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Institut d’Economie Industrielle, Université de Toulouse, Centre National de la Recherche
Scientifique, and Centre for Economic Policy Research

Bernard Salanié
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In this paper we investigate the attitudes toward risk of bettors in
British horse races. The model we use allows us to go beyond the
expected utility framework and to explore various alternative pro-
posals by estimating a multinomial model on a 34,443-race data
set. We find that rank-dependent utility models do not fit the data
noticeably better than expected utility models. On the other hand,
cumulative prospect theory has higher explanatory power. Our
preferred estimates suggest a pattern of local risk aversion similar
to that proposed by Friedman and Savage.

I. Introduction

The attitude toward risk of economic agents has long been the ob-
ject of considerable attention. The emergence of the so-called non–
expected utility models has challenged the dominant expected util-
ity paradigm and resulted in a large body of theoretical work. This
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literature was primarily motivated by various ‘‘paradoxes’’ emerging
from experiments. While the experimental literature on choices un-
der uncertainty is abundant (see, e.g., Hey and Orme 1994; Wu
1994; Camerer 1995; Carbone and Hey 1995; Fennema and Wakker
1996), there are few contributions that compute econometric esti-
mates of non–expected utility models on real-life data sets. The goal
of this paper is to fill this gap, using data on the U.K. betting market
for horse races.

One main issue concerning empirical work on risk attitudes is that
there are few markets for which one can reasonably expect to solve
for optimal individual behavior and to collect the relevant informa-
tion. Financial markets1 are intrinsically dynamic, and the extension
of non–expected utility models to dynamics is still a controversial
issue (see Machina 1989). The insurance market is a very natural
candidate and should be exploited in future work (see in particular
Cicchetti and Dubin [1994] for a microeconometric estimate of ex-
pected utility).2 The betting market for horse races presents several
advantages for our purpose. In the U.K. market, bookmakers quote
odds (prices) that are binding contingent payments for a one-unit
bet. This is thus similar to a one-period financial market: betting on
one horse is indeed formally analogous to buying a contingent
claim. Moreover, the ex post empirical rates of return are observed.
The final advantage is that we have access to a very large data set
(34,443 races). Many papers have exploited these features and stud-
ied horse betting. Some of these papers have focused on testing the
rationality of bettors or the efficiency of the market by trying to pin-
point patterns in the data (e.g., Griffith 1949; Dowie 1976; Ali 1979).
Some other papers have investigated the extent of insider trading
in horse races (e.g., Crafts 1985; Shin 1993; Jullien and Salanié
1994). All these papers draw on the analogy between horse races
and financial markets; we elaborate on this analogy by considering
horse races as a test bed for alternative theories of behavior under
risk. Our goal in this paper is to estimate the parameters of the utility
functional of the bettors; it is therefore more closely related to the
papers by Weitzman (1965) and Ali (1977), even though they esti-
mated only the parameters of an expected utility functional. There
are, however, two drawbacks to our approach. First, we have no data

1 See in particular the work of Weil (1990), Epstein and Zin (1991), and Jorion
and Giovannini (1993) on intertemporal extensions of expected utility models.

2 There is now an extensive literature investigating the implications of non–
expected utility preferences for the insurance market (see in particular Gollier and
Machina [1995]).
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on the characteristics of individual bettors.3 Second, prices for com-
bined bets are not available in our data set. For this reason, we follow
most of the literature on horse races by focusing on a particular
segment of the market, namely on win bets.4

Despite these drawbacks, our estimates yield striking and clear re-
sults. First, our estimates of the rank-dependent expected utility
model (Quiggin 1982) do not significantly differ from those of an
expected utility, slightly risk-loving functional (similar conclusions
were drawn by Carbone and Hey [1995] and Fennema and Wakker
[1996] on experiments). On the other hand, a cumulative prospect
theory representation (Kahneman and Tversky 1979; Tversky and
Kahneman 1992; Wakker and Tversky 1993) clearly outperforms ex-
pected utility. Moreover, the preferences estimated present the pat-
tern of risk attitude that theory and the results from experiments
suggest. In particular, they exhibit a form of risk aversion for losses
(due to the cumulative weighting), and local utility functions have
the shape advocated by Friedman and Savage (1948).

The paper is organized as follows. Section II sets up the general
model. Section III presents the data and their main characteristics.
Section IV presents the estimation procedure. Section V gives the
estimation results. Section VI then discusses our findings and ana-
lyzes risk attitudes. Section VII presents concluding remarks.

II. The Model

For any given race, the decision process of bettors can conceivably
be decomposed into three steps: (1) The agents decide whether or
not to bet. (2) They decide how much to bet. (3) They decide on
which horse to bet.

We do not model step 1 in this paper. It presumably involves a
utility of gambling that clearly depends on the characteristics of the
race, and we have little idea of how to specify it. Regarding step
2, we shall assume that every bettor bets the same amount in all
circumstances (we shall denote it a later on). Given that we have no
information on the amounts bet, this is a necessary assumption. As
for step 3, we assume that bettors do not spread their bets among
several horses.

3 We thus follow Weitzman (1965) and Ali (1977) in that we estimate the prefer-
ences of a ‘‘typical’’ bettor. We avoid using a full representative agent assumption,
however.

4 Also, optimal combined strategies, even for expected utility maximizers, are com-
plex and extremely difficult to evaluate, and simple bets appear to be the most
common practice (see the collection of articles in Hausch, Lo, and Ziemba [1994]).
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Some bettors may be noise traders, who bet randomly; others may
be insider traders, who have private information. Our paper rests
on a representative agent assumption applied to a subgroup of the
bettors. We shall assume that there exists a group of identical bettors
with initial wealth M who bet a monetary units (say, £a) in each race.
They are endowed with identical attitudes toward risk, given by a
functional V(F ), so that if F1 and F2 are two risky distributions, a
bettor will prefer F2 to F1 if and only if V(F2) � V(F1). All bettors in
this group are endowed with identical beliefs as regards the outcome
of the race: they are denoted p � (p 1, . . . , pn), where pi is the prior
probability that horse i wins the race, and of course ∑n

i�1 pi � 1. We
assume that these beliefs are unbiased in that the winner is indeed
drawn from the n horses according to the probability distribution
p. We shall also need to assume later on that every horse, in every
race, is bet on by at least one member of the group.

There are many sorts of bets in horse races. In this paper, we shall
focus on the simplest form in which bettors try to guess which horse
will win the race. Our data pertain to British horse races, in which
bets are placed with a bookmaker who offers odds on all horses. Let
R i be the rate of return on horse i.5 Then betting £a on horse i brings
returns aR i if the horse wins,6 which happens with probability pi, and
�a if another horse wins, which has probability 1 � pi. Therefore,
the distribution of returns Fi is completely characterized by the pair
(pi, R i), and we can denote the value of such a bet by W(pi, R i) �
V(Fi).

III. The Data

Our data are a small part of the data collected by RACEDATA Lim-
ited in Britain. For each flat horse race run in Britain between 1986
and 1995, we have the number of horses and the odds (as given by
the ‘‘starting prices’’) of all horses in order of arrival.

Our data contain 34,443 races. There is a large variability in the
data. The average number of horses in a given race is 10.7. The
minimum is two horses (for as many as 133 races) and the maximum
is 40 horses (for only one race; there are only 12 races with more
than 30 horses). Most races (90 percent of them) have between five
and 20 horses.

It is interesting to take a look at the rates of return of our 367,408
horses. Our sample contains both huge favorites (one of them with

5 For instance, a horse quoted at 3 to 2 brings a rate of return of 3/2 � 1.5: for
every pound bet, if the horse wins, the bettor gets the pound he bet plus £1.5.

6 Earnings are not taxed in Britain if the bet is placed at the track.
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Fig. 1.—Observed expected return

odds of 1 to 50 [in British terms, ‘‘50 to 1 on’’]—it duly won its
race) and very long outsiders (with odds up to 1,000 to 1—none of
them won a race); but more than 90 percent of all horses had odds
between 1 to 1 and 20 to 1. Of course, winners tend to have shorter
odds. Seventy percent of all big favorites (with odds shorter than 1
to 2) won their race, whereas less than 3 percent of outsiders (with
odds longer than 10 to 1) won theirs.7 However, there are many
more outsiders than big favorites, so that 15 percent of all races were
won by horses with odds longer than 10 to 1. The longest outsider
to win had odds of 100 to 1.

Given these data, what is the expected return of betting on a horse
with given odds? Figure 1 answers this question. For any given R (we
examined each R from 0.02 to 20 by steps of 0.01) that corresponds
to more than 1,000 horses in our sample, we compute p̂(R ), the
proportion of horses with rate of return R that won their race. The
expected return then is

ER(R ) � p̂(R )(R � 1) � 1.

Figure 1 plots ER(R ), along with a 95 percent confidence interval.
It clearly shows that it is not a good idea for a risk-neutral bettor to
bet on outsiders (horses with a large R ); this is of course well known,
and it is called the favorite/long shot bias in the literature.

7 As expected, the proportion of winners in each odds class decreases regularly
with the odds.
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IV. The Estimation Procedure

Our goal is to recover information on the parameters of the attitudes
toward risk of our select group of bettors. We therefore introduce
a parameter vector � that describes the preferences of the bettors,
and we now denote them V(F, �) and the value of betting £a on
horse i by W(pi, R i, �) (suppressing the dependence on a for sim-
plicity).

Our estimation procedure first involves solving for the probabili-
ties pi as functions of the rates of return R i and the parameter vector
�. Then we set up and evaluate a multinomial model based on which
horse won the race.

A. Solving the Model

Since all bettors in our group are identical, the odds must be such
that they leave them indifferent between all horses. Otherwise, there
would be two horses, say i and j, for which

W(pi, R i, �) � W(pj, R j, �),

and none of the bettors would bet on horse j since we assume that
bettors do not spread their bets. Since we assume that all horses are
bet on by at least one member of the group at equilibrium, in every
race, W(pi, R i, �) must be independent of i:

W(p1, R 1, �) � ⋅ ⋅ ⋅ � W(pn, R n, �). (1)

This set of equalities is the basis of our estimating procedure.8 We
prove in the Appendix that given two mild restrictions on the func-
tional V (continuity and first-order stochastic dominance), this set
of equalities defines each pi uniquely as a function of all the R i’s
and �.

This shows that it is possible to recover the probabilities of a win
by each horse from the observation of the odds on each horse and
the condition of market equilibrium. Note that we imposed very lit-
tle on the bettors’ attitude toward risk: most of the functional forms
for V that have been proposed in the literature indeed exhibit first-
order stochastic dominance and continuity.

8 Note that it also holds if there are insider traders (who have different priors)
or noise traders (who bet randomly), provided only that the group of identical bet-
tors spread their bets over all horses.
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B. Examples

We now show how the p functions can be obtained in three popular
classes of models that we shall estimate later.

Example 1: Expected Utility

Assume that the functional V(F ) takes the familiar expected utility
form:

V(F, �) � ∫ u(x, �)dF(x).

Then the value of betting on horse i for a bettor with initial wealth
M is

W(pi, R i, �) � piu(M � aR i, �) � (1 � pi)u(M � a, �),

and solving the equation W(pi, R i, �) � w gives

pi �
w � u(M � a, �)

u(M � aR i, �) � u(M � a, �)
.

Finally, the adding-up constraint ∑n
i�1 pi � 1 gives

w � u(M � a, �) �
1

�
n

i�1

1
u(M � aR i, �) � u(M � a, �)

,

and we obtain an explicit formula for the probabilities:

pi �
1

u(M � aR i, �) � u(M � a, �)
1

�
n

j�1

1
u(M � aR j, �) � u(M � a, �)

.

Example 2: Anticipated Utility

As a first generalization of expected utility, consider the following
formulation, which Quiggin (1982) calls anticipated utility (for a
special case) and which other authors call rank-dependent expected
utility (RDEU):

V(F, �) � �∫ u(x, �)d[G � (1 � F )](x),

where G is a continuous increasing function that maps [0, 1] into
itself.

This content downloaded from 128.59.160.148 on Tue, 3 Mar 2015 12:09:59 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


510 journal of political economy

The value of a bet on horse i then is

W(pi, R i, �) � G(pi, �)u(M � aR i, �)

� [1 � G(pi, �)]u(M � a, �).

Writing the equation W(pi, R i, �) � w, we get

G(pi, �) �
w � u(M � a, �)

u(M � aR i, �) � u(M � a, �)
.

Let H(⋅, �) be the inverse function of G(⋅, �) (which exists since
the latter is continuous and increasing); the adding-up constraint
∑n

i�1 pi � 1 gives

�
n

i�1

H � w � u(M � a, �)
u(M � aR i, �) � u(M � a, �)

, �� � 1.

Solving this equation gives w and therefore the pi’s.

Example 3: Cumulative Prospect Theory

Prospect theory was introduced by Kahneman and Tversky (1979)
and developed into cumulative prospect theory (CPT) in Tversky
and Kahneman (1992). This theory differs from other theories in
that it evaluates changes in wealth with respect to a reference point.9

The initial wealth M here is a natural reference point. Let u be a
continuous increasing function such that u(0) � 0 and G and H be
two continuous increasing functions that map [0, 1] into itself. Then
the value of betting on horse i is

W(pi, R i, �) � G(pi, �)u(aR i, �) � H(1 � pi, �)u(�a, �).

Clearly, rank-dependent utility is the special case in which G(p) �
H(1 � p) � 1. Another interesting case is that of ‘‘reflection,’’ in
which G � H.

Solving for the pi’s here is slightly more complicated than in exam-
ple 2 since even solving for p as a function of w can usually not be
done in a closed form. However, the procedure remains the same.

Note that all these examples share the property that the function
P(w, R i, �) can be obtained explicitly or with a simple numerical
procedure, so that there remains only to find the solution w to
∑i P(w, R i, �) � 1, which is a fairly simple numerical task since the
left-hand side is increasing and we know that w must lie in the inter-
val (W(0, R i, �), W(1, min j R j, �)).

9 Early forms of prospect theory could violate first-order stochastic dominance,
but CPT does not.
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C. Estimating the Parameters

Since we know which horse won the race (it is always i � 1 in our
notation) and given that we can compute the pi’s, it is a simple mat-
ter to set up a multinomial model. Let c � 1, . . . , C be an index
that runs over all races in our sample. Then the log likelihood for
the sample is simply

LC(�) � �
C

c�1

log p 1(R c, �).

The usual properties apply, so that maximizing LC gives us an esti-
mator �̂C that is consistent, asymptotically normal, and asymptotically
efficient:

√C(�̂C � �0) → N(0, I �1),

where I can be consistently estimated by

Î �
1
C �

C

c�1

1
[p1(R c, �̂C)]2

∂p 1

∂�
(R c, �̂C)

∂p 1

∂�ʹ′
(R c, �̂C).

V. The Results

Here we apply the preceding model and estimation procedure to
the data described in Section III.

A. Expected Utility Models

We tested our procedure on the most common von Neumann–Mor-
genstern utility functions. This will also allow us to explain the identi-
fication problems that arise because of our not knowing the initial
wealth M and the size of the bet a.

Recall the formula for the probabilities:

pi �
1

u(M � aR i, �) � u(M, a, �)

�
1

�
n

j�1

1
u(M � aR j, �) � u(M � a, �)

.

First consider the constant absolute risk aversion (CARA) utility
function u(x, θ) � (1 � e�θx)/θ. Obviously, the factors e�θM cancel
out in the expression for pi, and it is easy to see that pi depends only
on the product θa. Thus θ is not identifiable in this model; only θa
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is. Maximizing LC gives θ̂Ca � �0.055, with standard error 0.001. The
value of LC at the optimum is �63,801.2. Thus bettors appear to be
risk-loving.10 However, while θ̂C is significantly negative, it has a very
small absolute value: even if the size of the representative bet is only
£1 (which is probably an underestimate), a value of �θ̂C close to
0.06 does not seem to imply very bold risk taking. Standard Arrow-
Pratt calculations indeed yield, for a bet whose standard error is a
(the unknown amount bet in horse races), a (negative) risk pre-
mium ρ given by ρ/a � θa/2 so that the risk premium is only about
2.8 percent of a.

A more general specification is the hyperbolic absolute risk aver-
sion (HARA) family, given by

u(x, θ) � (θ1 � x)θ2,

which yields an absolute risk aversion index

�
uʺ″
u ʹ′

�
1 � θ2

θ1 � x

and thus nests, inter alia, both the CARA and constant relative risk
aversion (CRRA) families.

Simple computations show that pi depends only on θ2 and (θ1 �
M )/a. Maximizing LC gives strange estimates: both (θ̂C

1 � M )/a and
θ̂ C

2 appear to be very large and have large standard errors. A closer
look at the shape of LC shows that it is maximal and almost constant
on a curve on which θ2a/(θ1 � M ) is constant and close to 0.06.
But for (θ1 � M )/a and θ2 large on that curve,

�1 �
a

θ1 � M
x�

θ2

� exp� aθ2

θ1 � M
x� � exp(0.06x),

so that we are back to our estimate for the CARA family.11 The value
of LC at the optimum is �63,796.5, which is significantly larger than
that obtained for the optimal CARA utility function; however, the
difference is not huge given that we have such a large number of
observations. Moreover, the qualitative behavior implied by these
estimates does not differ very much from the CARA case.12 We there-
fore conclude that the CARA utility is close to providing the best fit

10 This was not a foregone conclusion since we do not model the decision to bet.
11 This argument is corroborated by the fact that the estimated correlation be-

tween θ̂C
1 and θ̂ C

2 is very close to one.
12 It is easy to see that the implied absolute risk aversion index, multiplied by a

and evaluated in x � M, is �0.063.
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TABLE 1

Rank-Dependent Utility: Power Function

Parameter Estimate Standard Error

θa �.053 .003
α .988 .016

among all HARA utility functions, better than, say, a CRRA func-
tion.13

Given these preliminary results and since we are mainly interested
in non–expected utility theories, whose main focus is on how agents
‘‘weigh’’ probabilities, we shall take the value function to be CARA
from now on:

u(x, θ) �
1 � exp(�θx)

θ
,

which is zero at x � 0. This actually simplifies our task since it means
that initial wealth M divides out in the formulas for probabilities,
and thus we do not have to worry about the fact that we do not
observe it.

B. Rank-Dependent Utility

Let us now focus on our example 2, in which agents weigh probabili-
ties in a systematic way given by the function G. Given that our esti-
mation process is fairly costly (the estimates above took about two
CPU hours on a UNIX minicomputer), we shall choose specifica-
tions for G that are easily invertible.

Our first candidate is just the power function G(p) � pα. We ob-
tain the estimates in table 1.

The value of the likelihood is �63,801.0, which is not significantly
higher than the expected utility CARA specification. The power co-
efficient α̂ is very close to and not significantly different from one,
and the CARA estimate is hardly modified.14

Of course, the power function allows for only a wholly concave or
wholly convex function G, whereas the literature points toward a
function that is concave then convex (so that it overweighs small

13 Thus our results cannot be directly compared to those of Ali (1977), who esti-
mates only a CRRA specification on his American data set, using a totally different
and somewhat contrived procedure. Ali finds an index of relative risk aversion of
�0.178, which does corroborate our finding that bettors are only weakly risk-loving.

14 Incidentally, the fact that it still significantly differs from zero implies that we
reject the dual theory of Yaari (1987).
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probabilities and underweighs high probabilities). To describe this,
we shall use a specification due to Cicchetti and Dubin (1994):

G(p)
1 � G(p)

� � p
1 � p�

a1

� p0

1 � p0
�

1�a1

.

This increases from zero to one and crosses the diagonal in p0; it
may be concave then convex (for a 1 � 1) or convex then concave
(for a 1 � 1). It collapses to the expected utility specification for a 1

� 1 (in which case p0 is not identified).
Camerer and Ho (1994) use a different specification, in which

G(p) �
p γ

[p γ � (1 � p)γ]1/γ
.

This allows for changes in concavity but is less flexible than the
Cicchetti-Dubin specification since it uses the single parameter γ to
account for both the curvature of G and the point at which it crosses
the diagonal. Also, this G cannot be inverted analytically, which
makes estimation very cumbersome. On the other hand, we did esti-
mate the Lattimore-Baker-Witte (1992) specification:

G(p) �
δp γ

δp γ � (1 � p)γ
,

which has two parameters, can be inverted easily, and nests expected
utility as δ � γ � 1.

Finally, we also estimated the specification suggested by Prelec
(1998):

G(p) � exp[�β(�ln p)α],

which he obtained after imposing several axioms on choice under
risk. This nests the power specification (for α � 1) and therefore
also expected utility (for α � β � 1).

The maximization program took about 20 CPU hours for each
specification. The results appear in table 2.

Again, the surprising result is that rank-dependent utility does not
improve on expected utility. For the Cicchetti-Dubin specification,
the crucial parameter a 1 does not significantly differ from one, even
though it is estimated precisely. As expected, the likelihood function
hardly depends on p0, and thus its estimated standard error is very
large.15 Its maximal value is �63,801.1, which is even slightly worse

15 Remember that p0 is the point at which the weighting function crosses the diago-
nal, and that is not identified for expected utility since the weighting function every-
where coincides with the diagonal.
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TABLE 2

Rank-Dependent Utility: Cicchetti/Dubin and
Lattimore et al. Functions

Parameter Estimate Standard Error

Cicchetti-Dubin

θa �.054 .005
α1 .994 .032
p0 .500 5.459

Lattimore et al.

θa �.050 .005
γ .965 .032
δ .877 .132

TABLE 3

Rank-Dependent Utility: Prelec Function

Parameter Estimate Standard Error

θa �.036 .007
α .879 .051
β 1.143 .081

than for the less flexible power function.16 These results are consis-
tent with those of Cicchetti and Dubin (1994) in the context of insur-
ance and with the experiments of Carbone and Hey (1995) and Fen-
nema and Wakker (1996). For the Lattimore et al. specification, we
again find that the estimates are very close to the CARA expected
utility specification, and we cannot reject expected utility.

As shown in table 3, the estimates for the Prelec specification tell
a slightly different story. The estimated α significantly differs from
one, so that the Prelec specification fits the data better than the
power specification. The value of the Wald test statistic for the ex-
pected utility hypothesis is 12.3 (for two degrees of freedom), so that
this time expected utility is rejected in favor of the richer Prelec
specification. On the other hand, the estimated weighting function
is still rather close to the diagonal, as shown in figure 2. We therefore
conclude that while the deviation from expected utility is statistically
significant, it is not clear that it is significant in economic terms.

16 In order to check that this is not a numerical failure, we held θa and p0 constant
and plotted the likelihood function. This confirms that the maximum in a 1 is very
close to one.
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Fig. 2.—Estimated weighting functions (RDEU)

C. Cumulative Prospect Theory

We now move to our example 3. This has added generality (as com-
pared to rank-dependent utility) in that agents weigh probabilities
in different ways for losses and for gains.17 Unfortunately, this also
means that even if we choose easily invertible G and H functions,
we shall have to solve numerically in the first stage for the pi’s as
functions of w. This makes the program much more computer-inten-
sive. Indeed, we had to optimize the program in several ways in order
to achieve reasonable estimation times: (1) we wrote a root-finding
program that starts with a Newton-Raphson algorithm with analyti-
cal derivatives and switches to a bisection routine when it wanders
out of the theoretical bounds for the root; (2) we computed the
gradient of the likelihood function analytically.

Even so, one computation of the likelihood function still takes
several CPU hours, given the very large number of multidimensional
root-finding calculations involved. Thus we focus on the races that

17 In the context of CPT, it would be natural to allow for a different value function
u for gains and for losses. There is indeed evidence (see Camerer 1995) that agents
behave as though they were risk-loving for gains and risk-averse for losses. However,
we observe only one level of losses (�a), and a is not identifiable, so that there is
little we can do in that direction. Therefore, we shall stick to the assumption of a
single CARA function for both losses and gains. However, we did replace u(�1)
with u(�1) � γ and test γ � 0. The resulting score (Lagrange multiplier) statistic
is only 0.49, and thus we cannot reject the hypothesis that the value function for
losses is generated from the same CARA function as for gains.
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TABLE 4

Cumulative Prospect Theory: Power Functions

Parameter Estimate Standard Error

θa �.072 .021
α 1.162 .143
β .318 .272

were run in 1995, the last year of our sample. There are 4,037 of
them, or about 11.7 percent of the total sample. This reduces the
computation time to about 30 minutes per function evaluation,
which is still a lot.

We first estimate a specification in which both G and H are power
functions: G(p) � pα and H(p) � p β. The estimation results appear
in table 4.

The CARA estimate stays in the same ballpark. The power func-
tion for gains is slightly convex, but not significantly so. On the other
hand, the power function for losses is highly and significantly con-
cave. This is the first notable deviation from expected utility that we
encounter. This is confirmed by a Wald test of the expected utility
hypothesis (which is given by α � β � 1): the test statistic is 15.04
for two degrees of freedom, which points to a very clear rejection
of expected utility.

It is not possible to test for rank-dependent utility in the CPT
model with power functions; but we already know that rank-depen-
dent utility does not fit the data better than expected utility, and that
is rejected by the data. On the other hand, we can test the reflection
hypothesis α � β; this is also rejected, with a χ2(1) of 4.31.

We have also estimated a model in which both G and H take the
Cicchetti-Dubin form. Thus

G(p)
1 � G(p)

� � p
1 � p�

a1

� p0

1 � p0
�

1�a1

and

H(p)
1 � H(p)

� � p
1 � p�

a ʹ′1

� pʹ′0
1 � pʹ′0�

1�a ʹ′1

.

The results (obtained after more than one month of maximization)
are given in table 5. Unfortunately, the standard errors are very large
so that it is difficult to reach definite conclusions. In particular, it
is impossible to reject rank-dependent utility (a 1 � a ʹ′1 and p0 � p ʹ′0
� 1), the reflection hypothesis (a 1 � a ʹ′1 and p0 � p ʹ′0), or even ex-
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TABLE 5

Cumulative Prospect Theory: Cicchetti-Dubin
Functions

Parameter Estimate Standard Error

θa �.065 .035
a1 1.087 .372
p0 .959 1.241
a ʹ′1 .728 1.943
p ʹ′0 .996 .221

Fig. 3.—Weighting function for gains

pected utility (a 1 � a ʹ′1 � 1). It seems that the data do not support
changing concavity in the weighting functions.

Still, the message conveyed by the point estimates is very similar to
that of the model with power functions.18 Using the Lattimore et al.
specification for both weighting functions confirms these findings.
As in the Cicchetti-Dubin case, standard errors are fairly large;19

but the estimated G and H weighting functions are very close to
those for the power and Cicchetti-Dubin specifications.20 Figures 3

18 Also, the value of the likelihood function is not significantly higher, in spite of
the two added parameters: �7,365.25, as compared to �7,365.31.

19 In both cases, this may be due to our attempt to estimate a change in concavity
that is not in the data.

20 We also tried to use the Prelec specification, but we met with severe numerical
difficulties and could not get the algorithm to converge.
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Fig. 4.—Weighting function for losses

and 4 show the estimated G and H functions for the CPT specifica-
tions. This shows that contrary to the RDEU case, deviations from
expected utility this time are economically significant. It is striking
that in all three cases, the G function for gains is slightly convex but
close to the bisectrix and the H function for losses is concave on
most of the range. Note in particular that even though the Cicchetti-
Dubin and Lattimore et al. specifications allow the G and H func-
tions to change concavity, the data do not appear to support this.
This is a somewhat surprising result in view of the many experiments
that find evidence of changing concavity; in particular, we find little
evidence for a ‘‘certainty effect’’ (convex weighting functions near
p � 1).

VI. Interpretation

We shall now explore the economic consequences of our estimation
results. To do this, we focus on the CPT model with power functions,
for which the estimation results are given in table 4. This is our pre-
ferred model on grounds of fit and parsimony.

A. Fanning Out and the Allais Paradox

Much of what follows will use the ‘‘probability triangle,’’ an exposi-
tory device developed by Marschak (1950) and later Machina
(1987). Consider the set of lotteries with a fixed three-point support
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Fig. 5.—Original Allais paradox

{x 1, x 2, x 3}, x 1 � x 2 � x 3. A lottery gives x 1 with probability p, x 2 with
probability 1 � p � q, and x 3 with probability q. Such a lottery can
be represented by a pair (p, q) in the triangle p � q � 1. In the
triangle, preferences can be represented by the indifference curves
on lotteries (p, q). Under expected utility, preferences are linear in
probabilities, and thus these indifference curves are parallel straight
lines. Now consider the four following lotteries, for (x 1, x 2, x 3) �
(0, $1M, $5M): F1: win $1M with probability .11; F2: win $5M with
probability .1; F3: win $1M for sure; F4: win $5M with probability .1
or $1M with probability .89.

As can be seen in figure 5,21 F1F2 and F3 F4 define parallel segments,
so that according to expected utility, F1 should be preferred to F2 if
and only if F3 is preferred to F4. However, Allais (1953) showed that
many individuals prefer F2 to F1 and yet prefer F3 to F4.

The development of non–expected utility models has been
strongly influenced by similar experimental evidence on violations
of the expected utility hypotheses (see Machina 1987). On the basis
of this evidence, Segal (1987) defines what he calls the ‘‘generalized
Allais paradox’’ (GAP). The GAP states that if Fi, i � 1, . . . , 4, denote
four lotteries in the triangle such that F1 and F3 lie on the same hori-

21 The offsets have been somewhat exaggerated to make them more apparent.
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Fig. 6.—Generalized Allais paradox

zontal line and F2 and F4 lie on the same horizontal line, F4 � F3 �
F2 � F1, then V(F1) � V(F2) implies V(F3) � V(F4). Figure 6 illustrates
a GAP.

Green and Jullien (1988, p. 369) give conditions for a preference
functional to generate the GAP. Specializing their results to CPT
shows that in our notation, their condition reduces to requiring that
G be convex and H concave, which is indeed true for our estimates.
Thus our estimated CPT functional generates behavior that is consis-
tent with the GAP.

Machina (1987) showed that many violations of expected utility
theory (Allais paradox, common consequence effect, and common
ratio effect) can be explained by assuming that indifference curves
fan out in the probability triangle (see fig. 6). Roughly speaking, this
means that the slope of the indifference curve should increase as p
increases or q decreases. However, more recent experimental re-
search has found that indifference curves exhibit a mixture of fan-
ning out and fanning in. In any case, it is interesting to look at the
implied shape of indifference curves in the triangle diagram for our
estimates.

To do this, we fix x 1 � �1, x 2 � 0, and x 3 � 1. The value of this
lottery is

w(p, q) � G(q)u(1) � H(p)u(�1)
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Fig. 7.—Estimated indifference curves

since by construction u(0) � 0. Figure 7 plots the indifference curves
w(p, q) � k in the (p, q) plane.

If fanning out is interpreted in the weak sense that indifference
curves get steeper when one moves from the southeast corner to the
northwest corner, then clearly our estimates exhibit fanning out. On
the other hand, strict fanning out (i.e., the property that, for given
p, the slope of the indifference curve increases with k) is rejected:
it is easy to prove that, in fact, α � 1 implies that there is a moderate
degree of fanning in this stricter sense.22 Moreover, the fanning out
property seems to be concentrated at the left edge of the triangle,
which again is consistent with experimental evidence, as collected,
for instance, in Camerer (1995).

B. Local Utility Functions

A second key element to analyze the properties of nonlinear pref-
erences is the set of ‘‘local utility functions.’’ As defined by
Machina (1982), they are the local derivative of the preference rela-
tion. Consider a cumulative distribution function F1. Under suitable
differentiability conditions (for the weak topology), one can approx-

22 This divergence is clearly due to the nonlinear weighting functions since fan-
ning out and strict fanning out are equivalent for linear indifference curves.
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imate the preferences for lotteries F2 close to F1 by a linear prefer-
ence:

V(F2) � V(F1) � ∫ UF1(x)[dF2(x) � dF1(x)],

where UF1(⋅) is a function that represents the derivative of V at F1.
This amounts to saying that in a neighborhood of a distribution

F1, preferences can be approximated by an expected utility model
with utility function UF1, referred to as the local utility function at F1.

Moreover, Machina’s analysis shows that many properties of the
expected utility model extend to nonlinear differentiable prefer-
ences when applied to the whole set of local utility functions {UF(⋅)}F.
For example, V is risk-averse if all local utility functions are concave.

For a CPT model with utility function u(x) and weighting func-
tions G and H, the local utility functions are given by

U ʹ′F(x) � u ʹ′(x)G ʹ′(1 � F(x)) if x � 0

and

U ʹ′F(x) � u ʹ′(x)H ʹ′(F(x)) if x � 0.

The most interesting feature of these utility functions is their (local)
risk aversion. Assuming that F has a well-defined density f (which is,
of course, not the case for horse races), we find that

U ʺ″F (x) � uʺ″(x)G ʹ′(1 � F(x)) � u ʹ′(x)G ʺ″(1 � F(x))f(x)

if x � 0 and

U ʺ″F (x) � uʺ″(x)H ʹ′(F(x)) � u ʹ′(x)H ʺ″(F(x))f(x)

if x � 0. Thus, as pointed out by Chew, Karni, and Safra (1987), local
risk aversion depends on the concavity both of the utility function u
and of the weighting functions G and H. More precisely, the local
utility function UF will be risk-averse for gains if u is concave and G
is convex and risk-averse for losses if u is concave and H is concave.

Now our estimated u is convex, which suggests risk loving; but our
estimated weighting functions point in the direction of risk aversion
since G is (slightly) convex and H is (clearly) concave. This suggests
that for some distributions, the local utility function will exhibit risk
aversion, especially for losses, since H is highly concave.

It is difficult to go further in our application since our distribu-
tions F have discrete support. However, we can easily derive local
utility functions for hypothetical continuous distributions. As a sim-
ple illustration, consider the uniform distribution on [�B, B], which
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has a cumulative distribution function F(x) � (x � B)/2B. The for-
mulas given above imply that

U ʹ′F(x) � exp(�θx)α�B � x
2B �

α�1

if x � 0 and

U ʹ′F(x) � exp(�θx)β�x � B
2B �

β�1

if x � 0. Differentiating them, we find that the sign of V ʺ″F (x) is given
by the expressions

�θ �
α � 1
B � x

if x � 0 and

�θ �
β � 1
x � B

if x � 0. Now recall that only θʹ′ � θa (where a is the unknown sign
of the bet) is identified in our estimating procedure, and define λ
� B/a. The parameter λ measures how large the global risk on the
individual’s wealth is relative to a bet on horse races. We define two
critical values for λ:

λL � �
α � 1
θʹ′

� 2.26,

λH � �
1 � β
θʹ′

� 9.51.

Given this notation, simple calculations show that U ʺ″F (x) has the
sign of

(B � x) � B λH

λ

for losses and

(B � x) � B λL

λ

for gains. Thus there are only three possible cases: (1) if global risks
are small (λ � λL), the local utility function exhibits risk aversion
on the whole interval [�B, B ]; (2) for intermediate values (λL � λ
� λH), it is risk-averse for losses and for large gains but risk-loving
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Fig. 8.—Shape of the local utility function

for small gains; and (3) when global risks are large (λ � λH), it is
risk-loving for small losses and gains and risk-averse for large losses
and gains.

Although this particular exercise cannot pretend to realism, the
last case seems to be the most interesting since global risks are bound
to be much larger than the size of a bet on a horse. Our estimated
local utility function, as illustrated in figure 8 for λ � B � 10, then
has a shape similar to those proposed by Friedman and Savage
(1948) and Markowitz (1952) and later discussed by Machina (1982)
in the context of non–expected utility models.23 In other words, they
are consistent with the observation that individuals simultaneously
insure some risk and gamble, at any level of wealth. Note in particu-
lar that, for all values of λ, agents appear to be risk-averse for large
losses: this means that the agent would insure against a risk of a large
loss that occurs with a small probability. One can obtain a similar
graph (numerically) when F is a centered normal distribution.

C. What Features of the Data Do We Fit?

Since our results are based on maximum likelihood estimation, we
in effect fit the whole shape of the probabilities-odds equilibrium
relationship given in (1). The favorite/long shot bias is perhaps the

23 It is also reminiscent of the (expected utility) estimates of Golec and Tamarkin
(1998).
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Fig. 9.—Replicating the favorite/long shot bias

best-known ‘‘anomaly’’ in horse race betting. Since our estimation
procedure does not rely on it, it is interesting to see whether our
estimates reproduce anything like the observed expected return
curve in figure 1. To check this, for all R from 0.02 to 20 by steps
of 0.01, we compute the probabilities pi(RC, �̂) for all races c in 1995
and horses i such that R C

i � R. We then estimate the probability of
winning with rate of return R by p̃(R ), the average of all such proba-
bilities, and we estimate the expected return by

ER� (R ) � p̃(R )(R � 1) � 1.

Figure 9 plots the result24 along with the ER(R ) curve from figure 1.
Clearly, our CPT power estimates provide a very good fit for the

observed expected return curve. Indeed, ER� (R ) lies almost every-
where within the 95 percent confidence interval for ER(R ). It should
be noted, however, that our CARA expected utility estimates provide
about as good a visual fit. To go further, we generated for all horses
that ran in 1995 (there are 40,118 of them) the best-fitting expected
utility (respectively CPT) estimate of their probability of winning;
we denote them pEU and pCPT. We then ran a nonparametric regres-
sion of pEU � pCPT on pCPT. The result25 is given in figure 10. It appears
that relative to CPT, expected utility overestimates the outsiders’

24 For all rates of return that correspond to at least 100 horses in 1995.
25 We dropped the horses for which pCPT � 0.5, which represent less than 2 percent

of the data.
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Fig. 10.—Nonparametric regression of pEU � pCPT on pCPT

probability of winning and (much more strongly) underestimates
the favorites’ probability of winning. In that sense, our CPT estimates
provide a better fit for the favorite/long shot bias than expected
utility.

As a matter of fact, there are anomalies in the data that cannot
be rationalized by any expected utility specification, contrary to the
favorite/long shot bias. Indeed, note that for expected utility, (1)
implies, for any two horses i and j in the same race,

pi

pj
�

u(M � aR j) � u(M � a)

u(M � aR i) � u(M � a)
,

so that the relative probability of winning depends only on R i and R j,
and not on other characteristics of the race. Therefore, one simple
nonparametric test of expected utility would be to choose two odds,
R and R ʹ′; to select all races in which there are two horses with re-
spective odds R and R ʹ′; to compute the number of horses N (N ʹ′)
with odds R (R ʹ′) in these races that won; and to check whether
N/N ʹ′ depends on, say, the number of horses in the race. It is easy
to find such violations of expected utility in the data. Our CPT esti-
mates presumably also are driven by these ‘‘anomalies.’’

VII. Concluding Remarks

We have estimated only a few specifications here. The very high com-
putation costs involved in estimating the CPT model make it difficult

This content downloaded from 128.59.160.148 on Tue, 3 Mar 2015 12:09:59 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


528 journal of political economy

to explore it much further. On the other hand, while the logical
progression from expected utility to RDEU (which nests expected
utility) and then to CPT (which nests RDEU) is intellectually satis-
fying, there exist other classes of models. Weighted expected utility
is a possibility since it leads to much simpler computations than CPT.
However, weighted expected utility implies a ‘‘generalized linearity’’
property that contradicts our CPT estimates. This is why we did not
estimate it here. Note also that nonadditive models of uncertainty
aversion, as in Schmeidler (1989), cannot be estimated using our
procedure since our setup involves risky and not uncertain choices.

Clearly, the greatest weakness of our paper is the representative
agent assumption, even though we imposed it only for a subgroup of
the population of bettors. However, relaxing this assumption would
require detailed information on which bettor, with what characteris-
tics, bet on which horse in which race. It would also raise difficult
econometric problems since it may not be easy to exploit informa-
tion that reduces to ‘‘bettor i bet on horse j in race c.’’

Appendix

We prove here that the set of equalities (1) defines probabilities uniquely
as a function of odds if the functional V is continuous in F and exhibits
first-order stochastic dominance. To do this, we solve the system in two
steps. We first introduce an auxiliary unknown w such that, for all i � 1,
. . . , n, W(pi, R i, �) � w. We shall prove that this determines functions pi

� P(w, R i, �). We then use the constraint ∑n
i�1 P(w, R i, �) to determine

the remaining unknown w as a function of R and �.
First note that, given first-order stochastic dominance and continuity,

W(pi, R i, �) is a continuous increasing function of its first argument. There-
fore, P(w, R i, �) is a well-defined function for w in the interval [W(0, R i,
�), W(1, R i, �)], and it is continuous and increasing in w. It follows that
the solution w to ∑n

i�1 P(w, R i, �) � 1 must be unique if it exists.
Now consider w and i such that w � W(1, R i, �). Clearly, this implies

P(w, R i, �) � 1 and, therefore, ∑n
j�1 P(w, R j, �) � 1. Now note that all

W(0, R i, �) are equal since they represent the value of losing £a with proba-
bility one. Therefore, if

w � W(0, R 1, �) � W(0, R n, �),

we must have P(w, R i, �) � 0 for all i and thus ∑n
i�1 P(w, R i, �) � 1. This

concludes the proof by showing that there exists a unique w(R, �) in the
interval (W(0, R i, �), mini�1, . . . ,n W(1, R i, �)) that solves the system of equali-
ties. It is then a simple task to obtain the probabilities

pi(R, �) � P(w(R, �), R i, �).

Q.E.D.
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