006). The SD-V and SD-MD mixtures were produced by first dispersing the coarser EM in CaF2 to 0.1% by
weight and then adding MV1 to obtain the desired mass proportions. The V-MD mixture was created by
weighing the mass of EMs, and dispersing them to a 1% concentration in a fine-grained sucrose matrix.
Samples were mixed gently, placed into gelatin capsules, and packed with quartz wool or Kimwipe tissues
to prevent vibration of the sample during measurement. The mixing proportions of all samples are listed in
Table 1. Bulk hysteresis parameters (newly measured for this study) for all samples are listed in Table 2.

Measurements were made at the University of Cambridge on a Lakeshore PMC MicroMag vibrating sample
magnetometer. For each sample, 174 FORCs were acquired in 1.5 mT field increments with 200 ms averag-
ing time. The FORC data were imported into FORCinel (Harrison & Feinberg, 2008) and processed using the
VARIFORC smoothing algorithm (Egli, 2013), resampled on a 2 mT grid, and subjected to PCA analysis fol-
lowing the protocol described by Lascu et al. (2015). EMs were selected from known pure samples to con-
strain the mixing space. In each case, the finest magnetic component was chosen as EM1. The synthetic
binary mixtures were then unmixed using PCA and the mixing proportions were calculated.

3. Results

Representative FORC diagrams for each set of studied binary mixtures are shown in Figures 1–3. The MD
EM (Figures 1a and 3c) has a typical MD FORC diagram dominated by a low-coercivity, vertically spread sig-
nal and a weak, high-coercivity, horizontally spread tail, likely related to strong pinning of domain walls by
stress fields on surfaces and at internal defects/dislocations (Lindquist et al., 2015; Pike et al., 2001a). The SD
EM (Figures 1c and 2c) has a typical SD FORC diagram for noninteracting uniaxial SD particles, comprising

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007511

HARRISON ET AL. 1596



an intense horizontal ridge and a corresponding weak negative signal
located close to the negative Bu axis (Egli et al., 2010; Muxworthy
et al., 2004; Newell, 2005). The coercivity distribution for the cultured
MV1 bacteria is particularly narrow. Some vertical spreading of the
horizontal ridge is evident, which indicates either the presence of
magnetic interactions among the magnetosome chains, or a small
degree of chain collapse (Egli & Winklhofer, 2014; Harrison & Lascu,
2014; Li et al., 2012). A slight vertical offset of the horizontal ridge is
likely a viscous magnetization effect caused by the time asymmetry of
the FORC measurement protocol (Egli, 2013). The V EM (Figures 2a
and 3a) consists of an intense, closed-contour peak with broad vertical
and horizontal spreading, and three weaker, less prominent lobes.
Although such FORC signatures can be created by strongly interacting
SD clusters (e.g., Carvallo et al., 2005), this explanation can be ruled
out here because the known grain size of the sample (1–3 mm) far
exceeds the upper SD threshold size. Instead, the broad central peak
and three lobes are interpreted as MV and SV processes, respectively,
dominated by intraparticle, rather than interparticle, interactions. A
weak negative signal close to the negative Bu axis is visible in Figure
3a. For V-MD mixtures, the maximum intensity of the FORC signal in
each EM is comparable, so that both signals are clearly evident in a
�50:50 mixture (Figure 3b). The intense positive signal associated
with the SD EM, however, dominates the FORC signal of the SD-MD
and SD-V mixtures (Figures 1b and 2b), so that only when >80% of
the mixture is constituted by the MD or V EMs does their presence
become obvious in the FORC diagram.

Results of FORC-PCA analysis using the method of Lascu et al. (2015)
are shown in Figure 4. There is a systematic nonlinear deviation in all
three mixtures between the FORC-PCA calculated (EM1) and actual
weight fractions (EM1*) of EMs used to prepare the samples. With
EM1 defined to be the finer-grained EM, all three binary mixtures
have a concave down relationship between the calculated versus

actual mixing proportions. The nonlinearity is most pronounced for the SD-MD binary mixture, and is least
pronounced for the SD-V binary mixture.

4. Origin of the Unmixing Discrepancy

The difference between mixing proportions derived by FORC-PCA and the known mass proportions of EMs
in the synthetic mixtures (Figure 4) can be explained by the fact that the SD, V, and MD states have different
ratios of irreversible to reversible magnetization. The FORC distribution, q, is defined as:

q52
1
2

@2M
@Ba@Bb

; (1)

where M is the magnetization, Ba is the reversal field, and Bb is the measurement field. Prior to FORC-PCA
analysis, each FORC diagram is normalized by its integral:

ð ð
qdBadBb5Ms2Mrev5Mirr; (2)

where Ms is the saturation magnetization, Mrev is the reversible component, and Mirr is the irreversible com-
ponent (Pike, 2003). FORC-PCA describes each normalized FORC diagram as the linear sum of normalized
EMs, so that the mixing proportions are defined as (e.g., for a binary mixture):

EM15
m1Ms1f1

Mirr
and (3)

Table 1
Mass Fractions of End-Members in Measured Samples

Sample SD V MD

V-MD
wm_1 1.00 0.00
wm_2 0.85 0.15
wm_3 0.65 0.35
wm_4 0.64 0.36
wm_5 0.49 0.51
wm_6 0.69 0.31
wm_7 0.31 0.69
wm_8 0.34 0.66
wm_9 0.10 0.90
wm_10 0.00 1.00
wm_11 0.25 0.75
wm_12 0.42 0.58
SD-V
w30_1 0.00 1.00
w30_2 0.50 0.50
w30_3 0.31 0.69
w30_4 0.20 0.80
w30_5 0.10 0.90
w30_6 0.06 0.94
w30_7 0.69 0.31
w30_8 0.80 0.20
w30_9 0.90 0.10
w30_10 0.95 0.05
SD-MD
w14_1 0.00 1.00
w14_2 0.56 0.44
w14_3 0.33 0.67
w14_4 0.24 0.76
w14_5 0.12 0.88
w14_6 0.83 0.17
w14_7 0.92 0.08
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EM2512EM15
m2Ms2f2

Mirr
; (4)

where m1 and m2 are the mass of each EM, Ms1 and Ms2 are the mass-
normalized saturation magnetization of each EM, and f1 and f2 are the
ratio of the irreversible magnetization to saturation magnetization for
each EM. The mass proportions of the EMs in the mixture are given
by:

EM1�5
m1

m11m2
: (5)

Rearranging equations (3) and (4) and substituting in (5), we obtain:

EM1�5
EM1

EM11f 12EM1ð Þ ; (6)

where

f 5
Ms1f1

Ms2f2
: (7)

The f factor expresses how different the EMs are in terms of their irre-
versible/reversible magnetization contributions. A value of f 5 1 corre-
sponds to ideal behavior (EM* 5 EM1), and is obtained only when the
EMs contain identical minerals (Ms1 5 Ms2) with equal ratios of irre-
versible to saturation magnetization (f1 5 f2). Least squares fits to plots
of EM1 versus EM1* are shown as solid lines in Figure 4, yielding f val-
ues of 2.72, 1.52, and 2.69 for the SD-MD, SD-V, and V-MD mixtures,
respectively. All EMs contain magnetite; therefore, the different f fac-
tors indicate that the irreversible contribution to the magnetization of
each domain state is different, with SD> V>MD. Although, in princi-
ple, equation (6) allows the FORC-PCA proportions to be corrected,
prior knowledge of the f factor is required. This is not a practical solu-
tion when the properties of the EMs are unknown.

5. An Improved FORC-PCA Algorithm

The nonlinear unmixing discrepancy documented above can be corrected by applying PCA to the FORC
magnetization surface (which contains both reversible and irreversible contributions), rather than to the
FORC distribution (which contains only irreversible contributions); the FORC magnetization surface has
been shown previously to mix linearly (Muxworthy et al., 2005). This approach, however, poses a challenge
to interactive exploration of the unmixing space that is necessary to identify suitable EMs: as each point in
the mixing space is explored, it becomes necessary to estimate q over the reconstructed magnetization sur-
face to obtain the corresponding FORC diagram. Here we overcome this problem by applying PCA to the
set of six polynomial coefficients that are used to fit the magnetization surface during smoothing of the
input FORC diagrams (Pike et al., 1999). In this way, the reconstructed set of coefficients at any given point
in the unmixing space can be used to calculate both the magnetization surface and its derivatives
simultaneously.

Our procedure is described as follows. Raw FORC data for a set of samples to be analyzed are imported into
FORCinel. A linear high-field slope correction is applied, and a record is kept of the mass normalized Ms

value for each sample, for future reference. Here the slope correction was performed by fitting a straight
line to the high-field portion of the FORCs. In cases where the FORCs have not been measured to sufficiently
high fields to fully saturate the ferrimagnetic component, it may be desirable to perform the correction
using a separately determined value of the high-field susceptibility. The FORCs are normalized to Ms 5 1,
the lower-branch subtracted (optionally), and processed using the VARIFORC variable smoothing algorithm
(Egli, 2013). For consistency with the published code (see supporting information) we use the VARIFORC

Table 2
Summary of Hysteresis Properties for Measured Samples

Sample Hc (mT) Hcr (mT) Hcr/Hc Mr/Ms

V-MD
wm_1 31.35 52.56 1.68 0.29
wm_2 28.61 52.23 1.83 0.26
wm_3 23.11 79.32 3.43 0.20
wm_4 21.05 49.43 2.35 0.19
wm_5 18.25 48.59 2.66 0.16
wm_6 22.89 48.59 2.12 0.20
wm_7 13.70 46.04 3.36 0.12
wm_8 15.18 46.82 3.08 0.13
wm_9 2.59 34.53 13.36 0.03
wm_10 4.39 23.70 5.40 0.04
wm_11 11.11 42.61 3.83 0.09
wm_12 16.35 47.93 2.93 0.14
SD-V
w30_1 24.20 45.26 1.87 0.02
w30_2 41.17 52.96 1.29 0.35
w30_3 35.85 52.79 1.47 0.29
w30_4 31.75 52.11 1.64 0.26
w30_5 27.55 50.56 1.84 0.23
w30_6 26.63 50.01 1.88 0.23
w30_7 41.34 49.42 1.20 0.40
w30_8 41.62 48.71 1.17 0.43
w30_9 41.78 48.63 1.16 0.47
w30_10 41.88 47.61 1.14 0.48
SD-MD
w14_1 5.47 26.11 4.77 0.04
w14_2 34.24 49.43 1.44 0.27
w14_3 21.26 48.75 2.29 0.16
w14_4 16.52 47.85 2.90 0.13
w14_5 10.57 44.81 4.24 0.09
w14_6 41.45 49.35 1.19 0.40
w14_7 42.80 49.49 1.16 0.45
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coordinate scheme (Bc, Bu) rather than the measurement coordinate
scheme (Ba, Bb) in the following. For each output point in a processed
FORC diagram, a weighted second-order polynomial fit is performed
to the local magnetization surface over a rectangular area defined by
the horizontal and vertical smoothing factors (Egli, 2013):

M Bc; Buð Þ5a01a1Bc1a2Bu1a3B2
c1a4BcBu1a5B2

u (8)

The FORC distribution (equation (1)) is then given by:

q5
a32a5

4
: (9)

In order to analyze sets of FORC diagrams that may have been
acquired using different measurement protocols, each polynomial
coefficient in equation (8) is interpolated bilinearly onto a rectangular
grid, capturing a specified region of interest. For a rectangular grid
containing N points, there will be 6N observations for each FORC dia-
gram, corresponding to the six bilinearly interpolated polynomial
coefficients for each point. The FORC-PCA method of Lascu et al.
(2015) is then applied, simply replacing the N values of the FORC dis-
tribution with the 6N polynomial coefficients for each sample. Once

the number of significant PCs has been chosen (n� 3, corresponding to a maximum of four EMs), low-rank
approximations of both the magnetization surface and the FORC distribution can be reconstructed for any
chosen location within the resulting unmixing space (score plot). Exploring the unmixing space to identify
potential EMs can now be performed interactively, guided by both the reconstructed magnetization and
corresponding FORC diagram.

A complication occurs when the option to subtract the lower branch from the normalized FORCs prior to
smoothing is chosen. Lower-branch subtraction was introduced by Egli (2013) to improve smoothing per-
formance in the vicinity of the Bb 5 0 axis (an axis extending from the origin at a 2458 angle in VARIFORC
coordinate space). Lower-branch subtraction reduces significantly the appearance of smoothing artifacts
along this axis when using variable smoothing protocols because it removes sigmoidal magnetization con-
tributions that are poorly described by a second-order polynomial. When smoothing is performed after

Table 3
Summary of Hysteresis Properties for Extracted EMs

Hc (mT) Hcr Hcr/Hc Mr/Ms

V-MD
EM1 33.0 52.6 1.6 0.38
EM2 4.6 24.5 5.3 0.044
V (obs) 31.0 52.9 1.7 0.37
MD (obs) 4.5 24.4 5.5 0.045
SD-V
EM1 27.0 49.0 1.8 0.34
EM2 42.0 48.0 1.1 0.54
EM3 39.0 45.0 1.2 0.54
SD (95%) 41.0 48.0 1.2 0.52
V (obs) 24 48.5 2.0 0.34
SD-MD
EM1 6.0 26.8 4.5 0.07
EM2 41.0 47.5 1.2 0.53
EM3 37.5 43.5 1.2 0.55
SD (92%) 39.7 47.5 1.2 0.49
MD (obs) 5.2 26.9 5.1 0.07

Figure 1. Experimental FORC diagrams for SD-MD mixtures. Smoothing performed using FORCinel with VARIFORC parameters Sc0 5 7, Sc1 5 7, Sb0 5 5, Sb1 5 7,
kc5 0.1, and kb5 0.1. Mixing proportions are (a) 100%, MD 0% SD, (b) 88%, MD 12% SD, and (c) 8% MD, 92% SD.
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lower-branch subtraction, the set of polynomial coefficients in equation (8) describes the subtracted mag-
netization surface rather than the desired full magnetization surface. In order to reconstruct the full magne-
tization surface, a second smoothing step is performed on a synthetic 2-D magnetization surface created
using just the lower-branch signal. This lower-branch surface is fitted using equation (8), but with the strict
constraint that a3 5 a5, thereby ensuring that the FORC distribution (and its associated artifacts) associated
with the lower-branch surface is zero (equation (9)). Polynomial coefficients resulting from the fit to the
lower-branch surface are then added to those resulting from the fit to the lower-branch subtracted

Figure 2. Experimental FORC diagrams for SD-V mixtures. Smoothing performed using FORCinel with VARIFORC parameters Sc0 5 7, Sc1 5 12, Sb0 5 5, Sb1 5 12,
kc5 0, and kb5 0. Mixing proportions are (a) 100% V, 0% SD, (b) 80% V, 20% SD, and (c) 5% V, 95% SD.

Figure 3. Experimental FORC diagrams for V-MD mixtures. Smoothing performed using FORCinel with VARIFORC parameters Sc0 5 7, Sc1 5 7, Sb0 5 5, Sb1 5 7, kc 5

0.1, and kb 5 0.1. Mixing proportions are (a) 100% V, 0% MD, (b) 49% V, 51% MD, and (c) 0% V, 100% MD.

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007511

HARRISON ET AL. 1600



magnetization surface, which are then used as input to the FORC-PCA. This double-smoothing procedure
allows the full magnetization surface to be reconstructed from the chosen PC combination, while retaining
an artifact-free representation of the reconstructed FORC diagram.

Heslop and Roberts (2012a) demonstrated that, because of the corrupting effects of measurement noise, it
is necessary to calculate statistical significance levels to identify the parts of an FORC distribution, where q
is significantly above the signal-to-noise ratio. Use of PCA to provide a low-rank approximation of a collec-
tion of measured FORC diagrams is also an effective approach to reduce the influence of noise in represent-
ing a mixing system (Heslop, 2015). Therefore, while PCA will not eliminate noise completely, its effect on
the representation of the mixing system and on the identified EMs is reduced substantially compared to
individual FORC diagrams.

Results of the new algorithm applied to the synthetic binary mixtures are shown in Figures 5–7. The V-MD
mixture (Figure 5) is well described as a binary mixture, with 99% of the variance in the data set explained
by PC1. Pure EMs are included within the data set, which leads to no ambiguity in the choice of EM1 (V) and
EM2 (MD) (Figures 5a and 5b). The SD-MD mixture (Figure 6) can be approximated as a binary mixture, with
95% of the variance being explained by the first principal component (PC1). However, a small but significant
second principal component (PC2) is needed to bring the variance explained to >99% (Figure 6g). Without
including PC2, it is not possible to isolate completely a pure MD EM. This effect is caused by subtle coerciv-
ity differences of the MV1 bacteria from sample to sample, which only become apparent because of the
intense and narrow nature of their FORC distribution. Possible explanations for the coercivity difference
between samples include differences in oxidation state that resulted from sample storage in air for over 10
years, or different degrees of bacterial chain collapse. By including PC2, small coercivity differences can be
taken into account, enabling a pure MD EM to be identified (EM1, Figure 6a), along with two SD EMs (EM2
and EM3) that differ only in their average coercivity (Figures 6b and 6c, and Table 3). Hence, PC1 describes
the binary mixing between SD and MD EMs, and PC2 accounts for the varying coercivity of the SD MV1
component. A similar approach was taken to describe the SD-V mixture (Figure 7), although the coercivity
variation of the MV1 samples is less pronounced (99% of the variance is explained by PC1 alone). In all three
cases, the mixing proportions derived from FORC-PCA agree well with the known mass fractions. The 2r dif-
ferences between calculated and observed proportions are 2%, 5%, and 6% for the SD-MV, SD-V, and MD-V
binary mixtures, respectively. These observations provide an empirical estimate of the error in the unmixing
proportions that is likely to be achieved using FORC-PCA in optimal cases (i.e., where the mixing space is
well sampled by the data set).

6. Feasibility Metrics

An inherent part of the FORC-PCA method is the supervised exploration of the unmixing space in order to
identify appropriate EMs (Lascu et al., 2015). This process is only unambiguous when the sample set
includes examples of each EM that is being solved for (as is approximately the case for the binary mixtures

Figure 4. Comparison of mixing proportions derived from FORC-PCA (EM) using the method of Lascu et al. (2015) with known mass proportions of end-members
in synthetic mixtures (EM*) of (a) SD-MD, (b) SD-V, and (c) V-MD magnetite particles, respectively. Solid lines are fits to the data using equation (6), which yield
f 5 2.72, 1.52, and 2.69, respectively.
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studied here). When the sampling of the unmixing space in incomplete, however, the method relies heavily
on the expertise of the user to identify (a) EMs that enclose the entire set of sample scores (with the excep-
tion of outliers identified by residual analysis), (b) pure EMs (i.e., that do not contain any residual contribu-
tions from the other EMs), and (c) EMs that are physically realistic (i.e., the reconstructed FORC diagram for
each EM corresponds to an achievable FORC geometry based on the knowledge of the magnetic

Figure 5. FORC-PCA analysis of V-MD mixtures using the new unmixing algorithm. (a and b) Reconstructed FORC dia-
grams for EM1 (V) and EM2 (MD). (c and d) Reconstructed FORCs for EM1 and EM2. (e) PC score plot for a binary unmixing
space between EM1 and EM2 (indicated by arrows). Diamonds illustrate the scores of individual samples. (f) Comparison
of mixing proportions extracted using the new algorithm with the known mass proportions of end-members in the syn-
thetic mixture. The solid line indicates a one-to-one relationship.

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007511

HARRISON ET AL. 1602



mineralogy and the responses that can be modeled physically) (Harrison & Lascu, 2014). With access to only
the reconstructed FORC diagram, identification of physically unrealistic regions of the unmixing space relies
on subjective criteria. The availability of reconstructed FORCs, however, provides objective information from
which criteria can be defined to assess the physical feasibility of the corresponding FORC diagram. Follow-
ing the approach of Heslop and Roberts (2012b), three criteria that can be applied to assess the feasibility
of reconstructed FORCs are: (a) saturation (i.e., no FORC should exceed the normalized value of Ms 5 1), (b)

Figure 6. FORC-PCA analysis of MD-SD mixtures using the new algorithm. (a–c) Reconstructed FORC diagrams for EM1 (MD), EM2 (SD high coercivity), and SD (low
coercivity), respectively. (d–f) Reconstructed FORCs for EM1, EM2, and EM3, respectively. (g) PC score plot for a ternary unmixing space between EM1, EM2, and
EM3 (black triangle). Diamonds illustrate the scores of individual samples. Contour lines represent the combined feasibility metric, m, for the saturation, monoto-
nicity, and crossing metrics. (h) Comparison of mixing proportions extracted using the new algorithm with the known mass proportions of end-members in the
synthetic mixture. The solid line represents a one-to-one relationship.
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monotonicity (i.e., the first derivative of a FORC with respect to the measurement field should remain non-
negative), and (c) crossing (i.e., the first derivative of the magnetization surface with respect to the reversal
field should remain positive, meaning that FORCs do not intersect each other). Each of these metrics can be
used on their own, or in combination, to define the region of unmixing space that is physically realistic. The
EMs should be contained entirely within that region.

We define three metrics for each of the feasibility criteria, which vary from 0 (completely unsatisfied) to 1
(completely satisfied):

Figure 7. FORC-PCA analysis of V-SD mixtures using the new algorithm. (a–c) Reconstructed FORC diagrams for EM1 (V), EM2 (SD high coercivity), and SD (low
coercivity), respectively. (d–f) Reconstructed FORCs for EM1, EM2, and EM3, respectively. (g) PC score plot for a ternary unmixing space between EM1, EM2, and
EM3 (black triangle). Diamonds illustrate the scores of individual samples. Contour lines represent the combined feasibility metric for the saturation, monotonicity,
and crossing metrics. (h) Comparison of mixing proportions extracted using the new algorithm with the known mass proportions of end-members in the synthetic
mixture. The solid line represents a one-to-one relationship.
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msaturation5

P
jMAjP
jMj ; (10)

where MA is the subset of the magnetization, M, that satisfies the condition jMj � 1;

mmonotonicity5

P dM
dBa

� �
AP

jdM
dBa
j
; (11)

where dM
dBa

� �
A

is the subset of dM
dBa

that satisfies the condition dM
dBa
� 0; and

mcrossing5

P dM
dBb

� �
AP

jdM
dBb
j
; (12)

where dM
dBb

� �
A

is the subset of dM
dBb

that satisfies the condition dM
dBb
� 0.

The metrics can be combined into a single feasibility metric, m, by multiplying them together in any combi-
nation. By calculating m over a grid of points, contours of feasibility can be used to indicate the region of
unmixing space, where the criteria are satisfied fully (m 5 1). In practice, some allowance is needed for the
fact that we are dealing with a low-rank approximation to the data, that some nonmonotonicity may be
genuinely present (e.g., for SP grains), and that experimental noise can cause FORCs to cross as saturation is
approached. This means that m values slightly less than 1 should be allowable. Here we take m> 0.99 as a
reasonable (although arbitrary) guideline of acceptability (Figures 6g and 7g). Given the essentially binary
nature of the mixtures, the placement of EM3 slightly outside the m 5 0.99 contour in Figures 6g and 7g
has been done to maintain EM2 and EM3 at a constant value of PC1 away from EM1, while ensuring that all
data points are contained within the mixing triangle.

A fourth metric, which should be used independently of the other three, describes the amount of negative
signal in the processed FORC diagram. Given that negative regions are an intrinsic feature of many FORC
diagrams, this metric is less stringent than the others (values significantly< 1 are acceptable). However,
there are specific domain states that do not have intrinsically negative regions, or have only weakly nega-
tive regions, so evaluating this metric can be helpful to define the location of specific EMs. For example,
inappropriate appearance of strong negative signals can be caused by over subtraction of other EMs, which
provides a good indication that EM selection has strayed too far from the data. The positivity metric is
defined as:

mpositivity5

P
jqAjP
jqj ; (13)

where qA is the subset of the FORC distribution, q, that satisfies the conditions q � 0. Steep drops in mpositiv-

ity may indicate that over subtraction of other EMs is occurring.

7. Example

To illustrate the new FORC-PCA algorithm applied to natural mixtures of different domain states, we ana-
lyzed a suite of greigite-bearing clays from Florindo et al. (2007), which were deposited between 800 and
600 ka in the Tiber River coastal alluvial plain around Rome. A total of 17 FORCs were measured, 14 of which
contain magnetostatically interacting SD greigite mixed with varying amounts of an SP/SD greigite. The
other three samples contain the SP/SD signal only. The latter samples were significantly less magnetic than
the former, and have noisy processed FORC diagrams. FORC data from these three samples were averaged
to produce a single representative example of the pure SP/SD component. This averaged FORC and the
other 14 FORCs were then analyzed using FORC-PCA (Figure 8). Only two PCs are needed to explain over
90% of the variance in the data set, with a third PC bringing the variance explained to 98%. For illustrative
purposes, we use a two-PC model constructed from PC1 and PC3, which provides the most convenient pro-
jection of the key mixing trends. Three EMs are identified. Key features of EM1 (Figure 8a) are a negative
region close to the negative Bu axis (1), a second negative region that is elongated and steeply angled
down and to the right (2), and a kidney-shaped positive peak that is strongly offset in the negative Bu direc-
tion and extends only slightly above the Bu 5 0 axis (3). All three of these features are diagnostic of relatively
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weakly interacting SD greigite grains (Roberts et al., 2011) with cubic magnetocrystalline anisotropy
(Harrison & Lascu, 2014). Key features of EM2 (Figure 8b) are a negative region close to the negative Bu axis
(1) and a rounded positive peak that is offset in the negative Bu direction and extends far above the Bu 5 0
axis (2). Both features are diagnostic of strongly interacting SD greigite (Harrison & Lascu, 2014; Roberts

Figure 8. FORC-PCA analysis of greigite-bearing clay samples from the Tiber River, Rome (Florindo et al., 2007). (a–c) Reconstructed FORC diagrams for EM1 (mod-
erately interacting SD greigite), EM2 (strongly interacting SD greigite) and EM3 (SP/SD greigite), respectively. (d–f) Reconstructed FORCs for EM1, EM2, and EM3.
The arrow in Figure 8f indicates the downward-inflected response at the start of each FORC. Although this phenomenon is associated partially here with viscous
SP behavior (Pike et al., 2001b), it is also likely to be partially an instrumental artifact in this case. (g) PC score plot for a ternary unmixing space between EM1, EM2,
and EM3 (black triangle). Diamonds illustrate the scores of individual samples. Contour lines represent the combined feasibility metric for the saturation, monoto-
nicity, and crossing metrics. The inset is an illustration of contours for the positivity metric. (h) Ternary diagram for the extracted proportions of EM1, EM2, and
EM3. The blue line illustrates the two dominant mixing trends (EM3–EM2 and EM2–EM1). An example experimental FORC diagram for a mixture of strongly inter-
acting and �35% viscous SP/SD greigite is indicated by the arrow.
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et al., 2011). Key features of EM3 (Figure 8c) are a low-coercivity ridge with maximum intensity at 0 mT (1)
and an increasing positive signal extending along the negative Bu axis (2). Feature 1 is characteristic of non-
interacting SD greigite particles with coercivities that have been reduced by thermal activation (Pike et al.,
2001b; Rowan & Roberts, 2006). Feature 2 is likely due to viscous SP behavior, which leads to the negative
initial slope of each FORC (arrow in Figure 8f; Pike et al., 2001b). However, given that the intensity of this
feature continues to increase, even as reverse saturation is approached, it is also likely to be partially an
instrumental artifact.

The choice of EMs in this case has been guided by the following principles. First, EM3 is fixed by inclusion of
the pure SP/SD EM in the data set. This sample plots to the far right of the unmixing space (Figure 8g), close
to but within the guideline boundary of physical feasibility. Moving left, away from EM3 in a direction paral-
lel to the PC1 axis (which describes the largest mode of variability in the data set), yields a binary mixture of
EM3 and a moderately interacting SD greigite EM (EM1). The most extreme left-hand data point lies close to
the guideline boundary of physical feasibility. However, the FORC diagram for this data point contains a
trace residual of EM3. In order to obtain a pure EM, one must move further to the left. The guideline bound-
ary of physical feasibility places a limit on how far to the left one can go before the reconstructed FORCs for
EM1 become physically unrealistic. We place EM1 at the m 5 0.99 threshold, which yields a physically realis-
tic pure EM with no residual trace of EM3. The placement of EM2 is more difficult because it lies well within
the guideline region of physical feasibility. Here the positivity index (equation (13)) provides an additional
guideline (inset to Figure 8g). A steep drop in mpositivity is observed if EM2 is placed too far along the posi-
tive PC2 axis, which is caused by over subtraction of EM1 from the reconstructed FORC diagram. If EM2 is
placed too far along the positive PC1 axis then not all the data are enclosed by the unmixing space. Com-
bined, these two principles place important constraints on the location of EM2, and produce a recon-
structed FORC diagram with a recognizable geometry and minimal residual traces of EM1 and EM3.

Having defined the unmixing space, the proportions of the three EMs can be determined (Figure 8h). Two
distinct mixing trends can be identified in the data: a mixing between SP/SD and strongly interacting SD
greigite, and one between weakly and strongly interacting SD greigite. The first mixing trend can be
explained by grain growth of authigenic greigite from small, noninteracting particles below the SP thresh-
old size to larger, stable SD particles in closely packed clusters within framboids with strong interactions
(Rowan & Roberts, 2006). The second mixing trend can be explained as a weakening of the interactions
between SD greigite particles, driven by a lowering of the packing fraction. A possible mechanism to
explain this trend is the progressive replacement of strongly interacting greigite framboids by thermody-
namically stable, paramagnetic pyrite. This process was recently identified by Ebert et al. (2018) using high-
resolution magnetic force microscopy imaging. This interpretation is consistent with the lack of a mixing
trend between EM1 (SP/SD) and EM3 (weakly interacting SD), which cannot be achieved in this pyrite
replacement scenario without first going through the strongly interacting SD greigite EM.

8. Discussion

Unmixing the magnetic properties of rocks, sediments, and soils is a primary task in rock magnetism.
Numerous methods exist to tackle this problem (e.g., Dunlop, 2002a, 2002b; Egli, 2004a, 2004b, 2004c;
Franke et al. 2007; Heslop & Dillon, 2007; Kruiver et al., 2001; Lagroix & Guyodo, 2017; Lascu et al., 2010,
2015; Ludwig et al., 2013; Robertson & France, 1994) as well as an extensive toolbox of magnetic proxies
that are designed to highlight specific magnetic mineralogy variations in environmental contexts (Evans &
Heller, 2003; Liu et al., 2012). No single method is perfect for all cases, and usually a combination of meth-
ods is needed to unmix all magnetic components contained within a material. In particular, preparatory
studies performed at high sampling resolution provide an efficient way to prescreen a data set, and to iden-
tify samples that are closest to potential EMs (e.g., EM3 in Figure 8). The FORC-PCA method is ideally suited
to characterizing ferrimagnetic minerals, with an emphasis on discriminating populations of grains that dif-
fer in domain state, coercivity distribution, anisotropy, and interaction field (i.e., aspects to which FORC dia-
grams are particularly sensitive). Here we have resolved many of the outstanding issues associated with the
original FORC-PCA method of Lascu et al. (2015), including solution of the linear mixing equation, the ability
to identify SP EMs that are dominated by reversible magnetizations, and reducing ambiguities in defining
the unmixing space. Excellent agreement between our calculated proportions for SD-MV and SD-V mixtures
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contrasts starkly with attempts to unmix these samples using either linear or nonlinear mixing in a Day plot
(Day et al., 1977; Dunlop & Carter-Stiglitz, 2006). Failure of the Day plot unmixing approach was explained
by Dunlop and Carter-Stiglitz (2006) as due to the squareness of hysteresis loops for MV1 bacteria, which
violates the linear assumption of the unmixing model (Dunlop, 2002a, 2002b). This illustrates one of the key
advantages of PCA, which makes no prior assumptions about the shape of the EM signals (Heslop, 2015).

The need to use three EMs to describe binary SD-V and SD-MD mixtures highlights an important underlying
assumption of the FORC-PCA method, namely that the properties of each EM are constant throughout a
sample set, with only the mixing proportions varying from sample to sample. Whenever this assumption is
not met, additional ‘‘fictive’’ EMs may be needed to define adequately the total variability within a data set.
This is clearly the case for the MV1-bearing mixtures, where significant coercivity variations of the bacterial
component exist from sample to sample. Given the narrow coercivity distribution of the MV1 bacteria, use
of a third EM becomes necessary to isolate a pure V or MD EM. Most natural samples have broader coerciv-
ity distributions, however, and as long as intra-EM variability is low compared to inter-EM variability, ‘‘fictive’’
EMs are not typically necessary. The likelihood that ‘‘fictive’’ EMs will be needed to account for intra-EM vari-
ability increases as the size of the FORC data set increases. For large data sets, it may be necessary to per-
form a series of FORC-PCA analyses on subsets of the data. This approach allows commonalities between
EMs extracted from different subsets to be identified, and the nature of intra-EM variability to be explored.
In other cases (e.g., grain-size sorting of a detrital component), sample-to-sample variability is physically
linked to a single EM with continuously variable properties, rather than to a mechanical mixture of EMs with
fixed properties. In these cases, FORC-PCA generates two or more ‘‘fictive’’ EMs that recreate intersample
variations, but do not correspond to fixed physical components of the system. Nevertheless, the mixing pro-
portions of ‘‘fictive’’ EMs provide a useful coordinate system with which to quantify the extent of intersam-
ple variation, and may be used to identify variation trends and clusters of behavior.

The ability to unmix up to four EMs, each with their own distinct domain state, coercivity and interaction
field distribution, takes us beyond the routine characterization that is commonly considered ‘‘good enough’’
for most paleomagnetic studies, and largely addresses the ambiguities (Roberts et al., 2018) involved in
interpreting the widely used Day diagram (Day et al., 1977). Note that there is no limit on the number of
EMs that can be mathematically defined, but visualization and interactive exploration of the unmixing space
becomes impractical beyond four EMs. The new algorithm provides a full set of FORCs for each EM, which
allows additional hysteresis properties to be derived. In some cases, this additional information can be used
to check for consistency with the interpreted physical origin of each EM (e.g., if the FORC diagram of the EM
suggests noninteracting, uniaxial SD behavior, then Mr/Ms values close to 0.5 and Bcr/Bc values close to 1
would be expected). Compared to a Day diagram, hysteresis ratios of extracted EMs acquire enhanced phys-
ical meaning because the effects of mixing have been deconvolved. The use of feasibility metrics reduces
(but does not eliminate) the ambiguity involved in defining EMs when the unmixing space is sampled
incompletely. This development should help to make the FORC-PCA method accessible to a wider audience.
However, it should always be borne in mind that feasibility metrics are only a guideline—good choices, as
ever, rely on the expertise and judgment of the user.

9. Conclusions

1. Our improved FORC-PCA algorithm addresses many of the outstanding issues with the initial method of
Lascu et al. (2015), including solving the linear mixing problem and providing the ability to characterize
SP EMs that are dominated by reversible magnetizations.

2. The new method enables both the reconstructed FORC magnetization surface and the corresponding
FORC diagram of each EM to be identified.

3. Access to the reconstructed FORC magnetization surface enables objective criteria to be defined that
guide the choice of physically realistic EMs. A mixture of robust criteria (e.g., saturation, monotonicity,
and crossing) and more flexible criteria (e.g., positivity) can be used to help reduce the subjectivity of
defining the unmixing space.

4. The method has been applied successfully to quantify synthetic binary mixtures with EMs with contrast-
ing domain states, and to aid interpretation of diagenetic trends in greigite-bearing sedimentary
environments.
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5. The improved FORC-PCA algorithm provides a powerful method to discriminate between populations of
grains with different domain states, coercivity distribution, anisotropy type, and interaction field distribu-
tion. The increased value of the information that this analysis yields far outweighs the additional mea-
surement time that is needed, providing a way to take routine rock magnetic characterization far
beyond the ambiguities of the widely used Day diagram.
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