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INTRODUCTION 

INTRODUCTION 

In Western Europe, prevalence of genetic hearing loss is about 1 27 m 1000 births 

(with hearing level m the best ear > 25dB)1 At least half of these cases are 

probably inherited23 Incidence of autosomal recessive inheritance patterns is 

estimated on approximately 70-80%, autosomal dominant inheritance patterns on 

20-30% and X-lmked patterns on 1-2%161β Mitochondrial deafness has also been 

described4 

Historical notes 

One of the pioneers m research of genetic deafness was the Irish otologist Sir 

William Wilde In 1853, thanks to an Irish census to which he was allowed to add a 

questionnaire, he was able to describe pedigrees of deaf families, which made him 

the first to describe the direct (dominant) way of inheritance5 

In 1880, the Berlin otologist Arthur Hartmann first mentioned an indirect 

(recessive) way of inheritance He wondered why children who had 

consanguineous parents were predestined to have more frequently congenital 

deficits than others6 His theory on direct or dominant and indirect or recessive 

inheritance was subscribed by Adam Politzer (otologist m Vienna) m his 2nd edition 

of the Lehrbuch of Ohrenheilkunde7 

The first descriptions of syndromes with hearing loss date from the 19th century 

In 1858, the German ophthalmologist von Graefe was the first to describe the 

occurrence of retinitis pigmentosa and congenital deafness8 Evidence for the 

influence of consanguinity came from studies in the Jewish population, which were 

followed by the English description by the Scottish ophthalmologist Charles Usher 

whose name became an eponym for the syndrome911 Other examples of 

syndromes which were first described m the 19,h century are the Branchio-Oto-

Renal syndrome and Pendred syndrome, which form also part of this thesis 

In 1896, the English physician Vaughan Pendred described a family with two deaf 

daughters who had goitres12 This syndrome did not get much attention, until the 

metabolic disorder which is causing the syndrome and its epidemiological 

importance were described by Morgans and Trotter (1958)13 and Fraser (1960, 

1965)1415 

Although non-syndromic hearing loss accounts for the majority of hereditary 

hearing impairments, most attention has been paid to syndromic hearing 

disorders, as they can easily be differentiated based on their associated 
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characteristics. At this moment, more than 400 syndromes with hearing loss have 
been described16. 
With the introduction of the audiometer in the late nineteen thirties, it became 
possible to describe and differentiate the non-syndromic forms of hearing 
impairment and this resulted in the first publications on families with non-
syndromic hearing loss in the nineteen fifties. The non-syndromic forms were 
classified by type of audiogram (low-, mid- and high-frequency hearing loss), 
severity of hearing impairment, age of onset and presence or absence of 
progression16. 

Since 1992, major progress has been made in molecular genetic diagnosis of 
hereditary sensorineural hearing loss. Thanks to the improvement of the methods 
to investigate DNA, phenotype was not longer the only criterion to distinguish 
different types of hereditary hearing loss. An entire new domain of investigation 
opened for non syndromic hearing loss, which before was not a very popular 
subject for investigators. This resulted m a rapid increase of knowledge about 
different types of non-syndromic hearing loss, which were designated DFNA 
(autosomal dominant), DFNB (autosomal recessive) and DFN (X-linked). 
Nowadays, 51 different loci are known to be responsible for non-syndromic 
autosomal dominant hearing loss, and 39 for the non-syndromic autosomal 
recessive forms (table 1,2). 

In several syndromic as well as non syndromic forms, the gene responsible for the 
hearing impairment has been cloned. In some cases, it has already become 
possible to use molecular tests for genetic diagnosis. 

Branchio-Oto-Renal (BOR) syndrome 
The association of branchial, otic and renal anomalies appeared in literature 
possibly m a case report written by Heusmger17. In 1878, Sir James Paget 
described the syndrome in almost its full extent after discovering it in two 
generations of one family18. In 1955, the combination of preauricular and cervical 
sinuses and fistulas with hearing impairment was for the first time considered as a 
separate syndrome by Fourman and Fourman19. 

It was not until Melnick and Fraser described kindreds segregating autosomal 
dominant hearing loss, bilateral preauricular pits, bilateral cervical fistulae, 
auricular deformity and bilateral renal dysplasia that branchio-oto-renal (BOR) 
dysplasia was recognized as a syndrome20 21. 

The estimated prevalence of BOR syndrome is 1:40,000 and it affects about 2% of 
profoundly deaf children22. 
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Table 1 : Autosomal dominant loci 

Locus Chromosomal localisation Gene Most important reference 
DFNA1 
DFNA2 
DFNA3 
DFNA4 
DFNA5 
DFNA6/14/38 
DFNA7 
DFNA8/12 
DFNA9 
DFNA10 
DFNA11 
DFNA13 
DFNA15 
DFNA16 
DFNA17 
DFNA18 
DFNA19 
DFNA20/26 

DFNA21 
DFNA22 
DFNA23 
DFNA24 
DFNA25 
DFNA20-26 

DFNA27 
DFNA28 
DFNA29 
DFNA30 
DFNA31 
DFNA32 
DFNA33 
DFNA34 
DFNA35 
DFNA36 
DFNA37 
DFNA38 
DFNA39 
DFNA40 
DFNA41 
DFNA42 
DFNA43 
DFNA44 
DFNA45 
DFNA46 
DFNA47 
DFNA48 
DFNA49 
DFNA50 
DFNA51 

5q31 
1p34 
13q12 
19q13 
7p15 
4p16 3 
1q21-q23 
11q22-24 
14q12-q13 
6q22-q23 
11q12 3-q21 
6p21 
5q31 
2q24 
22q 
3q22 
10 pencentr 
17q25 

6p21 
6q13 
14q21-q22 
4q 
12q21-24 
17q25 

4q12 
8q22 

15q25-26 

11p15 

1q44 

9q13-q21 
1p21 

-
4q21 3 
16p12 
12q24-qter 

2p12 
3q28-29 

9p21-22 
12q13-14 

9q21 

HDIA1 
GJB3/KCNQ4 
GJB2/GJB6 

DFNA5 
WFS1 

TECTA 
COCH 
EYA4 
MY07A 
COL11A2 
P0U4F3 

MYH9 

ACTG1 

MY06 

ACTG1 

TFCP2L3 
reserved 

reserved 

reserved 

reserved 
TMC1 

DSPP 
reserved 

reserved 
reserved 

reserved 
reserved 

Lynch 1997" 
Xia199975, Kubish199976 

Denoyelle199877, Gnfa 19997e 

Chen 199579 

VanLaer199890 

Bespalova 200181, Young 20018 2 

Fagerheim 1996e3 

Verhoeven '\99βΜ 

Robertson 1998e5 

Wayne 20018 6 

Liu 199787 

McGuirt19999e 

Vahava 1998θ9 

Fukushima 199990 

Lalwam 200091 

Bonsch200192 

Green 199893 

Morell 200094van Wijk et al 200317'' 
Zhuetal 2003 ,70 

Kunst 200095 

Melchionda200195 

Salam 200097 

Hafner 200098 

Greene 199999 

Yang 2000100 van Wijk et al 2003,7'' 
Zhuetal 2003170 

Fndell 1999101 

Peters 2002 ,02 

Mangino 2001 , 0 3 

Li 200010'' 

Kunma 2000105 

Kunma 2002106 

Talebizadeh 2000107 

Xiao 20011 0 θ 

Blanton 2002109 

Flex 2003"° 
Modamio-Hoybjor 2003' 

D'Adamo 2003112 

D'Adamo 2003113 
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Table 2: Autosomal recessive loci 

Locus 
DFNB1 
DFNB2 
DFNB3 
DFNB4 
DFNB5 
DFNB6 
DFNB7 
DFNB8 
DFNB9 
DFNB10 
DFNB11 
DFNB12 
DFNB13 
DFNB14 
DFNB15 
DFNB16 
DFNB17 
DFNB18 
DFNB19 
DFNB20 
DFNB21 
DFNB22 
DFNB23 
DFNB24 
DFNB25 
DFNB26 
DFNB27 
DFNB28 
DFNB29 

DFNB30 
DFNB31 
DFNB32 
DFNB33 
DFNB34 
DFNB35 
DFNB36 
DFNB37 
DFNB38 
DFNB39 

Chromosomal localisation 
13q12 
11q13.5 
17p11.2 
7q31 
14q12 
3p14-p21 
9q13-q21 
21q22 
2p22-p23 
21q22.3 
9q13-q21 
10q21-q22 
7q34-36 
7q31 
3q21-q25;19p13 
15q21-q22 
7q31 
11p14-15.1 
18p11 
11 q25-qter 
11q 
16p12.2 
10p11.2-q21 
11q23 
4p15 3-q12 
4q31 
2q23-q31 
22q13 
21q22 
10p12 1 
9q32-q34 
1p13.3-22.1 
9q34 3 

14q24.1-24.3 

6q13 
6q26-q27 
7q11.22-q21.12 

Gene 
GJB2 
MY07A 
MY015 
SLC26A4 

TMIE 
TMC1 
TMPRSS3 
OTOF 
TMPRSS3 
TMC1 
CDH23 

STRC 

USH1C 

TECTA 
OTOA 
PCDH15 

CLDN14 
MY03A 
WHRN 

reserved 
Unknown 
reserved 
MY06 
Unknown 
Unknown 

Most important reference 
Kelsell 199711'' 
Liu 1997,15, Weil 19971'6 

W a n g l e 1 ' 7 

Li19981 i e 

Fukushima1995119 

Naz 2002'20 

Kuπma2002,2, 

Scott 20011 2 2 

Yasunaga1999123 

Scott 2001 '2 4 

Kunma 2002125 

Bork 20011 2 6 

Mustapha Ιθθβ1 2 7 

Mustapha 199812θ 

Chen1997129 

Verpy200l'3 0 

Greinwald 1998131 

Ahmed 2002132 

Green 1998'33 

Moynihan 1999'34 

Mustapha 1999135 

Zwaenepoel 2002136 

Ahmed et al 2003171 

Smith, unpublished 
Smith, unpublished 
Riazuddm 2000137 

Pulleyn 200013e 

Walsh 2000139 

Wilcox 20011 4 0 

Walsh 2002141 

Mustapha 20021''2, Mburu 2003 
Masmoudi 2003""' 
Medlej-Hasim 20021''5 

Ansar 2003146 

Ahmed 2003 ,47 

Ansar et al^OOS172 

Wajid et al 2003'73 

Phenotype 

BOR syndrome has a wide spectrum of variable clinical manifestations in ear, 

branchial arch and kidney. Main features are slight malformations of the auricles, 

the ear canal, the middle and/or inner ear, preauricular sinuses, hearing 

impairment, cervical sinuses or fistulas of the second branchial arch and renal 

dysplasia. Less common features are facial or palatal anomalies, lacrimal duct 

stenosis and external auditory canal stenosis22,23. 
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Hearing loss can be conductive, sensorineural or mixed and is mostly stable, 

although progressive hearing loss has been described1 9 2 1 2 4 2 7 Middle ear 

anomalies can include malformation, malposition, dislocation or fixation of the 

ossicles, and reduction in size or malformation of the middle ear cavity Inner ear 

malformations include cochlear hypoplasia, enlargement of the cochlear and 

vestibular aqueducts, and hypoplasia of the lateral semicircular canal 27 29 Renal 

anomalies range from hypoplasia to aplasia, either unilaterally or bilaterally 

Anomalies of the collecting system affect the ureter, calyx and renal pelvis3031 

Multiple family studies have shown that incomplete penetrance and variable 

expressivity - particularly the severity of hearing loss and the renal abnormahties-

are common, with phenotypic variation between families and also within families 

This is the reason why several investigators made the distinction between 

branchio-oto (BO) and branchio-oto-renal (BOR) syndrome32 This also led to the 

assumption that more than one autosomal dominant mutation was responsible for 

the different clinical presentation forms3334, which was later questioned by other 

authors233035 

Genetics 

In 1997, Abdelhak et al identified mutations in a novel gene called ΕΥΑ 1 in seven 

patients with BOR-syndrome This gene, which is localized to chromosome band 

8q13 3, is a human homologue of the Drosophila eyes absent gene (eya) and was 

therefore called EYA 1 The gene is composed of 17 exons that span 156kb of 

genomic DNA and encode a 559-amino acid protein The eya homologous region 

(eyaHR) from exons 9-16 of EYA1 is highly conserved within the EYA gene family 

and is the site of the majority of BOR mutations Mutations m EYA1 can also 

cause branchio-otic syndrome (BO)36 39 About 70% of families whose members 

had BOR syndrome investigated by Kumar et al did not show mutations in the 

EYA1 gene This suggests either that most of the mutations he in the untranslated 

region or that several genes are involved in the brachiogemc disorder In 1998, 

Kumar et al investigated a large Dutch family with branchio-otic type syndrome, 

with preauricular sinus or cysts, commissural lip pits, an external ear anomaly and 

hearing impairment Linkage analysis excluded linkage to the 8q13 region, and in 

2000, conclusive evidence of linkage with markers on chromosome 1q31 was 

obtained, establishing a genetic heterogeneity associated with BOR syndrome4041 

In 2004 Six 1 on 14q23 1 was identified as a gene causing BOR and BO 

syndromes175 
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Pendred syndrome 
The clinical phenotype known as Pendred Syndrome (PS) was first observed in 
1896 by a British physician, Vaughan Pendred He described an Irish family in 
which two of ten offspring were congenitally deaf and had goitres that could not be 
attributed to environmental factors (endemic goitre)12 In 1956 it became clear that 
the inheritance pattern of this syndrome was autosomal recessive, and in 1958, it 
was reported that the thyroid enlargement was caused by a defect m organification 
of iodide, resulting in impairment of thyroxin synthesis4243 

In 1967, Jensen reported a Mondim-type cochlea in a patient with Pendred 
syndrome, and in 1978 Valvassori and Clemis for the first time described an 
enlarged vestibular aqueduct4445 The presence of an enlarged vestibular 
aqueduct in almost all, and Mondim type cochlea in some patients with Pendred 
syndrome was later confirmed by several authors47 49 

The prevalence of PS is estimated to be 1 -8% of congenital deafness 

Phenotype 
The classical features of Pendred syndrome include sensorineural hearing loss 
and goitre 
Originally, hearing loss was mainly considered as congenital sensorineural hearing 
loss It is generally profound and the audiogram has a steeply down sloping 
configuration Since 1980, several authors mentioned progression and/or 
fluctuation of hearing loss m Pendred syndrome documented by means of 
audiograms45475053 Progression is particularly rapid in early childhood Episodic 
vertigo with decreased peripheral vestibular function has been described in 
different cases46515254 In almost all individuals with Pendred syndrome, an 
enlarged vestibular aqueduct is found on CT-scan4749 

Thyroid enlargement is not always present, and usually develops during puberty 
Affected individuals generally remain euthyroid despite the goitre The thyroid 
defect is associated with abnormal iodide processing, that often can be diagnosed 
using the Perchlorate discharge test, which is based on the release of radioactivity 
following administration of radioactive iodide1315 Recently it has become clear that 
the Perchlorate discharge test is not as reliable as previous thought for diagnosing 
Pendred syndrome Masmoudi et al studied two families with Pendred syndrome 
all had the same mutation, but only 11 had palpable goitre and in all 8 tested 
individuals the Perchlorate discharge test was negative55 
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Genetics 
In 1996 Pendred syndrome was mapped to a 9-cM region on the long arm of 
chromosome 7 (7q31)5657 In 1997, Everett et al cloned the causative gene and 
initially named it PDS, later PDS has been renamed [SLC26A4]58 The protein 
encoded by the [SLC26A4] gene was predicted to be a 780-amino-acid protein 
and was named pendrin As initially was thought that pendrin was a putative 
sulphate transporter, in 1999 Scott et al demonstrated that [SLC26A4] encodes a 
chloride-iodide transport protein59 

A form of non-syndromic deafness, DFNB4, localizes to the same genomic region 
and is allelic to Pendred syndrome6061 Patients with DFNB4 have sensorineural 
hearing loss and an enlarged vestibular aqueduct, but do not have any thyroid 
anomalies Hearing loss is comparable to that in Pendred syndrome a down 
sloping audiogram with progression and/or fluctuation (often episodes of sudden 
hearing loss with afterwards (partial) recuperation) in hearing loss6264 Episodic 
vertigo often is present, most of the time in combination with sudden hearing 
loss546566 Goitre or thyroid dysfunction are absent 

Functional studies by Scott et al suggest that the observed phenotype correlates 
with the degree of residual function of the encoded protein, pendrin Alleles with 
mutations m [SLC26A4] associated with Pendred syndrome had complete loss of 
pendrm-mduced chloride and iodide transport, those with mutations m [SLC26A4] 
associated with DFNB4 still had the possibility to transport both iodide and 
chloride, but at a much lower level than wild-type pendrin Thus, mutations that 
result in no residual transport function appear to be associated with the Pendred 
syndrome phenotype, minimal transport ability would prevent thyroid dysfunction 
but not the sensorineural hearing loss and temporal bone anomalies that 
characterize DFNB467 This suggests that DFNB4 could be a milder form of 
Pendred syndrome To date, 87 mutations m [SLC26A4] have been found m a 
total of 167 families 

In the ear, pendrin is predominantly expressed in the endolymphatic duct and sac, 
and to a lesser extent in the nonsensory regions of the utricle, saccule and 
cochlea6869 This suggests that anion transport depending on normal pendrin 
plays an important role in maintaining the endolymphatic homeostasis, which is 
essential to a normal inner ear function [SLC26A4] is also expressed in the 
thyroid, kidney and placenta Pendrin was found to be expressed m the apical 
membrane of thyrocytes, the intercalated cells of cortical collecting ducts in the 
kidney, as well as in the brush border membrane of cytotrophoblasts70 71 Studies 
with a Pds-knockout mouse showed complete absence of hearing, combined with 
a variable vestibular phenotype, going from absence of vestibular signs to severe 
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vestibular signs All mice showed a dilated endolymphatic duct and sac starting 
from embryonic day 15, followed by dilation of the cochlea and saccule, and in 
some cases also the semicircular canals At postnatal day 7, normally developed 
sensory hair cells of the cochlea and vestibular macula were present, but by 
postnatal day 15, there was clear evidence of degeneration of these structures, 
which progressively worsened through postnatal day 45 This seems to occur at 
the same time as the establishment of a mature endolymphatic fluid composition 
and the development of the endocochlear potential, suggesting a progressive 
deterioration and swelling of a near-mature endolymphatic compartment after the 
development of an anatomically normal inner ear and not -as previously thought-
a simple arrest of development This mechanism is reminiscent of the 
endolymphatic hydrops in Memeres disease The investigators did not show any 
biochemical or histological evidence of thyroid disease72 A widened vestibular 
aqueduct has become a maior feature of Pendred syndrome, indicative to go for a 
mutation screening of [SLC26A4] 

Diagnosing Pendred syndrome 
As mentioned above, clinical presentation and Perchlorate test are unreliable 
features to diagnose Pendred syndrome Mutation screening of [SLC26A4] has 
become the most reasonable diagnostic test m individuals with sensorineural 
hearing loss and cochlear malformations 

DFNB1 

Non-syndromic deafness 
Prelmgual non-syndromic deafness is the most frequent hereditary sensory defect 
In more than 80% of the cases, the mode of transmission is autosomal recessive 
Before genetic testing was available, non-syndromic forms of hearing loss could 
only be distinguished based on the mode of inheritance, the age of onset of 
hearing loss and on the shape of the pure tone audiogram Forms of progressive 
hearing loss were divided into low frequency, mid-frequency and high frequency 
hearing loss16 With the development of gene-linkage studies, it became clear that 
much more different genotypes for non-syndromal hearing loss could be 
recognized To date, 51 loci have been identified for the autosomal dominant 
forms (DFNA) and 39 loci for the autosomal recessive forms (DFNB) (table 1 and 
2 ) 73 
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DFNB1 

In 1994, Guilford et al were able to localize a gene causing recessive and 

profound sensorineural hearing loss to the pencentromeric region of chromosome 

13q, m two families from Northern Tunisia They called this form of deafness 

NSRD1, which was later renamed DFNB1148 In 1996, Brown et al demonstrated 

that this locus was also responsible for hearing impairment in a large Pakistani 

family, and that the DFNB1 locus is proximal to the marker D13S175149 In 1997, 

Kelsell et al were the first to find connexin 26 mutations in three autosomal 

recessive non-syndromic sensorineural deafness pedigrees who were genetically 

linked to chromosome 13q11-12 (DFNB1) where the connexin 26 gene is 

localized150 

Following these results, to date 75 autosomal recessive mutations in the GJB2 

gene, which is coding for connexin 26, have been described, and a deletion of G m 

position 30 to 35 (mutation 35delG) seems to be the most frequent mutation in 

GJB2 Detailed information on these mutations can be acquired on the connexin 

home page http www erg es deafness151 About 50% of all autosomal recessive 

non-syndromal deafness are due to connexin 26 mutations, and the 35delG 

mutations accounts for the majority (>70%) of the connexin 26 mutant 

alleles152153 Connexin genes code for the subumts of gap junction proteins, which 

form intercellular channels m plasma membranes for transport of fluid and small 

molecules These gap junctions are essential to recycle potassium ions needed for 

initiation of action potentials m hair cells154 Cohen-Salmon et al were able to 

demonstrate that mice with targeted ablation of Connexin 26 had normally 

developing inner ears, but with cell death appearing on postnatal day 14, ι e soon 

after the onset of hearing They concluded that the Cx26 containing epithelial gap 

junction network is essential for cochlear function and cell survival155 

Hearing loss in patients with connexin 26 mutations has a prelmgual onset, and it 

may be mild, moderate, severe or profound Both ears present a similar degree of 

hearing loss and the deafness either preferentially affects high frequencies or 

affects all frequencies to the same extent Intrafamilial variations of the severity of 

the hearing loss are common Hearing loss is generally not or only mildly 

progressive It is not clear yet if there is a correlation between particular connexin 

26 mutations and severity of hearing loss, as some authors didn t and others did 

find evidence for such a correlation156159 In most subjects no radiological 

anomalies of the inner ear are present, although Kenna et al reported on temporal 

bone anomalies m 4 individuals160163 In several hearing impaired individuals, only 

one mutated gene is found, which questions pathogenicity 1 6 2 1 6 4 
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In 1999, Kelley et al described connexm 30 (GJB6), which is co-localized to 
connexm 26 and whose structure is similar to this of connexm 26, as a candidate 
gene for non-syndromic hearing loss165 Because of the fact that a large fraction of 
patients with GJB2 mutations only have one mutant allele, del Castillo et al looked 
for mutations other than those involving GJB2 in patients with only one mutant 
(GJB2) allele and with evidence of linkage to DFNB1 They were able to identify a 
342-kb deletion in the gene encoding connexm 30 (GJB6), a protein that is 
reported to be expressed with connexm 26 m the inner ear They concluded that 
this deletion m GJB6 is the second most frequent mutation causing prelmgual 
deafness in the Spanish population and that mutations in the locus DFNB1 can 
result in a monogenic or a digemc pattern of inheritance of prelmgual deafness 
They postulated that DFNB1 is a complex locus containing two genes (GJB2 and 
GJB6) and that the loss of any two of the four alleles from these genes results in 
hearing impairment166 These findings were subscribed by several other 
investigators167168 

Teubner et al demonstrated normally developing inner ear structures in Cx30 
deficient mice, but they observed a loss of cells in the sensory epithelium of their 
cochlea up to postnatal day 18, which was slowly progressive They postulated 
that in the absence of Cx30, the deficiency of the gap junctions between 
supporting cells may lead to a local extracellular accumulation of K+ ions around 
the hair cells, which in turn might trigger cell apoptosis because of chronic 
depolansations or by other mechanisms They also found that the endocochlear 
potential was virtually undetectable and that the endolymphatic K+ concentration 
was significantly decreased compared to this in wild-type mice169 

The goal of this Ph D study was to study clinical and genetic aspects of genetic 
hearing impairment To get access to the population with a genetic hearing 
impairment the support of the Institute Spermalie (dr L Standaert) in Brughes has 
been sought So the start had been made to perform the studies m BOR syndrome 
and m DFNB1 For the CT and MRI studies m the Flemish BOR syndrome family 
the support of dr Jan Casselman (Brughes) has been sought 

The outcome of this Belgian MRI study in BOR syndrome helped to start up a 
similar but larger MRI study m BOR syndrome in the Nijmegen University Hospital 
In the BOR study it will be emphasized to study clinical presentation especially 
regarding the degree of hearing impairment related to the inner ear structures The 
study in the families with in total 15 persons with a profound non syndromic 
childhood deafness (Chapter IV) has started to trace the gene(s) and mutation(s) 
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involved. As part of the phenotype genotype correlation study in those persons, 

this opportunity will be used to report on the severity and progression of the 

hearing impairment. 

In chapter III the focus will be on Pendred syndrome. The gene involved in 

Pendred syndrome proved to be the same as in the Enlarged Vestibular Aqueduct 

syndrome, well known for its fluctuating hearing loss and attacks of vertigo 

correlated with the presence of an enlarged vestibular aqueduct. This brought up 

the question if hearing impairment in the classical Pendred syndrome could also 

have those features that might have been overlooked in the past. The literature 

available on this topic was very scarce. The Nijmegen series of Pendred syndrome 

was restudied to trace three patients with a fluctuant hearing loss associated with 

Meniere like vertigo. Later on a new Belgian family became available providing 

again an opportunity to describe in detail the clinical presentation based on a 

thorough clinical and genetic evaluation. 

By doing so this Ph.D. study likes to provide new knowledge to the field of genetic 

hearing impairment especially focussed on BOR syndrome, Pendred syndrome 

and non syndromic profound childhood deafness especially in Flandres and The 

Netherlands. 
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INTRODUCTION 

ABSTRACT 

Sensorineural hearing loss affects approximately 1 in 2 persons at about 80 years 
of age and 1 in 750 in childhood The best known forms of hearing loss with an 
autosomal dominant pattern of inheritance are the syndromic-mediated ones At 
present, the non-syndromic autosomal dominant inherited forms can only be 
distinguished by the shape of the tone-audiogram Based on gene linkage studies 
twelve different genotypes for autosomal dominant hereditary non-syndromic 
forms of sensorineural hearing loss have been recognized in a period of almost 2 
years In view of the great diversity of types that have been recognized in such a 
short period, it can be expected that over the next 10 years, several dozens 
genetically-mediated forms of autosomal dominant inherited sensorineural hearing 
loss will be detected Similar developments are taking place in the non-syndromic 
autosomal recessive hereditary forms of sensorineural hearing loss and deafness 
The above indicates clearly that before too long, new genetic investigation 
techniques will enable us to distinguish between forms of sensorineural hearing 
loss that could not be distinguished in the past 

INTRODUCTION 

Sensorineural hearing loss affects approximately 1 m 2 persons at about 80 years 
of age and 1 in 750 in childhood 

Inaccessibility of the inner ear to discriminant diagnostic procedures and the great 
diversity of possible causes of deafness, are reasons why it can be difficult to 
establish the causes in individual cases 

The best known forms of hearing loss with an autosomal dominant pattern of 
inheritance are the syndromic-mediated ones, such as osteogenesis imperfecta 
type 1 and otosclerosis At present, the non-syndromic autosomal dominant 
inherited forms can only be distinguished by the shape of the tone audiogram1 

Progressive sensorineural hearing loss is divided into low frequency, mid-
frequency or high frequency hearing loss depending on whether the hearing loss is 
most pronounced in the low tone, middle tone or high tone range Apparently, the 
possibility that flat progressive perceptive hearing loss can also have an 
autosomal dominant pattern of inheritance, has been overlooked 
Depending on the age at onset, various separate types can be distinguished within 
this classification Table 1 lists the various forms of sensorineural hearing loss that 
can presently be distinguished on clinical grounds1 Until recently it was unclear 
whether the clinical classification of these types of non-syndromic autosomal 
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dominant inherited hearing loss would still hold its ground with the emergence of 
new genetic knowledge 

Table 1 Autosomal dominant inherited types of hearing impairment that can be 
distinguished on clinical grounds 

1 Congenital severe sensorineural hearing loss 
2 Congenital low-frequency sensorineural heanng loss 
3 Progressive low-frequency sensorineural hearing loss with childhood onset 
4 Mid-frequency sensorineural hearing loss 
5 Progressive high-frequency sensorineural hearing loss 
6 Progressive mixed heanng loss 
7 Unilateral sensorineural hearing loss 

_8 Progressive vestibulo-cochlear dysfunction and sensorineural hearing loss 

1 1 X-dommant inherited hearing loss 
When speaking in terms of dominant hereditary syndromes, it is necessary to 
realise that an X-dommant pattern of inheritance is also possible2 A well-known 
example of the latter is Alport's syndrome, characterized by progressive perceptive 
hearing loss, haematuna, eye abnormalities and progressive deterioration of renal 
function, which until a few decennia ago, was considered to have an autosomal 
dominant pattern of inheritance Occasionally, an autosomal recessive form of this 
syndrome is encountered It is unclear whether there might also be an autosomal 
dominant inherited form Besides the specific pattern of inheritance, the fact that 
men are more severely affected than women should have drawn attention to the 
possibility of an X-dommant mode of inheritance at a much earlier date A non-
syndromic X-dommant inherited type of sensorineural hearing loss has still not 
been recognized 

1 2 Non-Mendelian mitochondrial inherited deafness 
Recently, there has been a great deal of interest in the mitochondrial mode of 
inheritance Mitochondria are small organelles that are responsible for the cell's 
energy production They have their own circular DNA that codes for the 13 
polypeptides necessary for oxidative phosphorylation Mitochondria are passed on 
to the offspring exclusively by the mother via the cytoplasm in the ovum 
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Table 2: Mitochondrial DNA mutations with hearing impairment as mam symptom or additional symptom 

Author Clinical symptoms Hearing impairment Mt-DNA mutation 
Mt-DNA mutations specidcally associated with hearing impairment as the mam presenting symptom 
Hu D, Prezant TR' 

Jaber L, Prezant TFr 

Vernham GA, Reid FM, 
Fischel-GhodsianN101" 

Tiranti V 

High susceptibility to antibiotic ototoxicity 
aminoglycoside (streptomycine) related deafness 
Progressive hearing loss starting in childhood 

Progressive hearing loss 

Bilateral hearing loss, ataxia and myoclonus 

Bilateral profound deafness 

Profound bilateral hearing loss without 
any additional symptoms 
Variable hearing loss, predominantly high 
frequencies Onset between 3-18 years 

Moderate to severe hearing loss 

12SrRNA A1555G 

12SrRNA A1555G 

tRNA-ser (UCN) T7445C 

tRNA-ser(UCN) 7472insC 
Mt-DNA mutation in which hearing impairment is an additional symptom (mitochondrial encephalopathy) 
PavlakisSG' 

Goto Y' 

Shofner JM, Berkovic SF, 
Hammans S, Silvestri G, 
ZebianiM1621 

ZevianiM, Poulton J2223 

MELAS Mitochondrial encephalopathy, episodic 
nausea and vomiting, migram-like headaches, 
stroke-like episodes, seizures, gray matter 
spongiosis 
Mitochondrial encephalopathy, lactic acidosis, 
stroke-like episodes, diabetes and deafness 
Myoclonic epilepsy and red ragged fibres, ataxia, 
dementia and optic atrophy (MERFF) 

Kearns Sayre syndrome, PEO and Pearson 
syndrome, Ptosis, retinopathy, heart block, 
Cerebellar syndrome, endocrmopathies, elevated 
CSF protein, white matter spongiosis 

Hearing loss in about 30% of the cases 

Hearing loss 

Hearing Loss 

Hearing loss 

Heteroplasmic point mutation m 
tRNA gene, 3243 

Heteroplasmic point mutation m 
tRNA gene, 3271 
Heteroplasmic point mutation in 
tRNA gene, 8344,8356 

Large heteroplasmic 
duplications and deletions in mt-
DNA 

MERRF, myoclonic epilepsy and ragged red fibres 



CHAPTER I 

Every cell contâmes hundreds of mitochondria and every mitochondrion contains 
various copies of mitochondrial DNA (Mt-DNA) Mitochondrial DNA is more 
sensitive to mutation than nuclear DNA Therefore, some Mt-DNA diseases can 
arise as a result of spontaneous mutation, m addition to the maternally transmitted 
Mt-DNA diseases A late onset is characteristic of these syndromes Hearing 
impairment often forms an additional problem, but deafness can also be the only 
expression of a syndrome3 4 Table 2 gives an overview of the currently known Mt-
DNA mediated forms of hearing loss 

1 3 Gene linkage for non-syndromic autosomal dominant inherited hearing loss 

In a family with ten to twenty persons affected by an autosomal dominant 
hereditary anomaly, gene-linkage studies can be performed to determine which 
part of a chromosome is responsible for the genetically-mediated anomaly The 
position on the chromosome can be isolated with increasing accuracy, because an 
increasing number of markers are becoming available for which the localisation on 
the chromosome is known with great accuracy Moreover, it is possible to perform 
gene-linkage studies on multiple families5 

On the basis of these investigation techniques, eleven different genotypes for 
autosomal dominant hereditary non-syndromic forms of sensorineural hearing loss 
have been recognized in a period of almost 2 years (table 3) 

Table 3 Non-syndromic autosomal dominant inherited types of sensorineural impairment 
and their gene linkage 

DFN 

Low frequency hearing loss 
(DFNA1) 

A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 
A10 
Al t 
A12 

Linkage 

Sq" 

1p32 

ISq12 

Ι θ ρ 1 3 

7P15 

4 p 1 6 3 

1 q 2 1 2 3 

11q 
M q 1 2 1 3 

6 q 2 2 2 3 

n q 1 3 5 

1 1 q 2 2 2 4 

McKusick 
catalogs 

124 900 

124 800 
124 800 
124 800 
124 800 
124 800 
124 800 
124 800 
124 800 
124 800 
124 800 
-

Gene 
cloned 

-

--
— 
— 
--
--
--
-
--
--
-
-

Year 

1992 

1994 
1994 
1995 
1995 
1995 
1995 
1995 
1996 
1996 
1996 
-

Author 

(24) 

(25) 
(26) 
(27) 
(28) 
(29) 
(30) 

(31) 
(32) 
(33) 
(43) 
(47) 

In view of the great diversity of types that have been recognized in such a short 

period, it can be expected that over the next 10 years, several dozen genetically-
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mediated forms of autosomal dominant inherited sensorineural hearing loss will be 

detected Owing to the fact that large families with autosomal dominant forms of 

hearing loss are relatively common in Western industrialized society, there should 

be very few obstacles in these developments 

It can be expected along similar lines that it will even become possible to 

recognize genetically-mediated anomalies on a gene level5 6 It will then become 

apparent which substances play a role in the physiology and pathophysiology of 

the mechanism of hearing It was recently discovered, for example, that myosin 

VIIA plays a role in the Usher syndrome type IB In addition, the clinical syndrome, 

ι e the variation in severity and progression of hearing loss, can be accurately 

documented in families in whom earlier successful gene-linkage studies had been 

completed Before long, it can be expected that textbooks about hereditary non-

syndromic forms of sensorineural hearing loss will have to be rewritten It is 

therefore necessary to document the level of hearing loss in relation to age and 

the variation in severity of the hearing loss within each family, so that we can 

recognize the specific clinical symptoms that represent each separate genetic 

type In the wake of this, our knowledge about the working mechanism of the inner 

ear will make great leaps forward 

Similar developments are taking place in the non-syndromic autosomal recessive 

hereditary forms of sensorineural hearing loss and deafness (table 4) 

Table 4 Non-syndromic autosomal recessive inherited types of sensorineural hearing 
impairment and their gene linkage 

DFN Linkage McKusick catalogs Gene cloned Year Author 
B1 
B2 
B3 
B4 
B5 
B6 
B7 
ΒΘ 
B9 
B10 
B11 
B12 
B13 
B14 
B15 

ISq'2 

n q ' 3 5 

I T p ' ^ q ' 2 

yqS' 
U q 1 2 

Sp 1 4 2 1 

g q 1 3 2 1 

21 q 2 2 

2 S 23 

21 q 2 2 3 

g q ^ 2 1 

10q2 1 2 2 

--
— 
— 

220 700 and 220 800 
220 700 and 220 800 
220 700 and 220 800 
220 700 and 220 800 
220 700 and 220 800 
220 700 and 220 800 
220 700 and 220 800 
220 700 and 220 800 
220 700 and 220 800 
220 700 and 220 800 

220 700 and 220 800 

1994 
1994 
1995 
1995 
1995 
1995 
1995 
1996 
1995 
1996 
-
1996 

(34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 
(42) 
(44) 
(45) 
(46) 
reserved 
reserved 
reserved 

New techniques will soon make it possible to establish the cause of deafness in 

young children and the tests can also be used in the form of early diagnostics to 
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make causative genetic diagnoses Owing to the fact that large isolates with 

hereditary autosomal recessive hearing loss are fairly scarce in Western 

industrialized society compared to other parts of the world, the detection of these 

gene links and the identification of the genes involved will be more difficult and 

time-consuming in Western industrialized society The above indicates clearly that 

before too long, new genetic investigation techniques will enable us to distinguish 

between forms of sensorineural hearing loss that could not be distinguished in the 

past 
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INTRODUCTION 

SAMENVATTING 

Meer dan 60 procent van de gevallen van ernstige, vroeg beginnende 
slechthorendheid is genetisch bepaald, meestal op basis van autosomaal 
recessieve genmutaties Aangezien het zowel voor de NKO-arts als voor de 
algemene arts belangrijk is een erfelijke vorm van gehoorverhes te onderkennen, 
wordt een overzicht van de erfelijke vormen van met-syndromaal gehoorverhes, 
met name de autosomaal dominante, de autosomaal recessieve, de X-gebonden 
en de mitochondnele, gegeven 

De genetica heeft in de voorbije jaren een enorme vooruitgang gemaakt m het 
koppelen van genen en het opsporen van mitochondnele gendefecten die met-
syndromaal gehoorverhes veroorzaken Zo werden reeds 13 genen gelokaliseerd 
die elk verantwoordelijk zijn voor een vorm van autosomaal dominant met-
syndromaal progressief gehoorverhes en 15 die een autosomaal recessief met-
syndromaal gehoorverhes veroorzaken 

Verwacht wordt dat men in de komende jaren nog meer genen zal lokaliseren en 
de genen, dus ook hun produkten, zal kunnen herkennen Op die manier zal 
enerzijds de kennis over de werking van het binnenoor en anderzijds de 
mogelijkheid genetisch advies te geven een grote vooruitgang maken 

INLEIDING 

Bmnenoorslechthorendheid treft bij benadering 1 persoon op 2 vanaf de leeftijd 
van tachtig jaar en ongeveer 1 op 750 kinderen Doofheid en slechthorendheid 
betekenen in onze sterk communicatieve maatschappij een grote belemmering om 
goed te kunnen functioneren Daarom is het belangrijk om tijdig een goede 
diagnose te stellen en de patient op optimale wijze te begeleiden, zowel via 
aangepast onderwijs als bij de oriëntatie van de beroepskeuze 
Meer dan zestig procent van de gevallen van ernstige vroeg beginnende 
slechthorendheid wordt veroorzaakt door genetische factoren, meestal 
autosomaal recessieve mutaties van eén enkel gen Autosomaal dominant 
overervende bmnenoorslechthorendheid komt daarentegen vooral op volwassen 
en oudere leeftijd voor 

Naast het vaststellen van de slechthorendheid is het tevens de taak van de arts de 
erfelijke factor te onderkennen, om op die manier optimale genetische informatie 
te kunnen geven Hiervoor is het belangrijk een goed inzicht te hebben m en 
kennis van de erfelijke vormen van gehoorverhes Daar het onderwerp "erfelijke 
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doofheid" zeer uitgebreid is, beperkt deze bijdrage zich tot een bespreking van de 

niet-syndromale vormen van erfelijk gehoorverhes 

AUTOSOMAAL DOMINANT EN RECESSIEF OVERERVEND NIET-SYNDRO-

MAALGEHOORVERLIES 

Tot voor kort kon men de verschillende vormen van autosomaal dominant 

overervende slechthorendheid enkel van elkaar onderscheiden op basis van het 

toonaudiogram22 Afhankelijk van het feit of het gehoorverhes het meest 

uitgesproken was in de lage tonen, het middengebied of de hoge tonen, was er 

sprake van een lage tonen, een komvormig of een hoge tonen progressieve 

slechthorendheid Kennelijk is de mogelijkheid dat ook een vlak progressief 

perceptieverhes autosomaal dominant overerfbaar kan zijn, over het hoofd gezien 

Op grond van het tijdstip van intreden werden bij deze indeling nog afzonderlijke 

types onderscheiden In tabel 1 worden deze op klinische gronden onderscheiden 

vormen van bmnenoorslechthorendheid opgesomd22 De mate van progressie van 

slechthorendheid en de relaties tussen de ernst van het gehoorverhes en de 

leeftijd is over decennia gedetailleerd bestudeerd bij een grote Nederlandse 

familie met een progressieve bmnenoorslechthorendheid28 30 63 64 Het was tot voor 

kort onzeker of deze in tabel 1 voorgestelde indeling, die louter op klinische 

gegevens gesteund is, stand zou houden zodra nieuwe genetische kennis ter 

beschikking zou komen 

Autosomaal recessief overervende niet-syndromale slechthorendheid begint 

meestal op zeer jonge leeftijd en is meestal ernstiger dan de autosomaal 

dominante vorm 

Tabel 1 Klinisch onderscheiden autosomaal dominant overervende vormen van 
gehoorverhes (cf Gorhn et al 1995)22 

1 Autosomaal dominant congenitaal ernstig gehoorverhes 
2 Autosomaal dominant congenitaal sensorineural gehoorverhes voor de lage 

frequenties 
3 Autosomaal dominant progressief gehoorverhes in de lage frequenties 
4 Autosomaal dominant progressief gehoorverhes in de middenfrequenties 
5 Autosomaal dominant progressief gehoorverhes in de hoge frequenties 
6 Autosomaal dominant progressief gemengd gehoorverhes 
7 Autosomaal dominant unilateraal sensorineural gehoorverhes 
8 Autosomaal dominant progressieve vestibulo-cochleaire dysfunctie met senson-

neuraal gehoorverhes 
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Het is in de meeste gevallen moeilijk na te gaan of de slechthorendheid 
progressief is, daar het gehoor meestal reeds zeer slecht is op de leeftijd waarop 
een betrouwbaar audiogram kan worden afgenomen Daarom werd m het 
verleden ook geen onderscheid gemaakt tussen verschillende fenotypen, zoals 
wel gebeurde bij de autosomaal dominante vormen 

X-GEBONDEN NIET-SYNDROMAAL OVERERVEND GEHOORVERLIES 

X-gebonden doofheid is een zeldzame vorm van erfelijke doofheid, die instaat 
voor ongeveer 1,7% van alle erfelijke vormen van slechthorendheid Van de X-
dommante slechthorendheid zijn enkel syndromale vormen, zoals het syndroom 
van Alport, gekend In de groep van de X-recessieve doofheid komen wel met-
syndromale vormen voor Deze laatste werden in het verleden op basis van het 
audiogram ingedeeld in vier groepen een congenitaal sensonneuraal type, een 
vroeg beginnend sensonneuraal type, een gemengd gehoorverhes met fixatie van 
de voetplaat van de stapes die de oorzaak is van de penlymfatische 'gusher" bij 
heelkunde, en een progressief sensonneuraal type46 Ook hier was onzeker of 
deze fenotypische indeling door het genetisch onderzoek bevestigd zou worden 

MITOCHONDRIEEL NIET-SYNDROMAAL OVERERVEND GEHOORVERLIES 

Recent wordt ook veel aandacht besteed aan de mitochondriele overervmgswijze 
Mitochondnen, die hun eigen DNA bevatten, worden uitsluitend door de moeder 
doorgegeven aan het nageslacht via het cytoplasma van de eicel Door het 
dominante karakter van de overerving kan men m eerste instantie de indruk 
hebben dat het hier gaat om een autosomaal dominant beeld Dat de 
slechthorendheid alleen door de moeder wordt doorgegeven, waarbij in principe 
elk kind van een slechthorende moeder de afwijking heeft, kan hier dan helpen om 
de juiste diagnose te stellen Gehoorproblemen kunnen de enige uiting zijn van 
het ziektebeeld, maar meestal is de slechthorendheid een additioneel probleem 
De door ammoglycoside-ototoxiciteit geïnduceerde doofheid, zoals bij strepto-
mycme-mname aan een normale dosis, is een bekend voorbeeld van 
mitochondneel bepaalde doofheid zonder andere afwijkingen2744 Hoewel buiten 
het bestek van dit artikel, lijkt het zinvol de combinatie van doofheid met diabetes 
mellitus, die optreedt op latere leeftijd en onder andere werd beschreven m een 
Nederlandse familie58, te vermelden 
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Tabel 2' Mitochondrieel bepaalde vormen van gehoorverlies 

a Mt DNA mutaties specifiek geassocieerd met gehoorverlies als hoofdsymptoom 
Auteur Klinisch beeld Gehoorverlies Mt DNA mutatie 

57-Hu et al' 
Prezantetal ^9^3" 

Hoge gevoeligheid voor anti
biotische ototoxiciteit ammo 
glycoside (streptomycine) 
gerelateerde doofheid 

Bilaterale ernstige doof
heid 

12SrRNAA1555G 

Jaberetal 199231 

Prezantetal ^993,' 
Progressief gehoorverlies 
beginnend op kinderleeftijd 

Ernstig bilateraal 
gehoorverlies zonder 
bijkomende symptomen 

12SrRNAA1555G 

Vernham et al 1994^ 
Reid en Vernham 1994" 

Progressief gehoorverlies Variabel gehoorverlies 
vooral in de hoge 
frequenties 

tRNA-ser(UCN) T7445C 

Fischel Ghodsian et al 
1995 ,e 

Aanvang tussen 3 en 18 jaar 

Klinisch beeld Gehoorverlies 

tRNA ser(UCN) T7445C 

b Mt DNA-mutaties met gehoorverlies als bijkomend symptoom 
Auteur Mt DNA-mutatie 

Pavlakiselal 1984fl' MELAS Mitochondnele encefa 
lopathie, episodische nausea 
en braken, migrameachtige 
hoofdpijn episodische 
beroertes, stuipen spongiosis 
van de grijze stof 

Gehoorverlies in 
ongeveer 30% van de 
gevallen 

Heteroplasmische punt-
mutatie m tRNA-gen 
A3243G 

Van den Ouweland et al 
1992™ 
Atawaetal 19923 

Kataginetal 199433 

Odawaraetal 199539 

Alcoladoetal 19952 

Vialettes et al 199562 

Altman TJ 1995' 
Oshimaetal Ιθθδ4 1 

Yamasobaetal 199665 

Niet insuline dependente 
diabetes mellitus 

Gehoorverlies Puntmutatie in tRNA-gen 
3243 

Goto et al 19912 3 Mitochondnele encefalopathie 
lataatacidose, episodische 
beroertes, diabetes en 
doofheid 

Gehoorverlies Heteroplasmische 
puntmutatie m tRNA gen 
3271 

Shoffneretal 199049 

Berkovicetal 1991 5 6 

Hammans 199426 

Silvestri et al 199250 

Zeviametal 199367 

Myoklonische epilepsie en red 
ragged fibers ataxie 
dementie en opticus atrofie 
(MERRF) 

Gehoorverlies Heteroplasmische 
puntmutatie m tRNA 
genen A8344G en 
A8356G 

Zeviametal 198961 

Poultonetal Ιθβθ* 

Kearns-Sayre syndroom PEO 
en Pearson syndroom 

Ptosis retmopathie hartblok 
cerebellair syndroom 
endocnnopathieen, verhoogd 
CSV-proteme met spongiose 
van de witte stof 

Gehoorverlies 

Gehoorverlies 

Grote heteroplasmische 
duphcaties en deleties in 
mtDNA 

Tiranti et al 195252 

Ensmketal 1996' 
Bilateraal gehoorverlies, ataxie 
en myoclonus 

Matig tol ernstig 
gehoorverlies 

tRNA-ser(UCN)7472insC 
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In tabelvorm wordt een overzicht gegeven van mitochondheel overervende 

vormen van gehoorverlies, waarbij een onderscheid gemaakt wordt tussen 

gehoorverlies als hoofdkenmerk en gehoorverlies als geassocieerd kenmerk (tabel 

2). Deze laatste groep kan beschouwd worden als een vorm van syndromaal 

gehoorverlies, maar wordt toch vermeld om een duidelijker overzicht te geven van 

deze groep genetische afwijkingen. 

KOPPELINGSONDERZOEK BIJ NIET-SYNDROMAAL ERFELIJK GEHOOR

VERLIES 

De voorbije jaren heeft de genetica een enorme vooruitgang gemaakt op het 

gebied van niet-syndromale erfelijke slechthorendheid. 

Met behulp van klinisch genetisch onderzoek van grote families met één bepaalde 

vorm van gehoorverlies kan men aan de hand van genkoppelingsonderzoek de 

meest waarschijnlijke plaats van het gen verantwoordelijk voor het gehoorverlies 

bepalen. Met deze methode zijn de genen voor enige tientallen vormen van 

syndromale doofheid geïdentificeerd12,13. 

Ook op het gebied van de niet-syndromale doofheid zijn in een periode van twee 

jaar reeds dertien verschillende genotypen herkend voor autosomaal dominant 

niet-syndromaal bepaalde vormen van gehoorverlies. Deze verschillende vormen 

worden aangeduid met de notatie DFNA, gevolgd door een cijfer (tabel 3). 

Tabel 3: Genkoppelingsresultaten bij niet-syndromaal autosomaal dominant overervend 
gehoorverlies. 

Koppeling Gen Jaar Auteur 
DFNA1 
DFNA2 
DFNA3 
DFNA4 
DFNA5 
DFNA6 
DFNA7 
DFNA8 
DFNA9 
DFNA10 
DFNA11 
DFNA12 
DFNA13 

5q31 
1p34 
13q12 
19p13 
7p15 
4p16.3 
1q21-23 
11q 
14q12-13 
6q22-23 
11q13.5 
11q22-24 
6p21 

onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 

1992 
1994 
1994 
1995 
1995 
1995 
1995 
1996 
1996 
1996 
1996 
1996 
1997 

Leonetal.199236 

Couckeetal. 19941'1 

Chaïbetal. 1994θ 

Chen et al. 199511 

Van Camp et al. 199557 

Lesperance et al. 199537 

Tranebjaerg et al. 199554 

Kirschhofer et al. 199634 

Manohsetal. 199638 

O'Neill et al. 199640 

Tamagawa et al. 199651 

Verhoeven et al 199660 

University of Iowa 
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Voor de autosomaal recessieve niet-syndromale slechthorendheid heeft men 

vijftien genen gelokaliseerd, die naar analogie met de dominante vormen worden 

aangeduid met de notatie DFNB, gevolgd door een cijfer (tabel 4) 

Ten slotte werden ook bij de X-recessieve vormen van niet-syndromaal 

gehoorverhes reeds acht verschwende genotypen onderkend Deze worden 

aangeduid met de notatie DFN, gevolg door een cijfer (tabel 5) Enkel van DFNB2 

en DFN3 is het verantwoordelijke gen reeds geïdentificeerd 

Tabel 4 Genkoppelmgsresultaten bij niet-syndromaal autosomaal recessief overervend 
gehoorverhes 

DFNB1 
DFNB2 
DFNB3 
DFNB4 
DFNB5 
DFNB6 
DFNB7 
DFNB8 
DFNB9 
DFNB10 
DFNB11 
DFNB12 
DFNB13 
DFNB14 
DFNB15 

Tabel 5 
verlies 

DFN1 
DFN2 
DFN3 
DFN4 
DFN5 
DFN6 
DFN7 
DFN8 

Koppeling 
13q12 
11q135 
17p11 2-q12 
7q31 
14q12 
3p14-p21 
9q13-q21 
21q22 
2p22-p23 
21q22 3 
9q13-q21 
10q21-22 
gereserveerd 
gereserveerd 
3q21-q25of 19p13 

Genkoppelmgsresultaten 

Koppeling 
Xq22 
Xq22 
Xq21 1 
Xq21 2 
gereserveerd 
Xp22 
gereserveerd 
gereserveerd 

Gen 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 
onbekend 

onbekend 

Jaar 
1994 
1994 
1995 
1995 
1995 
1995 
1995 
1996 
1996 
1996 
1996 
1996 

1997 

Auteur 
Guilford et al 1994a"'' 
Guilford et al 1994b25 

Friedmann et al -1995™ 
Baldwin et al 19954 

Fukushima et al 1995a2C 

Fukushima et al 1995^' 
Jam et al 199532 

Veskeetal199661 

Chaibetal 1996a9 

Bonne-Tamir et al 19967 

Scott et al 199648 

Chaibetal 19960'° 

University of Iowa 

bij niet-syndromaal X-gebonden recessief gehoor-

Gen 
onbekend 
onbekend 
POU3F4 
onbekend 

onbekend 

onbekend 

Jaar 
1995 
1996 
1995 
1994 

1996 

Auteur 
Tranebjaerg et al 199555' 
Tyson et al56 

De Kok et al 1995'5 

Lalwametal 199435 

del Castillo et al 199616 

*Deze vorm van gehoorverhes werd oorspronkelijk als niet-syndromaal beschouwd, maar 
bij nader famiheonderzoek bleek het hier te gaan om een syndromale vorm53 
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Rekening houdend met deze grote verscheidenheid die op zo korte tijd aan het 
licht kwam, mag men verwachten dat m de komende jaren nog meer enkel 
genetisch te onderscheiden vormen van met-syndromaal erfelijk gehoorverlies 
zullen worden ontdekt Omdat grote families met autosomaal dominante vormen 
van slechthorendheid relatief gemakkelijk beschikbaar zijn in de westerse 
geïndustrialiseerde samenleving, zal dit ook geen remming betekenen voor die 
ontwikkelingen Voor koppelingsonderzoek voor een recessief overervend 
gehoorverlies is het nodig grotere families met meerdere afzonderlijke 
consanguine huwelijken met slechthorende of dove kinderen te onderzoeken Die 
vindt men vooral m religieuze of geografisch bepaalde isolaten, waar 
consangumiteit frequenter is Vooral m islamitische gemeenschappen is er sprake 
van een zeer hoge consangumiteitsratio Succesvol koppelingsonderzoek voor 
autosomaal recessief overervend gehoorverlies heeft tot nu toe alleen 
plaatsgehad onder deze islamitische bevolkingsgroepen buiten Europa en is 
nadien bevestigd m Europa bij geïmmigreerde islamitische bevolkingsgroepen In 
Europa bekende geografische isolaten met daarin veelvuldig voorkomend 
autosomaal recessief overervende doofheid en slechthorendheid zijn tot nu toe 
onvoldoende onderzocht Voor deze erfgang zullen meer genafwijkingen herkend 
worden1213 Op die manier kan men meer kennis verwerven over de genproducten 
die in de fysiologie en de pathofysiologie van het gehoororgaan een rol blijken te 
spelen, waardoor de kennis over het werkingsmechanisme van het binnenoor 
grote stappen voorwaarts zal maken 

Anderzijds zal het klinische ziektebeeld, hier de variatie in ernst en progressie van 
het gehoorverlies, nauwkeurig bepaald kunnen worden m deze families bij wie 
eerder succesvol een genkoppehngsstudie werd afgerond Voor de vorm DFNA5, 
gelokaliseerd op 7p15 zijn eerder over decennia verspreid bij een zeer grote 
Nederlandse familie studies over de ernst van het gehoorverlies in verhouding tot 
de leeftijd en zo over de mate van progressie van het gehoorverlies 
verricht282930576364 BIJ Indonesische, Vlaamse, Amerikaanse en Nederlandse 
families met DFNA2 zijn soortgelijke klinische studies naar de ernst en het verloop 
van het gehoorverlies uitgevoerd Afzonderlijke publicaties hierover zijn in druk 
Voor de andere DFNA-vormen is binnen deze families nog maar weinig bekend 
over het klinisch beloop van het gehoorverlies Omwille van de voorlichting zullen 
dergelijke studies ook nodig zijn voor de andere erfelijke vormen van autosomaal 
dominant overervend gehoorverlies 

De vraag die zich nu stelt, is of de ernst en de progressie van het gehoorverlies m 
families met eenzelfde genotype zullen overeenkomen en of er opmerkelijke 
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onderlinge verschillen zullen blijken te bestaan. Zo zal dan ook duidelijk worden of 
de vele genotypen op grond van hun fenotype onderscheiden kunnen worden. 
Daarvoor zijn wel nauwkeurige klinische beschrijvingen vereist van de ernst van 
het gehoorverlies in verhouding tot de leeftijd, van de vorm van het audiogram en 
van de variatie in expressie van het gehoorverlies binnen één familie en tussen 
verschillende families onderling. Zo zal het klinisch beeld passend bij elk afzonder
lijk genetisch type herkend kunnen worden. Deze informatie kan van betekenis zijn 
voor jonge aangedane familieleden, ondermeer met betrekking tot scholing en 
beroepskeuze. Een andere toepassing geldt bij personen met een autosomaal 
dominant overervend gehoorverlies, bij wie men op grond van een te voorspellen 
progressie van het gehoorverlies een betere invaliditeitsschatting zal kunnen 
maken. 
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THE BRANCHIO OTO RENAL SYNDROME 

INTRODUCTION 

Apart from brief descriptions dating from the 19th and the beginning of the 20,h 

century, Melmck et a l 1 were the first to report on the clinical aspects of the 

branchio-oto-renal (BOR) syndrome The autosomal dominant BOR syndrome 

(OMIM #113650), formerly known as the earpits-deafness syndrome, shows a 

wide spectrum of highly variable clinical manifestations, comprising combinations 

of branchial-arch, otic and renal anomalies2 The four most characteristic clinical 

symptoms are (ι), hearing loss, (n), second-branchial arch cleft, sinus or fistulas, 

(in), malformations of the auricle, the ear canal, the middle and/or inner ear 

including earpits, and (iv), renal anomalies, ranging from mild hypoplasia to 

complete agenesis3 5 Chronic infection of a second-branchial arch cleft, sinus or 

fistulas can make surgical excision necessary The frequencies of the mam 

features in the BOR syndrome based on a review of 184 cases from the literature 

are summarized in Table 1 6 Other associated but less common features include 

facial/palatal abnormalities, lacrimal duct stenosis and external auditory canal 

stenosis1457 This disorder shows almost complete penetrance, whereas its 

expression can be quite variable13 BOR syndrome has an estimated general 

prevalence of 1 40,000 and occurs in 2% of profoundly deaf children4 

Table 1 Frequency of the mam features of the BOR syndrome in 184 patients based on a 
review of 184 cases from the literature (with courtesy of Stmckens et al6) 

Malformed auricles 

Second branchial arch 
fistula/cyst 

Preauricular sinus 

Renal anomalies 

Stenosis of nasolacrimal 
duct 

Hearing impairment 

Reported presence/absence 

of features m 184 
121 

155 

169 

115 

34 

153 

cases 

Reported presence 

of mam features 

105/121 (86 8%) 

134/155(86 5%) 

147/169(87 0%) 

67/115(58 3%) 

16/34(47 0%) 

146/153(95 4%) 
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Figure 1 : Pictures of typical clinical features in different BOR patients 
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Figure 2: Example of a pedigree of a BOR family (with courtesy of Stinckens et al6) 

HEARING LOSS AND VESTIBULAR FUNCTION 

The type of hearing loss can be conductive, sensorineural or mixed and was 
formerly considered to be stable. A few reports mentioned progressive hearing 
loss. A recent long-term audiometrie follow-up study of a number of suitable 
patients disclosed that progressive fluctuant hearing loss may be a regular finding 
in the BOR syndrome (authors' unpublished data)6,8 Vestibular studies are rarely 
reported. In one study vestibular impairment was reported to be present in about 
half of the affected cases (n = 13)9. 

RENAL ANOMALIES 

Renal involvement in the BOR syndrome is also characterized by great variability, 
ranging from asymptomatic minor deformities to severe dysplastic kidneys or even 
kidney agenesis3"5,10,11. The expression of important renal anomaly is almost 25%. 
Due to its variability, many renal problems remain clinically and anamnestically 
undetected, whereas other patients depend on dialysis and await kidney 
transplantation. Especially minor renal abnormalities do not show any progressive 
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characteristics10. Recent results of studies in mouse models suggest a role of the 

EYA1 gene in the development of the kidney (see below). 

MIDDLE-EAR AND INNER-EAR MORPHOLOGY 

Branchial arch involvement of the BOR syndrome accounts for the serious 

involvement of the middle and inner ear structures. Various types of middle-ear 

anomalies have been documented, including (i) displacement, hypoplasia, or 

aplasia of middle ear ossicles, (ii) fusion and fixation of two or more ossicles, (iii) 

stapes ankylosis and/or absence of oval window, and (iv) varying size and shape 

of the middle ear cavity9. Radiological studies of the inner ear in genetic syn

dromes are few and mainly limited to individual cases. Both the cochlear and the 

vestibular partitions can be involved in inner ear abnormalities, ranging from an 

enlarged vestibular aqueduct, hypo-/dysplastic cochlea, bulbous internal acoustic 

canals, a deep posterior fossa and acutely-angled promontories to hypoplastic 

vestibule and/or semicircular canals5912"16. 

Figure 3: High resolution (CISS) heavily T2 weighted MR image of the temporal bone at 
the level of the internal meatus (l.m.). Typical example of the enlarged endolymphatic duct 
(e.e.d.) on both sides. 

* * & 

Figure 4: Multiplanar reformatted image (MPR) of the same patient (Figure 3). 
Semisagittal plane through the endolymphatic duct (e.e.d.) on the left side showing the 
course of this duct in the longitudinal direction. 
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Figure 5: Another typical sign is the hypoplastic cochlea as shown here by an MPR image 
of an affected cochlea. Image in the axial plane at the level of the internal meatus and 
apex of the cochlea. Semicoronal section through the turns of the cochlea shows only 1 
complete turn and no middle and apical turns. 

Figure 6: For comparison a normally developed cochlea (left) and an example of an 
affected cochlea (right) showing absent apical turns in the axial plane. 

More recently performed MR-imaging studies confirmed the frequent occurrence 
of such inner ear abnormalities in 7 families affected by the BOR syndrome 
(authors' unpublished data)68. Apart from these anomalies, the presence of an 
enlarged endolymphatic duct and/or sac could also be demonstrated in some 
affected family members. Although long-term audiometrie follow-up demonstrated 
the presence of progressive fluctuant hearing loss in some of the affected BOR 
patients, a clear correlation between the MRI findings and this type of hearing loss 
could not yet be demonstrated68. However, sensorineural thresholds were 
significantly higher in cases with enlargement of the endolymphatic duct and/or 
sac (authors' unpublished data). 

RECONSTRUCTIVE MIDDLE EAR SURGERY 

The conductive component in the hearing impairment is mostly due to congenital 
anomalies of the ossicular chain. A predisposition for otitis media with effusion 
might be present. As a result of the branchiogenic origin of the ossicular chain all 
ossicles can be anomalous. Ankylosis of the stapes footplate as well as a too short 
long process of the incus are frequently present. Even the malleus handle can be 
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missing9 A malleovestibulopexy can be needed to reconstruct the ossicular chain 

functionally The curvature of the anterior bony canal is usually so severe that a 

canal-plasty in the same procedure is needed to allow crimping of the stapes-incus 

replacing teflon-platinum prosthesis around the malleus handle17 Congenital 

anomalies of the middle ear can be severe, the round window niche can be 

missing and the facial nerve may cross the oval window or the promontory Minor 

congenital ear anomalies causes reconstructive surgery of the ossicular chain in 

BOR syndrome to be less successful than usual A preauricular sinus can be 

abnormally large and communicating with the middle ear cleft18 In case of chronic 

infection of a sinus excision can be necessary 

EZA1A 

9 

EYA1 GBiE 

j E/AIB \ 

• 1 1 1 ' 2 34 5 8 7 

5' m 
8 9 10 1112 13 14 15 16 

ι—ι min » 
• M · 

eyaHR 

Y 
E/AIC 

Figure 7 Schematic representation of the EYA1 gene structure (unsealed) All boxes are 
coding exons except for the black-filled boxes The grey-filled boxes indicate the eya-
homologous region The dotted lines indicate how the different isoforms (EYA1A, EYA1B 
and EYA1C) are built up 

GENETICS 

The EYA1 gene (OMIM #601653) has been found to underlie the BOR 

syndrome19 This is the human homologue of the drosophila 'eyes absent' gene 
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one (eya1) and is localized on human chromosome 8q13 3 1 9 2 2 EYA1, consisting 

of 16 exons with a genomic interval of 156 kB, forms part of a gene family 

comprising at least 3 other isoforms (EYA2, EYA3 and EYA4)ZZ So far three 

different transcripts of the EYA1 gene have been identified to result from 

alternative splicing of mRNA transcripts 

The gene encodes a 559-amino acid polypeptide and contains a highly conserved 

region called the eyes absent homologous region (eyaHR), encoded by exons 9-

16, which has an essential role in normal gene function Many different types of 

disease-causing mutations have been identified and most of these cluster in 

eyaHR, which is therefore the region of major interest for mutation analysis of this 

gene 

In spite of positive linkage to the EYA1 locus, mutations in this gene have been 

detected m only 25% of the patients with the diagnosis of BOR This can be 

explained by mutations in yet unknown important structures of this gene, ι e 

promoters or introns, which are not recognized with the present methods and 

knowledge A second gene has recently been discovered on chromosome 1q31 m 

a family without signs of second-branchial arch cervical fistulas23 It is not yet 

known what proportion of BOR cases is caused by mutations m this gene 

Involvement of this second gene together with the various different mutations in 

the EYA1 gene is evidence of the genetic heterogeneity of BOR syndrome 

Recently Rickard et a l 2 4 proposed to limit the screening of the EVTWgene to cases 

of classical BOR syndrome, until mutation-detection strategies yield higher 

detection rates Although positive mutation analysis can provide tools to predict 

the risk of recurrence in a given family, it does not allow for the prediction of 

phenotypic features due to the variable expressivity of the syndrome This, 

together with our lack of knowledge regarding genotype-phenotype correlations, 

makes genetic counselling a difficult task Further research on the BOR syndrome 

will have to clarify the factors and genes that influence the phenotypic variability of 

BOR patients 

ANIMAL MODELS 

In Drosophila the eya gene is involved in the formation of the compound eye, 

whereas the expression pattern of the murine orthologue, Eya/, suggests a role in 

the development of major inner ear components and metanephnc cells22 Johnson 

et a l 2 5 described a spontaneous mutation in the Eya 7 gene causing an autosomal 

65 



CHAPTER II 

recessive phenotype of deafness in a mouse model with circling and head-bobbing 
behaviour. Subtle developmental anomalies in the superior part of the labyrinth, 
including foreshortening and narrowing of the lateral semicircular canals and 
incomplete formation of the common crus, were noted. Xu et al.26 inactivated the 
Eya1 gene in mice and reported that Eya1+/~ heterozygotes showed conductive 
hearing loss associated with middle ear malformations. Similar to the BOR 
syndrome, these mice showed renal defects at low penetrance, including renal 
hypoplasia and unilateral agenesis. Inner ear abnormalities in these heterozygotes 
included the vestibular labyrinth, but no specific details were given. Eyai'7' 
homozygotes lacked ears and kidneys due to defective inductive tissue 
interactions and apoptotic regression of the organ primordia. 
Animal models provide insight in the way the genotype affects the phenotype. 
They enhance our understanding of the BOR syndrome and its underlying 
mechanism. Therefore, more well-designed animal models are needed to unravel 
this syndrome. 
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ABSTRACT 

Objective A new large family with the BOR syndrome is reported with special 
reference to the presence of a widened vestibular aqueduct and a progressive 
sensorineural component in the mixed hearing loss A review of the BOR literature 
of 184 patients is given 
Setting University Hospitals 

Results A BOR family with 17 affected members was studied Fourteen of those 
were still alive and 12 of those cooperated in this clinical study Detailed 
radiological studies showed in three out of 12 affected family members a widened 
vestibular aqueduct and progressive sensorineural hearing loss This raises the 
question whether there is a true correlation or whether those are coincidental 
Conclusions In our family with the Branchio-Oto-Renal syndrome, a widened 
vestibular aqueduct and progressive hearing loss is found in a few affected family 
members Imaging of the temporal bones and long-term audiometrie follow-up 
could help to reveal whether the widened vestibular aqueduct is the cause for the 
progressive hearing loss 

INTRODUCTION 

The Branchio-Oto-Renal (BOR) syndrome (McK No 601653)1 has an autosomal 
dominant pattern of inheritance Mam features are slight malformation of the 
auricles, preauricular sinuses, hearing loss, branchiogemc cervical fistulas of the 
second branchical arch and renal dysplasia Penetrance of the disease is almost 
totally complete, but expression of the symptoms varies 

Particularly the severity of the hearing loss and renal abnormalities vanes18 

Hearing loss can be of the conductive, mixed or sensorineural type 
Hypoplasia of the cochlea has been demonstrated histologically and 
radiologically4 9 52 A widened vestibular aqueduct has been described after 
histological examination9 and after radiological examination810 A review of the 
literature showed progression of the sensorineural component of the hearing loss 
in a few cases31114 Reconstructive surgery for the congenital conductive 
component is possible, but it is generally difficult to achieve satisfactory 
results51516 Prevalence of the BOR syndrome is estimated to be 1 40000 The 
BOR gene is EYA1, which lies on 8q13 31719 The BOR syndrome is genetically 
and clinically different from a very similar branchiogemc syndrome This syndrome 
is not linked to the EYA1 -locus20 21 
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To see whether the sensorineural component of the hearing loss in the BOR 

syndrome was progressive and whether this was associated with a widened 

vestibular aqueduct, we investigated a new family with this syndrome; there were 

17 affected family members Special attention was paid to long-term audiometrie 

follow-up and to the results of CT scanning and MRI of the temporal bones, 

especially the presence of an enlarged vestibular aqueduct. 

PATIENTS AND METHODS 

As part of an etiological evaluation of the causes of deafness in patients at the 

Royal Institute Spermalie for the deaf and hard of hearing in Brughes, Belgium, a 

family was encountered with the BOR syndrome. A pedigree (figure 1) of the 

family was drawn and the different branches of the family were contacted. 

Permission was obtained to perform a clinical-genetic study, including clinical 

evaluation of the typical BOR features, audiometry, CT scanning or MRI of the 

temporal bones. To evaluate the size of the vestibular aqueduct radiologically, we 

used the criterion that the width of the vestibular aqueduct must be smaller than 

the diameter of the posterior semicircular canal in the axial plane to be considered 

as normal. Previous audiograms were traced. Blood samples were taken from 

eight affected family members (figure 1) and some others for gene linkage and 

mutation analysis19. Linkage analysis was performed on a personal computer 

using the LINKAGE computer package (versions 5.1). 

Two-point linkage analysis was performed using the FASTLINK version 3.0 

(Cottmgham et al., 1993) and LOD scores were calculated using a model of 

autosomal dominant mode of inheritance. The marker allele frequency was 

assumed to be uniformly distributed. Mutation analysis of the EYA1 gene was not 

yet successful. To evaluate individual progression in hearing impairment, we 

followed the methode described by Cremers et al.48. We used the commercial 

programme Prism, version 2.0 (GraphPad, San Diego, USA) for non-linear fitting. 

In the regression equation, the hyperbolic quation Τ = Tmax/to5 + t) was used, 

where Τ is the threshold (db HL), fmax is the asymptotic saturation threshold, t is 

age (in years) and tos is 'half-value' age. Results of previous renal function tests 

were reviewed. Family members who had been tested before as well as those who 

had not did not agree to undergo additional renal tests 

The literature on the BOR syndrome was reviewed thoroughly regarding the 

stability and the severity of the heanng impairment2"4 7 1 0 1 5 1 6 22 46 56. 
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Chtf 
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••· · • · · · · 
Figure 1: Pedigree of the family; D male, Ο female; · • affected members; * included m 
the study 

RESULTS 

A four generation pedigree is shown in figure 1. Fourteen out of the 17 affected 

members are still alive. Case IV-5 died 8 h after birth as result of renal failure. The 

syndromal features of these 13 affected persons are presented in table 1. The 

frequency of the main features in this family is in agreement with the data obtained 

from a personal review of 184 BOR patients from the literature (table 2). 

Preliminary gene linkage results showed a positive lod score of 1.07 for marker 

D8S286. This is suggestive for linkage to 8q. 

The hearing losses of the 12 affected family members are presented in more detail 

in fgure 2. 

The binaural median air conduction threshold (0.5, 1 and 2 kHz, most recent 

measurements) was 100 dB and the range was 75-120 dB. A review of the 

literature concerning the degree of hearing impairment in 82 BOR patients was 

performed. We retrieved the air conduction thresholds (dB HL), bone conduction 

thresholds and air bone gaps. 

It appeared that the mean (i.e. averaging 0.5, 1 and 2 kHz in each ear, separately) 

air and bone conduction thresholds as well as the air bone gap, showed normal 

distributions, i.e. no significant deviation from a normal distribution in appropriate 

tests (Prism 2.0). Owing to the fact that many air conduction thresholds were off 

the scale, we selected the median threshold as the key parameter. Median values 

were 50 dB for air conduction, 30 dB for bone conduction and 20 dB for the air 

bone gap. The ranges were 20 dB to off the scale for the air conduction 

thresholds, 0-65 dB for thee bone conduction thresholds and 0-55 dB for the air 

bone gaps. 
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Figure 2. Serial audiograms (R, right ear, L, left ear; air conduction threshold in dB HL) of nine 
affected members of this family. Age in years (y) or months (mo); see the keys to each panel. 
Dashed lines related to free-field measurements. Filled symbols mark off the scale thresholds; 
BERA, brainstem evoked response audiometry. 
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Table 1 Clinical features of the BOR syndrome in a new family 

Case 

MM 
III-2 
III-3 
III-4 
IV-1 
IV-2 
IV-3 
IV-4 
IV-5 
IV-6 
IV-7 
IV-8 
IV-9 

Malformed 
auricles 

-
-
-
-
-
-
-
-
? 

-
-
-
-

Preauricular 
sinus 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
? 

+ 
+ 
+ 
+ 

Second branchial 
arch fistula 

+ 
+ 
+ 
+ 
-
-
+ 
+ 
? 

-
-
+ 
+ 

Hearing 
impairment 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
? 

+ 
+ 
+ 
+ 

Renal 
anomaly 

? 

? 

? 

-? 

-
+ 
-
? 

? 

? 

Table 2 Frequency of the mam features in the BOR syndrome based on a review of 184 
cases from the literature 

Malformed auricles 

Second branchial arch fistula/cyst 

Preauricular sinus 

Renal anomalies 

Stenosis of nasolacrimal duct 

Hearing impairment 

Reported presence 
absence of features 
184 cases 

121 

155 

169 

115 

34 

153 

or 
m 

Reported presence 
of mam features 

105/121 (86 8%) 

134/155(86 5%) 

147/169(87 0%) 

67/115(58 3%) 

16/34 (47 0%) 

146/153(95 4%) 

The average air conduction threshold m the present family was clearly much 
poorer than that derived from earlier reported cases It can not be excluded that 
the average hearing threshold in the present family will increase as the subjects 
grow older, presumably, most of our patients were younger than the earlier 
reported ones 

Follow-up audiometry in patients III-4 and IV-8 showed progressive hearing loss 
(figure 2 and 3) In case IV-8 progressive hearing loss was noted between 3 and 7 
years of age Free field audiometry at 12 months suggested only 50-60 dB hearing 
loss In case III-4, progressive hearing loss was noted between 5 and 34 years of 
age. In case IV-1 brain stem audiometry performed at age 3 years showed a 
hearing level of 70 dB in the right ear and no response from the left ear Pure tone 
audiometry at age 5 years confirmed the lack of response in the left ear and 95 dB 
hearing level m the right ear These findings are suggestive of progressive hearing 
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loss We were able to trace the previous audiograms of the other subjects Their 

follow-up varied from 1 to 6 years (III-2, III-3 IV-1, IV-2, IV-4, IV-9) These data 

reflected stability in their hearing impairment Several affected members of this 

family (nos III-4, IV-8, IV-9, III-3, IV-4) mentioned feeling unsteady in a dark 

environment They were also relatively late to start walking at 22 months in the 

most delayed of them This is suggestive for vestibular areflexia Two family 

members (III-3, IV-4) agreed to have this confirmed by vestibular testing with a 

rotating chair and electronystagmography 
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Figure 3 Threshold against age plots for two apparently progressive cases (III-4 and IV-8 
in the pedigree of figure 1 ) Longitudinal measurements of air conduction threshold (dB 
HL) are interconnected by dashed lines The continuous lines pertain to fitted hyperbolic 
curves (see Section 2) The fitted Tmax values were in the range of 90-150 dB, increasing 
with the frequency, the fitted f05 values were in the range of 1-4 year, independent of 
frequency In case IV-8 at 0 25 Hz an outlying value of 90 dB (R,L) was excluded from the 
analysis to avoid erratic fitting of the hyperbolic function Filled symbols relate to out-of-
scale measurements (m-panel symbol keys) 
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There was no spontaneous nystagmus. Caloric testing showed no response in 
patient III and some response (hyporeflexia) bilaterally in patient IV-4. In patient 
IV-7 epilepsy was reported at the age of 2 months. At the age of 4 months, 
hydrocephalus was diagnosed. Antiepileptic medication could be stopped at the 
age of 2 years. 

Renal tests were studied in six cases (III-4, IV-1, III-3, IV-4, IV-6, IV-7). In case IV-
5, autopsy was performed on the day of birth. Bilateral hydronephrosis and cystic 
kidneys were found. Intravenous Pyelography (IVP) had been performed in two 
out of the six cases (III-4, IV-1). Ultrasound examinations of the kidneys had been 
performed in five out of the six cases (III-4, III-3, IV-4, IV-6, IV-7). In all these 
cases, IVP and ultrasound of the kidneys were reported to be normal. 
The results of CT scanning and MRI of the temporal bones in eight patients (III-1, 
III-2, III-3, III-4, IV-1, IV-4, IV-8, IV-9) out of the 12 affected family members are 
presented in table 3. 

Table 3: CT and MRI findings of the temporal bones in eight BOR patients. 

Patient 
111-1 
III-2 
III-3 
III-4 
IV-1 
IV-4 
IV-8 
IV-9 

Hypoplasia cochlea 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Widened vestibular aqueduct 
-
-
-
+ 
+ 
-
+ 
-

Excluded were cases IV-2, IV-3, IV-6, IV-7 mainly because of their age and 
because it was inconvenient for them to be investigated. A widened vestibular 
aqueduct and an enlarged endolymphatic duct and sac (figures 4) were seen in 
three cases (111-4, IV-1, IV-8). 
Case III-4 and IV-1 were only examined by CT-scanning. Case III-4 presented a 
bilateral and Case IV-1 a unilateral (right) enlarged vestibular aqueduct. 
Case IV-8, who was examined by CT and MRI scanning, presented on CT a 
clearly enlarged right vestibular aqueduct. The width of the left vestibular aqueduct 
was the same as this of the posterior semicircular canal. On MRI on the other 
hand, an enlarged endolymphatic duct and sac were diagnosed, which was not 
convincing on CT. It is remarkable that the audiometrie data of these three cases 
showed a progressive hearing loss, since this finding is very unusual in the 
literature. 
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Figure 4: Patient III-4, bilateral large vestibular aqueduct. Axial CT image made at the 
level of the right and left vestibule. The right (large black arrows) and especially the left 
(large white arrows) vestibular aqueduct is enlarged and is much wider than the right (long 
black arrow) and left (black arrowhead) posterior semicircular canal. Normally the width of 
the vestibular aqueduct is smaller than the diameter of the posterior semicircular canal in 
the axial plane. Vestibule (V), internal auditory canal C. 

DISCUSSION 

A new BOR-family was studied in detail showing for this syndrome the unusual 
finding of a widened vestibular aqueduct and a progressive hearing impairment. It 
is still unknown how frequent those features are in this BOR-syndrome and 
whether they are related or not. 

Alexander57 was the first in 1904 to give a histological report on the presence of a 
widened vestibular aqueduct combined with hypoplasia of the cochlea in a man 
with congenital deafness. 

In 1976, Fitch et al.9 also reported the presence of a widened vestibular aqueduct 
in a patient with the BOR syndrome, based on histological findings. Dagillas et 
al.10, Chen et al.8 confirmed this by radiological studies. In the BOR literature, 
there are some references3,11'14 about progressive hearing loss. Fourman and 
Fourman13 mentioned that the deafness varied from mild to severe. In some cases 
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it has been recognized in childhood, while other cases were quite certain that they 
had been able to hear perfectly until they were about 20 years old, when their 
hearing had begun to deteriorate Brusis12 reported progressive hearing loss in an 
affected mother who had been hard of hearing during childhood and had become 
deaf later in life bilateral hearing loss of 90 dB Her 31-year-old affected son was 
reported to have experienced recently a progression of his hearing impairment 
(Fraser et al3, Shenoi11 and Bourguet et al14) This study on a new BOR family 
was the first to find an association between a progressive sensorineural 
component m the hearing loss and a widened vestibular aqueduct and/or an 
enlarged vestibular sac Larger numbers of well studied BOR families are required 
to provide the evidence needed, whether those findings are accidental or not 
Recently, the combination of progressive sensorineural hearing impairment and an 
enlarged vestibular aqueduct was found to be part of the Pendred syndrome47 49 

Mutation analysis of the PDS gene has been started to see whether isolated cases 
with the enlarged vestibular aqueduct syndrome are non-diagnosed cases of 
Pendred's syndrome A widened vestibular aqueduct has also been reported in the 
deafness oligodontia syndrome50 

In 1997, a report was published on three families with two affected sibs each They 
had fluctuating progressive sensorineural hearing loss, an enlarged vestibular 
aqueduct and a genetic background of a widened vestibular aqueduct51 There are 
also other reports showing a genetic background for an enlarged vestibular 
aqueduct in siblings with sensorineural hearing loss5354 The Pendred gene (PDS 
gene) was also found to be affected m the non-syndromic autosomal recessive 
type of childhood deafness (DFNB4)55 The description of DFNB4 was based on a 
large consanguineous family from South West India 10 individuals (aged between 
5 and 38 years) had congenital, profound, non-sydromic deafness55 Stigmata of 
syndromic deafness, such as a palpable thyroid, were excluded However, the 
Perchlorate discharge test was not performed, so the diagnosis of Pendred's 
syndrome could have been missed In the near future, mutation analysis of the 
PDS gene will show how frequently Pendred's syndrome is the diagnosis in 
isolated cases of the enlarged vestibular aqueduct syndrome 
The BOR syndrome might form a second clinical-genetic model on which to study 
the effect of an enlarged vestibular aqueduct Long-term audiometrie follow-up 
data, CT scanning and MRI of the petrous bones are needed from thoroughly 
documented BOR families, to evaluate relationship between an enlarged 
vestibular aqueduct and progressive sensorineural hearing loss in BOR syndrome 
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ABSTRACT 

ObjectiveJo inventory computed tomographic and magnetic resonance imaging 
findings in the Branchio-Oto-Renal (BOR) syndrome. 

Study design: A prospective computed tomographic and magnetic resonance 
study on a family with the BOR syndrome. 

Setting: Department of Medical Imaging and magnetic resonance imaging at St. 
Jan Brugge, Brugge, Belgium 
Patients: Eight affected members of a Belgian BOR family. Younger affected 
family members were excluded because of their age. 

Results: Computed tomography showed inner ear malformations in all eight 
affected patients. Magnetic resonance imaging was performed on five patients and 
showed inner ear malformations. To define hypoplasia or congenital enlargement 
of the inner ear structures, measurements obtained from a control group of normal 
subjects were used for comparison. Almost symmetrical cochlear abnormalities 
were observed on the three-dimensional Fourier transformation-constructive 
interference in steady state images of the five patients who underwent magnetic 
resonance imaging; four had dysplasia of the cochlea, and one had hypoplasia. 
The vestibule was slightly enlarged in one patient; computed tomography and 
magnetic resonance imaging showed semicircular canal malformations. Magnetic 
resonance imaging clearly showed bilateral enlarged endolymphatic sacs and 
ducts, whereas computed tomography showed only unilateral widening of the 
vestibular aqueduct and borderline widening of the vestibular aqueduct. Magnetic 
resonance imaging showed bilateral hypoplasia of the cochlear branch of the 
eighth nerve in one patient. 

Conclusion: Hypoplasia and dysplasia of the cochlea were consistent findings 
and only magnetic resonance imaging was able to evaluate the intracochlear 
changes in detail and corrected computed tomography in most patients. Moreover 
magnetic resonance imaging also detected bilateral hypoplasia of the cochlear 
branch of the eighth nerve in one patient. A widened vestibular aqueduct and a 
widened vestibular sac were frequent but not obligatory features of the BOR 
syndrome. Other malformations of the middle ear included a reduced middle ear 
cavity and malformations of the ossicular chain. 
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INTRODUCTION 

The Branchio-Oto-Renal (BOR) syndrome has an autosomal dominant pattern of 
inheritance Its mam features are slight malformation of the auricles, preauricular 
sinuses, hearing loss, branchiogemc cervical fistulas of the second branchial arch 
and renal dysplasia Penetrance of the disorder is almost complete, but expression 
of the features varies Hearing loss is present in 85-90% of patients but can be 
sensorineural, conductive or mixed Rarely, the hearing loss is reported to be 
progressive Long-term audiometrie follow-up data are scarce1 The BOR 
syndrome is caused by heterozygous mutation of the EYA1 gene2 Mutation of the 
EYA1 gene has not yet been found in all families with BOR3 

A few studies of the inner ear and temporal bones in the BOR syndrome are 
available Anomalies include cochlear hypoplasia, often with a reduced size of the 
cochlea despite two or two and a half turns, absence or hypoplasia of the 
semicircular canals, a widened vestibular aqueduct, bulbous internal auditory 
canals, a deep posterior fossa, and acutely angled promontories410 We recently 
conducted a clinical genetic study of a Belgian family with BOR-syndrome and 
performed detailed computed tomography (CT) and magnetic resonance imaging 
(MRI) on the temporal bones of eight affected members 

PATIENTS AND METHODS 

MRI and CT studies were performed on the temporal bones of eight members (3 
males, 5 females - aged 5 to 39 years) of a family with the BOR syndrome The 
syndromic features of 14 affected persons are indicated m the pedigree (Figure 1) 
Twelve of the seventeen affected individuals are still alive All the patients had an 
important bilateral sensorineural component m the hearing loss of varying severity, 
which was verified audiologically Serial audiograms in two young patients showed 
some progression of the hearing loss There were no clinical signs of renal 
impairment Ultrasound examination had excluded renal abnormalities in four 
cases One member of the family died eight hours after birth Autopsy revealed 
bilateral cystic renal dysplasia Eight patients underwent CT examination of the 
temporal bones Axial images were obtained using a helical CT technique The 
scan parameters were 120 kV, 200 mAs, pitch 1 (1 mm per second), slice 
thickness 1 mm Images were also reconstructed every 0 2 mm to enable more 
detailed evaluation Additional coronal images were obtained in 4 cases using a 
conventional CT technique with the following parameters 120 kV, 450 mA, 1 mm 
thick contiguous slices 
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O T B ' 

••· · • · · · · 
Figure 1 : Pedigree of the family; D male, O female; · • affected members; * included in 
the study 

A field of view (FOV) of 14.5 cm was used on the coronal and axial images to 

visualize both temporal bones. High resolution images were obtained by 

processing the raw data retrospectively using software algorithms selected to 

emphasize bony detail. A small FOV of 9.6 cm and a matrix of 512 χ 512 were 

used in this process to produce separate high-resolution displays of the right and 

left temporal bones. 

Five of the patients also underwent MRI. Four of them were examined on a 1.5 

Tesia system, using axial three-dimensional Fourier transformation - constructive 

interference in steady state (3DFT-CISS) images and axial T1-weighted spin-echo 

images (SE) before and after intravenous contrast administration (Gd-DTPA 0.1 

mmoles/kg). The parameters of the 3 DFT-CISS sequences were: repetition time 

(TR) = 12 msec, echo time (TE) = 5.9 msec, excitations (NEX) = 2, flip angle = 

70°, slice thickness = 0.7 mm, FOV = 140 χ 160 mm, matrix = 316 χ 512 (pixel 

size: 0.44 χ 0.31 mm). The T-1 weighted spin echo sequence had the following 

parameters: TR = 490 msec, TE = 20 msec, NEX = 4, slice thickness 2 mm, 

contiguous slices. One patient was examined on a 1.0 Tesia system, using 

different parameters for the 3DFT-CISS sequence. This resulted in a lower spatial 

resolution (pixel size: 0.66 χ 0.66 mm) but with a similar slice thickness of 0.7 mm. 

In all the patients, the maximum diameter of the basal turn and second turn of the 

cochlea, the vestibule and the three semicircular canals were measured. 

Measurements of the cochlea and vestibule were performed on the CT (axial 

plane) and MR (3DFT-CISS) images, while the semicircular canals were 

measured on the CT images. Ten normal inner ears served as controls. The 

normal sizes were needed to distinguish between normal and hypoplastic cochlear 

turns, vestibules and semicircular canals in the patients with the BOR syndrome. 
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RESULTS 

The CT and MRI findings in the middle and inner ears of eight members of a family 

with the BOR syndrome are summarized in Tables 1, 2 and 3. 

In seven patients, CT revealed slight or severe malformations of the middle ear. 

The size of the tympanic cavity and the external auditory canal was normal in all 

the patients. 

In seven patients, the ossicular chain was affected. In 2 cases, the malleus and 

incus were fused and plump; in one of these cases, the head of the malleus was 

fixed to the anterior wall of the tympanic cavity bilaterally. In one patient the oval 

window was covered by a calcified plate. 

A unilateral hypo-dysplastic stapes was recognized in four patients; this finding 

was associated with the absence or hypoplastic appearance of the pyramidal 

eminence; the stapedius muscle and tendon could not be seen on the affected 

side (Figure 2). In one patient, the footplate of the stapes was thickened 

unilaterally. 

Computed tomography showed congenital inner ear malformations in all the 

patients. The diagnosis of hypoplasia or congenital enlargement of the inner ear 

structures was made by comparing the size of these structures to those measured 

in the 10 inner ears in the control group. The normal maximum diameters were: 

basal turn of the cochlea = 8-9 mm; second turn of the cochlea = 5-6 mm; 

vestibule = 6 x 3 mm, LSG = 6-7 mm, PSC = 7 mm, SSC = 7 mm. 

Table 1 : Imaging findings in the middle ear. 

Subject 

1111 

III2 

III3 

III4 

IVI 

IV4 

IV8 

IV9 

Side 

R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 

Malleus-incus 

Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Fusion 
Fusion 
Normal 
Normal 
Dysplasia 
Dysplasia 
Dysplasia 
Dysplasia 

.fusion 

.fusion 

.fusion,fixation 

.fusion,fixation 

Stapes 

Hypodysplastic 
Normal 
Normal 
Hypodysplastic 
Normal 
Normal 
Hypodysplastic 
Normal 
Normal 
Normal 
Hypodysplastic 
Normal 
Dysplastic 
Normal 
Normal 
Normal 

Pyramidal 
eminence 
Hypoplastic 
Normal 
Normal 
Hypoplastic 
Normal 
Normal 
Hypoplastic 
Normal 
Normal 
Normal 
Hypoplastic 
Normal 
Normal 
Normal 
Normal 
Normal 

Oval 
window 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Closed 
Normal 
Closed 
Normal 
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Table 2: Imaging findings in the internal ear. 

Subject 

1111 

III2 

III3 

III4 

IV1 

IV4 

IV8 

IV9 

Side 

R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 

BT 

+ 
+ 

+/-
+/-
+/-
+/-
+/-
+/-
+/-
+/-
+/-
+/-
+/-
+/-
+/-
+/-

Cochlear hypodysplasia 
ST-AT 

+ 
+ 
+ 
+ 

+/-
+/-
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Md 

+ 
+ 
+ 
+ 

+/-
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Intrascalar 
separation 

Complete 
Complete 

Incomplete 
Incomplete 
Complete 
Complete 

Not valuable 
Not valuable 
Not valuable 
Not valuable 

Doubtful 
Doubtful 
Doubtful 
Doubtful 

Not valuable 
Not valuable 

" V 

D 
D 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 

LSC 

HD 
HD 
Η 
Η 
Ν 
Ν 
Η 
Η 

HD 
HD 
Η 
Η 

ΡΑ 
HD 
ΡΑ 
ΡΑ 

PSC 

Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 

ΡΑ 
ΡΑ 

SSC 

Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Η 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 
Ν 

VA/EDS 

Ν/Ν 
Ν/Ν 
Ν/Ν 
Ν/Ν 
Ν/Ν 
Ν/Ν 

L/n.ν. 
Un. ν. 
L/n ν 
Ν/η.ν. 

Ν/Ν 
Ν/Ν 
LVL 
LA 

Ν/η.ν 
Ν/η.ν. 

BT, basal turn; ST, second turn; AT, apical turn; Md, modiolus, V, vestibule; LSC, lateral 
semicircular canal; PSC, posterior semicircular canal, SSC, superior semicircular canal; VA, 
vestibular aqueduct; EDS, endolymphatic duct and sac; -, absent; +/-, present mild; +, present; π ν , 
not valuable; Ν, normal, D, dysplastic, HD, hypodysplastic, PA partially absent; L, large 

Table 3: Results of computed tomography and magnetic resonance imaging in the cochlea. 

1111 

III2 

III3 

IV4 

IV8 

1111 

III2 

III3 

IV4 

IV8 

R 
L 
R 
L 
R 
L 
R 
L 
R 
L 

R 
L 
R 
L 
R 
L 
R 
L 
R 
L 

ST-AT 

separation 
Not visible 
Not visible 
Not visible 
Not visible 
Not visible 
Not visible 
Not visible 
Not visible 
Not visible 
Not visible 

ST-AT 

separation 
Visible 
Not visible 
Visible 
Visible 
Visible 
Visible 
Visible 
Visible 
Visible 
Visible 

BT 
Doubtful 
Present 
Present 
Present 
Present 
Present 
Absent 
Doubtful 
Doubtful 
Absent 

BT 
Present 
Present 
Present 
Present 
Present 
Present 
Present 
Present 
Present 
Doubtful 

CT cochlea 

Scale separation 

ST 
Absent 
Absent 
Absent 
Absent 
Present 
Present 
Absent 
Absent 
Absent 
Absent 

MR cochlea 

Scale separation 

ST 
Present 
Present 
Incomplete 
Incomplete 
Present 
Present 
Doubtful 
Doubtful 
Doubtful 
Doubtful 

Modiolus 
Sev. hypo 
Sev. hypo 
Sev. hypo 
Sev. hypo 
Hypo 
Sev. hypo 
Sev hypo 
Sev. hypo 
Sev hypo 
Sev hypo 

Modiolus 
Sev. hypo 
Sev. hypo 
Hypo 
Hypo 
Hypo 
Hypo 
Hypo 
Hypo 
Hypo 
Hypo 

(R, nght side; L, left side, BT, 
hypoplastic; hypo, hypoplastic) 

basal turn; ST, second turn; AT, apical turn; sev.hypo, severely 
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Figure 2; Axial computed tomography image at the level of the right pyramidal eminence 
obtained from patient III-4 showing hypoplasia/dysplasia of pyramidal eminence and 
stapes. The pyramidal eminence is hypoplastic and appears as a flat structure (white 
arrow). The muscle inside the pyramidal eminence and the capitulum of the stapes. The 
stapes is hypodysplastic, and only a small anterior crus of the stapes can be seen (white 
arrowhead). The apical and second turn of the cochlea can hardly be separated (black 
arrow) and the modiolus is hypoplastic. The large vestibular aqueduct is seen (black 
arrowhead). 

A hypoplastic basal turn (7 mm) was found bilaterally in 2 patients and occurred 
unilaterally in 4 others. The shape of the basal turn was abnormal in all the 
patients. In two of them, the basal turn had a fairly pronounced bow shape and 
was narrowed. In all the patients, it was difficult to separate the second turn from 
the apical turn, while the modiolus appeared to be severely hypoplastic (Figure 3). 
The apical turn was hardly visible in 5 patients and could not be seen in 3 patients. 
The second turn was hypoplastic in 4 patients (4 mm) and had a normal size in the 
others (5 mm). 

There was normal separation between the scala vestibuli and scala tympani in the 
basal turn of 4 cochleae (3 patients). It was unclear whether separation was 
normal in five other cochleae (Figure 4), whereas in the remaining seven 
cochleae, separation was absent. Separation between the scala vestibuli and 
scala tympani in the second turn of the cochlea was normal in 2 cochleae, 
indistinct in 5 and absent in 9 (Figure 5). 
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Figure 3: Axial CT image (A) and three-dimensional Fourier transformation-constructive 
interference in steady state MRI image (B) at the level of the second and apical turn of the 
left cochlea obtained from patient III-3 showing separation between second and apical 
turns, invisible on CT scan and partially visible on MRI scan, as well as hypoplasia of the 
modiolus. The second turn (large arrow) and apical turn (small arrow) of the cochlea 
cannot be distinguished on CT scan. They are separated by an incomplete hypointense 
structure, however, representing the bony septum between the two turns of the cochlea 
(the bony spiral lamina and basilar membrane) on MRI. The modiolus is hypoplastic 
(arrowhead). 

The vestibule was only slightly enlarged in one patient ( 7 x 4 mm) and was normal 

in all the others. 

The lateral semicircular canal (LSG) was most frequently affected. It showed 

involvement and hypoplasia in 7 patients. Aplasia of the ampulla and adjacent 

LSG was found unilaterally in one patient and bilaterally in a second patient. In 4 

other patients, the ampullae of the LSGs were narrowed (Figure 6). Dilatation of 

the posterior part of the LSG could also be seen in 2 of the latter patients. 

In one patient, the LSG had a normal shape but was hypoplastic (diameter of only 

5 mm). One patient showed bilateral partial absence of the PSG in combination 

with severely affected LSGs. Unilateral hypoplasia of the SSG was also present in 

another patient with LSG involvement. 

91 



CHAPTER II 

Figure 4: Axial CT image (A) and axial three-dimensional Fourier transformation-
constructive interference in steady-state MRI study (B) through the basal turn of the right 
coclea obtained from patient III-1 showing bow-shaped basal turn. The separation 
between scala tympani and vestibule appears dubious on CT scan but normal on MRI 
scan. The basal turn of the cochlea is bow-shaped on this CT image (large black arrows), 
a rather typical shape of this structure in patients with BOR syndrome. Inside this basal 
turn there is no bony separation between the scalae. However, on MRI, the bony spiral 
lamina and/or basilar membrane can be seen as a hypointense linear structure (small 
black arrows) between the scala tympani (white arrowhead) and scala vestibule/media 
(white arrow). 

Three patients had an enlarged vestibular aqueduct: which was bilateral in one 

and unilateral in two. In one of the unilateral cases, the contra-lateral vestibular 

aqueduct had a borderline-widened size (Figure 7). The internal auditory canal 

was normal in all the patients. Inner ear malformations were seen in all five 

patients examined with MRI. Measurements of the inner ear structures in the 

control group were used to define hypoplasia or congenital enlargement of these 

structures in the patients with the BOR syndrome. The normal maximum 

diameters on MRI were as follows: basal turn of the cochlea = 8 mm, second turn 

of the cochlea = 5-6 mm, vestibule = 5 - 6 x 3 mm. Almost symmetrical cochlear 

abnormalities could be seen on the 3 DFT-CISS images of the 5 patients with 

BOR the syndrome. The basal turn was hypoplastic (7 mm) in only one of them. 
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Figure 5: Axial CT image (A) and axial three-dimensional Fourier transformation-
constructive interference in steady-state MR! study (B) through the second turn of the left 
cochlea obtained from patient lli-1 showing separation between scala tympani and 
vestibule of the second turn absent on CT scan but normal on MR! scan. On CT scan, 
there is no separation between the scalae of the second turn of the cochlea (large black 
arrow). On MR, however, a hypointense line (small black arrow), representing the bony 
spiral lamina and/or basilar membrane between the scala tympani (white arrowhead) and 
the scala vestibuli/media (white arrow) can be seen. This hypointense line is incomplete. 
The apical turn cannot be depicted in its normal position lateral and adjacent to the 
second turn. 

However, dysplasia was seen in all five patients. The second turn of the cochlea 

was hypoplastic in three patients; the apical turn was severely hypoplastic in four 

patients and was absent unilaterally in one patient (Figure 5b). In all patients, the 

second turn could be separated from the apical turn (when present) (Figure 3b). 

The modiolus always showed slight or severe hypoplasia (Figure 3b,7e,7f). 

Normal separation between the scala tympani and scala vestibuli was observed in 

the basal turn of the cochlea in four patients (Figure 4b). In the fifth patient, 

separation was dubious on one side. Separation in the second turn was 

incomplete in 2 patients (Figure 5b), doubtful in one patient and normal in the 

other two. The vestibule was slightly enlarged in one patient ( 7 x 4 mm), which 

was in accordance with the CT finding. MRI demonstrated similar semicircular 

canal malformations to those seen on CT (Figure 6). Only the patient with a large 

vestibular aqueduct (LVA) unilaterally on CT and contralateral borderline widened 
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vestibular aqueduct (LVA) was examined with MRI. In this patient MRI 

demonstrated clearly enlarged bilateral endolymphatic sacs and ducts (Figure 7 c-

f). In 4 of the patients a normal superior vestibular, inferior vestibular and cochlear 

branch of the vestibulocochlear nerve and a normal facial nerve could be 

distinguished from one another inside the internal auditory canal and cerebello

pontine angle on the 3DFT-CISS images. In one patient the cochlear branch of the 

vestibulocochlear nerve was hypoplastic on both sides (Figure 8). No spontaneous 

intralabyrinthine hyperintensities or intralabyhnthine enhancements were visible on 

the non-enhanced and gadolinium-enhanced T1 weighted spin-echo images. 

A Β 

Figure 6: Axial CT image (A) and axial three-dimensional Fourier transformation-
constructive interference in steady-state MRI scan (B) through the left lateral semicircular 
canal obtained from patient IV-1 showing narrowing of the ampulla of the lateral 
semicircular canal. The ampulla of the lateral semicircular canal, normally the widest part 
of the canal, is clearly narrowed on both CT scan (black arrow) and MRI study (white 
arrow). This malformation was found in several members of this family with BOR 
syndrome. 
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Figure 7: Images obtained from 
patient VI-8 showing unilateral 
large vestibular aqueduct on CT 
scan, bilateral enlarged endo
lymphatic duct/sac on MRI study. 
Axial CT images (A,B) and axial 
three-dimensional Fourier trans
formation-constructive 
interference in steady-state MRI 
scan (C,D) at the level of the 
ascending part and inferior part 
(E,F) of the posterior semicircular 
canal (PSC) of the right (A,C,E) 
and left (B,D,F) inner ear. A.B. 
The right vestibular aqueduct is 
enlarged (large arrows), and its 
diameter is clearly larger than 
that of the PSC (black 
arrowhead). The diameter of the 
left vestibular aqueduct (large 
arrows) is similar to that of the 
PSC and is therefore not enlarged 
but borderline. Notice the fusion of 
the head of the malleus with the 
corpus of the incus on both sides. 
Bilateral narrowing of the ampulla 
of the lateral semicircular canal 
can be seen. C,D. The right endo
lymphatic duct (white arrow) and 
sac (black arrows) have a longer 
diameter than the posterior semi
circular duct (white arrowhead). 
The diameter of the left endo
lymphatic duct (white arrow) and 
sac (black arrows) are equal to or 
smaller than the diameter of the 
posterior semicircular duct (white 
arrowhead) and is therefore 
borderline/normal. E,F The right 
endolymphatic sac (black arrows) 
is larger in diameter than the right 
posterior semicircular duct (white 
arrowhead). At this level, it also 
becomes obvious that the left 
endolymphatic sac (black arrows) 
is larger in diameter than the left 
posterior semicircular duct (white 
arrowhead). The endolympohatic 
sac is easier to recognize on the 
MRI scan because it can be 
distinguished from the cerebro
spinal fluid in the posterior fossa 
by the dura mater, which 
separates both fluid-containing 
structures. Notice the hypoplasia 
of the modiolus in the left and right 
cochlea. 
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Figure 8: Axial three-dimensional Fourier transformation-constructive interference in 
steady-state image through the left internal auditory canal of a normal inner ear (A) and 
the inner ear of patient III-1 (B) showing hypoplasia of the cochlear branch of the Vlllth 
cranial nerve. Normally, the cochlear branch (black arrow) is only slightly smaller than the 
facial nerve (black arrowhead). In this patient, the cochlear branch is very hypoplastic 
(white arrow) and much thinner than the facial nerve (white arrowhead). Small arrows, 
inferior vestibular branch of the vestibulocochlear nerve. 

DISCUSSION 

In the literature, radiological studies on the inner ear in genetic syndromes are 
scarce and most reports are on single cases. Many of these syndromes are 
genetically heterogeneous, i.e. affected individuals from different families have 
different causal genes. Thus to determine the variability produced by a single 
gene, studies should be restricted to a genetically homogeneous population, such 
as within a kindred, or to individuals in whom molecular means have shown 
mutations in the same gene11. Jackler et al. (1987)12 proposed a new classification 
for radiological inner ear malformations that includes more information about the 
vestibular system than previous classification into Michel deformity, Mondini 
aplasia, Bing-Siebenmann aplasia and Alexander aplasia. Modifications to this 
classification system were suggested by Triglia et al.13. 
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Computed tomography and MRI studies were performed on the temporal bones of 

8 affected members of a four generation family with the BOR syndrome Clinical 

presentation is indicated in the pedigree (Figure 1) Preliminary gene linkage 

showed a positive lod score of 1 07 for marker D8S286 This suggests linkage to 

the 8q mutation of the EYA1 gene Blood samples could only be collected from a 

part of the family members limiting a higher linkage result A mutation has not yet 

been found 

Pathological, surgical and conventional tomographic studies of the middle ear 

have reported a wide variety of malformations, including reduced middle ear 

cavity, hypoplastic or plump malleus and/or incus, ossicular fusion and fixation, 

footplate fixation and anteriorly displaced ossicles,4 9 1 4 22 The findings in the inner 

ear seem to be more uniform a hypodysplastic cochlea with reduction of the 

number of turns and developmental anomalies of the semicircular canals A large 

vestibular aqueduct has also been reported4810 

Computed tomography of the temporal bone revealed malformations of the 

external ear, middle ear and inner ear in 20 BOR patients6 8 1 0 1 9 2 1 2 2 The findings 

included stenosis or atresia of the external ear canal, malformed middle ear cavity, 

hypoplastic incus, malformed ossicles, malleo-mcudal fusion, bony fixation, 

absence of the oval window, hypoplasia or dysplasia of the cochlea with reduction 

of the number of turns, enlarged vestibule, hypoplastic or aplastic semicircular 

canals, large vestibular aqueduct, facial nerve anomalies (anomalous course, 

duplication, overhanging) and upward tilt of the medial end of the petrous bone 

Abnormalities of the malleus and incus were found in only 3 cases in this family 

These were articular fusion and in one case fixation of the head of the malleus to 

the anterior wall of the epitympanum Such findings were much more frequent in 

other families Anomalies of the stapes were encountered relatively more 

frequently in this family (5 patients) This may have been caused by different 

expression in this family and/or to the equipment and technique used in our CT 

studies (spiral acquisition, reconstructed slices every 0 2 mm, small FOV, matrix of 

512 χ 512) In 4 of our BOR patients, hypoplasia of the stapes was constantly 

associated with flattening of the pyramidal eminence and apparent absence of the 

stapedius muscle and tendon To our knowledge, this combination has not been 

described before in BOR patients, but it was a characteristic feature in this family 

(Figure 2) 

In agreement with previous reports all the patients in this family had cochlear 

abnormalities The basal turn mostly showed only mild anomalies, whereas the 

second turn and apical turn consistently showed severe hypoplasia/dysplasia 
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Our MRI studies demonstrated that these cochlear malformations were not 

consistent with typical Mondini aplasia, ι e a normal basal turn and fusion between 

the second turn and the apical turn, with absence of, or incomplete, mterscalar and 

mtrascalar separation In our patients, the second turn was often hypoplastic, but it 

was never fused to the apical turn The latter was severely hypoplastic m 4 

patients and absent in one patient Our findings may be a variant of the Mondini 

malformation23, in view of the slight involvement of the basal turn, the severely 

hypoplastic modiolus, the incomplete separation between the scala tympam and 

scala vestibuh (demonstrated in 1 case and uncertain in 2 cases (artefacts were 

present in the 3DFT-CISS sequence because of small head movements)), and the 

association with labyrinthine malformations and with large vestibular aqueduct 

The numerous variants of the Mondini malformation are probably the reason why 

this finding is not mentioned in some pathologic reports 

Labyrinthine malformations were mostly located in the LSG, with various degrees 

of severity, but with constant major involvement of the ampulla, which was 

narrowed or absent (Figs 6 and 7) We observed a direct correlation between the 

degree of severity of the cochlear malformations and LSG malformations 

LVA has been reported m patients with the BOR syndrome 4 Θ 1 0 In our series, this 

finding was present m 3 patients (1 bilateral, 2 unilateral) In one of the two 

patients with unilateral LVA, MRI revealed bilateral enlargement of the 

endolymphatic sacs The two patients with bilateral anomalies showed progression 

of hearing loss on serial audiograms, which may have been explained by LVA In 

many of the cases reported by Jackler et al 1 2 , LVA was associated with episodes 

of sudden hearing loss after even minor trauma None of the patients in the study 

by Ostri et a l 6 had LVA, and none of them had progressive hearing loss In 

patients with the BOR syndrome, CT is useful to explain the conductive 

component of the hearing loss, because it can image the bony labyrinth MRI is 

complementary to CT, because it can image the liquid content of the membranous 

labyrinth Our 3DFT-CISS sequence (slices of 0 7 mm, matrix > 256 χ 256 and 

small FOV) clearly displayed the mterscalar and mtrascalar separation inside the 

cochlea In two of our patients, these structures were not recognizable, because of 

headmovements in one case and the use of lower spatial resolution in the other 

(1 0 Τ equipment) CT displayed confluence of the second turn and apical turn in 

most of our patients In contrast, MRI demonstrated separation and severe 

hypoplasia of the apical turn, with better evaluation of the modiolus, which was 

severely hypoplastic, but less so than was indicated by CT (Fig 3) Intrascalar 

separation was also visible on CT, but the signs were more subtle In our cases 

this finding was always confirmed by MRI 5/5 in the basal turn and 2/2 in the 
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second turn. When it was considered absent on CT or uncertain, the correlation 

with MRI was lower (4 cases present and 1 case doubtful in the basal turn; 2 

cases present, 2 cases incomplete and 4 cases dubious in the second turn) (Figs 

4 and 5). However, it should be stressed that all the dubious MRI findings were in 

the four inner ears of the two patients whose examination was of lower technical 

quality. 

Bilateral hypoplasia of the cochlear branch of the eighth nerve was seen in one 

patient. Normally this branch has a similar thickness to that of the facial nerve at 

the level of the internal auditory canal or is only slightly narrower. In this patient the 

cochlear branch was not even half as thick as the facial nerve. Hypoplasia and 

aplasia of the cochlear branch were already described in association with 

congenital inner ear malformations but they can also occur in a normal inner ear24. 

These nerve abnormalities can, of course, be seen only on MR. 
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THE GRANCHIO OTO RENAL SYNDROME 

ABSTRACT 

Objective To study the results of petrosal bone imaging and audiometrie long-term 
follow-up of two patients with branchio-oto-renal (BOR) syndrome and relate them 

to the clinical features, including caloric responses 
Study design Longitudinal case study 
Setting Tertiary referral center 
Patients A father and son with the BOR syndrome 
Mam outcome measures Both patients underwent imaging studies to detect and 
evaluate inner ear anomalies Longitudinal audiometrie analysis of the hearing 
threshold data over the previous 23 years was performed Caloric tests were 

performed at various ages 
Results The son had a short, wide internal acoustic canal, a hypoplastic cochlea, 
a plump vestibule and a wide vestibular aqueduct on both sides, the semicircular 
canals and endolymphatic sac were of normal size He showed progressive, 
fluctuant sensorineural hearing loss Caloric tests disclosed hyporeflexia on the left 
side The father had a plump internal acoustic canal and hypoplastic cochlea on 
both sides The left vestibule was hypoplastic and the left vestibular aqueduct was 
marginally enlarged He showed severe hearing impairment, without substantial 
progression or fluctuation, and caloric areflexia on the left side 
Conclusion These findings suggest a correlation between progressive, fluctuant 
sensorineural hearing loss with caloric hypofunction and the presence of an 
enlarged vestibular aqueduct in the BOR syndrome Additional longitudinal case 
studies are needed to further evaluate such a correlation 

INTRODUCTION 

The branchio-oto-renal (BOR) syndrome is an autosomal dominant inherited 
syndrome, in which affected individuals may have sensorineural, mixed or 
conductive hearing loss, preauricular pits and structural defects of the outer, 
middle and inner ear Other features include lacrimal duct stenosis, branchial 
fistulas or cysts of the second branchial arch, and renal anomalies ranging from 
mild hypoplasia to complete agenesia A long and narrow face with a high-arched 
palate and deep overbite are less frequent symptoms14 Hearing loss, branchial 
clefts and earpits are most frequently expressed Hypoplasia of the cochlea is 
another feature of the BOR syndrome256 The penetrance of relevant clinical 
features has been reported previously34 The estimated general prevalence of the 
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BOR syndrome is 1 40,000; in profoundly deaf children the relative prevalence is 

2%7 

The first gene underlying the BOR syndrome has been identified as the human 

homologue of the drosophila eyes absent gene 1 (EYA1)8W Expression of the 

murine orthologue Eya1 occurs in all components of the inner ear and m the 

metanephnc cells surrounding the ureteric branches, which suggests a role in the 

development of inner ear and kidney9. The BOR syndrome shares important 

features with other branchial arch syndromes1112; it shows high penetrance but 

very variable expression, part of which may be explained by genetic 

heterogeneity11315 A second gene has been identified recently16 

An enlarged vestibular aqueduct (VA) and a hypoplastic cochlea are common 

radiological findings in Pendred syndrome1719 The hearing loss found in this 

autosomal recessive inherited syndrome varies in severity and progression1719. 

MRI of the petrosal bones and audiometrie follow-up studies showed a correlation 

between a widened VA and this progressive hearing loss1718 Recently, several 

mutations have been identified in the gene underlying Pendred syndrome 

fPDS;1 7 1 8 2 0 2 1 Mutations m the PDS gene and bilaterally enlarged VAs were also 

found in three individuals with congenital profound non-syndromic autosomal 

recessive hearing loss (DFNB4)22 The Perchlorate test was not performed on the 

affected members of this family and therefore Pendred syndrome has not been 

excluded 

An enlarged VA and hypoplasia of the cochlea have also been reported in the 

sensorineural deafness-ohgodontia syndrome and m the BOR syndrome152324 In 

a histopathologic study of the temporal bones of a BOR patient Fitch et al.5 found 

enlarged VAs and cochlear hypoplasia Daggilas et a l 2 3 and Chen et al ' were the 

first to demonstrate enlarged VAs on CT scans of BOR patients In this study 2 

BOR patients, who had already been followed-up for a long time with repeated 

audiometry and caloric tests, underwent imaging studies to find out whether they 

had similar inner ear anomalies underlying their specific functional features. 

MATERIAL AND METHODS 

We investigated a 3-generation family in which three members were affected by 

the BOR syndrome A mutation in the EYA1 gene was found in these patients 

(authors' unpublished data) Patient A has been previously indicated as case C-201 

or C-13 4 2 5 2 7 and patient Β as case C-302 or C-1442527. Both patients underwent 

high-resolution CT scanning (Siemens Somiton plus 4, Siemens, Forchheim, 
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Germany) m the axial plane, as well as high-resolution heavily T2 weighted 3D MR 

imaging of the temporal bones (Magneton Vision, 1 5 Tesla, Siemens, Erlangen, 

Germany) This MRI technique enables 3D reconstruction in every desirable plane 

to study abnormalities of the inner ear structures Because of the presence of 

endolymph these structures have a high signal intensity on T2 weighted images A 

VA is considered to be widened when the middle part is wider than the posterior 

semicircular canal (SCC) and measures more than 1 5 mm on CT and/or MRI28 

Audiograms were obtained m a sound-treated room, according to common clinical 

standards Binaural caloric tests were performed with electronystagmography 

(eyes open in the dark) and computer analysis Statistical analyses (Prism PC 

program, version 2, GraphPad, San Diego, CA, USA) comprised linear regression 

analysis of the longitudinal hearing threshold data and the threshold shifts 

between consecutive audiograms obtained for each frequency, this analysis 

included a runs test on the validity of the (linear) regression model Progression 

was called "significant" if it could be linked to correlation coefficients that were 

significantly greater than zero at a sufficient number of frequencies (binomial 

distribution statistics) Cofluctuation analysis consisted of performing correlation 

analysis between any relevant pair of synchronous threshold shifts Cofluctuation 

was called "significant" if it was linked to a sufficiently high number of significant 

correlations between pairs of synchronous shifts The probability level used m any 

test was Ρ = 0 05 

CASE STUDIES 

Patient A, a 55-year-old man, was seen for the first time in 1976 at age 33 years, 

because of bilateral discharging cervical fistulas and preauricular sinuses A cleft 

palate had been treated surgically in childhood On examination, bilateral cervical 

fistulas and preauricular sinuses were seen (Figure 1) A preauricular tag was 

noted in front of his left ear Examination of the tympanic membranes showed no 

anatomical abnormalities A previous intravenous pyelogram had revealed a renal 

malformation27 Bilateral mixed hearing loss of 90 dB was present25 Caloric tests 

were performed at age 32 and 44 years and disclosed vestibular areflexia on the 

left side The bilateral cervical fistulas were removed surgically, as well as the 

preauricular fistula, which communicated with the tympanic cavity26 Exploratory 

tympanotomy was not performed 
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Figure 1 : Slightly malformed right auricle and preauricular sinus (ar-row) of patient A. 

Figure 2: Patient A: CT scan of the right ear in the axial plane. Widened IAC ("X") and 
hypoplastic cochlea (arrowhead). The vestibule is widened, the lateral SCC is slightly too 
small (arrow). 

Figure 3: Patient A: Coronal reconstruction MRI through the endolymphatic ducts on the 
right (A) and left side (B). The left endolymphatic duct is abnormally wide, whereas the 
right one is of normal size (arrows). No endolymphatic sac could be visualized. 

Computed tomography of the temporal bones demonstrated a wide, plump internal 

acoustic canal (IAC) and a hypoplastic cochlea on both sides. The left vestibule 

appeared to be hypoplastic. The lateral SCC was slightly too small (Figure 2). MRI 

showed a marginally widened left VA. The right VA was not abnormally wide. No 

endolymphatic sac could be visualized (Figure 3). 

Increasing bilateral hearing loss from about 90 dB in 1976 to 100-105 dB in 1998 

was evident in the 22-year audiometric follow-up data of this patient (n=6 

audiograms, age 32-54 years) (Figure 4). Progression was significant at all 

frequencies, except at 1 and 4 kHz in both ears and at 0.25 kHz in the right ear. 
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Figure 4 Patient A air conduction thresholds plotted against age (R, right, L, left) These 
longitudinal threshold data show only limited progression, well within the normal limits of 
presbyacusis (see text) The data are not suitable for fluctuation analysis 

However, the slopes were fairly similar to those on plots that were prepared (not 

shown) using median presbyacusis threshold data according to ISO norms at 

similar ages29 The apparent progression vanished at all frequencies when the 

threshold levels were corrected for median presbyacusis Progression could 

therefore be attributed to presbyacusis Analysis of fluctuations was impossible 

because of an insufficient number of observations The air-bone gap (ABG) lies 

between about 50 dB at 0 5 kHz and about 30 dB at 2 kHz The bone conduction 

threshold increased by about 10 dB between the age of 32 and 54 years, which 

seems to be in line with the threshold increase associated with presbyacusis This 

patient clearly stated that his hearing had been much better during childhood and 

adolescence Audiograms obtained at that age could not be retrieved 

Patient Β is the 30-year-old son of patient A At his first examination (age 7 years) 

he was found to have a 50 to 80 dB mixed hearing loss Physical examination 

revealed bilateral cervical fistulas as well as preauricular sinuses (Figure 5) There 

were no preauricular tags but his auricles were slightly cup-shaped Some 

retrognathia and a high-arched palate were present and otoscopy showed no 

abnormalities25 

In 1976, temporal bone tomography had shown scarcely pneumatised mastoids 

An abnormal configuration of the ossicular chain was seen, as well as a Mondim-

type cochlear dysplasia and a wide IAC bilaterally Renal malformations were 

visible on a previously obtained intravenous pyelogram27 
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Figure 5: Left panel: Slightly malformed right auricle and preauricular sinus (arrowhead) of 
patient Β at 7 years of age. Right panel: Bilateral second branchial arch fistulas (arrows) 
of patient Β at 7 years of age. 

The cervical fistulas were bilaterally excised. Exploratory tympanotomy of the right 

ear revealed a dysplastic, plump long process of the incus and incomplete 

stapedial crurae. The oval niche could not be identified, but the niche of the round 

window was visible. The facial nerve was dehiscent and no ossicular chain 

reconstruction was performed. Five years later, grommets were placed twice in the 

left ear, because of recurrent otitis media with effusion. In 1990, myringoplasty of 

the left ear was performed to close the remaining perforation, however the 

perforation recurred a few years later. The patient also suffered from recurrent 

external otitis as a result of occlusion of the external ear canal by the mold of his 

hearing aid. 

CT scanning of the temporal bones (Figure 6, left panel) showed a short, wide IAC 

and a hypoplastic cochlea on both sides. MRI of the temporal bone (Figure 6, right 

panel) showed a plump vestibule with normal-sized SCCs. A wide VA and normal-

sized endolymph sac were found bilaterally. Caloric tests were performed at age 

10 and 16 years; they revealed hyporeflexia on the left side. 

The audiometrie follow-up data of this patient over 23 years (29 audiograms; age 

range, 6-29 years) (Figure 7) demonstrated clear progression of hearing loss. 
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Figure 6: Left panel: CT scan of the left ear in the (transverse) axial plane of patient B. A 
widened internal meatus is visible ("X") as well as a plump vestibule (arrowhead). The 
vestibular aqueduct (arrow) is widened. Right panel: Coronal reconstruction of 3D high-
resolution MRI showing an enlarged endolymphatic duct (arrows) on both sides of patient 
Β at the age of 28 years. 

This consisted of an increase in the sensorineural component first noted in the 

right ear, which later on also developed in the left ear. Progression may have been 

most prominent early in the follow-up period, especially at the lower frequencies, 

but such an interpretation is questionable, because it was mainly based on the 

earliest audiograms, obtained at the age of 6-7 years. Regression analysis (after 

exclusion of the first audiogram) was performed for air conduction and showed 

that progression was generally significant at all frequencies. However, even after 

exclusion of the first audiogram, progression may have been nonlinear; the runs 

test was significant at 0.25-2 kHz in the left ear and at 0.25 kHz in the right ear. All 

frequencies showed considerable threshold fluctuations (Figure 7). 

Cofluctuation analysis comparing the separate frequencies in each ear showed 

that, with few exceptions, synchronous air conduction threshold shifts between 

consecutive audiograms generally covaried in the same direction. Both the right 

ear (positive, significant cofluctuation in 5 of 10 comparisons) and the left ear (13 

of 15 comparisons showed cofluctuation, 9 of those were significant) showed 

significant cofluctuation of the separate frequencies. Binaural cofluctuation in air 

conduction threshold was observed for the frequencies 0.25, 0.5, 1, 2 and 4 kHz 

(significant at 0.5 and 1 kHz). Shifts in air and bone conduction thresholds 

demonstrated a high degree of covariation. Progression in bone conduction 

thresholds was significant at 0.5 and 1 kHz in both ears and at 2 kHz in the left 

ear. Independently of age, the ABG in both ears was 30 to 60 dB at 0.5 to 1 kHz 

and under 40 dB at the higher frequencies. Thus the ABG did not show any 

substantial progression, but it did show considerable fluctuation. 
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It is obvious that ABG data depend on both the air conduction and bone 
conduction levels We would have liked to evaluate the relationship between these 
variables, but as they are not stochastically independent, regression or correlation 
analysis is prohibited We therefore only inspected the synchronous consecutive 
shifts in bone conduction level and ABG directly at a given frequency in a given 
ear We observed a remarkable counterfluctuation (data not shown) Stochastical 
mterdependency can be avoided by replacing one of the variables involved by the 
corresponding variable pertaining to the other ear Following such a replacement, 
we could not detect any significant correlation between any of the variables 
involved These findings suggest that the observed counterfluctuation of ABG and 
bone conduction threshold pertaining to the same ear was a trivial phenomenon 

DISCUSSION 

More than 20 years of audiometrie follow-up data and recent MRI and CT of the 
temporal bones were evaluated in a father and son with the BOR syndrome The 
young patient (case B) showed progressive and fluctuant sensorineural hearing 
loss, which first started m the right ear and later affected the left ear The older 
patient (case A) already had severe hearing impairment, but he clearly indicated 
that his hearing had been much better in the past Therefore, we may have missed 
any progression and fluctuations in hearing threshold The young patient, who 
showed clear progression and fluctuation, had a bilaterally wide VA and 
hypoplastic cochlea, caloric responses were diminished on one side only The 
older patient had a hypoplastic labyrinth on one side with a marginally hypoplastic 
lateral SCC and a marginally wide VA He showed caloric areflexia on that side, 
but hearing impairment was bilaterally severe and symmetric Therefore, there 
was (incomplete) correlation between the imaging findings and functional 
performance m these two cases 

About 200 cases of the BOR syndrome have been reported in the literature Only 
a few reports clearly described progressive hearing loss in individual cases33032 

In some cases it was recognized in childhood, while other patients reported to 
have had normal hearing before the age of 20 Fourman and Fourman mentioned 
that hearing impairment varied from mild to severe33 Mild head injury can lead to 
progression of hearing loss This phenomenon appears to be especially related 
with an enlarged VA and has come to be known as the large VA syndrome 
(LVAS)3336 The audiometrie configuration in children with LVAS is usually 
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downsloping. The LVAS was found to be an almost obligatory feature of the 

Pendred syndrome in recent imaging studies17"19; this syndrome is caused by a 

mutation in the PDS gene which encodes an chloride-iodide cotransport 

protein20,37. Recently, linkage was found to the PDS locus in several patients with 

an autosomal recessive inherited form of LVAS and no clinical evidence of the 

Pendred or BOR syndrome, whereas another family with the same trait had 

mutations in the PDS gene38,39. Although the cochlear malformation may underlie 

our patients' hearing impairment, it is perhaps more plausible that their progressive 

hearing loss, which was clearly fluctuant in one and accompanied by vestibular 

impairment in both of them, fits in with the LVAS. 

CONCLUSION 

Our findings suggest a correlation between progressive, fluctuant sensorineural 

hearing loss with caloric hypofunction, all of which constitute the LVAS as part of 

the BOR syndrome. Additional longitudinal case studies are needed to further 

evaluate such a correlation. 
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THE PENDRED SYNDROME 

ABSTRACT 

Objective To evaluate vestibular and long-term audiometrie findings in patients 
with Pendred syndrome 
Study design Retrospective analysis of long-term clinical data 
Setting University hospital department 
Patients Three patients with Pendred syndrome caused by a mutation in the PDS 
gene 
Methods Perchlorate discharge test, mutation analysis of the SLC26A4 gene, MR 
imaging of temporal bones, vestibular function test (in 2 cases) and serial 
audiometry A saturation hyperbola with onset age was fitted to the audiometrie 
threshold-on-age data using a nonlinear regression method The residues 
remaining after regression were analyzed m a correlation analysis to detect 
significant ipsilateral or contralateral cofluctuation 
Results All three patients had a mutation in the SLC26A4 gene and bilateral 
enlarged vestibular aqueduct, two of them had a positive Perchlorate discharge 
test but in one of two siblings this test was negative Hearing loss was significantly 
progressive with significant ipsilateral and contralateral cofluctutation in all 
évaluable cases, combined with episodes of vertigo in two cases One case had 
unilateral caloric areflexia and one had bilateral vestibular hyporeflexia, proven to 
be progressive m a repeat examination 
Conclusions Similar to patients with the enlarged vestibular aqueduct syndrome, 
also caused by mutations in the SLC26A4 gene, patients with the Pendred 
syndrome may exhibit progressive and fluctuant hearing loss with episodes of 
vertigo 

INTRODUCTION 

The Pendred syndrome was originally described in 1896 by Pendred13 It is 
considered to be a combination of congenital deafness and goitre Thyroid 
enlargement is caused by impairment of thyroxin synthesis due to a defect in the 
organification of iodide14 This defect can be demonstrated by the Perchlorate 
discharge test This test consists of administration of radioactive iodide to the 
patient One hour later, Perchlorate is administered and the release of radioactive 
iodide taken up by the thyroid gland is measured An abnormal result is defined as 
a washout of >10 % of radioactive iodide 
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The Pendred syndrome is inherited as an autosomal recessive trait Recently, the 

gene responsible for Pendred syndrome has been mapped to chromosome 7q31 
1 2 0 2 1 Later on, the gene was identified and designated as the Pendred syndrome 

gene SLC26A42 The gene product, pendrm, is a chloride-iodide cotransporter, 

which has a function in the uptake and organification of iodine in the thyroid 

gland11. Mutations m SLC26A4 are also responsible for non-syndromic autosomal 

recessive hearing loss associated with enlarged vestibular aqueduct (EVA)3412 

Pcfe-knockout mice have recently been found to develop endolymphatic dilatation 

from embryonic day 15 onwards32 These mice showed hearing impairment, which 

unfortunately was not evaluated for progression, as well as progressive vestibular 

impairment 

We describe in more detail three patients out of the 12 patients described earlier 

by Cremers et al 9 , paying special attention to the occurrence of progression and 

fluctuation in hearing loss, as well as episodic vertigo Although more of the 12 

patients had a history of fluctuant hearing loss, audiometrie follow-up was most 

elaborate and adequate in the present three cases 

MATERIAL AND METHODS 

Three patients with Pendred syndrome are described All three of them had a 

Perchlorate discharge test and long-term audiometrie follow-up MR imaging 

studies of the temporal bones were performed Vestibular examination consisted 

of rotary chair and caloric testing with electronystagmography and computer 

analysis Blood samples were collected for gene linkage studies and mutation 

analysis Threshold-on-age plots were fitted with nonlinear regression analysis, 

using a commercial programme (Prism, version 3 02, GraphPad, San Diego CA, 

USA) The equation used was that of a saturation hyperbola, similar to our 

previous report9, unless a linear regression fitted better to the data The goodness 

of fit was judged from the residual standard deviation and the sum of squares (ι e 

squared residues) As there was no statistical test available for progression in the 

case of nonlinear regression, "significant progression" was concluded to exist 

when the linear regression coefficient (slope) was significantly (P < 0 025) > 0 

Fluctuations in threshold were evaluated by performing correlation analysis 

between the threshold residues after regression at any frequency, in either ear, for 

all possible pairwise comparisons Significant positive correlation (P < 0 025) 

detected "significant cofluctuation", ipsilaterally - ι e between (adjacent) 

frequencies within one ear, or contralaterally - ι e between the two ears In given 
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cases it was assessed whether the relative frequency of significant correlations 
relating to ipsilateral or contralateral comparisons was higher than expected (P < 
0 05) according to binomial distribution statistics 

CASE HISTORIES 

Case / 
The first patient was a 38-year-old woman, the first child of normally hearing 
parents She is a former pupil of a school for the hard of hearing and has a 
younger brother with normal hearing Pregnancy was uneventful and she was born 
at term by caesarean section At the age of 18 months, her parents noted some 
retardation m her motor milestones, and hypothyroidism was diagnosed 
Strumectomy was performed and thyroid hormone substitution therapy was 
started At the age of 2, her parents noted a decreased response to sounds she 
used to be able to hear, she no longer responded to ringing bells or passing 
aeroplanes There also was a decrease in speech At the age of 4, heanng 
impairment of maximally 60 to 70 dB was found At the age of 4 years and 9 
months, hearing loss had increased to about 90 dB in the right ear, which was her 
best ear Over the years following, hearing impairment in her right ear progressed 
with fluctuations At the age of 9, she was admitted to the hospital for sudden 
hearing loss combined with vertigo Thirteen and sixteen years later, she had new 
episodes of vertigo She described the vertigo as an acute episode of disabling 
dizziness, with dizzy spells recurring over several months, especially when she 
had slept on her left ear Then she felt dizzy and nauseous upon awakening, but 
this was rarely associated with vomiting Sometimes an episode of vertigo 
occurred during the day, especially in stressing conditions It frequently happened 
that objects fell out of her hands She was given flunanzme for her dizziness, 
which she used intermittently One year later, she was admitted because of a new 
episode of sudden hearing loss and tinnitus without vertigo She was treated with 
prednisone and vasodilators Vestibular examination showed normal vestibular 
function in the right ear and caloric areflexia in the left The diagnosis of Pendred 
syndrome was made within the context of the patient's request for genetic 
counselling The Perchlorate discharge test showed 40% discharge At the age of 
30 she again had an episode of vertigo with hearing loss Hearing stabilized, but 
vertigo persisted Repeat vestibular examination findings were unchanged MR 
imaging of the temporal bones showed cochlear hypoplasia and a wide vestibular 
aqueduct bilaterally The large vestibular aqueduct was defined by Valvassori et 
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al as being more then 1,5 mm in diameter m the mid portion of the descending 
hmb27 Mutations m the SLC26A4 gene were found L236P and G139A15 

Case 2 
This 26-year-old woman is the second child of normally hearing parents She is a 
former pupil of the school for the hard of hearing The earliest data on her report 
an unexpected retardation of speech development by about two years at the age 
of 4 At the age of 6, speech development was still 2 years behind schedule The 
first audiogram obtained at age 5 years and 5 months showed bilateral hearing 
impairment with pure-tone (air conduction) thresholds of between 50 and 85 dB on 
both sides Over the years a fluctuant but slowly progressive hearing loss was 
noted At the age of 9, she presented with sudden deafness following a common 
cold, which was complete m the right ear and showed a U-shaped audiometrie 
configuration in the left She was treated with steroids Vestibular examination 
revealed bilateral hyporeflexia At about the same time a first Perchlorate 
discharge test was performed and showed a washout of 27% Hearing recovered, 
but in the years following fluctuations in hearing occurred repeatedly At the age of 
14, she had several periods of vertigo with nausea, which generally recovered 
after 2 to 3 days Repeat vestibular examination showed increased bilateral 
hyporeflexia One year later, she had a similar episode, which took about 10 days 
to recover A repeat Perchlorate discharge test was performed and showed a 
washout of 63% At the age of 26, 4 weeks after parturition, she presented with a 
feeling of sudden hearing loss There was a slight decrease m hearing compared 
to three years before, but no treatment was started MR imaging of the temporal 
bones showed a bilaterally normal cochlea and enlarged vestibular aqueduct 
(wider in the right ear) Mutation analysis showed mutations m the SLC26A4 gene 
FS383andT416P15 

Case 3 
This 29-year-old woman is the first child of normally hearing parents and the older 
sister of case 2 She is a former pupil of a school for the hard of hearing 
Pregnancy and delivery were uneventful Her parents noted somewhat retarded 
motor milestones, she started walking at the age of 23 months At the age of 18 
months, she used one-word sentences Speech development arrested at this age 
and even deteriorated She could still hear passing aeroplanes and covered her 
ears with both hands when she heard them At the age of 3, hearing impairment 
was suspected A hearing level of 55 to 75 dB was found using free-field 
behavioural audiometry Since then, hearing progressively deteriorated with 
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fluctuations At the age of 12, she came for examination as the Pendred syndrome 
had been diagnosed in her younger sister She showed an elevated thyroglobulm 
concentration The Perchlorate discharge test showed a washout of < 10% This 
test being positive in her sister, the diagnosis of Pendred syndrome was also 
accepted in her case Regular check-ups were done twice a year, and at the age 
of 23 thyroid hormone substitution therapy was started MR imaging of the 
temporal bones showed a bilaterally normal cochlea and enlarged vestibular 
aqueduct (wider on the right side) Mutation analysis showed mutations in the 
SLC26A4 gene FS383 and T416P15 

Table 1 Relative frequencies of the findings significant (S) progression (assessed by 
linear regression analysis for each frequency and ear) and S cofluctuation (between two 
ipsilateral or contralateral frequencies) in cases 1-3 

Feature 
Best fitting 
equation 
S progression 
R 
L 
S cofluctuation 
ipsilateral R 
ipsilateral L 
S cofluctuation 
contralateral 

Case 1 

linear 

3/6" 
na 

10/15 
na 

na 

Case 2 

hyperbolic* 

2/5 
3/5 

6/1Cf 
10/10 

6/25 

Case 3 

linear 

2/5 
1/5 

5/10 
5/10 

3/25 
Italic values indicate significantly high relative frequency in the appropriate binomial distribution L 
left ear, na not available, R, right ear 
Notes *, see ref 9 for definitions and details, a, significant slope (of linear regression line) at three 
out of a total number of six frequencies evaluated b significant cofluctation (correlation coefficient) 
in six out of ten pairwise comparisons ^correlation analyses) 

RESULTS 

Individual audiograms and threshold-on-age plots pertaining to the present cases 
can be found m our previous report (ref 9) that included part of the threshold data 
the present cases 1, 2 and 3 correspond to the previous cases 6, 10 and 9, 
respectively All three cases showed significant progression of hearing impairment 
at a significantly high number of frequencies (Table 1) Progression in case 2 can 
be appreciated from Figure 1 For a general impression of the fitted regression 
parameter values, see Table 2 of the previous report9 As described in the case 
histories, all three cases had shown early progressive hearing impairment Cases 
1 and 2 showed further progression during the observation interval, but case 3 at 
some frequencies did not show any substantial further progression All three cases 
showed substantial threshold fluctuations suitable for further analysis 
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Figure 1: Plots of thresholds with the fitted hyperbolas (upper panels) and threshold 
residues (lower panels, labeled a-l) against age (y=year) are shown for all frequencies 
(0.25-8 kHz) in the right ear (top two rows of plots) and the left ear (bottom two rows of 
panels) of case 2. See text for further details 

Figure 1 shows all the plots relating to the threshold-on-age data (top and third row 

panels) in case 2. The residue panels (second and bottom row) are labeled a-l. 

The expressions shown in these panels indicate the significant correlations found. 

For example, the expression e*[c,d,f,g,h,i] in panel e (residues at 1 kHz in the right 

ear), indicates the finding of significant positive correlations between the residues 

in panel e and those in the ipsilateral panels (frequencies) c, g and i, and the 

contralateral panels (frequencies) d, f and h. In this case, 6 out of the 10 

correlations between ipsilateral frequencies in the right ear were significant, as 

were all the 10 correlations between ipsilateral frequencies in the left ear and 6 out 

of the 25 correlations between contralateral frequencies (Table 1). All these 

relative frequencies were significantly high according to binomial distribution 

statistics, which means that this case showed significant ipsilateral and 

contralateral fluctuation. Clear examples of cofluctation are shown in Figure 2. 
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Ipsilateral Contralateral 
c - a - 0 5 kHz R 
d * 0.5 kHz L 

20 25 

Age (y) 

Figure 2: Superposition plots of ipsilateral (left panel) and contralateral (right panel) 
threshold residues at 0.5 and/or 1 kHz in case 2. Same data as in corresponding residue 
panels (c, d and f) in Figure 1. 

The residues selected from Figure 1 (0.5 kHz R and 0.5-1 kHz L, panels c, d and f) 
are now superimposed with their connection lines. Although the presence of 
ipsilateral cofluctuations in this case is pretty clear, it was formally tested for 
significance in all cases (Methods and Table 1). Comparison between the two 
panels of Figure 2 illustrates the general trend that ipsilateral cofluctuations (left 
panel) were more impressive than contralateral cofluctuations (right panel), i.e. 
more often significant (Table 1). Significant ipsilateral cofluctuation was found in all 
3 cases. Significant contralateral cofluctuation was found in the 2 cases in which 
this could be evaluated. 

DISCUSSION 

Until recently, only few clinical data have been reported concerning progression 
and fluctuation of hearing loss in Pendred syndrome. The classical phenotype of 
Pendred syndrome was described as deafness combined with an enlarged thyroid 
gland and a positive Perchlorate discharge test. Deafness was considered to be 
congenital and profound. Expressivity of the syndrome seems though to be 
variable, as was shown by Masmoudi et al. and Reardon et al.30,31. 
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Progression in hearing loss was described in a small number of cases56724 

Reports with long-term audiometrie follow-up show severe, progressive hearing 
loss, most progressive in early childhood6924 In a few patients fluctuant hearing 
loss is mentioned82324 In three of the previously described four patients with 
fluctuant hearing loss, audiometrie follow-up was published 
Only recently, it became clear that an enlarged vestibular aqueduct, endo
lymphatic sac and endolymphatic duct are common features in Pendred 
syndrome910 Less frequently, cochlear hypoplasia is found in the Pendred 
syndrome10 

The gene involved in Pendred syndrome is located on chromosome 7q3112021 and 
is designated as the SLC26A4 gene2225 SLC26A4 encodes a putative trans
membrane protein, which is designated pendnn22 Initially, this protein was 
supposed to be a sulfate transporter, but recent studies have demonstrated that 
pendnn functions as a sodium-independent cotransporter of chloride and iodide11 

These findings, coupled with the known organification defect in Pendred 
syndrome, suggested that pendnn might function in the thyroid to transport iodine 
into the follicular lumen before its incorporation into thyroglobulm This hypothesis 
has been supported by studies of Bidart et al and Royaux et al2 8 2 9 Further 
investigation into the expression pattern of the mouse ortholog of the Pendred 
syndrome gene is suggesting a key role for pendnn in the inner ear Pendnn is 
predominantly expressed in the endolymphatic duct and sac, which are thought to 
play an important role in endolymph resorption Additional areas of pendnn 
expression include nonsensory regions of the utricle, saccule and cochlea25 It is 
postulated that anion (chloride) transport depending on normal pendnn is critical 
for maintaining endolymphatic ionic homeostasis, which is essential to normal 
inner ear function This strongly suggests that deafness in Pendred syndrome is 
caused by malfunction or absence of pendnn and is not a secondary effect of 
thyroid dysfunction, as has been postulated earlieralsoseeref32 

The SLC26A4 gene is also mutated m DFNB4, a non-syndromic autosomal 
recessive type of childhood deafness and in non-syndromic hearing loss 
associated with the enlarged vestibular aqueduct (EVA) syndrome3412 Recently, 
the possible relationship between Pendred syndrome and DFNB4 has been 
reviewed In the family in whom DFNB4 was originally diagnosed, no Perchlorate 
discharge test had been performed Later on, however, the affected persons were 
found to have goitre and therefore the Pendred syndrome, rather than non-
syndromic deafness3 In one family reported to have the EVA syndrome and a 
mutation m SLC26A4, no Perchlorate discharge test has been performed, as there 
was no sign of thyroid dysfunction3 Usami et al4 found seven mutations in 
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SLC26A4 m six families with one or two siblings with bilateral EVA, who did not 

met the classical criteria for Pendred syndrome Scott et al showed an association 

between SLC26A4 gene product and phenotypic variation in patients with Pendred 

syndrome and patients with non-syndromic hearing loss, enlarged vestibular 

aquaeduct and SLC26A4 mutations, which they called DFNB427 

The most common clinical picture associated with EVA is progressive, discretely 

stepwise, down-sloping and often fluctuant sensorineural hearing loss combined 

with episodic vertigo Most of the cases do not show any additional cochlear 

malformation1619 The reason why the EVA syndrome had not been associated for 

a long period of time with the Pendred syndrome, is the apparent lack of typical 

associated clinical features in patients with the Pendred syndrome As yet, only 

four patients with that syndrome have been described with fluctuant hearing loss 

and/or episodic vertig18 23 24 

The present case histories and those previously reported by Cremers et a l 8 

suggest that the clinical distinction between the EVA and Pendred syndromes can 

be questioned In the present report we describe two patients with typical clinical 

features of Pendred syndrome Both are deaf, have goitre and a positive 

Perchlorate discharge test Remarkably, the sister of one of them (case 3), who 

has the same SLC26A4 mutation as her sister, had fairly similar clinical features, 

except for her negative Perchlorate discharge test All three cases showed 

progressive hearing loss The rate of progression was at a maximum in early 

childhood and gradually declined thereafter All three patients had an enlarged 

vestibular aqueduct and showed remarkable fluctuations in hearing threshold, 

while two of them also experienced associated episodes of vertigo The 

progressive fluctuant hearing loss and the Meniere like vestibular episodes of 

vertigo are considered to have a common etiology in the homeostasis of 

endolymph As argued later on, this is supported by recent findings regarding the 

function of the Pendnn gene2 9 3 0 3 3 One of them, in addition, showed cochlear 

hypoplasia It is intriguing but puzzling to note that there was significant 

cofluctuation not only ipsilaterally, ι e involving (adjacent) frequencies, but also 

contralaterally The only case that did not show significant contralateral 

cofluctuation was case 1, whose hearing and vestibular function on the left side 

was very poor or absent, which can be a trivial explanation for the lack of 

contralateral cofluctuation As far as we know, the present cases (1 and 3) are the 

first in whom it could be proven m a formal way that their threshold fluctuations 

were significantly simultaneous, as well as bilateral. In cases with bilateral 

enlarged vestibular aqueduct, variations in cerebrospinal fluid pressure have been 

previously suggested to underly the simultaneous bilateral presentation of hearing 
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impairment . Recent experimental evidence strongly suggests that the profound 

dilatation of innerear structures involved is secondary to altered osmotic content of 

endolymph caused by a failure in pendrin's normal anion-transporting function25,32. 

The occurrence of bilateral cofluctation is suggestive of bilaterally coupled, or 

perhaps systemic, variations in the physiological consequences of SLC26A4 

mutations. Perhaps, there is systemic, regulatory involvement of endocrine factors 

relating to substances such as, for example, vasopressin. 

The clinical picture in our patients is quite similar to that in patients with the EVA 

syndrome. This raises the question as to whether some cases of EVA might in fact 

have a milder variant of Pendred syndrome rather than a different disorder. Of the 

present two sisters sharing the same mutation in SLC26A4, one has a positive, but 

the other a negative Perchlorate discharge test. As there is no question about the 

validity of the diagnosis of Pendred syndrome in the latter case, it is clear that a 

positive Perchlorate discharge test is not obligatory for the diagnosis of Pendred 

syndrome. 
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THE PENDRED SYNDROME 

In 1896, Vaughan Pendred (figure 1) described a combination of congenital 
deafness and goitre that developed during puberty in 2 sisters1. In 1927, four new 
families were again reported2. In 1956, the autosomal recessive patterns of 
inheritance were recognized3. Thyroid enlargement is not always present and in 
1958 it was reported that it is caused by a defect in organification of iodide, which 
results in impairment of thyroxin synthesis4. The test that until now has been used 
to diagnose Pendred syndrome is the Perchlorate discharge test. Following 
Perchlorate administration, radioactive iodide is given to the patient and the 
release of radioactivity (washout) is then recorded: a washout of > 10% is 
diagnostic for Pendred syndrome. 

Pendred syndrome is an autosomal recessive disorder. Regular features in 
Pendred syndrome are an enlarged vestibular aqueduct (EVA) and, less 
commonly, hypoplasia of the cochlea5 (figure 2,3). 

Figure 1: Vaughan Pendred (1869-1964 
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Figure 2: Patient with the Pendred syndrome. Clinical features as the enlarged thyroid. 

Figure 3a, b: CT scans of the inner ear in the Pendred syndrome. The widened vestibular 
aqueduct is shown by a broad white arrow. The hypoplasia of the cochlea is shown by two 
small white arrows. 
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The responsible gene has been mapped to chromosome 7q31 and designated 

PDS (SLC26A4)68 The gene product, pendnn, is a transmembrane transporter 

protein that was originally thought to carry sulphate, but later turned out to be a 

chloride-iodide co-transporter9 The function of pendnn in the thyroid gland is 

probably to transport iodine into the follicular lumen prior to its incorporation into 

thyroglobulm1011 In the inner ear, pendnn is predominantly expressed in the 

endolymphatic sac and duct and, to a lesser extent, in nonsensory regions of the 

utricle, saccule and cochlea It has been postulated that pendrm-dependent 

chloride transport is critical for maintaining endolymphatic ion homeostasis, which 

is essential to normal inner ear function1213 

Disease-causing mutations m [SLC26A4] have also been found m non-syndromic 

deafness with EVA, which has been called DFNB4 m some reports, and the EVA 

syndrome in others The first reported family whose hearing impairment trait was 

designated as DFNB4 later was found to involve thyroid enlargement and thus can 

be diagnosed as Pendred syndrome rather than a non-syndromic type of 

deafness14 Later, more families with traits of non-syndromic deafness and EVA 

were identified and found to have mutations m [SLC26A4], again, both the terms 

EVA syndrome and DFNB4 have been applied to such traits by different authors15 

17 It is doubtful whether the label DFNB4 can be maintained 

Report of a new Pendred syndrome family with fluctuating hearing loss 

Figure 4 shows longitudinal audiometrie data (air conduction threshold) in 2 of our 

most recent Pendred patients (A and B) to illustrate the features of progression 

and fluctuation Mutation analysis was reported by Van Hauwe et a l 1 8 (family 1) 

Patient A is a 27-year-old woman, born as the third of normal hearing and healthy 

parents Pregnancy and delivery were normal and birth weight was 4100 g At the 

age of 2 months she was hospitalized for breathing problems and hypothyroidism 

was diagnosed At that age, the parents noticed that their daughter had hearing 

loss 

Her hearing deteriorated progressively and with threshold fluctuations (figure 4a, 

left ear) At the age of 16, she presented with an euthyroid multinodular goitre, and 

diagnosis of Pendred syndrome was made Cytogemc examination showed 

normal female karyotype MRI of the temporal bones showed bilateral EVAs and 

bilateral normal cochlea and cochlear nerve Genetic analysis showed mutations 

FS 634 and V138F m [SLC26A4] in this patient 

Patient Β is patient A's 4 years' old cousin Pregnancy was complicated by 

bleeding at 3 months and a streptococcal infection at 8 months Both parents and 

his older sister have normal hearing 
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Frequency 125 25 5 ι 2 ^ un; 

Figure 4: Pseudo-3D surface view (i.e. with an unsealed age axis and without perspective) 
of serial hearing threshold data for one ear in 2 Pendred patients, followed between age 7 
and 23 (A) and age 1.25 and 3.71 years (B). The 3D upper surface shown is outlined by 
the data points connected by threshold lines (bold) and lines connecting consecutive 
measurements at the same frequency at different ages. "Roughness" of that surface is 
accentuated by the presence of substantial threshold fluctuations. Surface "steepness" 
relates to progression in threshold. For example, the largest across-frequency mean 
threshold shifts between consecutive threshold planes (age indicated on planes) occur at 
the crosshatched areas (from age 9 to 11 in panel A and from age 1.67 to 2.90 in panel 
B). Please note that placement of the consecutive threshold planes along the age axis is 
in the correct order but at unsealed positions. This is because interplane distance was 
manipulated in such a way that at each frequency the threshold measured at a given age 
was always plotted at a higher position than all previously measured thresholds at that 
frequency It was thus possible to maintain a clear view on all separate parts of the upper 
surface. 

At the age of 6 months he still reacted to noises, but at the age of 10 months, his 

parents (his father is the brother of patient A) first noticed a decrease in hearing 

ability. BERA was performed and showed on the left side a hearing level of 60 dB 

SPL and on the right side a hearing level of 80 dB SPL Because of a subacute 

otitis media, tympanic drains were placed. In the postoperative period he fell 

seriously. Postoperative BERA did not show different hearing level on the right 

side, on the left side no reactions were measured anymore. Hearing gradually 

deteriorated with threshold fluctuations (figure 4b, right ear). At the age of 2, he 
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presented with episodes of vertigo with a falling tendency and vomiting 
Neurological examination, including EEG, was normal He was euthyroid and had 
no goitre A Perchlorate discharge test was negative. Imaging studies revealed the 
bilateral presence of an EVA, as well as an enlarged vestibulum and shortening of 
the posterior semicircular canal. There was an abnormal modiolus and probably a 
beginning Mondim dysplasia. Mutation analysis of [SLC26A4] revealed the 
presence of FS 634 and G209V mutations 

Radiological findings of the inner ear in Pendred syndrome and EVA syndrome 
EVA syndrome is defined as non-syndromic deafness with EVA An EVA is also a 
very common feature m Pendred syndrome Often, a Mondini-type cochlea with a 
deficiency of the interscalar septum is present The first to report a radiologically 
confirmed Mondini-type cochlea in a patient with Pendred syndrome was Jensen19 

in 1967 This was confirmed by Ilium20 in 1972 The first description of a large 
vestibular aqueduct shown by imaging was by Valvassori and Clemis21 m 1978 
They defined the EVA as being > 1.5 mm in diameter in the mid-portion of the 
descending limb In 1998, Phelps et al22 examined 40 patients with Pendred 
syndrome by high-resolution computed tomography. In 8 of the 40 cases they 
found the presence of a Mondini-type cochlea with a deficiency of the interscalar 
septum An EVA (according to the criteria of Valvassori and Clemis21) was shown 
bilaterally in 31 of the 40 patients, and unilaterally in 2 cases The enlarged 
vestibular aqueduct was usually asymmetrical, with a diameter varying from 1 8 to 
5 8 mm. Twenty cases underwent MRI and all were found to have an enlarged 
endolymphatic sac. Phelps et al22 were also able to demonstrate a certain 
radiological discordance between different siblings In the same year, Cremers et 
al.5 examined 12 consecutive Pendred patients Seven of them underwent CT or 
MRI. all had bilateral EVA and 4 had a hypoplastic cochlea They concluded that 
EVA and hypoplasia of the cochlea are very common features in Pendred's 
syndrome 

Mutation analysis in Pendred syndrome and EVA syndrome (DFNB4) 
In 1995, Baldwin et al14 examined three large Druze families with multiple deaf 
members Deafness was congenital an no other additional features were 
observed They localized DFNB4 to a 5-cM region between D7S501 and D7S523 
on chromosome 7q Affected members of this family were later found to have 
goitres and thus Pendred syndrome. Coyle et al.6 and Sheffield et al.23 found 
linkage between Pendred syndrome and markers on chromosome 7q31, and 
Coucke et al8 reduced the Pendred candidate region to 1.7 cM. In 1997, Everett 
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et al reported the identification of the Pendred gene [SLC26A4], and identified 
three deleterious mutations in five Pendred families They found that [SLC26A4] 
encodes for a putative sulphate transporter The protein encoded by the 
[SLC26A4] gene was predicted to be a 780-amino-acid protein and was named 
pendnn There was a statistically significant homology to 13 other proteins, which 
are most known to function as sulphate transporters Different mutations in 
[SLC26A4] gene were identified182526 In 1999, Scott et al9 were able to 
demonstrate that [SLC26A] does not encode a sulphate transporter, but a 
chloride-iodide transport protein In a mouse model, Everett et al12 demonstrated 
a [SLC26A4] expression throughout the endolymphatic sac and duct, in distinct 
areas of the utricle and saccule and in the external sulcus region within the 
cochlea One year later, Royaux et al11 demonstrated that pendnn has a likely role 
as an apical porter of iodide in the thyrocyte Recently, Everett et al13 have 
developed a Pds knockout mouse Those mice develop early onset, profound 
deafness, as well as pronounced signs of vestibular disease with variable 
expressivity They do not have biochemical or histological evidence of thyroid 
disease The lack of pendnn in these mice leads to a profound dilatation of inner-
ear structures, associated with degeneration of outer and inner hair cells in the 
organ of Corti and of the maculae in the utricle and saccule 
Simultaneously to these investigations, in different families with nonsyndromic 
hearing loss with EVA and normal Perchlorate test, mapping to 7q31 was found15 

In six families with non-syndromic hearing loss and EVA, seven mutations of 
[SLC26A4] have been found16 The postulation was made that mutations in 
[SLC26A4] cause both syndromic and non-syndromic hearing loss This 
hypothesis was supported by Masmoudi et al27 who found phenotypic variability in 
two families carrying the same [SLC26A4] missense mutation Scott et al28 

demonstrated that mutations m [SLC26A4] associated with Pendred syndrome 
had complete loss of pendrm-mduced chloride and iodide transport, while alleles 
unique to people with DFNB4 were able to transport both iodide and chloride, but 
at a lower level than wild-type pendnn 

Audiometrie presentation of Pendred and EVA syndrome 
Originally, hearing loss m m Pendred syndrome was mainly considered as being 
congenital sensorineural hearing loss Figure 5 shows the mean hearing threshold 
in 141 ears of 71 Pendred patients described in literature5142940 Hearing loss is 
profound and the audiogram has a steeply downslopmg configuration Given the 
fact that it is the mean threshold that is shown m figure 5, many patients (< 50%) 
have or will eventually have residual hearing 
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dB 
Mean 

audiogram 
I I 1° I 

τ 1 1 1 Γ 

.125 .25 .5 1 2 4 8 kHz 

Frequency 

Figure 5: Mean audiogram of 71 previously reported Pendred patients (141 ears) 

Although progressive hearing loss in Pendred syndrome has been previously 

mentioned41,42, the first reports demonstrating progression and/or fluctuation of 

hearing loss with audiograms in patients with Pendred syndrome date from 1980. 

Hörmann et al.29 described a patient with progressive hearing loss and Pendred 
syndrome, who had episodes of sudden deterioration, which (partially) recovered 
during therapy. In a family with seven affected persons, Bergstrom30 found one 
sibling with unilateral fluctuations in hearing threshold, while all other affected 
members of the family showed congenital moderate to severe sensorineural 
hearing loss. In 1987 Johnsen et al.31 described 17 unrelated Pendred patients. In 
fifteen patients, hearing loss had been diagnosed before the age of three years. 
Three patients had noticed some progression of hearing loss, and in one of those 
this amounted to about 20 dB. In the same year Das32 reported on a patient with 
Pendred syndrome and severe bilateral sensorineural deafness at the age of three 
years. Later she had episodes of vertigo accompanied by nausea and occasional 
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vomiting Hearing loss had slightly progressed by 10-15 dB Cremers et a l5 3 5 

found significant progression in hearing loss in several patients, progression was 
most rapid m early childhood We found fluctuant hearing loss by extensive serial 
audiometry in some patients, with significant ipsilateral and contralateral 
cofluctuation, two of them had recurrent episodes of vertigo43 

Because an EVA seems to be one of the mam features in Pendred syndrome, 
which is often associated with progression and/or fluctuation in hearing loss, a link 
can be made to the EVA syndrome (sometimes labeled DFNB4) Both syndromes 
have important clinical features in common and are caused by mutations in 
[SLC26A4] Hearing loss in the EVA syndrome has been described to show 
stepwise progression and threshold fluctuations as characteristic features 
Levenson et al44 described 22 ears in 12 patients Four ears showed profound 
sensorineural hearing loss and ten ears severe to profound down-sloping loss with 
fluctuations Eight ears had initially normal to serviceable hearing but six of these 
developed progressive loss featuring as sudden hearing loss in five cases Jackler 
and De La Cruz45 examined 17 patients with 33 abnormal ears The audiometrie 
configuration was down-sloping in 23 ears, midfrequency in 4 ears, flat in 1 ear 
and profound in 3 ears Significant progression was present in 15 ears and was 
characterized by stepwise decrement Hearing fluctuations were noted in 2 
patients Five patients also had vestibular problems adults mentioned episodic 
vertigo, in children it was more some type of imbalance45 Other authors also 
described vertigo15164647 

DISCUSSION 

Based on the clinical features of both syndromes, one could question if DFNB4 is 
not a milder form of Pendred syndrome As previous mentioned Masmoudi et al27 

studied two large Southern Tunesian families with Pendred syndrome All 19 
affected individuals were found to have the same mutation (L445W) m [SLC26A4] 
Only 11 of them had palpable goitre and the Perchlorate discharge test was 
negative in all 8 individuals tested The authors concluded that the Perchlorate 
discharge test is not as suitable for diagnosing Pendred syndrome as was 
previously thought Variable expression of the syndrome is probable, ranging from 
non-syndromic hearing loss with EVA to typical Pendred syndrome with thyroid 
enlargement This hypothesis is supported by Scott et al28, who demonstrated that 
affected persons having mutations associated with Pendred syndrome showed a 
complete loss of pendnn-controlled iodide and chloride transport, while alleles 
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unique to persons with DFNB4 were associated with transport of both iodide and 

chloride, but at a far lower level than in persons expressing wild-type pendrin. 

They hypothesized that the residual level of anion transport is sufficient to 

eliminate or postpone the onset of goitre in individuals with DFNB4. 

CONCLUSIONS 

Mutations in [SLC26A4] are responsible for several clinical conditions with 

overlapping features, ranging from classical Pendred syndrome to non-syndromic 

hearing loss with EVA. The Perchlorate discharge test is not as sensitive as was 

previously thought and can be negative in patients with clinically obvious Pendred 

syndrome. Hearing loss in these clinical conditions associated with [SLC26A4] 

mutations is predominantly down-sloping en progressive, sometimes fluctuating 

with episodes of sudden hearing loss. Progression is particularly rapid in early 

childhood. Episodic vertigo can be present in a number of cases. 
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DFNB1 (Connexin 26 and Connexin 30) 

ABSTRACT 

In 15 Belgian subjects with prelingual sensorineural hearing impairment, the 
connexin 26 (GJB2) gene and the connexin 30 (GJB6) gene were analyzed for the 
presence of the 35delG mutation and the A(GJS6-D13S1830) deletion first 
described by del Castillo et al m 2002 Seven patients were found to be 
homozygous for the 35delG mutation, 7 were combined heterozygotes for the 
35delG mutation and the GJB6 deletion In 11 subjects, phenotype and genotype 
were correlated Significant, transient progression, in the range of 1 7 to 2 7 
dB/year, was only found in 2 patients in the first part of the second decade of life 
Hearing impairment was otherwise stable, with mean thresholds of 75, 90 and 100 
dB at 0 125, 0 25 and 0 5 kHz, respectively, and 100 dB or higher at 1 to 4 kHz 
There was no significant difference in hearing impairment between the patients 
with the homozygous 35delG mutation m GJB2 and those who are heterozygous 
for both the 35delG mutation and the deletion encompassing part of GJB6 

INTRODUCTION 

Congenital sensorineural hearing loss has a general prevalence of 1 to 2 per 
1,000 newborns About 50 % of the cases of hearing impairment have genetic 
causes, and most cases are autosomal recessive1 Mutations in the gene coding 
for connexin 26 (CX26) (GJB2) are responsible for about half of the cases of 
autosomal recessive deafness23. A deletion of a guanosme (G) in a sequence of 6 
Gs extending from position 30 to position 35 (35delG) accounts for the majority of 
the CX26 mutant alleles Other mutations m GJB2 have been identified, and 
compound heterozygotes (in each allele a different GJB2 mutation) have been 
described213 

Several authors have reported on families with hearing loss linked to the DFNB1 
locus and only 1 mutated GJB2 allele24681214 Therefore, it was postulated that 
another gene close to GJB2 might be responsible for these cases The gene 
encoding CX30 (GJB6) was an obvious candidate It is expressed in the same 
inner ear structures as GJS2and the expressed proteins are functionally related15 

17 Del Castillo et al succeeded in identifying a deletion A(GJß6-D13S1830) in 9 
individuals with positive linkage of the families to DFNB1 and only one GJB2 
mutant allele18 In a Belgian family covering 4 generations with several hearing-
impaired individuals, 15 subjects were further analyzed In 11 individuals, covering 
generations IV and V of the pedigree, we were able to compare the phenotype of 
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the individuals with homozygous 35delG mutations to the phenotype of those 
heterozygous for both the 35delG and A(GJB6-D13S1830) mutations 

PATIENTS AND METHODS 

The subject of the clinical study was a Belgian family containing 16 individuals 
showing bilateral nonsyndromal prelmgual hearing loss Eleven patients were 
pupils or former pupils of the Royal institute for the Deaf, Spermahe (Brughes) In 
order to investigate homogeneity in the causes of obviously autosomal recessive 
deafness in this family, we analyzed genotype and, where possible, phenotype 
All individuals participating m this clinical study agreed to a genetic examination 
The individuals whose audiometrie results were available agreed to have their 
audiograms evaluated for further analysis A medical history was taken Blood 
samples were obtained for genetic analysis 

Serial audiometry and statistical analysis 
In 11 patients in generations IV and V of the pedigree , different consecutive pure-
tone audiograms (air conduction thresholds) were obtained of every individual, 
with a mean number of measurements of 12 64 each and a mean follow-up of 18 6 
years 

Bone conduction was measured incidentally to check that hearing impairment was 
purely sensorineural It was checked that the patients did not have any features of 
syndromic hearing impairment Individual longitudinal data were analyzed per 
frequency, per ear, by use of linear regression analysis (threshold on age) 
performed with a commercial program (Prism 3, GraphPad, San Diego, California) 
Slope (regression coefficient) was designated as significant if its 95% confidence 
interval did not include zero A given ear was considered to show significant slope 
(positive or negative) only if the prevalence of frequencies showing significant 
slope among all frequencies evaluated was higher than expected (P = 0 025) 
according to the appropriate binomial distribution Regression lines were 
compared by an analysis similar to analysis of covanance One-way analysis of 
variance and Student's f-tests were performed to detect significant differences (P < 
05) between any (sub)groups of patients Frequency distributions and confidence 
intervals were also evaluated 

Mutation analysis 

Genomic DNA was isolated from peripheral blood as previously described19 
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The presence of the 35delG mutation in the GJB2 gene was studied by sequence 

analysis of a polymerase chain reaction (PCR) fragment after amplification with 

the primers S'-GTGTTGTGTGCATTCGTCTTCTCC-S' and 

5'-GTCGGCCTGCTCATCTCCCC-3' under standard PCR conditions. 

For sequencing of the entire coding region of the GJB2 gene, exon 1 was 

amplified with the primers S'-TCCGTAACTTTCCCAGTCT-S' and 

B'-GGGTTCCTGCACACAACCAGGTCGGGG-a'. 

Exon 2 was amplified with the primers 5'-GTGTTGTGTGCATTCGTCTTCTCC-3' 

and 5'-CGGAGTAGGGAGAGTACGACAG-3'. Sequence analysis was performed 

with the ABI Prism Big Dye Terminator cycle sequencing V2.0 ready reaction kit 

and the ABI Prism 3700 DNA analyzer (Applied Biosystems, Breda, the 

Netherlands). 

The presence of the deletion encompassing part of the GJB6 gene18 was analyzed 

by use of 3 primers to amplify the break-point-containing fragment and the normal 

GJB2 allele simultaneously. The primer sequences are as follows 

S'-AGTGATCCATCTGCCTCAGC-S' (primer 1, Fig 1); 

S'-GTCTGTGCTCTCTTTGATCTC-S' (primer 2, Fig 1) and 

S'-GGAAGGTGTGGATCACAGTC-S' (primer 3, Fig 1). 

Amplification was performed with Accu Prime Buffer II (Accu Prime kit, Invitrogen, 

Nieuwerkerk aan de Yssel, the Netherlands). The cycling conditions were 94"C for 

30 seconds, 60"C for 30 seconds and 72°C for 1 minute, 35 cycles in a PTC200 

thermal cycler (MJResearch Ine, Waltham, Massachusetts). The PCR fragments 

were analyzed on a 1.5% agarose gel. 

' ι QlJ + C j } : 650 bp 

ß J B 6 i 3 4 2 k b LOC510e4__ © , © : 4 7 e b p 

G JB2 

Figure 1 : Schematic representation of genomic region of GJB2 and GJB6 genes and 342 
kb deletion. Primers are represented by circled numbers. 
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RESULTS 

Genetic analysis 

All patients, and when possible their parents, were tested for the presence of the 

35delG mutation in the GJB2 gene by sequence analysis. In generations III 

through V, 7 patients were homozygous for this mutation (Fig 2, genotype a/a; y/y, 

where a indicates the 35delG GJB2 mutation and y wild-type GJB6), which 

explains the hearing loss in these cases. In 7 other patients the 35delG mutation 

was heterozygously detected (Fig 2, genotype a/x;....; with χ indicating ...; wild-

type GJB2). Sequencing the entire coding region of the GJS2gene for the patients 

IV:4, V:5, and V:6 did not reveal any additional mutations. 

After a partial deletion of the GJÖé> gene had been described to cause hearing loss 
when present in combination with a heterozygous 35delG allele of the GJB2 
gene18, patients heterozygous for the latter mutation were tested for the presence 
of this deletion of part of GJB6 in the second chromosome. These cases were all 
heterozygous (genotype indicated as ...;b/y) for this deletion (Figs 2 and 3). 
Subsequently, all remaining individuals of the family from whom DNA was 
available were tested for the GJB6 deletion (Fig 3). These tests revealed that the 
deletion is likely to have been inherited directly or indirectly from individual ll:3. 
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Figure 2: Pedigree. Roman numerals indicate generations. Square-man; Circle-woman; 
filled symbols-bilateral hearing impairment; half-filled symbol-unilateral hearing 
impairment; slashed symbol-deceased person; x-wild-type (normal) GJB2; y-wild-type 
GJB6; a-GJB235de\G\ b-GJB6deletion; ?-unknown. 
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Figure 3: Segregation of 342 kb deletion in family. Presence of 478 bp fragment 
indicates 342 kb deletion. 650 bp fragment represents normal allele. 

Audiometrie analysis 

Hearing impairment was evaluated in 11 of the 12 affected persons in generations 

IV and V; no audiogram could be obtained from person IV:6 (Fig 2)The 

audiograms obtained at one of the last visits are shown in Fig 4. The patients 

showed residual hearing, ie, functional hearing only at the lower frequencies, with 

a steeply down-sloping threshold (by about 10 dB per octave) from about 75 dB at 

0.125 kHz up to 120 dB or more at the higher frequencies (details below). Most of 

the patients dated their first symptoms of hearing loss as early as they could 

remember. All had delayed speech and language development. None of the 

patients had any symptoms that seemed to be related to the vestibular system. No 

formal vestibular testing was performed. 

The longitudinal threshold data are shown (ie, only for the right ear) in Fig 5. Two 

patients (IV:4 and IV:7) showed significant progression in both ears, whereas 

patient IV:5 showed this feature only in the right ear and patient IV:8 only in the left 

one (data not shown). Remarkably, there were also patients who showed a 

significant negative slope: patients V:5 and V:6, each in one ear. The latter finding 

appeared to be associated with the presence of thresholds measured at a very 

young age, where threshold evaluation can be notoriously difficult. For this reason 

we excluded data obtained at the age of 6 year or below and repeated the 

regression analyses (data not shown); significant negative slopes were no longer 

found. 
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V 5 12 y tix.b/j 

Figure 4: Individual audiograms (air conduction threshold in decibels hearing level) shown 
for right (circles) and left ear (crosses) of 11 affected individuals in generations IV and V. 
Downward arrows indicate out-of-scale measurements. Patient's age is given in years (y). 
Audiogram at last visit was selected, or previous one if that was more informative. 
Patients are ordered by genotype and age at last visit. Upper 6 panels are patients with 
homozygous 35delG (genotype a/a; y/y). Lower 5 panels are patients with combined 
heterozygous mutations (genotype a/x; b/y). 

It appeared that the exclusion of measurements at the age of 6 years and below 
caused the loss of significant progression in patient IV:8 (left ear, data not shown), 
but not in patients IV:4, IV:5 and IV:7 (right ear, Fig 5). In patient IV:5, significance 
was lost after the additional exclusion of ages 6.5 and 7 years (Fig 5, dashed 
vertical line). Significant progression in patients IV:4 and IV:7 (both ears; right ear 
shown in Fig 5) was specifically linked to a single episode at age 11 to 14 years 
(1.7-2.0 dB/y) and age 7 to 13.5 years (2.2-2.7 dB/y), respectively. The upper age 
interval (Table 1 ) used for the calculation of individual threshold statistics (mean 
and SD) is indicated in Fig 5. It will be clear from the above-described selection 
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Figure 5: Longitudinal records of threshold (decibels hearing level, measurable thresholds 
only) against age for right ear (left ear not shown). Patients and ordering are similar to 
those in Fig 4. Connecting hairlines and regression lines are included. Bold regression 
lines show significant (non-zero) slope. Negative slopes were no longer significant (data 
not shown) after exclusion of ages of 6 years and below (continuous vertical line). Pair of 
dashed vertical lines in panels of patients IV:4 and IV:7 pinpoint age interval showing 
significant progression (separate regression lines not shown). Only threshold data on right 
side of rightmost vertical line were used for calculation of individual threshold statistics 
(Table 1). 

procedure that no significant progression (or negative slope) was observed within 

this age interval, and hearing could reasonably be assumed to be stable. Reliable 

longitudinal evaluation was possible in 8 patients. Patients V:6, V:7, and V:8 were 

unsuitable for such an evaluation (n < 3) after exclusion of age 6 years and below. 

Student's f-tests did not reveal any substantial interaural threshold difference per 

frequency at any age; 67% of the patients had an interaural SD at any frequency 

of < 7 dB. The thresholds in the right and left ear were therefore averaged for the 

calculation of the intersubject threshold statistics (mean, SD and 95% confidence 
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intervals, Table 2). Student's /-tests and analysis of variance or analysis of 
covariance disclosed significant differences between the lower frequencies (0.125, 
0.25 and 0.5 kHz), but not between the frequencies 1-4 kHz, which were therefore 
pooled. The mean threshold rounded to the nearest multiple of 5 dB, was 75, 90 
and 100 dB hearing level (HL) at 0.125, 0.25, and 0.5 kHz, respectively, and > 100 
dB at 1 to 4 kHz (Table 2). 

Table 1 : Mean thresholds (decibels hearing level) in eight évaluable cases. 

0 125 0 25 
kHz kHz 

Genotype a/a; y/y 
IV:3 (age 8-32y) 

Ν 10 
Mean 69 
SD 6 

IV :7(age12 5-26y) 

Ν 9 
Mean 83 
SD 7 

IV:8 (age 6.5-22y) 

Ν 13 
Mean 69 
SD 5 

IV:9 (age 8-25y) 

Ν 6 
Mean 80 
SD 4 

V:4 (age 7-14 y) 

Ν 6 
Mean 80 
SD 5 

Genotype a/x,b/y 
IV:4 (age 16-31 y) 
Ν 4 
Mean 85 
SD 4 

IV:5 (age 8.5-27y) 

Ν 12 
Mean 78 
SD 7 

V:5(age8-12y) 

Ν 
Mean 
SD 

11 
81 

6 

9 
96 

5 

14 
78 

6 

7 
96 

7 

7 
96 

7 

6 
92 

4 

12 
84 

6 

5 
101 

4 

Right ear 

0 5 
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14 
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' 

-

8 
kHz 

6* 
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5 
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8 

-
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5 
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Genotypes a/a,x/x and a/x,b/y indicate homozygous 35delG mutations and combined heterozygc 
mutations, respectively 
", out of scale thresholds excluded (mean biased downwards) 
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Table 2 Intersubject binaural mean thresholds (decibels hearing level) of eight cases in 
table 1 

Ν 
Mean 
SD 
Round mean 
95%CI 

0 125 
kHz 

7 
77 

7 
75 

60-95 
CI - confidence interval 

0 25 
kHz 

8 
88 

9 
90 

70-110 

05 
kHz 

8 
98 

9 
100 

80-120 

1 
kHz 

8 
109 

9 

2 
kHz 

4 
99 
12 

>100 
>80 

4 
kHz 

3 
95 
13 

8 
kHz 

-

It should be emphasized that the mean thresholds at 4 kHz may have been higher, 

as only measurable thresholds could be included and many thresholds at this 

frequency were out of scale (Fig 4) The 95% confidence intervals at 0 125, 0 25 

and 0 5 kHz were 60 to 95, 70 to100 and 80 to120 dB HL, respectively The fifth 

percentile (P5) level (lower confidence limit) at 1 to 4 kHz was > 80 dB HL 

Using Student's f-test to compare mean binaural thresholds according to 

frequency between subgroups of patients, we failed to find any significant 

difference between the subgroup of patients with homozygous 35delG mutations 

(genotype a/a,y/y) and that of patients with the combined heterozygous genotype 

(genotype a/x,b/y) 

DISCUSSION 

Previous reports have appeared on the phenotype of DFNB1 and genotype 

analysis for homozygous and compound heterozygous GJB2 mutations Estivili et 

al2 described hearing losses in patients homozygous for the 35delG mutation that 

were severe to profound for the middle and high frequencies, in a few cases with 

some sparing of the low frequencies Denoyelle et al3 described symmetric 

hearing impairment varying from mild to profound, associated with flat or 

downslopmg audiometrie curves in patients with prelmgual onset Intrafamihal 

variation in the severity of hearing impairment was common, and hearing 

impairment was generally not, or only slightly, progressive These findings also 

apply to the studies on 29 homozygous and compound GJB2 heterozygous 

hearing-impaired individuals by Sobe et al9, the 52 hearing-impaired individuals 

with CX26 mutations examined by Dahl et al11 and the 34 patients with CX26 

mutations described by Kenna et al10 Progression was present in 10 individuals 

studied by Cohn et al20, the hearing impairment was comparable to that in the 
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studies mentioned above. A difference in the degree of hearing impairment 
between homozygotes and compound GJB2 heterozygotes was noticed by Orzan 
et al6; the relative frequency of homozygotes for the 35delG mutation was lower in 
the category of severe impairment than in profound or mild impairment. Compound 
GJB2 heterozygotes, on the other hand, tended to occur more often among the 
severely impaired individuals. 

Wilcox et al8, who compared hearing impairment in 8 individuals with only 1 allele 
with a CX26 mutation to that in 6 individuals with two alleles with a CX26 mutation, 
could not demonstrate any difference m hearing loss between the groups, and 
neither did Marlin et al12. 
As far as we know, the phenotype of individuals with both CX26 and CX30 
mutations has not been previously described. In our patients, there was a high 
proportion of combined CX26/CX30 heterozygosity. This is remarkable, given the 
suggestion by Van Camp that this feature might play only a minor role m 
Belgium2'. 

We failed to find any significant difference in the degree of hearing impairment 
between 35delG homozygotes (genotype a/a;y/y) and heterozygotes for both the 
CX26 and CX30 mutation (genotype a/x;b/y). In all of these patients, the hearing 
loss was severe to profound, with a steeply down-sloping audiometrie 
configuration, and showed prelmgual onset. In contrast to previously described 
phenotypes relating to CX26 mutations, none of our patients showed mild or 
moderate hearing loss. No substantial, significant progression in hearing 
impairment was observed in any of our patients, except for 2 of them, m whom it 
occurred only temporarily, in the first part of the second decade of their life (1 case 
with the genotype a/a;y/y, and 1 case with a/x;b/y). It should be emphasized that 
we only examined a small number of patients and that all of our patients were 
younger than 40 years, so presbycusis was not a factor Further studies are 
needed to extend our knowledge about the prevalence of and variations in severity 
or progression of hearing loss of patients with homozygous CX26 mutations and 
those with the combination of a CX26 mutation and a deletion encompassing part 
of CX30. 
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DISCUSSION 

During the last 10 years the scientific progress made in the field of syndromic and 
non-syndromic genetic hearing impairment has been enormous The start was 
made one decade earlier by gene-linkage and gene-identification studies in 
syndromic types of genetic hearing impairment This new knowledge provided the 
possibility to study the inner ear metabolism at a molecular level Such knowledge 
is needed to develop strategies for possible new treatments To evaluate in the 
future such new treatments, a good knowledge is needed about the natural course 
of the diseases involved including genotype-phenotype correlation studies 

This Ph D study was started in Leuven to look for opportunities to have a more 
regular access to the clinical and genetic studies m the field of genetic hearing 
impairment Not having available a tradition locally to study genetic hearing 
impairment the help of an institute for the hearing impaired/deaf in Brughes proved 
to be helpful to get in touch with selected families with non syndromic profound 
childhood deafness (Chapter IV) and with the Flemish BOR family (Chapter II-2) 
The cooperation with the Nijmegen ORL department proved to be of value in the 
diseases studied in this Ph D thesis The CX-30 analysis m chapter IV was done 
by the Nijmegen otogenetic laboratory and so it became possible to finalize that 
study and to publish these data in chapter IV 

In the study of the Flemish BOR family the outcome of especially the MRI study 
showed to be very valuable m showing up hyplasia of the cochlear nerve and 
secondly in showing presence of an enlarged vestibular aqueduct The first is a 
clinical fact valuable to be informed on related to the possibility of cochlear 
implantation This stimulated the Nijmegen ENT department to start up a similar 
and more extensive study on the radiological aspects in BOR syndrome and to 
relate those findings to the degree and progression of the hearing impairment 
Regarding the Pendred syndrome the Nijmegen ENT department provided the 
opportunity to report in more detail on the presence of a fluctuant and progressive 
hearing impairment associated with Meniere like attacks in this Pendred series 
Having this experience we succeeded to do the same for a Belgian family with 2 
Pendred patients 

So m all three diseases it proved to be helpful to be in connection with a number of 
other centres to be able to run the studies incorporated in this Ph D thesis And as 
it is m a successful cooperation this cooperation brought also benefit to those 
other centres 
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The studies on the BOR syndrome and especially on the findings of CT scanning 
and MRI scanning are the most extensive and thorough ones ever published in 
this syndrome in the literature. Most important is the prove that hypoplasia of the 
cochlear nerve can be there. It is most difficult to prove a fluctuating inner ear 
hearing loss as part of a mixed hearing loss where the conductive component can 
also be fluctuant. Nevertheless evidence of a progressive (inner ear) hearing loss 
is given. 

Related to the presence of a widened vestibular aquaduct and the presence of 
malformations of the cochlear the question rises whether these malformations can 
be responsible for the progressive mnear ear hearing loss and secondly whether 
the widened vestibular acqueduct in itself plays a role in this. The descriptions 
given are helpful in bringing up this question and to see where else m other 
diseases this question can be raised. 

In the Pendred syndrome a widened vestibular aqueduct has shown to be almost 
an obligate feature. Dysplasia of the cochlea is also a feature. New knowledge 
about the genetic background including EVA syndrome made a redefinition of the 
clinical picture of Pendred syndrome necessary It raised the question whether 
fluctuant and progressive hearing loss combination or not with Meniere like attacks 
of vertigo were also present m classical cases of Pendred syndrome. This proved 
again to be so and up till now scientific contributions into the literature are very 
scarce. This knowledge again helps to raise the question about the inner ear 
metabolism and whether the anatomical anomalies like the widened vestibular 
aqueduct and the malformation/hypoplasia of the cochlea are responsible for this 
fluctuant and progressive course of the hearing impairment combined with 
Meniere like attacks. There is some analogy with the findings m BOR syndrome 
but the genetic background is quite different. Especially in Pendred syndrome an 
inner ear metabolism anomaly, based at the presumed function of the gene m the 
inner ear, might be held responsible to. 

So the clinical and genetic contributions to the knowledge in BOR syndrome and 
Pendred syndrome included in this Ph.D. thesis provided additional and new 
knowledge helpful to solve in due time questions to be raised about the etiology of 
this progressive and fluctuant hearing loss. These chapters fulfilled the earlier 
raised questions to report on the clinical presentation and natural course of the 
disease m those patients related tot the deafness genotype. 
The problem posed in chapter IV proved to be the most difficult one since 
mutations in connexme 26 could not elucidate fully the genetic background of the 
hearing impairment m those 15 people with a profound childhood deafness. The 
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genotype phenotype study could only be finalized after confirming the role of 
connexion 30 in all heterozygous 35delG hearing impaired subjects. It is also 
helpful to know that mutations in connexion 30 occur in Flandres. This has 
stimulated making available mutation analysis as a routine diagnostic procedure 
(Antwerp) not only for CX26 but also for CX30. In the same way the value for the 
quality of genetic counselling of this new knowledge does not need any further 
elucidation. 

Performing this Ph.D. study it showed to be again a journey with unpredictable 
events. The outcomes of this study add like so many other studies to the fast 
increasing knowledge of genetic hearing impairment. 

The design of the study included to look for cooperation with other in this topic 
specialised centres like an institute for the deaf, otogenetic laboratories especially 
in Omaha (USA) and Nijmegen (The Netherlands) and in oto-radiology specialised 
departments in Brughes (Belgium) and Nijmegen (The Netherlands). Having now 
completed this Ph.D. study it proved to be that this cooperation was essential and 
that the open scientific and cooperative attitude by those centres made it possible 
to complete this study. 
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SUMMARY AND CONCLUSIONS 

SUMMARY 

Sensorineural hearing loss has important implications on our nowadays so 

communicative society, as it affects about 1 in 750 children and about 50 % of the 

people who reach the age of 80 It can as well be caused by genetic as by 

environmental (e g mtra-utenne infections, noise exposure, blood-antagonism, 

meningitis, mediation causing deafness) factors 

The majority of early childhood sensorineural deafness is caused by a genetic 

defect This can result m a syndromic or non-syndromic type of hearing loss Of all 

types of congenital hearing loss, the autosomal recessive defects are the most 

frequent causes of hearing loss 

Before the start of molecular genetic research, syndromic and to a lesser extent 

autosomal dominant inherited hearing loss were the most investigated forms of 

hearing loss Investigations were based on the clinical description of the 

phenotype, and after the application of audiometry m clinical practice also on 

features in the audiogram related to age of onset, progression and severity of the 

hearing impairment 

About twelve years ago, the first linkage results on non-syndromic autosomal 

dominant heanng loss were published, followed by linkage results on non-

syndromic autosomal recessive and X-lmked hearing loss Based on these results, 

a new classification of non-syndromic hearing loss was proposed DFNA for the 

autosomal dominant types, DFNB for the autosomal recessive types and DFN for 

the X-lmked types Today, 51 loci for non-syndromic autosomal dominant, 39 for 

non-syndromic autosomal recessive and 8 for non-syndromic X-lmked heanng loss 

are known, in which the causative gene has been cloned in 20, 20 and 2 loci 

respectively Also in syndromic hearing loss, different causative genes have been 

identified (e g ΕΥΑ 1 in BOR syndrome, SLC26A4 m Pendred syndrome) 

Because of the rapid evolution in understanding the genetics of hearing loss, there 

starts to be a serious gap in knowledge between clinicians and the genetic 

researchers of genetic hearing impairment 

In the light of genetic counseling, it is therefore important that clinicians keep up m 

gaming new knowledge on this revolution in the increase of understanding of the 

function of hearing, by starting to understand the malfunction in genetically 

determined hearing loss 

This Phd study therefore wants to describe m more detail the hearing loss in two 

syndromic (BOR-syndrome and Pendred syndrome) types and one non-syndromic 

autosomal recessive (DFNB1) type of hearing loss 
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CHAPTER 2 focuses on the Branchio-oto-renal syndrome 
The first subsection gives a review on the classical features and genetics of BOR 
syndrome The EYA1 gene has been found to be the causative gene in BOR 
syndrome, but only m 25% of the patients diagnosed with BOR syndrome 
mutations in this gene have been detected 

In the second subsection, a new Belgian family with BOR-syndrome is described 
Linkage analysis was carried out in 8 of the 12 affected members, and showed a 
positive lod score of 1 07 for marker D8S286 As the amount of blood samples 
was poor, it was not possible to get a higher lod score In nine individuals detailed 
long term follow up audiometry was available, and in two of them progression of 
hearing loss was found, in one individual results of audiometry were suggestive for 
unilateral progressive hearing loss The binaural median air conduction threshold 
in these patients was 100 dB and the range was 75-120 dB 
In 8 patients detailed radiological investigation was performed all 8 had CT 
scanning of the temporal bones and five of them were also investigated by MRI 
The three individuals who were mentioned above having progressive hearing loss, 
appeared to have enlarged vestibular aqueducts, two of them bilaterally and one 
unilaterally More detailed radiographic description of this family is given in the 
third subsection Hypoplasia and dysplasia of the cochlea were consistent 
findings, and in one patient bilateral hypoplasia of the cochlear branch of the eight 
nerve was diagnosed As already mentioned, a widened vestibular aqueduct and 
sac were frequent but not obligatory features Other malformations of the middle 
ear included malformations of the ossicular chain 

The 4,h subsection describes a father and son with BOR syndrome Audiometrie 
follow up of the father was not sufficient to give any information about progression 
or fluctuation of hearing loss, although he mentioned subjective progression of 
hearing loss MRI scan showed a marginally widened left vestibular aqueduct The 
endolymphatic sac could not be identified The son had bilateral enlarged 
vestibular aqueducts with normal sized endolymphatic sacs On long-term 
audiometrie follow up, there was evidence for progression of the hearing loss All 
frequencies showed considerable threshold fluctuations with unilateral and 
binaural cofluctuations in several frequencies 

CHAPTER 3 focuses on Pendred syndrome and the associated hearing loss 
The first subsection gives an overview on the clinical and radiological features, as 
well as the genetics of Pendred syndrome An enlarged vestibular aqueduct and 
hypoplasia of the cochlea show up to be very common features in Pendred's 
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syndrome Thyroid enlargement and hypothyroidy are not always present The 
Perchlorate discharge test was used in the past to diagnose Pendred syndrome, 
but is not positive m all cases Pendred syndrome and the enlarged vestibular 
aqueduct syndrome have important clinical features in common and they are both 
caused by mutations in the Pendred syndrome gene [SLC26A4] 
Two new (related) patients with Pendred syndrome are presented Both had 
progressive down-sloping hearing loss with threshold fluctuations, and on 
radiological evaluation both had bilateral enlarged vestibular aqueducts One 
patient had episodes of vertigo with falling tendency and vomiting and one had an 
euthyroid multinodular goitre Both had mutations m [SLC26A4], in one patient the 
Perchlorate discharge test was negative 

The second subsection describes three patients (two sisters and one not related) 
with Pendred syndrome, all three had mutations m [SLC26A4] (identical mutations 
m the two sisters) Perchlorate discharge test was positive in two patients (in one 
sister it was negative), all three had bilateral enlarged vestibular aqueducts 
Hearing loss was significantly progressive with significant ipsilateral and 
contralateral cofluctuation in all three cases, and two patients had several 
episodes of Meniere like vertigo 

CHAPTER 4 reports on the results of mutation-analysis for the non-syndromic type 
of hearing loss DFNB1, with mutations m Connexm 26 and Connexm 30 
As part of an etiological evaluation of the causes of deafness in patients at the 
Royal Institute Spermalie for the deaf and hard of hearing in Brughes, Belgium, a 
composition of to each other related families with obviously autosomal recessive 
inherited hearing loss was encountered In order to investigate the causes of 
deafness, the genotype was analyzed and where possible the phenotype 
In generations III to V, 7 individuals were homozygous for the 35delG mutation in 
the GJB2 gene and 7 were heterozygous for this mutation All individuals were 
also tested for the partial deletion of GJB6, that had been described by del Castillo 
et al All 7 individuals with heterozygous 35delG mutations m the GJB2 gene were 
heterozygous for the deletion m GJB6 In 11 of 12 affected persons of generations 
IV and V hearing impairment was evaluated They all had residual hearing with a 
steeply down-sloping threshold from about 75 dB at 125 Hz to 120 dB or more at 
the higher frequencies In two patients there was significant progression in both 
ears and m one patient in one ear We failed to find significant difference in the 
degree of hearing impairment between 35delG homozygotes and heterozygotes 
for both the Connexm 26 and Connexm 30 mutations 
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CONCLUSIONS 

As already mentioned above, in the past 10 years genetic investigations 
concerning causes of hearing loss have made major progress As before clinical 
descriptions of individuals with hearing loss were the most important way to 
distinguish different kinds of genetic hearing loss, nowadays the genotype can be 
determined and based on this the phenotype can be redefined For genetic 
counseling and for good clinical guidance it is very important to have detailed 
knowledge about the phenotype of the different forms of genetic hearing loss that 
occur This elucidates the value for clinicians to keep up with the evolution in 
clinical genetic research in the field of genetic hearing impairment 
An enlarged vestibular aqueduct with or without an enlarged vestibular sac is one 
of the important associated findings in BOR syndrome but much more frequently in 
Pendred syndrome/DFNB4 Hearing loss in those cases is generally progressive 
with often significant threshold fluctuations and is sometimes associated with 
Meniere like episodes of vertigo 

A non syndromic form of hearing loss, DFNB1, can be caused by homozygous 
mutations in connexm 26 (most frequently 35delG) or compound heterozygous 
mutations in connexm 26 and connexm 30 We were able to demonstrate that m 
our study population hearing loss in both genotypes showed steeply down-sloping 
hearing thresholds and in some cases progression of hearing loss There was no 
significant difference in severity of hearing loss between the 35delG homozygotes 
and heterozygotes for both the Connexm 26 and Connexm 30 mutations 

172 



Chapter VII 

SAMENVATTING EN 

CONCLUSIES 





SAMENVATTING EN CONCLUSIES 

SAMENVATTING 

Perceptief gehoorverhes heeft belangrijke implicaties in onze sterk 

communicatieve samenleving, daar het ongeveer 1 op 750 kinderen aantast, en 

later zelfs 50 % van de bevolking ouder dan 80 jaar Het kan zowel veroorzaakt 

worden door genetische factoren als door omgevingsfactoren (b ν intra-utenene 

infecties, lawaaitrauma, bloedgroep antagonisme, meningitis, doofheid 

veroorzakende geneesmiddelen) 

De overgrote meerderheid van vroegkinderlijk perceptief gehoorverhes wordt 

veroorzaakt door een genetisch defect Dit kan resulteren in een syndromaal of 

een met-syndromaal type gehoorverhes De autosomaal recessieve vormen zijn 

de meest frequente oorzaak van congenitaal gehoorverhes 

In de periode voor de ontwikkeling van het moleculair genetisch onderzoek waren 

het syndromaal en m mindere mate het autosomaal dominant overervend met-

syndromaal gehoorverhes de meest onderzochte vormen van gehoorverhes 

Onderzoek was vooral gebaseerd op de klinische beschrijving van het fenotype en 

na de toepassing van de audiometrie ook op de kenmerken van het audiogram, 

gerelateerd aan de leeftijd waarop het gehoorverhes optreedt, de progressiviteit en 

de ernst van het gehoorverhes 

Ongeveer twaalf jaar geleden werden de eerste genkoppelmgsresultaten m 

verband met met-syndromaal autosomaal dominant gehoorverhes gepubliceerd, 

snel gevolgd door de genkoppelmgsresultaten van met-syndromaal autosomaal 

recessief en X-gebonden gehoorverhes Op basis van deze resultaten werd een 

nieuwe classificatie van met-syndromaal gehoorverhes voorgesteld DFNA voor de 

autosomaal dominante vormen, DFNB voor de autosomaal recessieve vormen en 

DFN voor de X-gebonden vormen Tot op heden zijn er 51 loei bekend voor met-

syndromaal autosomaal dominant gehoorverhes, 39 voor met-syndromaal auto

somaal recessief gehoorverhes en 8 voor met-syndromaal X-gebonden gehoor

verhes Het oorzakelijke gen werd gekloond voor respectievelijk 20, 20 en 2 loei 

Ook voor syndromaal gehoorverhes werden verschillende oorzakelijke genen 

geïdentificeerd (b ν ΕΥΑ 1 m het BOR syndroom, SLC26A4 m het Pendred 

syndroom) 

Omwille van de snelle evolutie in de kennis van de genetica op moleculair niveau 

bij gehoorverhes, begint zich een grote afstand te manifesteren in kennis over 

genetisch bepaald gehoorverhes tussen de clinici en de onderzoekers In het licht 

van genetische counseling is het daarom zeer belangrijk dat de climcus deze 

evolutie in het genetisch onderzoek van gehoorverhes op de voet blijft volgen 
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Deze doctoraatsstudie probeert daarom meer m detail het gehoorverhes te 
beschrijven in twee syndromale vormen (BOR-syndroom en Pendred syndroom) 
en m 1 met-syndromaal autosomaal recessieve (DFNB1) vorm van gehoorverhes 

HOOFDSTUK II behandelt het Branchio-oto-renaal syndroom. Het eerste onder
deel geeft een overzicht van de typische kenmerken en de genetica van het BOR-
syndroom Het EYA1 gen werd geidentificeerd als het oorzakelijk gen m het BOR-
syndroom, doch slechts in 25% van alle patiënten die werden gediagnosticeerd 
met het BOR-syndroom werden mutaties m dit gen gevonden. 
In het tweede onderdeel wordt een nieuwe Belgische familie met BOR-syndroom 
beschreven In 8 van de 12 aangetaste familieleden werd genkoppelmgsanalyse 
uitgevoerd en deze toonde een positieve lod score van 1 07 voor merker D8S286 
Aangezien het aantal beschikbare bloedstalen beperkt was, was het met mogelijk 
een hogere lodscore te bekomen Van negen personen uit deze familie hadden we 
een lange termijn follow up audiometrie ter beschikking BIJ twee van hen vonden 
we bilaterale progressie van het gehoorverhes, bij 1 persoon waren de resultaten 
van de audiometrie suggestief voor een unilateraal progressief gehoorverhes 
De bmaurale mediane luchtgeleidmgsdrempel van de onderzochte patiënten was 
100 dB met een spreiding van 75 tot 120 dB BIJ 8 patiënten werd een 
gedetailleerd radiologisch onderzoek uitgevoerd- bij alle 8 werd een CT scan van 
de ossa temporaha uitgevoerd en bij vijf van hen eveneens een MRI De drie 
personen bij wie een progressief gehoorverhes werd vastgesteld, bleken een 
verwijde vestibulaire aquaeduct te hebben waarvan twee bilateraal en één 
unilateraal 

Een meer gedetailleerde radiologische beschrijving van deze familie wordt 
gegeven in het derde onderdeel van dit hoofdstuk 

Hypoplasie en dysplasie van de cochlea waren consistente bevindingen en in één 
patient werd een bilaterale hypoplasie van de cochleaire tak van de nervus 
cochleovestibulans gediagnosticeerd Zoals reeds vermeld waren een verwijde 
ductus en saccus vestibularis oftewel endolymfaticus frequent doch met obligatoir 
aanwezig Andere malformaties van het middenoor omvatten vooral malformaties 
van de beentjesketen. 

Het vierde onderdeel van dit hoofdstuk beschrijft een vader en een zoon met 
BOR-syndroom Audiometrische follow-up van de vader voldeed met om enige 
informatie te geven over progressie of fluctuatie van het gehoorverhes, hoewel hij 
een subjectieve progressie van zijn gehoorverhes vermeldde MRI toonde een 
marginaal verwijde Imker ductus vestibularis De saccus endolymphaticus kon met 
worden geïdentificeerd 

176 



SAMENVATTING EN CONCLUSIES 

Zijn zoon had bilateraal een verwijde ductus vestibularis met een Saccus 
endolymphaticus van normale afmetingen Op basis van lange-termijn 
audiometrische follow-up vonden we evidentie voor progressief gehoorverlies Alle 
frequenties vertoonden belangrijke fluctuaties van de gehoordrempel met 
unilaterale en bilaterale cofluctuaties voor verschillende frequenties 

HOOFDSTUK III handelt over het Pendred syndroom en het geassocieerd 

gehoorverlies 
Het eerste onderdeel geeft een overzicht van de klinische en radiologische 
kenmerken, evenals de genetica van het Pendred syndroom Een verwijde ductus 
vestibularis en hypoplasie van de cochlea blijken zeer frequent voorkomende 
kenmerken te zijn in het Pendred syndroom Schildkherhypertrofie en hypo-
thyroidie zijn met altijd aanwezig De perchloraat belastingstest werd in het 
verleden gebruikt om het Pendred syndroom te diagnosticeren, maar is in 
sommige gevallen vals negatief Het Pendred syndroom en het verwijde 
vestibulaire aquaduct syndroom hebben belangrijke klinische kenmerken gemeen 
en ze worden beide veroorzaakt door mutaties m het Pendred syndroom gen 
[SLC26A4] 

We stelden twee nieuwe (verwante) patiënten met het Pendred syndroom voor 
Beiden hadden een progressief gehoorverlies, meer uitgesproken voor de hoge 
dan voor de lage tonen, met fluctuaties van de gehoordrempel BIJ radiologisch 
onderzoek hadden beide patiënten een bilaterale verwijde ductus vestibularis Een 
patient had episodes van vertigo met valneigmg en braken en een patient had een 
euthyroide multmodulaire struma Beiden hadden mutaties m [SLC26A4], m een 
patient was de perchloraatbelastmgstest negatief 

Het tweede onderdeel geeft een beschrijving van drie patiënten (twee zusters en 
een met-verwant) met Pendred syndroom, alle drie hadden mutaties m [SLC26A4] 
(identieke mutaties in de twee zusters) De perchloraatbelastmgstest was positief 
m twee patiënten en negatief in een van de twee zusters, en alledrie vertoonden 
ze een bilateraal verwijde ductus vestibularis Het gehoorverlies was significant 
progressief met significante ipsilaterale en contralaterale cofluctuaties, en twee 
van hen hadden verschillende episodes van vertigo van het Meniere type 

HOOFSTUK IV bespreekt de resultaten van de mutatie-analyse bij een met 
syndromale vorm van gehoorverlies, namelijk DFNB1, met mutaties in connexme 
26 en connexme 30 

Als onderdeel van een etiologisch onderzoek naar de oorzaken van slechthorend
heid bij patiënten van het Koninklijk Instituut Spermahe voor doven en slecht-
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horenden in Brugge, België, werd een groep aan elkaar verwante families met een 
duidelijk vermoeden van autosomaal recessief overervend gehoorverlies onder
zocht Met als doel de oorzaken van doofheid na te gaan, werden m deze familie 
genotype en waar mogelijk ook fenotype geanalyseerd 
In de generaties III tot V waren 7 personen homozygoot voor de 35delG mutatie in 
het GJB2 gen en 7 andere waren heterozygoot voor deze mutatie Alle individuen 
werden ook getest voor de partiele deletie van GJB6, zoals die werd beschreven 
door del Castillo et al Alle zeven personen met heterozygote 35delG mutaties in 
het GJB2 gen waren eveneens heterozygoot voor de deletie m GJB6 
Bij 11 van 12 aangedane individuen van generatie IV en V werd het gehoorverlies 
nagegaan Allen hadden ze een restgehoor met een steil afdalende gehoors-
drempel van ongeveer 75 dB op 125 Hz tot 120 dB of meer op de hogere 
frequenties Bij twee patiënten was er significante progressie in beide oren en bij 
een patient m een oor We konden geen significant verschil vaststellen m de ernst 
van gehoorverlies tussen de 35delG homozygoten en degenen die heterozygoot 
waren voor zowel de connexme 26 als de connexme 30 mutatie 

CONCLUSIES 

Zoals hoger reeds vermeld werd, werd de voorbije tien jaar grote vooruitgang 
geboekt in het genetisch onderzoek naar oorzaken van gehoorverlies Waar 
vroeger de klinische beschrijving van personen met gehoorverlies de belangrijkste 
manier was om de verschillende soorten van erfelijk gehoorverlies te 
onderscheiden, kan tegenwoordig het genotype bepaald worden en gebaseerd 
hierop kan het fenotype opnieuw gedefinieerd worden Nochtans blijft het vooral 
voor genetische counseling en goede klinische begeleiding zeer belangrijk om een 
goede kennis te hebben over het fenotype van de verschillende vormen van 
gehoorverlies die voorkomen Dit toont het belang aan voor clinici om de evolutie 
m het genetisch onderzoek op de voet te volgen 

Een verwijde ductus vestibularis, al dan met gecombineerd met een verwijde 
Saccus endolymfaticus, is een van de belangrijke geassocieerde bevindingen bij 
sommige patiënten met het BOR-syndroom maar komt vooral frequent voor bij 
patiënten met het Pendred syndroom/DFNB4 Het gehoorverlies is in deze 
gevallen meestal progressief met vaak significante fluctuaties van de 
gehoordrempel en is regelmatig geassocieerd met episodes van vertigo van het 
Meniere type 
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Een met-syndromale vorm van gehoorverhes, DFNB1, kan veroorzaakt worden 
door homozygote mutaties in connexine 26 (meest frequent 35delG) of 
samengesteld heterozygote mutaties in connexine 26 en connexine 30. Wij 
konden aantonen dat in onze studiepopulatie het gehoorverhes m beide genotypes 
een steil afdalende gehoorcurve vertoonde met m sommige gevallen progressie 
van het gehoorverlies. Er was geen significant verschil m ernst van gehoorverhes 
tussen de 35delG homozygoten en heterozygoten voor de connexine 26 en 
connexine 30 mutaties. 
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einde gekomen, waarvoor mijn oprechte dank 

Dr L Standaert, bedankt voor uw vriendelijke gastvrijheid en de hulp bij het in 
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audiogrammen die in dit proefschrift verwerkt zijn Het was heel aangenaam 
vertoeven in Brugge 

Patrick Huygen, een heel welgemeende dankjewel voor al de tijd en energie die je 
besteedde om me statistische ondersteuning te geven, evenals voor de zeer fijne 
samenwerking m Nijmegen en via e-mail 
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Cremers te laten samenwerken en gunde me hiervoor tijdens mijn opleiding 
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Hanme Kremer, heel erg bedankt voor het werk dat door jou en je labo is verricht 
Je inbreng was onmisbaar en zeer waardevol en het contact met jou was steeds 
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Dr Casselman J uit het AZ St Jan te Brugge wil ik graag bedanken voor zijn 
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onderzoek Het waren zeer leerrijke momenten m Brugge 
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Een woord van dank aan de families die belangeloos hebben meegewerkt aan dit 
onderzoek. Altijd was ik welkom, en vaak was geen moeite hen teveel. 

Hans, bedankt dat je er altijd voor me bent. 

Ine, Jasper, Klaas en Floris: jullie zijn het beste wat me de voorbije zes jaar is 
overkomen. 
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