
Enabling the Virtual Phones to remotely
sense the Real Phones in real-time

~ A Sensor Emulation initiative for virtualized Android-x86 ~

Raghavan Santhanam

Submitted in partial fulfillment of the
requirements for the degree

of Master of Science in Computer Science
in the School of Engineering and Applied Science

2014

© 2014

Raghavan Santhanam

All Rights Reserved

ABSTRACT

Enabling the Virtual Phones to remotely
sense the Real Phones in real-time

~ A Sensor Emulation initiative for virtualized Android-x86 ~

Smartphones nowadays have the ground-breaking features that were only a figment
of one’s imagination. For the ever-demanding cellphone users, the exhaustive list of
features that a smartphone supports just keeps getting more exhaustive with time.
These features aid one’s personal and professional uses as well. Extrapolating into the
future the features of a present-day smartphone, the lives of us humans using
smartphones are going to be unimaginably agile.

With the above said emphasis on the current and future potential of a smartphone,
the ability to virtualize smartphones with all their real-world features into a virtual
platform, is a boon for those who want to rigorously experiment and customize the
virtualized smartphone hardware without spending an extra penny. Once
virtualizable independently on a larger scale, the idea of virtualized smartphones with
all the virtualized pieces of hardware takes an interesting turn with the sensors being
virtualized in a way that’s closer to the real-world behavior.

When accessible remotely with the real-time responsiveness, the above mentioned
real-world behavior will be a real dealmaker in many real-world systems, namely, the
life-saving systems like the ones that instantaneously get alerts about harmful
magnetic radiations in the deep mining areas, etc. And these life-saving systems would
be installed on a large scale on the desktops or large servers as virtualized
smartphones having the added support of virtualized sensors which remotely fetch
the real hardware sensor readings from a real smartphone in real-time. Based on
these readings the lives working in the affected areas can be alerted and thus saved by
the people who are operating the at the desktops or large servers hosting the
virtualized smartphones.

In addition, the direct and one of the biggest advantages of such a real hardware
sensor driven Sensor Emulation in an emulated Android(-x86) environment is that the
Android applications that use sensors can now run on the emulator and act under the
influence of real hardware sensors’ due to the emulated sensors.

The current work of Sensor Emulation is quite unique when compared to the existing
and past sensor-related works. The uniqueness comes from the full-fledged sensor

emulation in a virtualized smartphone environment as opposed to building some
sophisticated physical systems that usually aggregate the sensor readings from the real
hardware sensors, might be in a remote manner and in real-time. For example,
wireless sensor networks based remote-sensing systems that install real hardware
sensors in remote places and have the sensor readings from all those sensors at a
centralized server or something similar, for the necessary real-time or offline analysis.
In these systems, apart from collecting mere real hardware sensor readings into a
centralized entity, nothing more is being achieved unlike in the current work of
Sensor Emulation wherein the emulated sensors behave exactly like the remote real
hardware sensors. The emulated sensors can be calibrated, speeded up or slowed
down(in terms of their sampling frequency), influence the sensor-based application
running inside the virtualized smartphone environment exactly as the real hardware
sensors of a real phone would do to the sensor-based application running in that real
phone. In essence, the current work is more about generalizing the sensors with all its
real-world characteristics as far as possible in a virtualized platform than just a
framework to send and receive sensor readings over the network between the real
and virtual phones.

Realizing the useful advantages of Sensor Emulation which is about adding
virtualized sensors support to emulated environments, the current work emulates a
total of ten sensors present in the real smartphone, Samsung Nexus S, an Android
device. Virtual phones run Android-x86 while real phones run Android. The real
reason behind choosing Android-x86 for virtual phone is that x86-based Android
devices are feature-rich over ARM based ones, for example a full-fledged x86 desktop
or a tablet has more features than a relatively small smartphone. Out of the ten, five
are real sensors and the rest are virtual or synthetic ones. The real ones are
Accelerometer, Magnetometer, Light, Proximity, and Gyroscope whereas the virtual
ones are Corrected Gyroscope, Linear Acceleration, Gravity, Orientation, and Rotation
Vector. The emulated Android-x86 is of Android release version Jelly Bean 4.3.1 which
differs only very slightly in terms of bug fixes from Android Jelly Bean 4.3 running on
the real smartphone.

One of the noteworthy aspects of the Sensor Emulation accomplished is being
demand-less - exactly the same sensor-based Android applications will be able to use
the sensors on the real and virtual phones, with absolutely no difference in terms of
their sensor-based behavior.

The emulation’s core idea is the socket-communication between two modules of
Hardware Abstraction Layer(HAL) which is driver-agnostic, remotely over a wireless
network in real-time. Apart from a Paired real-device scenario from which the real
hardware sensor readings are fetched, the Sensor Emulation also is compatible with a
Remote Server Scenario wherein the artificially generated sensor readings are fetched
from a remote server. Due to the Sensor Emulation having been built on mere

end-to-end socket-communication, it’s logical and obvious to see that the real and
virtual phones can run different Android(-x86) releases with no real impact on the
Sensor Emulation being accomplished.

Sensor Emulation once completed was evaluated for each of the emulated sensors
using applications from Android Market as well as Amazon Appstore. The applications
category include both the basic sensor-test applications that show raw sensor readings,
as well as the advanced 3D sensor-driven games which are emulator compatible,
especially in terms of the graphics. The evaluations proved the current work of Sensor
Emulation to be generic, efficient, robust, fast, accurate, and real.

As of this writing i.e., January 2014, the current work of Sensor Emulation is the sole
system-level sensor virtualization work that embraces remoteness in real-time for the
emulated Android-x86 systems. It is important to note that though the current work is
targeted for Android-x86, the code written for the current work makes no assumptions
about underlying platform to be an x86 one. Hence, the work is also logically seen as
compatible with ARM based emulated Android environment though not actually
tested.

Contents
Contents . i

List of Figures . ii

List of Tables . iii

Acknowledgments . iv

1 Introduction . 1

2 Motivation and Use Cases . 3

3 Requirements . 7

4 Design Comparisons . 8

5 Android-x86. Sensors and HAL . 12

6 Sensor Emulation Software Architecture . 25

7 Design Considerations . 29

8 Demo . 33

9 Implementation . 35

10 Evaluation . 39

11 Challenges . 143

12 Usability Factor .. 152

13 Related Works . 154

14 Conclusion and Future Work . 167

15 Bibliography . 170

i

List of Figures

4.1 Android Low-Level System Architecture . 8

6 Sensor Emulation Software Architecture 25

8.1.1 Snapshot 1 - Emulated Accelerometer in action 33

8.1.2 Snapshot 2 - Emulated Gyroscope in action 33

8.2.1 Snapshot 3 - All 10 sensors in action - remote server scenario . . 34

10.1 Pictorial comparison of the average time delays applicable for the
sensor readings in reaching the Virtual Android Device(VAD) from the
Real Android Device(RAD) . 48

ii

List of Tables

10.1 Numerical comparison of the average time delays applicable for the
sensor readings in reaching the Virtual Android Device(VAD) from
the Real Android Device(RAD) . 50

iii

Acknowledgments

My thesis work is dedicated to all of my lovely family who have supported throughout
my studies from my childhood -- my great parents, Mrs. Mythili Santhanam and Mr.
Santhanam Raghavachar, my kind and helping elder brother Mr. Venugopal
Santhanam, my caring father’s sister, Late Ramaa S K, and my affectionate late
grandmother Kamalamma R. I weigh all of them to be equally important regardless of
the order in which their names appear here and I am deeply indebted to all of them as
without their support I wouldn’t have been what I’m now.

I sincerely thank Songchun Fan, PhD student at Duke University, NC for having the
patience in reviewing my updates at every intermediate stage of my thesis work in
suggesting what’s important and what’s not. Appreciate it wholeheartedly.

I want to thank Prof. Jason Nieh, CS Dept, Columbia University, NYC for his valuable
suggestions on my thesis work to bring my thesis into a good shape with considerable
importance for defending my thesis. It’s been nice knowing him since my first
semester of my Master’s here at Columbia having attended his Operating Systems-I in
fall 2012 as my first day, first class of my Master’s here at Columbia!

I want to thank Prof. Luca Carloni, CS Dept, Columbia University, NYC for accepting to
serve my thesis defense review committee. It’s been great knowing his kindness in
approaching students who are willing to interact with him anywhere, anytime,
especially even after the course being taught and attended is over! I took his
interesting course Computer Architecture with him during fall 2012.

I have always been extremely excited by looking at the passion of Prof. Roxana
Geambasu for Distributed Systems and the relevant technology. I admire her energy
while teaching the courses which is so contagious! It was really thought-provoking to
attend and listen to her Distributed Systems course in my first semester during fall
2012.

Last but not the least, I want to thank “Time-The Almighty”.

“The Time has to speak and it will.”

iv

Chapter 1
Introduction

 Being in 2014, the smartphone industry has almost captivated
us humans with its astonishing capabilities. The capabilities that were once seen only as
science fiction are now realities. The capabilities include but not limited to sensing heat
of a thermal body, atmospheric pressure in a submarine, change in ambience for an
auto-brightness light, speed a vehicle, spatial orientation of a stationary object, gravity’s
influence on an object in space, magnetic radiation in a mining area, geographical
position in remote parts of our earth, and a lot more. In recent times, these capabilities
have become an inseparable part of our lives due to their limitless usefulness in our
day-to-day activities.

Smartphone Virtualization is an intriguing technology with its capability to host
different platforms on the same piece of hardware with no additional cost - smartphone
customization at its best. The ability to run such virtualized smartphones on machines
such as desktops or large servers leverages the importance of smartphone
virtualization. The leverage is in the form of the opportunity to run hundreds of such
virtualized smartphones independently at the same time on the same machine. And
when the sensing capabilities of a real smartphone can be fully experienced in such a
vastly scaled up virtualized environment, the sensor-based smartphone applications
using the virtualized sensors of the virtualized smartphones, will find the door to
exploit the strengths of smartphone virtualization, wide open.

Remote-sensing capability over the environmental changes has been the epitome of
many active researches in the areas of Space exploration, Oceanography, etc. When the
remote-sensing capability is integral to smartphone virtualization, the resulting
opportunities are infinite. In other words, adding Sensor Emulation to the virtualized
smartphones that can be controlled in a remote manner, will be a great value addition to
the smartphone virtualization technology, with those virtualized smartphones being
powered by desktops or large servers as mentioned previously. This value addition will
be a great feat when it’s achievable in real-time. Thus, enabling
virtual(virtualized/emulated) phones(smartphones) to remotely sense physical(real)
phones(smartphones) in real-time which is nothing but Sensor Emulation, is
noteworthy.

Accomplishing the Sensor Emulation in a virtualized smartphone environment
emphasizing the aspects of remoteness and real-timeness in a full-fledged manner is
quite different from building sophisticated physical systems for real-time

Android-x86 Sensor Emulation 1 Raghavan Santhanam

remote-sensing. The difference lies in the very notion of emulation of sensor with all
the real-world characteristics. This implies that apart from being able to collect the raw
sensor data remotely in real-time from the real hardware sensors, the emulated sensors
can be operated just like real hardware sensors, in the virtualized smartphone
environment. As a result, the emulated sensors can be calibrated, altered for their
sampling frequency of sensor data, and so on. If need be, the real hardware sensors
driving can be operated via the emulated sensors by having two-way communication
between the real and emulated sensors. All these will be absent in the usual
remote-sensing systems whose aim is to just accumulate data in real-time from the
deployed real hardware sensors in the designated remote places, and analyze them live
or offline. As a matter of fact, building hundreds of sophisticated remote-sensing
physical systems is way expensive than powering hundreds of, even thousands of
virtualized smartphones on a single or a minimal set of resourceful desktops or large
servers, equipped with emulated sensors driven remotely by real hardware sensors in
real-time. Thus, the current work of Sensor Emulation in virtualized smartphone
environment stands out among all the sensor-based works(listed in related works
Chapter) as of January 2014.

The ambitious task of Sensor Emulation, that is enabling virtual phones to remotely
sense physical phones in real-time demands considerable amount of work and is quite
challenging as well. When the time available to accomplish it is relatively less, the
challenge gets even better. Reason being, the software shipped with the smartphones
would not have been be usually designed for the purpose of remote-sensing at all, but
only for localized usage by an ordinary cellphone user. The considerable work will be
in the form of including features into the software of the virtual and physical phones so
that virtual phones powered by desktops or large servers, can do the remote-sensing
using the physical phones. The included features must be robust, fast, accurate,
generic, efficient, and real - a challenge that the current work of Sensor Emulation has
accomplished in a tight schedule of three months from Sep-Nov, 2013.

As far as the current work is concerned, the real phones will be the ARM based Android
smartphones and the virtual phones will be running Android-x86. The reason for
choosing Android-x86 for virtual phones is that once accomplished the Sensor
Emulation can be used in the virtualized Android-x86 based real phones(devices such as
tablets, gadgets, etc) which are feature-rich over the ARM based real Android
smartphones when full-fledged user layout of desktops and tablets are considered.

Android-x86 Sensor Emulation 2 Raghavan Santhanam

Chapter 2
Motivation and Use
Cases

This chapter discusses about the real driving forces
behind the current work of Sensor Emulation and the resulting use cases of the Sensor
Emulation accomplished.

2.1 Motivation

The topic of sensors has been widely dealt with in
number of research papers with respect to number of real-world scenarios.

1. One of Android tools project focuses on achieving Sensor Emulation in a
wired(USB) manner with some delay but only for two sensors.[10]

2. Wireless sensor networks which focus on building a wireless network involving
real hardware sensors deployed at remote geographical locations.[52-61]

3. Healthcare sensor-based products attached to patients’ bodies to monitor their
health based on the sensor data retrievable onto a centralized system operated by
doctors.[44-47]

4. Sensor simulation(and not emulation) models that generate artificial sensor data
in various scenarios.[9,11,12]

5. Many smartphone virtualization works talk about isolating the virtual machines
running on the same smartphone, in accessing the underlying real hardware
sensors in a secure and controlled manner.[19-32]

For more specifics on related works, Chapter 13 on “Related works” can be referred.

After reading all of the related works, it must be evident that none of them have an
element of emulation of sensors, the emulation of sensors in a virtualized platform
with emphasis on real-timeness and remoteness. The emulation of sensors in a
virtualized platform is more about having full-fledged emulated sensors with all of the
characteristics that real hardware sensors on a real device will have. This implies that
it’s not only about real hardware sensor data available on a virtualized platform
remotely in real-time but also the possibility of driving the emulated sensors by the real
hardware sensors remotely in real-time making the emulation of sensors closer to the
real-world environment. This very possibility makes the current work to stand out
among all the sensor-based works of every kind. And this very possibility is the major
motivation factor for the current work of Sensor Emulation to be accomplished
emphasizing on the aspects of real-timeness and remoteness.

Android-x86 Sensor Emulation 3 Raghavan Santhanam

The ability to drive emulated sensors in a virtualized platform by real hardware sensors
present on a real device has a huge impact with respect to smartphone environment.
The impact is so huge that it enables the feature-rich mobile platform to be fully
functional even when virtualized, specifically in terms of sensor-based behavior. As a
direct consequence of the availability of sensors support in an emulated smartphone
environment, each and every sensor-based application developed for real smartphone
environment will now be able to run absolutely unchanged on the emulated
smartphone environment. This enablement for the sensor-based applications to act
under the influence of real hardware sensors data available via emulated sensors in a
virtualized environment remotely in real-time, has numerous useful implications
which are listed under the “Use cases” section next.

The real benefit of such an ability is multiplied when thousands of such virtualized
smartphone environment will be hosted independently on a single large machine like a
resourceful desktop or a powerful server capable of running the virtualized
smartphones in an isolated manner in the fullest execution speed. This leverage
obtained by employing large-scale smartphone virtualization opens up wide range of
opportunities in the field of Space exploration, Oceanography, etc which in general
demand large-scale remote-sensing to happen in real-time as per the dynamics of the
respective environment. This approach to have large-scale smartphone virtualization
with emulated sensors driven remotely by real hardware sensors(say that are present
on a spacecraft in the case of Space exploration, etc) in real-time is cost-effective and
easily scaleable as opposed to other usual remote-sensing systems which involve a
huge manual and financial investment on the sophisticated “physical” systems which
interact with the remotely deployed systems(like a spacecraft, etc). So, apart from just
being able to get raw sensor data remotely in real-time with no additional money
involved in powering thousands of virtualized smartphones on the same physical
machine(only for which there will be an initial investment), the virtualized sensors
behave as real hardware sensors in every aspect and thus the emulation of sensors
driven by real hardware sensors remotely in real-time offers completeness that is either
absent or limited in the systems that collect only raw sensor data, of course remotely in
real-time. Thus, this completeness achievable through the current work was also one of
the motivation factors initially.

As of January 2014, among the smartphone platforms, Android is the leading mobile
operating system[73]. It’s also open source which allows the unrestricted study of the
internals of a mobile platform which is very essential for any breakthrough research to
happen. In addition, the developer base for the Android is the biggest as of January
2014[74]. And with the added benefits of full-fledged desktop and tablet layout,
Android-x86[1], the x86 port of Android which can be run on the desktops and tablets
with all of the standard Android features and even more, ideally suits and hence it was
one of the motivation factors to accomplish the current work of Sensor Emulation in
virtualized Android-x86 emphasizing the aspects of real-timeness and remoteness.

Android-x86 Sensor Emulation 4 Raghavan Santhanam

On the whole, the importance and benefits of Sensor Emulation in virtualized
Android-x86 emphasizing remoteness and real-timeness, together form a big motivation
for the current work.

2.2 Use Cases

Use cases of the Sensor Emulation are diverse due to the
scalability factor enabled by virtualization in running hundreds of thousands of
virtualized Android-x86 phones in parallel on the same desktops or large servers. And
the sheer diversity is dominated by the real-timeness and remoteness of the sensor
readings provided by the emulated sensors.

There are number of notable use cases including but not limited to the below ones.

1. Monitoring the body temperature of all the patients in a hospital sitting in one
place and alerting the concerned doctors when needed. This monitoring and
alerting can either be manual or automated. For the automated scenario, there
can be a sensor-based application acting under the influence of the emulated
temperature sensors.

2. Broadcasting alert messages when magnetic field threshold in a mining area is
crossed by deploying real phones with magnetometer at all the important places
in the mining area. The broadcast can be either manual or automated one with
the broadcast informing people working in the affected life-threatening parts of
that mining area due to intense magnetic radiations, to vacate those areas
immediately.

3. Remotely triggering solar battery panels of a spacecraft to open when there is
ample solar light, from a virtualized system(phone) based on the emulated light
sensor’s readings which are the ones that are fetched from the real hardware
light sensor built into the physical phone deployed on the spacecraft. There can
be a cluster of spacecrafts that need to be monitored remotely in real-time to
carry out this trigger either manually or in an automated fashion so that those
spacecrafts don’t run of power, especially during critical operations.

4. Tracking remotely the speed of given number of vehicles in real-time, meant to
work in unison at the exactly same pre-defined speed for some legitimate reason.
And if there is any slight difference in any of their speeds, necessary operations
can be manually carried out or automated to fix the difference as per the need.

5. In a levitated train, taking necessary actions when the tolerable proximity
between the railings and the levitated train’s bottom is surpassed, everything
remotely and in real-time. The actions can be manually taken or automated as
needed.

6. Testing Android sensor-based applications on the virtualized phones. This use
case is really exhaustive in itself. Same sensor-based application can be run on

Android-x86 Sensor Emulation 5 Raghavan Santhanam

many virtualized Android-x86 phones on the same physical machine at the same
time in isolation. The testing can be carried out with the same sensor-based
application running in several virtualized phones with different Android-x86
releases at the same time, for real-time comparisons of that application’s
behavior and performance on different Android-x86 releases. Same real
hardware sensor readings can be used for a specific emulated sensor in many
virtualized phones at the same time. All that is needed for these to happen is to
pair a single real phone with many virtual phones.

7. Adding virtually any sensor defined by Android sensor subsystem to any number
of virtualized phones with no restriction whatsoever as long as there is one real
phone paired with these virtualized phones to feed the added sensor.

8. Experimenting the sensor-based applications on any version of Android-x86 on
the virtualized phones without spending an extra penny.

The current work is accomplished for one real and one virtual phone. But, all the above
use cases explained with one real and many virtual phones are very much feasible as
it’s just the scaling of the device server on the real phone that’s needed to accept
multiple socket-connection requests and provide them with the same real hardware
sensor readings as opposed to the current logic of accepting one connection and sending
the real hardware sensor readings to it.

One really out of the box use case of the current work would be adding an emulated
sensor onto a real Android-x86 device. This is possible by adding the Sensor Emulation
code for the needed sensor for the real Android-x86 device so that the device will see
the sensor to be present when it’s really isn’t. And for this virtually added sensor on the
real device, a real Android smartphone can be paired and any sensor-based application
on the real Android-x86 device can be controlled using the paired real Android
smartphone. The real Android-x86 device can be a tablet or a desktop with Android-x86
installed directly on its bare hardware.

Another similar out of the box use case would be with a real Android smartphone itself.
The current work can also be used to emulate a sensor that’s absent in a real Android
smartphone and let that be driven by another paired real Android smartphone which
has the emulated sensor in real.

Thus, the current work on Sensor Emulations is not limited to virtualized Android(-x86)
platforms but includes real Android(-x86) platforms too. Hence, the sensor HAL based
solution proposed by the current work is very universal, unique, and very useful.

Android-x86 Sensor Emulation 6 Raghavan Santhanam

Chapter 3
Requirements
The Sensor Emulation was designed and implemented with following crucial
requirements under focus.

1. Generic - Sensor Emulation shouldn’t be dependent on the underlying hardware
at all.

2. Wireless - The work should focus on offering the real hardware sensor readings
in a remote manner.

3. Lossless and consistent - Given a proper network connectivity and bandwidth,
there shouldn’t be any loss in the sensor readings being sent from the real to
virtual device. The readings shouldn’t lose their order in reaching the
destination.

4. Accurate - The sensor readings being sent from real phone to virtual phone
should be accurate in terms of the precision of the numerical values/components
of the individual sensor readings.

5. Swift - The real-device-end implementation should be fast enough in sending the
readings accounting for the real-time aspect of the work.

6. Tolerant to high-frequency transmission of sensor readings - The virtualized
environment should be able to handle high influx of the sensor readings from
the real device.

7. Auto-resetting and Auto-restoring - The whole work should be fault-tolerant in
resetting and restoring the end-to-end emulation state to a sane one.

8. Optimized in terms of end-to-end socket-communication - Unnecessary
send-receive socket-communication calls need to be avoided and alternatives
should be found to reduce the overall network overhead.

9. Rigorously tested - The work needs to be tested and validated using all kinds of
applications ranging from the simplest sensor-test applications showing just raw
numbers of sensor readings to the advanced 3D sensor-intensive games which
might involve the high-end graphical dependencies.

10. Real - The emulation must be as real as possible. Focus should be on having
almost no differentiation at all between the real and virtualized sensors in every
possible technical aspect.

11. Demand-less - No modifications to the existing emulator-compatible
sensor-based application’s should be demanded in order to work with the current
work of Sensor Emulation.

12. Independent - Sensor Emulation must remain unaffected from all the aspects of
any sensor-based application using the sensor data from the emulated sensors.

Android-x86 Sensor Emulation 7 Raghavan Santhanam

Chapter 4
Design Comparisons

Fig. 4.1 Android Low-Level System Architecture
(Source: http://source.android.com/devices/images/system-architecture.png)

Android low-level system architecture shown in Fig. 4.1
has the below mentioned layers as listed and described in the online documentation.

Android-x86 Sensor Emulation 8 Raghavan Santhanam

http://source.android.com/devices/images/system-architecture.png
http://source.android.com/devices/

As a consequence, Sensor Emulation has the option to be done at different layers of
Android system as shown in Fig. 4.1(previous page).

4.1 Device-driver level, bottommost
To maximize the speed of Sensor Emulation, it can be done

at device driver level. But, this mandates the Sensor Emulation to be driver-dependent
which is in turn underlying device-dependent wherein the device being referred is the
real hardware sensor. Therefore, this kills the generality of the Sensor Emulation and
necessitates the work to be redone for every different device in the respective
device-driver.

Android-x86 Sensor Emulation 9 Raghavan Santhanam

4.2 Application-layer level, topmost
If only genericness is of interest, Sensor Emulation could

have been done at application-layer but it will suffer from the obvious extra time taken
for the real hardware sensor readings to reach its destination right from the
device-driver level to the application-layer on the real phone and then ultimately, the
virtual phone. This adds to the unwanted overall delay of transmitting the real
hardware sensor readings from the real phone to virtual phone.

4.3 Levels other than at HAL
On similar lines, the work could have been done at any

other layer except Hardware Abstraction Layer(HAL) but sacrificing either the generality
of the Sensor Emulation or compromising the end-to-end speed of execution of the
Sensor Emulation.

4.4 HAL level
The sensor emulation is designed at system level making it

a system-level Sensor Emulation. This system-level Sensor Emulation is being done at
Hardware Abstraction Layer(HAL) illustrated in above Fig. 4.1(in one of the previous
pages) and hence it’s generic and portable as opposed device-driver level Sensor
Emulation, given that the device driver is device-dependent as well as its vendor with
respect to its specifications, etc. The HAL based implementation logic holds good
regardless of any newer releases of Android that can happen in the coming years and
also it’s regardless of the changes that happen below the HAL like in the device-driver
level, etc. This is because, the HAL is the abstract representation of the underlying
hardware as opposed to the detailed and tight representation. Hence, the abstraction
shall and will never break, and so is the Sensor Emulation work done at sensors HAL.

The system-level Sensor “Emulation” is way better than any application-level Sensor
“Simulation”, as the latter will always be running as a stand-alone application and the
other sensor-based applications need to be modified to interact with this stand-alone
application to get the “fake” sensor readings being generated artificially based on some
logic such as input devices’ data, etc. In addition, if the real device sensor readings are
needed, then again this stand-alone application needs to be implemented such that it
gets from the underlying abstraction layers(JNI, HAL etc) which affects the time taken in
getting the real device sensor readings. And then the same stand-alone application
needs to be modified for the emulated Android-x86, if the real device sensor readings
are needed. Even then, the sensor-based applications running in the emulated
Android-x86 need to be modified to interact with the stand-alone application running in
the same emulated Android-x86 to get the real device sensor readings. Quite obviously,
HAL based approach is closer to the metal than application-layer based approach of
Sensor Emulation and hence the time taken in getting the real hardware sensor readings

Android-x86 Sensor Emulation 10 Raghavan Santhanam

on the real phone with application-layer based approach will more than that of with
HAL based approach. Thus, this extra time taken even if in terms of nanoseconds adds
to the overall time delay for the real hardware sensor readings to reach from the real
phone to virtual phone. With the HAL based Sensor Emulation, there is no real burden
on the application developers. The exact applications they develop for the real Android
device equipped with real device sensors run with absolutely no problem, as far as the
respective sensor’s behavior is concerned. Thus, the system-level Sensor Emulation at
HAL is proven to be efficient, portable, and universal to all the Android systems and not
only just the x86 based ones.

Android-x86 Sensor Emulation 11 Raghavan Santhanam

Chapter 5
Android-x86, Sensors, and
HAL

5.1 Android-x86
As seen at http://www.android-x86.org/.

5.2 Sensors
Introduction to Android sensors as in online

documentation.

Android-x86 Sensor Emulation 12 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fwww.android-x86.org%2F&sa=D&sntz=1&usg=AFQjCNG1Etd1o41PCdbvdtDkic8-IUHIVA
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html

Android-x86 Sensor Emulation 13 Raghavan Santhanam

Android-x86 Sensor Emulation 14 Raghavan Santhanam

Android-x86 Sensor Emulation 15 Raghavan Santhanam

Android-x86 Sensor Emulation 16 Raghavan Santhanam

5.3 Hardware Abstraction Layer(HAL)
As it’s mentioned in the online documentation here

is the description about HAL, again for reference.

5.4 Android Sensors HAL

Here’s a brief description of Android Sensors for
reference from the online documentation.

Android-x86 Sensor Emulation 17 Raghavan Santhanam

http://source.android.com/devices/
https://source.android.com/devices/sensors/index.html

5.5 HAL data Structures
Every piece of hardware for an Android device

needs to have a standard Android hardware module interface to be defined and
implemented with the default methods(functions) for controlling it.

5.5.1 Hardware module representation

As in hardware/hardware.h.(<android_src_path>
/hardware/libhardware/include/hardware/hardware.h)

Android-x86 Sensor Emulation 18 Raghavan Santhanam

Android-x86 Sensor Emulation 19 Raghavan Santhanam

5.5.2 Hardware module methods representation

As in hardware/hardware.h.

5.5.3 Hardware device representation

As in hardware/hardware.h.

Android-x86 Sensor Emulation 20 Raghavan Santhanam

5.6 Sensor HAL representation

5.6.1 Sensor representation

As in hardware/sensors.h.

Android-x86 Sensor Emulation 21 Raghavan Santhanam

5.6.2 Sensor Module representation

As in hardware/sensors.h.

5.6.3 Sensor Event representation

As in hardware/sensors.h.

Android-x86 Sensor Emulation 22 Raghavan Santhanam

5.6.4 Common sensor HAL calls

Below is a list of common sensor HAL function calls
that happen as mentioned in the online documentation.

Android-x86 Sensor Emulation 23 Raghavan Santhanam

https://source.android.com/devices/sensors/index.html

Android-x86 Sensor Emulation 24 Raghavan Santhanam

Chapter 6
Sensor Emulation
Software Architecture

Fig. 6 Sensor Emulation Software Architecture
Note: The above architecture remains same in the case of a remote-server in place of RAD except that
the remote-server generates the artificial sensor readings for each of the sensor being queried for the
emulation. The method used to generate artificial readings is a simple one based on random number
generation, as of now.

The above Fig. 6 depicts the Sensor Emulation Software
Architecture with the three main components of the emulation work in action.

1. Sensor HAL module on the physical phone(Real Android Device - RAD).
2. Sensor HAL module on the virtual phone(Virtual Android Device - VAD).
3. Intermediate userspace program facilitating the transmission of real sensor

readings from the physical phone to the virtual phone.

A complete cycle of Sensor Emulation works as under.
1. Real hardware sensor readings get processed in the event loop of Sensor HAL

module of RAD.
2. The processes readings are given to the readings server part of the same Sensor

HAL module through a shared buffer(pipe).
3. The readings server sends those readings to the client to real device over wireless

network. The wireless transmission accounts for the remoteness.

Android-x86 Sensor Emulation 25 Raghavan Santhanam

4. The client to real device which is part of the intermediate userspace program,
sends the received readings to the dummy forever-sleep server which is also
running as part of the same intermediate userspace program.

5. Due to port mapping(forwarding), the readings sent to the dummy forever sleep
server automatically are forwarded to the emulator server for the specific sensor.
The emulator server will be running as part of the Sensor HAL module of VAD.

6. The emulator server extracts the numerical sensor readings from the received
readings network buffer onto a global buffer.

7. The periodically polled function of the Sensor HAL module of VAD reads the
global buffer and prepares the array of sensor readings with the respective
sensor types and returns this array as a set of sensor events along with the
number of sensor events.

8. The sensor-based application running in VAD will ultimately receive the readings
from the Sensor HAL via all the intermediate layers and thereon the application
can use the sensor readings just like it does on a RAD.

The above repetitive cycle is applicable independently for each of the sensors being
emulated. Both in RAD and VAD, the existing sensors specific code belonging to Sensor
HAL module while initializing the respective sensor, will spawn these clients and
servers as independent threads. These clients and servers will be dedicated to the
respective sensors to let the unaffected clients and servers to continue independently, if
one of the clients or servers get affected by any error.

End-to-end, the sensor readings are being dealt with using unique buffers. This
end-to-end uniqueness refers to everything from the buffer used for the internal
processing of the sensor readings of each sensor within the Sensor HAL module in RAD,
the network buffer used for packing and sending the sensor readings processed within
the RAD, receiving the packed and sent readings in the client to real device, parsing and
extracting the received readings within the Sensor HAL module for each sensor in VAD.
This uniqueness accounts greatly for the incredible speed of the overall Sensor
Emulation since there will be no common network buffer that would be otherwise be
dominated by the readings from the sensors with higher sampling frequencies leaving
the readings of relatively slower sampling frequencies to starve from reaching their
destination.

There is a symmetry in the design of the Sensor HAL module workings between RAD
and VAD for each of the sensors being emulated with only one difference - RAD hosts
the servers sending the real hardware sensor readings while VAD also hosts the servers
but receiving those sent real hardware sensor readings. The servers on VAD can’t be
clients as they are receiving and not sending as opposed to usual server logic of sending
data and not receiving data. This is because, the readings are received via the mapped
ports inside the Sensor HAL module of VAD and only servers can listen to these mapped
ports and not clients.

Android-x86 Sensor Emulation 26 Raghavan Santhanam

It’s necessary to note that the intermediate userspace program is mentioned specifically
being in “C”. The real reason for choosing it to be in “C” is that for the Sensor Emulation
to be real-time, speed is very crucial. And it’s known that an efficient implementation of
an algorithm in “C” scores over an equivalently efficient implementation of the same
algorithm in any high-level language such as Java, etc - the difference in speed may be
fraction of a fraction of a fraction of a nanosecond, but that minutest speed difference
must not and will not be overlooked as the current work of Sensor Emulation is aimed
to be real-time. And the reason for mentioning it in the software architecture diagram
itself is to avoid any confusion over the choice of implementation language for the
intermediate userspace program when the speed is of utmost importance.

Sensors being emulated in the current work is all the sensors that are supported by
Android Sensors HAL API which are necessarily physically part of the real Android
device, Samsung Nexus S smartphone.
Real sensors

1. Accelerometer
2. Magnetometer
3. Light
4. Proximity
5. Gyroscope

Virtual sensors
6. Corrected Gyroscope
7. Linear Acceleration
8. Gravity
9. Orientation
10. Rotation Vector

Remaining sensors supported by Android Sensors HAL API are:
1. Temperature
2. Ambient temperature
3. Pressure
4. Relative Humidity

Detailed information about all the Android sensors is provided in the earlier Chapter 5.

The Audio recorders(microphones, etc), Global Positioning System (GPS) devices, and
accessory (pluggable) sensors are not physically part of the real Android device and
hence are not supported by Android Sensors HAL API. Thus, these are not being
emulated. However, for these sensors not supported by Android Sensors HAL API, the
existing Sensor Emulation logic works as the logic is just socket-communication based
transmission of sensor readings from RAD to VAD and has no dependency on Android
Sensors HAL API as such. In fact, for these sensors unsupported by Android Sensors

Android-x86 Sensor Emulation 27 Raghavan Santhanam

HAL API, the same client-server driven socket-communication between RAD and VAD
can be used for the Sensor Emulation, in the related Android HAL module but not in
Android Sensors HAL module.

It should be noted that this work is precisely about Sensor Emulation and not any
Hardware Emulation in general. So, emulating entire hardware components which have
sensor(s) as one of their subcomponents is out of the scope of the current work. For
example, emulating entire Camera hardware of Android which has an image sensor as
one of its subcomponents, is just out of the question.

Android-x86 Sensor Emulation 28 Raghavan Santhanam

Chapter 7
Design Considerations

The design considered comprises of three main
components.

1. The device server on the real Android device.
2. The userspace “C” program in the host.
3. The emulator server on the virtual Android device.

Socket-communication based interactions between these three components facilitate the
necessary Sensor Emulation on the virtualized Android-x86. All these
socket-communication are designed to be part of the Sensor HAL module on both the
real and virtual Android devices, in addition to the client-server logic implemented in
the userspace “C” program targeted for the host running the virtualized Android-x86 on
Qemu.

Inside the sensor HAL module, the reads and writes of the sensor readings are designed
to be efficient, fast, reliable and real-time. In the device sensor HAL module, the each of
the existing sensor event loop is modified to notify the respective sensor readings to the
corresponding real device server running as part of the same device sensor HAL
module via one of the inter-thread communication mechanisms, pipes. The real device
server is designed to be as efficient as possible and robust at the same time. The
efficiency is in terms of the absence of synchronous polling for change in the device
sensor readings, but asynchronous as pipes are being used for sharing sequentialized
sensor data. Robustness is in terms of being fault-tolerant to the failures in
socket-communication errors. Should there be any socket communication errors, the
respective socket communication logic is designed so as to reset the socket-server to a
sane state saved previously, which is usually the entry point of the corresponding
sensor server thread

Each sensor has its own dedicated pair of client-server end-to-end. This design choice
ensures that each healthy sensor client/server remains unaffected by any other
error-prone sensor client(s)/server(s). This also implies that the device sensor server for
a sensor runs on demand only when that sensor is enabled and active. In addition, the
dedicated sensor servers rule out the very need to parse every incoming network
buffer/packet to detect which sensor’s reading it is which would be the case when a
single sensor server is sending the aggregated sensors readings compromising on the
number of sensor device server threads in the device sensor HAL module with an intent
of reducing the number of socket TCP/IP connections. This dedication also simplifies the
entire design to a greater extent as it doesn’t necessarily mandate the event loop of each

Android-x86 Sensor Emulation 29 Raghavan Santhanam

of the sensor to be filling the same shared buffer in a synchronized manner with the
respective sensor readings, given that each sensor is implemented as a separate
hardware module. The sheer amount of synchronization overhead involved in such a
scenario prevents the sensor readings to be sent and eventually available on the
emulated Android-x86, in real-time at high-speed. Hence, the design choice of the
dedicated client-server for each of the sensors end-to-end is proven to be efficient and
robust as claimed.

As mentioned in the software architecture chapter, userspace program needs to be
implemented in “C” as opposed to in any high-level language such as Java or even
scripting languages such as Python, etc, for not compromising on even the minutest of
the minutest time delay for the real hardware sensor readings to reach from the RAD to
VAD.

The userspace “C” program is designed to be having a dummy server which acts as a
gateway/interface/backdoor to the emulator server. There are dedicated dummy servers
for each of the emulator sensor servers. These dummy servers are made to accept
connection with respect to a mapped port from the host to the guest(Android-x86) and
then put to forever-sleep by some suitable mechanism like waiting on a semaphore
which never gets signaled by other thing. So, when the client-to-device or
client-to-remote-server wants to send the received sensor readings to the emulator
server, it sends those readings to the respective dummy server for the corresponding
sensor at a particular port. Due to the port-mapping/forwarding mechanism, the same
reading gets forwarded from the host to guest and thus it reaches the respective
emulator sensor server listening to the mapped port. This design considered over
explicit send-receive between the userspace “C” program and the emulator server helps
in reducing the overhead of making explicit send/recv socket-communication based
calls in the userspace “C” program. And also, this rules out any need for the userspace
“C” program and the emulator servers to know each others’ machine’s ip-address and
also the port to be used for the socket-based communication. Thus making the
interaction between the userspace “C” program and the emulator server generic.

The emulator server mentioned above is designed as a server though it receives but
doesn’t send anything as opposed to the regular notion of server sending and client
receiving it. The reasons for that to be a server is that the sensor readings are got
through the mapped port from the host(Ubuntu) of the emulator to the guest(emulated
Android-x86) and hence it needs to listen to the mapped port and thus it needs to be a
server receiving readings and not a client.

To account for the high-frequency real Android sensors, Gyroscope and Accelerometer,
in that order, as opposed to the relatively low-frequency ones which are the remaining
three real Android sensors(magnetic, light and proximity), their emulator server code
are designed to be fine-tuned as per the rate at which the gyroscope and accelerometer

Android-x86 Sensor Emulation 30 Raghavan Santhanam

sensor readings arrive from the real device to the emulator. This fine tuning is a must
to account for the accurate, lossless, and real aspects of Sensor Emulation, specifically
for accelerometer and gyroscope sensors. Otherwise, if fine-tuning is not needed, one
needs to compromise on those three important aspects of the current work. The
sampling frequencies of accelerometer and gyroscope on the real phone can be brought
down to match that of the other slower sensors so that send-one-receive-one will be the
common logic for all of the client-server pairs of all the sensors end-to-end -
compromises the losslessness and accurateness of Sensor Emulation, but some of the
sensor readings will be lost within the device itself due to the reduced sampling
frequency though the underlying real hardware sensor will still be sensing at its
original rate. Instead of modifying the real hardware sensor’s sampling frequency, the
sampling frequency of the emulated sensor can be brought down but this is useless -
compromises realness, accurateness, and losslessness since the emulated sensor is no
longer working at the same sampling frequency as that of the respective real hardware
sensor, hence loss of some of the readings, and thus not accurate as well when
compared to the behavior of the real hardware sensor. In short, fine-tuning is a must
for the sensors(accelerometer and gyroscope) with relatively high sampling frequencies
since the current work of Sensor Emulation must be accurate, lossless and real, in
addition to other requirements.

The fine-tuning is in terms of the amount of the readings received at a time and the
sleep delay for these emulator servers. However, still, the gyroscope and accelerometer
real device servers and the userspace “C” programs are designed to send the respective
sensor readings one at a time, as they are not the points of bottlenecks but the
corresponding emulator sensor servers. The fine-tuning is necessary since the
gyroscope and accelerometer sensor readings get queued up in the network buffer even
when they are being sent one at time by their respective real device sensor servers
when their emulator servers are slow in receiving the readings one at a time. The
slowness could be due to the inherent overhead of the network-based communication
between the host and the emulator, the relatively slow the sensor server loop due to the
extra checks on the network-state, packet received and so on. This slowness would
make the Sensor Emulation for gyroscope and accelerometer slow and hence affects the
sensor-initiated responsiveness of the gyroscope and/or accelerometer sensor-based
Android applications running on the emulator.

As a consequence, the gyroscope emulator server is designed to be receiving a bunch of
pre-defined number of readings and so is the accelerometer emulator server. But, there
is a difference in the number of readings received by these servers and also the interval
at which these readings are received. The interval is short for gyroscope when
compared to accelerometer, since gyroscope is too sensitive and faster than
accelerometer on the real Android device. Apart from this design customization for
these two sensors, the way in which the bunch of readings received is processed is also
customized and tuned for only these two sensors as opposed to other three real sensors.

Android-x86 Sensor Emulation 31 Raghavan Santhanam

Since, the periodically polled sensor event data loop function is designed to process only
one reading at a time for speed and responsiveness, there is an intermediate buffer in
terms of pipe(inter-thread communication mechanism) dedicated to these two sensors
separately. One for the accelerometer and another for gyroscope. As a result, these
bunch of readings are written by the respective sensor servers onto the specific sensor
pipes(accelerometer-pipe and gyroscope-pipe) in a one go and the periodically polled
sensor event loop function reads off one reading at a time from the respective pipe and
returns it as the corresponding sensor’s data to the needed sensor subsystem. This
receive-many-process-one design consideration has a huge speed benefit over
receive-one-process-one which became apparent during the evaluation.

The entire sensor emulation code is designed to be comprehensively and thoroughly
logged. So, any developer will find the code to be friendly while debugging, if and when
the need be. These logs are macro enabled and hence can be enabled or disabled as per
the need. Each sensor has separate logs to ease the debugging. All the logs are designed
to be file-based and to be in separate files to let the developers follow each sensor
behavior easily. The standard built-in Android logging technique is not used since the
logcat output is not persistent across the booting of the system unless redirected to a file
or something similar, especially when there is a crash that brings down the entire
Android system triggering a reboot. So, again this ends up indirectly in a file-based
logging mechanism which is what the current file-based logging does in the first place.

The design decision to do the Sensor Emulation work at HAL level provides an edge due
to the fact that it’s closer to the hardware on the real Android device as opposed to the
same scenario with application-level Sensor Emulation. The direct and most important
consequence of this is the entire Sensor Emulation at HAL needing to be done in C/C++
which again has an obvious edge over any application-level Sensor Emulation in terms
of performance, which will be written in Java and hence the overhead of reaching down
all the way from the application layer to the HAL through other intermediate layers to
get the real device readings. This overhead can be negligible in general, but not when
even nanoseconds of difference is important. This definitely is important when
claiming the Sensor Emulation to be real-time, which is indeed one of the main
highlights of the current system-level Sensor Emulation.

Android-x86 Sensor Emulation 32 Raghavan Santhanam

Chapter 8
Demo

8.1 Paired Real Device Scenario

 Paired-real-device-scenario - Sensor Emulation using
the real device sensor readings received over the network(WiFi).

Fig. 8.1.1 Snapshot 1 - Emulated Accelerometer in action

Fig. 8.1.2 Snapshot 2 - Emulated Gyroscope in action

8.2 Remote Server Scenario

 Remote-server-scenario - Sensor Emulation using
artificially generated sensor readings fetched from a remote server, supposedly running
anywhere as long as it’s ip-address is known and public.

Android-x86 Sensor Emulation 33 Raghavan Santhanam

https://www.youtube.com/watch?v=J09fhk9WU6k
https://www.youtube.com/watch?v=J09fhk9WU6k
https://www.youtube.com/watch?v=M6AYO2Ne_rc
https://www.youtube.com/watch?v=M6AYO2Ne_rc

Fig. 8.2.1 Snapshot 3 - All 10 sensors in action - remote server scenario

Android-x86 Sensor Emulation 34 Raghavan Santhanam

Chapter 9
Implementation

The HAL module-specific implementation is split
based on the real Android sensors and the virtual Android sensors resulting from the
Android Sensor Fusion technique. All of the sensors that are present in the real Android
device, Samsung Nexus S are being emulated. They are as under.

Real Sensors - 1) Accelerometer 2) Magnetometer 3) Light 4) Proximity 5) Gyroscope
Virtual Sensors(constructed based on real ones using Android Sensor Fusion
method) - 6) Linear Acceleration 7) Orientation 8) Gravity 9) Rotation Vector 10)
Corrected Gyroscope.

For both the device and the emulated Android-x86, the source for the real sensors are
present under <android_src_path>/hardware/libsensors. The source for the
virtual sensors are under
<android_src_path>/frameworks/service/sensorservice. The exact source
paths are as under for both the device and the emulated Android-x86: Real sensors(all
under <android_src_path>/hardware/libsensors/)­ AkmSensor.cpp,
GyroSensor.cpp, InputEventReader.cpp, LightSensor.cpp,
ProximitySensor.cpp. Virtual sensors(all under
<android_src_path>/frameworks/service/sensorservice/) ­
LinearAccelerationSensor.cpp, RotationVectorSensor.cpp,
SensorFusion.cpp, SensorService.cpp, CorrectedGyroSensor.cpp,
GravitySensor.cpp, OrientationSensor.cpp

The real sensors’ code is deployed on RAD as a single library, sensors.herring.so
under /system/lib/hw/while as sensors.emu.so on VAD under /system/lib/hw/.
The virtual sensors’ code is deployed on RAD and VAD as a single library,
libsensorservice.so. under /system/lib/. These libraries are built as according to
the target platforms from more or less similar sources since only one of them will be
acting as a server and the other acting as a server which receives readings instead of
sending any, from the mapped port. The only obvious difference between the sources
for the device and the emulated Android-x86 is that the device side of the Android
sources implement servers providing the device sensor readings and the emulated
Android-x86 side of Android sources also implement a server but receives the device
sensor readings via the mapped port. The emulated Android-x86 side must be a server
against the usual notion of server only sending data and not receiving any, because it
has to listen to a mapped port. The userspace “C” program has two sources:

Android-x86 Sensor Emulation 35 Raghavan Santhanam

SensorEmulationClientServer.c,SensorEmulationRemoteServer.c. From here
on, unless and otherwise mentioned, the phrase “The userspace “C” program” refers to
SensorEmulationClientServer.cspecific to the client connecting to a real Android
device. SensorEmulationRemoteServer.c will be referred at the end. For connecting
to a RAD, SensorEmulationClientServer.c needs to be compiled with
DEVICE_READINGS defined as a pre-processor macro and for connecting to a remote
server implemented by SensorEmulationRemoteServer.c,
SensorEmulationClientServer.c needs to be compiled with
REMOTE_SERVER_READINGS as a pre-processor macro.

The userspace “C” program intended to be as an intermediary between the device and
the emulated Android-x86, is implemented with as many clients as the real device
sensors, which connect to the respective device readings server dedicated to a particular
sensor(real or virtual). These clients to real device will have their server counterparts
which are the dummy forever-sleep servers whose duty is to accept any one incoming
connection(from its client counterpart) and go for an infinite sleep, specifically, waiting
on a semaphore which never gets signalled. The dummy forever-sleep server concept is
crucial in reducing the overall time consumption. The reduction is due to the lack of the
need for any explicit receive-send for each of the device readings got, from the host to
the guest. All that is being done is that the connected client writes to a connected socket
of the dummy forever-sleep server which is in fact listening to a port that is mapped
onto the same numbered port inside the emulated Android-x86. The device’s ip-address
is the only thing need to be known in advance for the user-space “C” program for the
sake of its client-to-device. The ip-address will be read from a pre-determined file
expected to be in the current directory of the userspace “C” program(process). The
syntax is just plain one-liner having the ip-address in its usual layout which is
xxx.xxx.xxx.xxx terminated by a new-line. The port-mapping facility employed also
rules out any know-in-advance ip-addresses between the host and guest - the host and
the guest neither need to be aware of each others’ ip-address nor the ports being
listened to. The servers on the host listen to the host ports and the servers on the guest
to the guest ports - purely based on the localhost.

As of now, the entire concept of Sensor Emulation assumes that each sensor’s servers
and clients use only pre-determined ports assigned to them uniquely. This ensures that
there is no intermix of the sensor readings and hence the sensor data transmission is
streamlined end-to-end. The assigned ports are as under. Accelerometer:5000,
Magnetometer:5001, Light:5002, Proximity:5003, Gyroscope:5004,
Orientation:5005, Corrected Gyroscope:5006, Gravity:5007, Linear
Acceleration:5008,RotationVector:5009. However, if one-server-many-clients
needs to be implemented, then the hard-coded port numbers need to changed just by
offsetting by 10(as there are 10 sensors being emulated) and letting know all the
dependent client/servers/dummy-servers the exact port to be used for the
socket-communication. Thus, the above idea is still scaleable to any number of clients.

Android-x86 Sensor Emulation 36 Raghavan Santhanam

The delay chosen in each of the servers, clients, event loop everywhere is such that the
underlying system’s resource utilization is nominal and the sensor readings retain their
real-time nature, end-to-end, RAD-to-VAD. All the servers and clients are implemented
as pthreads of the respective process on the particular system(RAD, VAD, or Ubuntu).
As far as the readings are concerned, they are sent from the device to the emulated
Android-x86 as a buffer of a pre-determined maximum length and is a “C” string with a
specific pattern for each of the sensors. For example, accelerometer will have a x-y-z
triplet in its readings. So, it’s reading will be transmitted in a pattern that looks like
“0.000000|0.000000|0.000000”, wherein the pipe(|) symbol serves as the delimiter for the
individual component of the triplet. So, there is no fixed length for each of the
component but the entire pattern has a maximum limit which is the pre-determined
maximum length. For the maximum genericness, the userspace “C” program doesn’t do
anything with the sensors readings buffer of a particular pattern received from the
device. Instead, it just sends it to the emulator via the dummy server based on the
mapped port. The emulator server for the specific sensors will be responsible to
interpret the readings correctly by parsing the buffer of a particular pattern. This very
don’t-touch-just-send nature of the userspace “C” program makes it very generic and
portable - for any new sensor being emulated, all that needs to be done is to increase the
number of sensors defined in it and update the sensors’ names list. Rest of the work
will be done on the device-side code as well as the emulator-side code.

For majority of the sensors, i.e., 8 out 10 sensors being emulated, the
send-one-receive-one for the sensor readings are applicable. The only two sensors
which are having servers that send one at a time on the real device and receive a bunch
in the emulator are the gyroscope and accelerometer. The send-one-receive-one greatly
simplifies the overall design for the rest of the 8 sensors as there is no separate
processing criteria for each of the single sensor readings received apart from the
parsing the pipe-delimited sensor readings pattern. However, gyroscope and
accelerometer demanded send-one-receive-many as these two sensors have higher
sampling frequencies than the other eight sensors. Hence, the device sensor servers for
these two sensors send the respective sensor readings at a higher rate than the emulator
servers can process. As a consequence, sensors_emu.c implements the device sensor
servers for these two sensors with receive many logic so that the sensor readings sent at
a high rate even though one at a time, don’t spend much time in the network buffer
resulting in slow responsive emulated sensors. The implementation involves writing
the bunch of readings received onto a shared pipe by the respective emulator server and
the periodical polling function(dummy_poll()) reads the sensor readings off the shared
pipe, one reading at a time to keep the polling function simple and quick. Each of the
two sensors, gyroscope and accelerometer have their own shared pipes(gyro_pipe and
accel_pipe, respectively) for these inter-thread communication of the sensor readings.
To make sure that these don’t affect the real-time nature of the emulation(by blocking
the servers and/or the polling function when pipe is full for server to write or empty for
the polling function to read), both gyro_pipe and accel_pipe are made

Android-x86 Sensor Emulation 37 Raghavan Santhanam

non-blocking(O_NONBLOCK) using explicit fcntl() calls after piping them with
pipe() as pipe2() isn’t available in Android.

The usage of TCP over UDP for the exchange of readings end-to-end does ensure
consistency and absolutely no loss of the readings as far as the network connectivity
staying in tact. The only scenario wherein there can be loss of readings is that within the
device itself, the pipe buffer which is written into by the respective device sensor event
loop might get full causing some of the readings not being transmitted at all from the
device itself over the network towards any connected client - an unfortunate scenario
beyond one’s control. If there are any loss of sensor readings within the device itself
which prevents from transmitting the readings over the network to the emulator, then
that’s an unfortunate incident and the resolution for such an incident is beyond the
scope of the current work of Sensor Emulation.

For the remote-server scenario, the implementation is a straightforward one. The
program SensorEmulationRemoteServer.c is run on the host and generates artificial
sensor readings using random number generation method, and sending it to any
connected client. This remote server could be anywhere and can be replaced any other
server as well, as long as the pre-determined sensors reading pattern is followed while
sending the respective sensor readings to any connected client. And the client running
as part of the SensorEmulationClientServer.ccompiled with pre-processor macro
REMOTE_SERVER_READINGS will connect to the respective remote-server instance
running as part of SensorEmulationRemoteServer.c based on the specific
pre-determined sensor ports. And rest of the operations once the artificial readings are
received remain the same as that’s in the case of RAD specific real device sensor
readings explained earlier, end-to-end.

Android-x86 Sensor Emulation 38 Raghavan Santhanam

Chapter 10
Evaluation

10.1 Time Delays Comparison

The evaluation involved comparing the
timestamped sensor readings from the real and virtual phones. Before finalizing the
correct time measuring API, APIs experimented with were, gettimeofday() and
clock_gettime(CLOCK_MONOTONIC, . . .). gettimeofday() was decided not to
be used as it’s marked deprecated. clock_gettime(CLOCK_MONOTONIC, . ..) is
not used since it’s based on the time elapsed since unspecified time in the past which
can be different on the real device and on the emulator. So, the next reliable option was
clock_gettime(CLOCK_REALTIME,...) and has been used for the evaluation. The
obvious fluctuations in the measuring CLOCK_REALTIME is ignored at the cost of
simplicity of logging the timestamps, as the CLOCK_REALTIME is the only available
comparable time quantity between the real device and the emulator. To have the
fluctuations compensated, a time-syncing application, ClockSync was installed on both
the real device and the emulator to update the current time at any point time based on
the internet based NTP server.

Based on the prolonged observation of three months of time and data collection, it has
been noted that there’s absolutely no loss of sensor readings being sent from the
real-device to the emulator as long as the network connectivity stays in tact. This
observation of three months is not a continuous day-and-night one but discrete one
based on the times wherein there was any significant update in terms of the overall
code. Only the latest observation and the numerical evaluation details is being discussed
here as it accounts for the latest code with all the optimizations and updates that have
made their way until the last day of that three months period from Sep, 2013 to Nov,
2013. This observation involved running 100+ top Android applications ranging from
the basic sensor test applications that show the raw sensor readings, to the advanced 3D
motion-sensor based Android games which are compatible with the emulator.

The list of those 100+ sensor-based applications tried are as under(in fact, they are 300+
in number, to be precise). All of these are taken from various Android websites in the
internet in addition to Google Play/Android Market.

1. 101_in_1_games_hd.apk
2. 101_marbles.apk
3. 1MobileMarket_i.apk
4. 201304031345222b8796_Car_Racing_Game_1.1_9game_1.1.apk
5. 20131021_103741947.apk

Android-x86 Sensor Emulation 39 Raghavan Santhanam

6. 2xl_mx_offroad.apk
7. 3dbioballhd-1347872753270-apk.apk
8. 3d_bio_ball_hd.apk
9. 3d_drag_race.apk
10. 3d_rally_fever.apk
11. 4x4_offroad_racing.apk
12. absolute_rc_boat_sim.apk
13. absotruckinlutely.apk
14. Accelerometer.apk
15. Accelerometer Monitor.apk
16. ace_box_race.apk
17. ace_race_overdrive.apk
18. agracer.apk
19. air3-9_android.apk
20. airrace_skybox.apk
21. alpha_wheels_racing.apk
22. ambulance_rush.apk
23. AndroidSensorBox.apk
24. AndroSensor.apk
25. asphalt_5.apk
26. asphalt_6_adrenaline_hd.apk
27. asphalt_7_heat.apk
28. asphalt_8_airborne.apk
29. asphalt_moto.apk
30. atticlab.ScaryMazedGame.v1.20.apk
31. atv_madness.apk
32. badayer_racing.apk
33. Balance Ball 3D v.1.1.apk
34. bike_race.apk
35. blaz3d.apk
36. boomboom_racing.apk
37. breitling_reno_air_races.apk
38. Bubble_1.9.3.apk
39. burning_tires.apk
40. burning_wheels_3d_racing.apk
41. busted.apk
42. car_club_tuning_storm.apk
43. carmageddon.apk
44. car_race.apk
45. cars_and_guns_3d.apk
46. championship_jet_ski_2013.apk
47. championship_karting_2012.apk
48. championship_motorbikes_2013.apk

Android-x86 Sensor Emulation 40 Raghavan Santhanam

49. championship_racing_2013.apk
50. championship_rally_2012.apk
51. chundos_turbo.apk
52. city_cars_racer.apk
53. colin_mcrae_rally_hd.apk
54. com-dmw-stuntmarblespro-4-170986.myapp.apk
55. om.infraredpixel.drop.v1.4.5.apk
56. com-ratsquare-SpaceHell3D-1353898786120-apk.apk
57. corridor_fly.apk
58. crazxquad.apk
59. crazxracing.apk
60. crazyboat.apk
61. crazy_city_moto.apk
62. crazy_drive.apk
63. crazy_monster_truck.apk
64. crazy_monster_truck_escape.apk
65. crazyrush_volume_1.apk
66. crazy_taxi.apk
67. crazy_wheels_monster_trucks.apk
68. crc_pro_cycling.apk
69. csr_racing.apk
70. cubed_rally_redline.apk
71. cycling_2013.apk
72. deadly_moto_racing.apk
73. deathdrive.apk
74. death_rally_free.apk
75. death_rider.apk
76. death_tour.apk
77. dirt_karting.apk
78. dirt_road_trucker_3d.apk
79. doom_buggy.apk
80. drag_racing_3d.apk
81. drag_racing.apk
82. drag_racing_bike_edition.apk
83. draw_race_2.apk
84. driftkhana_freestyle_drift_app.apk
85. drift_mania_championship_2.apk
86. drift_mania_championship.apk
87. drift_mania_street_outlaws.apk
88. drive_with_zombies.apk
89. drop.1.0.apk
90. Drop It! (Ouch!.. Doh!) Pro New.apk
91. DropIt_v1.3_(stevebasu.net).apk

Android-x86 Sensor Emulation 41 Raghavan Santhanam

92. ducati_challenge.apk
93. dune_rider.apk
94. dust_offroad_racing.apk
95. duty_driver.apk
96. Earthquake Viewer.apk
97. Essential Tools - Lite.apk
98. extreme_biking_3d.apk
99. extreme_demolition.apk
100. extreme_formula.apk
101. extreme_racing_racing_moto.apk
102. f1_ultimate.apk
103. falling_marbles.apk
104. fast_five_the_movie_official_game_hd.apk
105. fast_furious_6_the_game.apk
106. fast_outlaw_asphalt_surfers (1).apk
107. fast_outlaw_asphalt_surfers.apk
108. fast_track_racers.apk
109. fatal_derby.apk
110. fennec-24.0.multi.android-arm.apk
111. fire_forget_the_final_assault (1).apk
112. fire_forget_the_final_assault.apk
113. fmx_iv_pro.apk
114. formula_racing_ultimate_drive.apk
115. formula_sprinty.apk
116. freestyle_dirt_bike.apk
117. furious_racing.apk
118. furious_wheel.apk
119. GamesApk.net-3DStuntMarblesPro.apk
120. GamesApk.net-Falldown3D.apk
121. g_bikes.apk
122. gecko-unsigned-unaligned.apk
123. Go Tetris.apk
124. grand_theft_auto_vice_city.apk
125. gravitire_3d.apk
126. gravity_tetris_3d.apk
127. ground_effect.apk
128. gt_racing_hyundai_edition.apk
129. GT Racing Motor Academy Free.apk
130. gt_racing_motor_academy_hd.apk
131. hallowheels.apk
132. hardcore_dirt_bike_2.apk
133. hardcore_dirt_bike.apk
134. hawthorne_park_thd.apk

Android-x86 Sensor Emulation 42 Raghavan Santhanam

135. hess_racer.apk
136. highway_rally.apk
137. highway_rider.apk
138. hot_mod_racer.apk
139. ion_racer.apk
140. island_racer.apk
141. jelly_racing.apk
142. jett_tailfin_racers.apk
143. jump_racer.apk
144. JumpyBall_3D.apk
145. kartrider_rush.apk
146. kinder_bueno_buggy_race_20.apk
147. konradgp.apk
148. kumho_tire_drive.apk
149. labyrinth_2.apk
150. labyrinth_lite.apk
151. lane_splitter.apk
152. lawn_mower_madness.apk
153. lego_pullback_racers.apk
154. lego_speedorz.apk
155. leviton_racers_hd.apk
156. link_237_racer.apk
157. Lucky Patcher v3.6.5.apk
158. mad_cop_car_race_and_drift.apk
159. Mad Race.apk
160. mad_skills_motocross.apk
161. marble_maze.apk
162. marble_run0.6c.apk
163. math_blaster_hyperblast_2.apk
164. megastunt_mayhem.apk
165. microworld_racing_3d.apk
166. minicar_champion_circuit_race.apk
167. mini_motor_racing.apk
168. mm_com.bogatov.tetris.apk
169. mm_com.thatWeirdKid.RaquetBall2D.apk
170. mole_kart.apk
171. monster_truck_destruction.apk
172. monster_wheels_offroad.apk
173. moto_gp_2012.apk
174. motogp_3d_super_bike_racing (1).apk
175. motogp_3d_super_bike_racing.apk
176. motoheroz.apk
177. moto_locos.apk

Android-x86 Sensor Emulation 43 Raghavan Santhanam

178. muscle_run.apk
179. MySensors.apk
180. need_for_drift.apk
181. need_for_speed_hot_pursuis.apk
182. need_for_speed_most_wanted.apk
183. need_for_speed_shift.apk
184. neon_city.apk
185. night_ride.apk
186. nissan_juke_nismo_challenge.apk
187. nos_car_speedrace.apk
188. official_speedway_gp_2013.apk
189. offroad_nation_pro.apk
190. pipe_glider.apk
191. pipe_rider.apk
192. pirate_wings.apk
193. piratewing_zhermq4i.apk
194. play.4.3.11.apk
195. plunk.apk
196. pocket_rally.apk
197. pocket_trucks.apk
198. pro_tennis_2013.apk
199. protoxide_death_race.apk
200. pure_drift.apk
201. Quick_Boot_4.1.apk
202. race_2.apk
203. race_horses_champions.apk
204. race_illegal_high_speed_3d.apk
205. race_n_chase_3d_car_racing.apk
206. race_of_champions.apk
207. race_rally_3d_car_racing.apk
208. racer_xt.apk
209. race_stunt_fight.apk
210. racing_glider.apk
211. racing_legends.apk
212. racing_moto.apk
213. radical_tube.apk
214. radio_ball_3d.apk
215. rage_truck.apk
216. raging_thunder_2.apk
217. rally_the_world_the_game.apk
218. rc_mini_racers.apk
219. real_moto_hd.apk
220. real_racing_2.apk

Android-x86 Sensor Emulation 44 Raghavan Santhanam

221. real_racing_3.apk
222. reckless_2.apk
223. reckless_getaway.apk
224. reckless_racing.apk
225. red_bull_ar_reloaded.apk
226. red_bull_kart_fighter_3.apk
227. red_bull_x_fighters_2012.apk
228. redline_rush.apk
229. red_wing_ikaro_racing.apk
230. renault_trucks_racing.apk
231. repulze.apk
232. return_zero.apk
233. re_volt_classic.apk
234. ricky_carmichaels_motocross.apk
235. riptide_gp2.apk
236. riptide_gp.apk
237. romanian_racing.apk
238. satans_zombies.apk
239. SC3D v1.1.3 apkmania.com.apk
240. Sensor List.apk
241. skatingirlz.apk
242. ski_challenge.apk
243. skyball.apk
244. skyriders_complete.apk
245. slingshot_racing.apk
246. smash_cops_heat.apk
247. smooth_3d.apk
248. snowbike_racing.apk
249. snuggle_truck.apk
250. socketserver-0.2.apk
251. sonic_sega_all_stars_racing.apk
252. space_rings_3d.apk
253. speed_car.apk
254. SpeedCar.apk
255. speedcarii.apk
256. speed_forge_3d.apk
257. speedmoto2.apk
258. speedmoto.apk
259. speed_night_2.apk
260. speedway_grand_prix_2011.apk
261. speedx_3d.apk
262. sports_car_challenge.apk
263. starbounder.apk

Android-x86 Sensor Emulation 45 Raghavan Santhanam

264. Steady_Compass_-_1.3.3(freemaza.in).apk
265. sunkist_speedway.apk
266. supasupacross.apk
267. supercrosspro.apk
268. supermotoracing_1381991920376.apk
269. suspect_the_run.apk
270. swift_adventure.apk
271. switch.apk
272. tangya.apk
273. tgear_test_track.apk
274. the_final_escape.apk
275. the_jump_escape_the_city.apk
276. tiki_kart_3d.apk
277. tiny_little_racing_2.apk
278. tires_of_fury_monster_truck_racing.apk
279. top_gear_stunt_school_revolution.apk
280. toyota_86_ar.apk
281. t_racer_hd.apk
282. tractor_farm_driver.apk
283. tractor_more_farm_driving.apk
284. transporters.apk
285. tube_racer_3d.apk
286. turbofly_3d.apk

a. turbo_racing_league.apk
287. ultimate_3w.apk
288. ultimate_motocross_2.apk
289. ultimate_motocross.apk
290. ultra4_offroad_racing.apk
291. urbanchaser_speed_3d_racing.apk
292. warp_dash.apk
293. wave_blazer.apk
294. whacksy_taxi.apk
295. wheel_rush.apk
296. wrc_shakedown_edition.apk
297. xdrag.apk
298. yamaha_ttx_revolution.apk
299. YAMM_v1.1.apk
300. zaxxon_escape.apk
301. zombie_driver_thd.apk
302. zombie_gp.apk
303. zombie_highway.apk

Out of the above 100+ applications(300+, in fact!) tried in a span of three months, the

Android-x86 Sensor Emulation 46 Raghavan Santhanam

sensor based applications that work smoothly and hence used in the evaluation were :
My Sensors, Championship Motorbikes 2013, Light-O-meter, Micro Metal Detector,
ExionFly 3D HD, Proximity Launcher, Night Compass, Master Spirit Level, Android
Sensor Box, and Sensor Test. The number of sensor events for each of these sensors
differ based on how many readings was generated/sensed by the real device sensor in a
span of approximately 10 minutes of evaluation. With that, Accelerometer and
Gyroscope readings were recorded for just above 1000 sensor events and all other
sensors’ readings having been recorded for approximately 100 sensor events.

It’s highly tedious to keep track of and mention here the list of specific problems that
each of the 100+(300+, actually) sensor-based applications including the advanced 3D
games experienced in a span of three months period while running them the emulator
since there were cases of running the same application more than at least 20 times with
several variations in terms of the graphics support, ARM translation, Hardware
Acceleration so on and so forth whose details can be found under “Graphics” subsection
in the next chapter. As if this was not enough, there were occasions of testing the same
3D racing game version with all the available copies of the game tailored for different
handset sizes like VGA, SVGA, etc as it appeared any graphics issue would be solved
with the lower graphics versions of the same game. Also, different copies of the same
game were tried to avoid “Downloading game data” as most of the recent 3D games
demanded WiFi connection which sometimes worked and some other times didn’t as
described in the “Wifi necessity” section in the next chapter. There were a whole lot of
other issues mentioned in the next chapter, amidst which keeping track of extensive list
of which version of what application faced which issue was simply impossible.

Fig. 10.1 depicts the graphical comparison of the time delays applicable for the sensor
readings in reaching the emulator from the real Android device.

Android-x86 Sensor Emulation 47 Raghavan Santhanam

https://play.google.com/store/apps/details?id=com.kfodor.MySensors&hl=en
http://www.google.com/url?q=http%3A%2F%2Fwww.amazon.com%2F365-Games-Championship-Motorbikes-2013%2Fdp%2FB00B24JEVY&sa=D&sntz=1&usg=AFQjCNFGQYe-PQ0MZLU1wkXqndzHOUehMQ
https://play.google.com/store/apps/details?id=spaceware.lightmeter&hl=en
https://play.google.com/store/apps/details?id=spaceware.micro.metaldetector&hl=en
https://play.google.com/store/apps/details?id=opengl_es.exionfly_hd&hl=en
https://play.google.com/store/apps/details?id=jp.tkgktyk.proximitylauncher&hl=en
https://play.google.com/store/apps/details?id=spaceware.luna.nightcompass&hl=en
https://play.google.com/store/apps/details?id=spaceware.master.spiritlevel&hl=en
https://play.google.com/store/apps/details?id=imoblife.androidsensorbox&hl=en
https://play.google.com/store/apps/details?id=imoblife.androidsensorbox&hl=en
https://play.google.com/store/apps/details?id=ctsr.android.SensorTest&hl=en

Fig. 10.1 Pictorial comparison of the average time delays applicable for the
sensor readings in reaching the Virtual Android Device(VAD) from the Real

Android Device(RAD)

As it can be seen, the average time delays of Corrected Gyroscope, Gyroscope, and
Accelerometer are the three highest average time delays. The reason for such a
difference is that Gyroscope and Accelerometer in that order are having higher
sampling frequencies than the other real hardware sensors. As a result, there will be
relatively high influx of sensor readings from these two sensors onto their respective
network buffer as each sensor has a dedicated server dealing with its own
socket-connection and hence their own network buffer as well. To put things in
perspective, there were approximately at least 1000 independent and consecutive sensor
events for accelerometer and gyroscope(Corrected gyroscope) for which there were
approximately only 100 sensor events of other slower sensors. So, the sensor readings
of accelerometer and gyroscope spend a little longer in their respective network buffers
than what sensor readings of other sensors with relatively lower sampling frequency
would spend in their network buffers. And as far as the Corrected Gyroscope is
concerned, it’s just a virtual sensor using the same Gyroscope readings with the highest
sampling frequency among all the sensors being emulated and hence all that has been
said for gyroscope holds good for Corrected Gyroscope as well.

Having become clear so as to why there is a noticeable difference between the average
time delays of the emulated sensors, it’s time to look at the impact due to the relatively

Android-x86 Sensor Emulation 48 Raghavan Santhanam

high average time delays. Well, it’s quite obvious that there will be a tiny delay that’s
inevitable due to the transmission of readings over the network. But, how tiny is this
delay depends on the factors mentioned already. And all these delays are the ones that
are got from the latest code which has been fine-tuned and optimized in every possible
manner though under 0.6 seconds of delay should be tolerable given that the entire
Sensor Emulation is happening over the network at full possible speed.

Going even more extreme in an attempt to reduce the delay, one can reduce or remove
the delay in the client-servers between send-receive calls -- this would make the Sensor
Emulation code to be hogging CPU all the time and the whole Android-x86 UI on the
emulator will be sluggish; not acceptable, or one can reduce the sampling frequency of
high sampling frequency sensors on the real device so that the number of sensor
readings of accelerometer and gyroscope drop and become on par with the other
relatively slower sensors and thus having the almost same very small delay of say under
0.15 seconds -- this would kill the purpose of making Sensor Emulation to be lossless
and accurate while making it speedy; not acceptable, and so on.

In short, there will definitely be slight tradeoff between speed and accuracy of sensor
readings in reaching the destination(VAD) from source(RAD). And in the current work,
accuracy is being favored first and then the speed. However, this tradeoff doesn’t affect
the sensor-based applications to the extent of hampering their sensor-based
responsiveness. This has been verified by running the emulator compatible
sensor-based applications using two 3D sensor-based games wherein one uses
Accelerometer and the other uses Gyroscope. And the demo videos clearly supports this
claim of the sensor-based applications working smoothly with utmost responsiveness as
seen on the real device. So, the current work is very much usable in real-world scenario
without any serious concerns. More information about the usability factor of the
current work is described in the “Usability Factor” chapter ahead.

Below Table 10.1 gives the numerical comparison of the average time delays applicable
for the sensor readings in reaching the Virtual Android Device(VAD) from the Real
Android Device(RAD). These are the numerical data based on which the bar graph
comparison in Fig. 10.1 is depicted.

Statistic
s

Sensors

Lowest
delay(i
n
nanose
conds)

Highest
delay(i
n
nanose
conds)

Averag
e
delay(i
n
nanose
conds)

Numbe
r of
reading
s
missed
during
the
transmi
ssion

Numbe
r of
reading
s with
delays
above
the
delay
thresho

Android-x86 Sensor Emulation 49 Raghavan Santhanam

from
the real
device
to the
emulat
or

ld of 4
seconds

Acceler
ometer

2954496 4329154
56

1237278
73

0 0

Magneti
c

2304 8438932
48

1110255
84

0 0

Light 134656 9159270
4

9595756 0 0

Proxim
ity

4751616 8130944
0

1277651
9

0 0

Gyrosc
ope

2393574
4

1375095
808

3277398
03

14 0

Correct
ed
Gyrosc
ope

5789696 1124702
464

5929721
83

0 0

Linear
Acceler
ation
-n

20992 6247022
08

6901223
9

0 0

Orienta
tion

8448 6222968
32

5478577
6

0 0

Rotatio
n
Vector

112384 3473617
92

4637593
9

0 0

Gravity 8704 7278433
28

9604013
2

0 0

Table 10.1 Numerical comparison of the average time delays applicable for
the sensor readings in reaching the Virtual Android Device(VAD) from the

Real Android Device(RAD)

There are couple of interesting things in the above table that need attention.

Android-x86 Sensor Emulation 50 Raghavan Santhanam

1. The 14 missing readings reported for the gyroscope are not really missing but
they were at the very end of the transmission of readings from the RAD to VAD
and hence failed to reach the VAD and hence were not logged and thus are
reported to be missing.

2. The sensor readings of each sensor are collected with all other sensors enabled at
the same time, except for the gyroscope and accelerometer whose readings were
collected with only two of them enabled at the same time to measure them
accurately considering their high-frequencies compared to other sensors.

In the above readings, the lowest and the highest timestamps differ significantly for
some of the sensors due to the delays considered end-to-end. This includes the initial
time taken for the network initialization necessary for the initial network packet to
reach from the real device to the virtual device as well as the time taken for the very last
few network packets in reaching the virtual phone from the real phone. Especially for
the very last few packets(sensor readings), when the end-to-end network connection is
interrupted by pressing Ctrl+C at the terminal when there is a need, there will be a slight
delay for those specific sensor readings to reach the virtual phone from the real phone
as apparently their end-to-end network connectivity is interrupted due to the break in
the connecting link which is the intermediate program facilitating the interaction
between the real and virtual phones, and the intermediate program is the one which
receives(handles) the Ctrl+C at the terminal.

In addition, to all the delays described above, there will be a slight increase in the
network bandwidth usage as and when additional sensors are enabled end-to-end that
is the real and virtual devices. These additional sensors require independent network
connections for their sensor readings to reach from the real to virtual phones over the
network. More and more sensor readings start to occupy the network bandwidth, there
will be a gradual but negligible increase in the time taken for the sensor readings to
reach from the real phone to the virtual phone.

Based on all the above valid reasons for the possible delays for the sensor readings to
reach from the real phone to virtual phone, it should be logical to see the relatively
glaring difference in the lowest and highest time taken for the sensor readings of a
particular sensor.

If at all there is a need for a uniform distribution of time taken for the sensor readings,
ideally, the first few and last few sensor readings should be ignored when measuring
the overall time taken for a particular sensor’s readings to reach from the real phone to
the virtual phone. Thereby, the minor spikes in the overall time taken will be absent.
And the above numerical table will have reasonable differences for the timestamps of
sensor readings for each of the sensor. However, such a precision wasn’t thought as
important during the evaluation of the current work of Sensor Emulation and hence

Android-x86 Sensor Emulation 51 Raghavan Santhanam

one can see the apparent differences in the lowest and highest time taken for the sensor
readings.

10.2 Comprehensive Benchmarking
For getting deeper insight of the end-to-end Sensor

Emulation involving the comparisons of every minute detail of the real hardware
sensors with virtualized sensors, a neatly written and immensely useful sensor-test
application from Android Market, SensMark was used both on the real and virtual
devices by launching them manually almost at the same time in parallel. Below are the
complete and exhaustive logs for the sake of completeness of evaluation.

Here are the descriptions of what the detailed logs mean as told over the e-mail by one
of the lead developers of the SensMark project.

1. Number of Events: the number of measured values during a benchmark (~10
sec), the more the better

2. Time Consistency: depends on the minimum time between 2 measured
succeeded values during initialization and benchmark. the lesser the better. but
in comparison with each other, meaning Time Consistency should be equal
during initialization and benchmark, indicating if the sensors only recognizes
changes when moved or at specific time interval. the more equal the better.

3. Standard Deviation: The lesser the standard deviation (by Donald E. Knuth) the
better. For devices that should not be moved during benchmark.

4. Resolution: Minimum difference between two succeeding values, just like the
Resolution given by the sensor, only that our value is measured and true, and the
given one probably not.

5. Gravity: Only at Accelerometer and Gravity Sensors: How close is the average
z-axis value during benchmark to 9.81m/s^2 with a 3% offset due to devices
without flat rear/back covers.

6. Light & Proximity
Number of Events: same as above
Deviation timepitch: Does not depend on results of initialization and
describes the Standard deviation over all time steps between two
succeeding measured values.

7. Resolution: same as above.
8. Differing values: How many different values can this sensor measure. Proximity

often only have 0 and 5. The Galaxy S2 default Light sensor only measures 10,
100, 1000, 10000 and 16000 lux, but with Cyanogenmod it shows all values
between 0 and I don't know how it can get.

10.2.1 Complete logs location

Android-x86 Sensor Emulation 52 Raghavan Santhanam

https://play.google.com/store/apps/details?id=de.mareas.android.sensmark

Real device - http://sensmark.info/sensor-benchmarks/?shw=u&u=2857
 Virtual device - http://sensmark.info/sensor-benchmarks/?shw=u&u=2858

Following sections have their content based on the logs at these webpages. The
following sections serve as a ready-reference and also a persistent one if in case, the
online benchmark logs are lost due to some reasons.

The real device had 4.3 while virtual device had 4.3.1. However, there are no much
differences between these two Jelly Bean versions of Android Release. Here is a
snapshot of the details of these two releases from the corresponding wiki page.

Android-x86 Sensor Emulation 53 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fsensmark.info%2Fsensor-benchmarks%2F%3Fshw%3Du%26u%3D2857&sa=D&sntz=1&usg=AFQjCNE-VABdkBGVCRU0kdhEzulv32Ticw
http://www.google.com/url?q=http%3A%2F%2Fsensmark.info%2Fsensor-benchmarks%2F%3Fshw%3Du%26u%3D2858&sa=D&sntz=1&usg=AFQjCNHb20q5JEB_wVBfTjsQI_ZPPT8iRA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAndroid_version_history%23Android_4.3_Jelly_Bean_.28API_level_18.29&sa=D&sntz=1&usg=AFQjCNEGaDNN91qne4aHbyOIYA2eMX1xBA

10.3 Devices Details

 Real device Virtual Device

10.4 Comparing Benchmarking points

This section compares and contrasts the points which
is the numerical sum of number of sensor events, deviation timepitch, deviation values,
and sensor resolution.

10.4.1 Accelerometer

Real device

Android-x86 Sensor Emulation 54 Raghavan Santhanam

Note: THe “Hacked!!” word in the title is a remnant of the very initial set of
experiments of Sensor Emulation and has really nothing to do with any hacking to
achieve the needed sensor emulation.

Virtual device

10.4.2 Magnetometer
 Real device

Virtual Device

Android-x86 Sensor Emulation 55 Raghavan Santhanam

10.4.3 Light
Real Device

Virtual Device

10.4.4 Proximity
Real Device

Virtual Device

Android-x86 Sensor Emulation 56 Raghavan Santhanam

10.4.5 Gyroscope
Real Device

Virtual Device

10.4.6 Corrected Gyroscope
Real Device

Virtual Device

Android-x86 Sensor Emulation 57 Raghavan Santhanam

Note: The vendor of emulated Corrected Gyroscope was modified from “Columbia
University - NYC - Thesis - Raghavan Santhanam” to “Google Inc.” because, the
SensMark looks out for the exact vendor string to be “Google Inc.” in order to say
whether a sensor is virtual or not. And when the Corrected Gyroscope is not treated as a
virtual sensor due to its type being same as that of the default Gyroscope, its data will be
treated as redundant as Gyroscope would have already uploaded with its type. Hence the
Corrected Gyroscope’s sensor data would never appear in the webpage showing the
analysis of the sensor data collected and uploaded to http://sensmark.info.
As a matter of fact, the SensMark application’s code isn’t open sourced. So, the only
option left is to just visualize the Sensor characteristics that are expected by SensMark
for a sensor to be virtual so that Gyroscope and Corrected Gyroscope sensor data are
treated as separate ones allowing both of them to be part of the analysis.

Thus, the issue of missing Corrected Gyroscope sensor data in the sensmark.info
webpage was solved with just pure visualization and expertise in programming with
emphasis on memory handling(for strings, to be specific).

10.4.7 Orientation
Real Device

Virtual Device

Android-x86 Sensor Emulation 58 Raghavan Santhanam

https://play.google.com/store/apps/details?id=de.mareas.android.sensmark
http://www.google.com/url?q=http%3A%2F%2Fsensmark.info&sa=D&sntz=1&usg=AFQjCNFNCxluGpFOjZE-0vbkY4fL3wvfGQ

10.4.8 Gravity
Real Device

Virtual Device

10.4.9 Linear Acceleration
Real Device

Virtual Device

Android-x86 Sensor Emulation 59 Raghavan Santhanam

10.4.10 Rotation Vector
Real Device

Virtual Device

10.5 Detailed Benchmarking comparisons
This section is a back-to-back detailed collection and

comparison of the Sensor characteristics and behavior for the real phone and for the
virtual phone which bear relation with the earlier section on the points benchmarking
analysis in an one-to-one manner. So, by clicking on the above entries in the respective
web pages already listed for real and virtual devices, the following statistical analysis of
sensor data can be seen.

There will be apparent differences in the graphs obtained for the performances of the
sensors on the real and virtual phones, in spite of the fact the exact same copy of
SensMark application was installed and used on both real and virtual phones. The main
reason is the time delay which is an aggregate of the minute difference in time between
the manual launch of the SensMark application on real and virtual phones, the network
delay for the sensor readings to reach from the real phone to virtual phone, the minute
time delay induced by the processing of the incoming sensor data within the virtual
phone, i.e., virtualized Android-x86. Hence, these differences are inevitable but
negligible as far as the overall tolerable accuracy is concerned.

The following statistical analysis includes two separate graphical plots for each of the
sensors on the real and virtual phones. First one is of the initialization of sensors with

Android-x86 Sensor Emulation 60 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fsensmark.info%2Fsensor-benchmarks%2F%3Fshw%3Du%26u%3D2857&sa=D&sntz=1&usg=AFQjCNE-VABdkBGVCRU0kdhEzulv32Ticw
http://www.google.com/url?q=http%3A%2F%2Fsensmark.info%2Fsensor-benchmarks%2F%3Fshw%3Du%26u%3D2858&sa=D&sntz=1&usg=AFQjCNHb20q5JEB_wVBfTjsQI_ZPPT8iRA
https://play.google.com/store/apps/details?id=de.mareas.android.sensmark

some sample sensor data and second one is of the benchmarking of the actual sensor
data from the real hardware sensors on real and virtual phones. As mentioned already,
the two graphical plots differ slightly due to the inherent delays in the real phone to
frame a network buffer consisting of the real hardware sensor readings and send it
across the network, the delay caused by the network overhead for the sensor readings
to reach from the real to virtual phone, the delay imposed by the inherent virtual limit
on the rate at which the emulator virtualizing Android-x86, can process the incoming
network data, and finally, the delay due to the internal processing of the received
network data within the Sensors HAL module of the virtual phone. So, these delays are
integral to the Sensor Emulation but tolerable ones.

Android-x86 Sensor Emulation 61 Raghavan Santhanam

Home › Sensor Benchmarks

Sensor Benchmarks
Accelerometer: KR3DM 3­axis Accelerometer by Hacked!!
STMicroelectronics
Benchmark

Points
Total 12157
Events 331
Deviation Timepitch 1832
Deviation Values 3167
Resolution 3236
Gravity 3591

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution
Gravity

0 5,000 10,000 15,000 20,000

GOOGLE NEXUS S

SAMSUNG GT­I8160P

SAMSUNG GT­I8160

BLACKBERRY Z30

LENOVO IDEATAB A2...

BLACKBERRY Q10

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 331
Timepitch (minimum) 19095000 μs
Timepitch (arithmetic
mean)

24281006.0606061 μs

Timepitch (standard
deviation)

40403454.5990557 μs

Minimum Resolution X 0.019153595 m/s²
Min. Resolution Y 0.019153595 m/s²
Min. Resolution Z 0.019153595 m/s²
Minimum X 0.019153614 m/s²
Mean X 0.173597704889281 m/s²
Maximum X 0.38307226 m/s²
Minimum Y ­0.45968673 m/s²
Mean Y ­0.267571931023972 m/s²
Maximum Y ­0.076614454 m/s²
Minimum Z 9.251195 m/s²
Mean Z 9.47502097910625 m/s²
Maximum Z 9.653421 m/s²
Standard Deviation X 0.0637146600280529 m/s²
Standard Deviation Y 0.0630660436415817 m/s²
Standard Deviation Z 0.0770003221419178 m/s²
Android Version 4.3
App Version 1.0
App Version Code 9
Battery 72%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 17990000 μs
Minimum Resolution X 0.019153595 m/s²
Min. Resolution Y 0.019153595 m/s²
Min. Resolution Z 0.019153595 m/s²
Minimum X ­19.6133 m/s²
Maximum X 17.525557 m/s²
Minimum Y ­19.460072 m/s²
Maximum Y 9.040505 m/s²
Minimum Z ­19.6133 m/s²
Maximum Z 19.460072 m/s²

Initialization

X
Y
Z

­4

0

4

8

12

202020 909090 160160160 230230230 300300300

Download all values as JSON array

Number of events 391
Timepitch (minimum) 17990000 μs
Timepitch (arithmetic
mean)

27164705.1282051 μs

Timepitch (standard
deviation)

59611069.570246 μs

Minimum Resolution X 0.019153595 m/s²
Min. Resolution Y 0.019153595 m/s²
Min. Resolution Z 0.019153595 m/s²
Minimum X ­19.6133 m/s²
Maximum X 17.525557 m/s²
Minimum Y ­19.460072 m/s²
Maximum Y 9.040505 m/s²
Minimum Z ­19.6133 m/s²
Maximum Z 19.460072 m/s²

About Device

Technical sensor specifications by device
Maximum Range 19.6133 m/s²
Minimum Delay 20000 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 0.23 mA The power in mA used by this sensor while in use.

Resolution 1 m/s²
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Google
Manufacturer Samsung
Device crespo
Model Nexus S
Product soju
Hardware herring
Board herring

X
Y
Z

­20

­10

0

10

20

101010 100100100 190190190 280280280 370370370

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Accelerometer: Accelerometer Sensor Emulation!!!! by Columbia
University ­ NYC ­ Thesis ­ Raghavan Santhanam
Benchmark

Points
Total 12485
Events 707
Deviation Timepitch 1785
Deviation Values 3167
Resolution 3236
Gravity 3590

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution
Gravity

0 5,000 10,000 15,000 20,000

ANDROID­X86 BOCHS

SAMSUNG GT­I8160P

SAMSUNG GT­I8160

BLACKBERRY Z30

LENOVO IDEATAB A2...

BLACKBERRY Q10

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 707
Timepitch (minimum) 1030316 μs
Timepitch (arithmetic
mean)

7932245.87535411 μs

Timepitch (standard
deviation)

47662232.8685073 μs

Minimum Resolution X 0.01915361 m/s²
Min. Resolution Y 0.019153595 m/s²
Min. Resolution Z 0.019153595 m/s²
Minimum X 0.019153614 m/s²
Mean X 0.172978531679894 m/s²
Maximum X 0.38307226 m/s²
Minimum Y ­0.45968673 m/s²
Mean Y ­0.270344992728095 m/s²
Maximum Y ­0.076614454 m/s²
Minimum Z 9.251195 m/s²
Mean Z 9.45985356753079 m/s²
Maximum Z 9.634268 m/s²
Standard Deviation X 0.0651540174118856 m/s²
Standard Deviation Y 0.0631879314289808 m/s²
Standard Deviation Z 0.0749032701862655 m/s²
Android Version 4.3.1
App Version 1.0
App Version Code 9
Battery 100%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 1030316 μs
Minimum Resolution X 0.019153595 m/s²
Min. Resolution Y 0.019153595 m/s²
Min. Resolution Z 0.019153595 m/s²
Minimum X ­19.6133 m/s²
Maximum X 18.253393 m/s²
Minimum Y ­19.460072 m/s²
Maximum Y 9.040505 m/s²
Minimum Z ­19.6133 m/s²

Maximum Z 19.460072 m/s²

Initialization

X
Y
Z

­4

0

4

8

12

100100100 250250250 400400400 550550550 700700700

Download all values as JSON array

Number of events 1120
Timepitch (minimum) 1044881 μs
Timepitch (arithmetic
mean)

8716990.5549598 μs

Timepitch (standard
deviation)

62387261.12377 μs

Minimum Resolution X 0.019153595 m/s²
Min. Resolution Y 0.019153595 m/s²
Min. Resolution Z 0.019153595 m/s²
Minimum X ­19.6133 m/s²
Maximum X 18.253393 m/s²
Minimum Y ­19.460072 m/s²
Maximum Y 9.040505 m/s²
Minimum Z ­19.6133 m/s²
Maximum Z 19.460072 m/s²

About Device

Technical sensor specifications by device
Maximum Range 19.6133 m/s²
Minimum Delay 20000 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 3 mA The power in mA used by this sensor while in use.

Resolution 1 m/s²
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Android­x86
Manufacturer Bochs
Device x86
Model Bochs
Product android_x86
Hardware android_x86
Board unknown

X
Y
Z

­20

­10

0

10

20

200200200 400400400 600600600 800800800 1,0001,0001,000

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Magnetic Field: AK8973 3­axis Magnetic field sensor by Asahi Kasei
Microdevices
Benchmark

Points
Total 6606
Events 318
Deviation Timepitch 1826
Deviation Values 2217
Resolution 2245

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

0 4,000 8,000 12,000 16,000

GOOGLE NEXUS S

ASUS TRANSFORME...

ACER A700

SAMSUNG GT­S5300

LGE LG­P940

GOOGLE NEXUS 7

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 318
Timepitch (minimum) 18932000 μs
Timepitch (arithmetic
mean)

24698649.8422713 μs

Timepitch (standard
deviation)

41054031.2759508 μs

Minimum Resolution X 0.1875 μT
Min. Resolution Y 0.25 μT
Min. Resolution Z 0.25 μT
Minimum X ­1.625 μT
Mean X 1.9433962264151 μT
Maximum X 5.8125 μT
Minimum Y ­16.5 μT
Mean Y ­15.3993710691824 μT
Maximum Y ­14.25 μT
Minimum Z ­55.375 μT
Mean Z ­53.8671383647799 μT
Maximum Z ­52.625 μT
Standard Deviation X 1.47648151237647 μT
Standard Deviation Y 0.414275522902881 μT
Standard Deviation Z 0.524946582566972 μT
Android Version 4.3
App Version 1.0
App Version Code 9
Battery 72%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 16986000 μs
Minimum Resolution X 0.1875 μT
Min. Resolution Y 0.1875 μT
Min. Resolution Z 0.1875 μT
Minimum X ­44.0625 μT
Maximum X 12.9375 μT
Minimum Y ­43.4375 μT
Maximum Y 41.5625 μT
Minimum Z ­55.375 μT
Maximum Z 44.25 μT

Initialization

X
Y
Z

­60

­40

­20

0

20

202020 909090 160160160 230230230 300300300

Download all values as JSON array

Number of events 381
Timepitch (minimum) 16986000 μs
Timepitch (arithmetic
mean)

27511194.7368421 μs

Timepitch (standard
deviation)

59967726.9472331 μs

Minimum Resolution X 0.1875 μT
Min. Resolution Y 0.1875 μT
Min. Resolution Z 0.1875 μT
Minimum X ­44.0625 μT
Maximum X 12.9375 μT
Minimum Y ­43.4375 μT
Maximum Y 41.5625 μT
Minimum Z ­45.25 μT
Maximum Z 44.25 μT

About Device

Technical sensor specifications by device
Maximum Range 2000 μT
Minimum Delay 16667 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 6.8 mA The power in mA used by this sensor while in use.

Resolution 1 μT
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Google
Manufacturer Samsung
Device crespo
Model Nexus S
Product soju
Hardware herring
Board herring

X
Y
Z

­50

­25

0

25

50

101010 100100100 190190190 280280280 370370370

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Magnetic Field: Magnetic sensor Emulation!!!! by Columbia
University ­ NYC ­ Thesis ­ Raghavan Santhanam
Benchmark

Points
Total 6269
Events 377
Deviation Timepitch 1230
Deviation Values 2195
Resolution 2467

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

0 4,000 8,000 12,000 16,000

ANDROID­X86 BOCHS

ASUS TRANSFORME...

ACER A700

SAMSUNG GT­S5300

LGE LG­P940

GOOGLE NEXUS 7

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 377
Timepitch (minimum) 1068090 μs
Timepitch (arithmetic
mean)

26520893.1223404 μs

Timepitch (standard
deviation)

213634021.028299 μs

Minimum Resolution X 0.1875 μT
Min. Resolution Y 0.25 μT
Min. Resolution Z 0.25 μT
Minimum X ­1.625 μT
Mean X 2.22579575596817 μT
Maximum X 5.8125 μT
Minimum Y ­16.5 μT
Mean Y ­15.3554376657825 μT
Maximum Y ­14.25 μT
Minimum Z ­55.375 μT
Mean Z ­53.9711538461539 μT
Maximum Z ­52.625 μT
Standard Deviation X 1.62315598013038 μT
Standard Deviation Y 0.44249459903287 μT
Standard Deviation Z 0.529268169661988 μT
Android Version 4.3.1
App Version 1.0
App Version Code 9
Battery 100%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 1055755 μs
Minimum Resolution X 0.1875 μT
Min. Resolution Y 0.0625 μT
Min. Resolution Z 0.1875 μT
Minimum X ­44.0625 μT
Maximum X 19.9375 μT
Minimum Y ­44.25 μT
Maximum Y 41.5625 μT
Minimum Z ­55.375 μT
Maximum Z 44.25 μT

Initialization

X
Y
Z

­60

­40

­20

0

20

101010 100100100 190190190 280280280 370370370

Download all values as JSON array

Number of events 800
Timepitch (minimum) 1055755 μs
Timepitch (arithmetic
mean)

12498430.7722153 μs

Timepitch (standard
deviation)

56170854.6310429 μs

Minimum Resolution X 0.1875 μT
Min. Resolution Y 0.0625 μT
Min. Resolution Z 0.1875 μT
Minimum X ­44.0625 μT
Maximum X 19.9375 μT
Minimum Y ­44.25 μT
Maximum Y 41.5625 μT
Minimum Z ­45.25 μT
Maximum Z 44.25 μT

About Device

Technical sensor specifications by device
Maximum Range 2000 μT
Minimum Delay 16667 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 6.8 mA The power in mA used by this sensor while in use.

Resolution 1 μT
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Android­x86
Manufacturer Bochs
Device x86
Model Bochs
Product android_x86
Hardware android_x86
Board unknown

X
Y
Z

­50

­25

0

25

50

671
X: 12.6875
Y: ­15.75
Z: ­43.1875

100100100 250250250 400400400 550550550 700700700

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Light: GP2A Light sensor by Sharp
Benchmark

Points
Total 4633
Events 767
Deviation Timepitch 2089
Resolution 1892
Differing Values 652

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Time Consistency
Resolution

0 2,000 4,000 6,000 8,000

GOOGLE NEXUS S

SAMSUNG YP­G1

GOOGLE NOVO7FIRE

SAMSUNG GT­I9000

SAMSUNG SM­N9005

SAMSUNG GT­P3110

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 767
Timepitch (minimum) 2166000 μs
Timepitch (arithmetic
mean)

13385364.229765 μs

Timepitch (standard
deviation)

18246983.518185 μs

Minimum Resolution X 0.14110899 lux
Minimum X 4.3975453 lux
Mean X 135.912088386705 lux
Maximum X 279.8769 lux
Standard Deviation X 99.5388267974499 lux
Android Version 4.3
App Version 1.0
App Version Code 9
Battery 54%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 2166000 μs
Minimum Resolution X 0.14110899 lux
Minimum X 4.3975453 lux
Maximum X 279.8769 lux

Initialization

X

0

70

140

210

280

100100100 250250250 400400400 550550550 700700700

X

0

70

140

210

280

100100100 200200200 300300300 400400400 500500500

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Download all values as JSON array

Number of events 577
Timepitch (minimum) 4194000 μs
Timepitch (arithmetic
mean)

18376986.1111111 μs

Timepitch (standard
deviation)

50225284.1315726 μs

Minimum Resolution X 0.26020622 lux
Minimum X 8.109105 lux
Maximum X 270.10687 lux

About Device

Technical sensor specifications by device
Maximum Range 3626657.8 lux
Minimum Delay 0 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 0.75 mA The power in mA used by this sensor while in use.

Resolution 1 lux
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Google
Manufacturer Samsung
Device crespo
Model Nexus S
Product soju
Hardware herring
Board herring

Home › Sensor Benchmarks

Sensor Benchmarks
Light: Light sensor Emulation!!!! by Columbia University ­ NYC ­
Thesis ­ Raghavan Santhanam
Benchmark

Points
Total 5224
Events 576
Deviation Timepitch 1913
Resolution 2711
Differing Values 600

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Time Consistency
Resolution

0 2,000 4,000 6,000 8,000

ANDROID­X86 BOCHS

SAMSUNG YP­G1

GOOGLE NOVO7FIRE

SAMSUNG GT­I9000

SAMSUNG SM­N9005

SAMSUNG GT­P3110

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 576
Timepitch (minimum) 2121762 μs
Timepitch (arithmetic
mean)

16320909.4747826 μs

Timepitch (standard
deviation)

27553568.4723946 μs

Minimum Resolution X 0.021361351 lux
Minimum X 4.397545 lux
Mean X 132.886638003919 lux
Maximum X 279.8769 lux
Standard Deviation X 99.2027717219355 lux
Android Version 4.3.1
App Version 1.0
App Version Code 9
Battery 100%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 1055755 μs
Minimum Resolution X 0.021361351 lux
Minimum X 4.397545 lux
Maximum X 279.8769 lux

Initialization

X

0

70

140

210

280

100100100 200200200 300300300 400400400 500500500

X

0

70

140

210

280

404040 130130130 220220220 310310310 400400400

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Download all values as JSON array

Number of events 473
Timepitch (minimum) 1055755 μs
Timepitch (arithmetic
mean)

19973191.5699153 μs

Timepitch (standard
deviation)

73148479.5193068 μs

Minimum Resolution X 0.07984924 lux
Minimum X 7.642827 lux
Maximum X 270.10687 lux

About Device

Technical sensor specifications by device
Maximum Range 0 lux
Minimum Delay 0 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 0.75 mA The power in mA used by this sensor while in use.

Resolution 1 lux
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Android­x86
Manufacturer Bochs
Device x86
Model Bochs
Product android_x86
Hardware android_x86
Board unknown

Home › Sensor Benchmarks

Sensor Benchmarks
Proximity: GP2A Proximity sensor by Sharp
Benchmark

Points
Total 1214
Events 55
Deviation Timepitch 845
Resolution 367
Differing Values 2

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Time Consistency
Resolution

0 3,000 6,000 9,000 12,000

GOOGLE NEXUS S

NO1 S6

BLACKBERRY Z30

BLACKBERRY Q5

BLACKBERRY Z10

BLACKBERRY Q10

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 55
Timepitch (minimum) 14869000 μs
Timepitch (arithmetic
mean)

181887724.481481 μs

Timepitch (standard
deviation)

429391143.993835 μs

Minimum Resolution X 5 cm
Minimum X 0 cm
Mean X 2.54545454545455 cm
Maximum X 5 cm
Standard Deviation X 2.52262489554756 cm
Android Version 4.3
App Version 1.0
App Version Code 9
Battery 39%
Charging 1

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 14869000 μs
Minimum Resolution X 5 cm
Minimum X 0 cm
Maximum X 5 cm

Initialization

X

0.0

1.5

3.0

4.5

6.0

101010 202020 303030 404040 505050

X

0.0

1.5

3.0

4.5

6.0

222 999 161616 232323 303030

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Download all values as JSON array

Number of events 30
Timepitch (minimum) 52048000 μs
Timepitch (arithmetic
mean)

288402337.931034 μs

Timepitch (standard
deviation)

517442017.777228 μs

Minimum Resolution X 5 cm
Minimum X 0 cm
Maximum X 5 cm

About Device

Technical sensor specifications by device
Maximum Range 5 cm
Minimum Delay 0 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 0.75 mA The power in mA used by this sensor while in use.

Resolution 1 cm
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Google
Manufacturer Samsung
Device crespo
Model Nexus S
Product soju
Hardware herring
Board herring

Home › Sensor Benchmarks

Sensor Benchmarks
Proximity: Proximity sensor Emulation!!!! by Columbia University ­
NYC ­ Thesis ­ Raghavan Santhanam
Benchmark

Points
Total 1647
Events 53
Deviation Timepitch 1278
Resolution 367
Differing Values 2

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Time Consistency
Resolution

0 3,000 6,000 9,000 12,000

ANDROID­X86 BOCHS

NO1 S6

BLACKBERRY Z30

BLACKBERRY Q5

BLACKBERRY Z10

BLACKBERRY Q10

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 53
Timepitch (minimum) 3304838 μs
Timepitch (arithmetic
mean)

130092980.519231 μs

Timepitch (standard
deviation)

161799650.769043 μs

Minimum Resolution X 5 cm
Minimum X 0 cm
Mean X 2.45283018867924 cm
Maximum X 5 cm
Standard Deviation X 2.5234746934142 cm
Android Version 4.3.1
App Version 1.0
App Version Code 9
Battery 100%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 3265474 μs
Minimum Resolution X 5 cm
Minimum X 0 cm
Maximum X 5 cm

Initialization

X

0.0

1.5

3.0

4.5

6.0

101010 202020 303030 404040 505050

X

0.0

1.5

3.0

4.5

6.0

222 999 161616 232323 303030

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Download all values as JSON array

Number of events 30
Timepitch (minimum) 9164813 μs
Timepitch (arithmetic
mean)

197116601.275862 μs

Timepitch (standard
deviation)

178443427.454734 μs

Minimum Resolution X 5 cm
Minimum X 0 cm
Maximum X 5 cm

About Device

Technical sensor specifications by device
Maximum Range 5 cm
Minimum Delay 0 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 0.75 mA The power in mA used by this sensor while in use.

Resolution 1 cm
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Android­x86
Manufacturer Bochs
Device x86
Model Bochs
Product android_x86
Hardware android_x86
Board unknown

Home › Sensor Benchmarks

Sensor Benchmarks
Gyroscope: K3G Gyroscope sensor by STMicroelectronics
Benchmark

Points
Total 16697
Events 5853
Deviation Timepitch 2390
Deviation Values 4023
Resolution 4431

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

0 6,000 12,000 18,000 24,000

GOOGLE NEXUS S

BLACKBERRY DEV A...

MOTOROLA XOOM

MOTOROLA XOOM 2 ...

MOTO MZ601

BLACKBERRY Z30

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 5853
Timepitch (minimum) 5000 μs
Timepitch (arithmetic
mean)

1323039.81544771 μs

Timepitch (standard
deviation)

10146717.8264915 μs

Minimum Resolution X 0.0012217294 rad/s
Min. Resolution Y 0.0012217294 rad/s
Min. Resolution Z 0.0012217294 rad/s
Minimum X ­0.03176499 rad/s
Mean X ­0.00288472839172242 rad/s
Maximum X 0.02443461 rad/s
Minimum Y ­0.021991149 rad/s
Mean Y 0.0121271310204639 rad/s
Maximum Y 0.04642576 rad/s
Minimum Z ­0.037873644 rad/s
Mean Z ­0.00493075645573842 rad/s
Maximum Z 0.029321533 rad/s
Standard Deviation X 0.00873989164838175 rad/s
Standard Deviation Y 0.0102265468457807 rad/s
Standard Deviation Z 0.00931612656677903 rad/s
Android Version 4.3
App Version 1.0
App Version Code 9
Battery 72%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 1000 μs
Minimum Resolution X 0.0012216568 rad/s
Min. Resolution Y 0.0012216568 rad/s
Min. Resolution Z 0.0012216568 rad/s
Minimum X ­6.2540383 rad/s
Maximum X 9.968099 rad/s
Minimum Y ­4.9565606 rad/s
Maximum Y 6.917438 rad/s
Minimum Z ­6.994407 rad/s
Maximum Z 7.064046 rad/s

Initialization

X
Y
Z

­0.050

­0.025

0.000

0.025

0.050

1,0001,0001,000 2,0002,0002,000 3,0003,0003,000 4,0004,0004,000 5,0005,0005,000

Download all values as JSON array

Number of events 6472
Timepitch (minimum) 1000 μs
Timepitch (arithmetic
mean)

1649928.28774532 μs

Timepitch (standard
deviation)

19671700.841507 μs

Minimum Resolution X 0.0012216568 rad/s
Min. Resolution Y 0.0012216568 rad/s
Min. Resolution Z 0.0012216568 rad/s
Minimum X ­6.2540383 rad/s
Maximum X 9.968099 rad/s
Minimum Y ­4.9565606 rad/s
Maximum Y 6.917438 rad/s
Minimum Z ­6.994407 rad/s
Maximum Z 7.064046 rad/s

About Device

Technical sensor specifications by device
Maximum Range 34.906586 rad/s
Minimum Delay 1190 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 6.1 mA The power in mA used by this sensor while in use.

Resolution 1 rad/s
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Google
Manufacturer Samsung
Device crespo
Model Nexus S
Product soju
Hardware herring
Board herring

X
Y
Z

­10

­5

0

5

10

400400400 1,8001,8001,800 3,2003,2003,200 4,6004,6004,600 6,0006,0006,000

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Gyroscope: Gyroscope sensor Emulation!!!! by Columbia University ­
NYC ­ Thesis ­ Raghavan Santhanam
Benchmark

Points
Total 15875
Events 4013
Deviation Timepitch 3416
Deviation Values 4015
Resolution 4431

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

0 6,000 12,000 18,000 24,000

ANDROID­X86 BOCHS

BLACKBERRY DEV A...

MOTOROLA XOOM

MOTOROLA XOOM 2 ...

MOTO MZ601

BLACKBERRY Z30

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 4013
Timepitch (minimum) 1030316 μs
Timepitch (arithmetic
mean)

2485833.26495513 μs

Timepitch (standard
deviation)

4688438.78654003 μs

Minimum Resolution X 0.0012217294 rad/s
Min. Resolution Y 0.0012217294 rad/s
Min. Resolution Z 0.0012217294 rad/s
Minimum X ­0.030543262 rad/s
Mean X ­0.00238135454245259 rad/s
Maximum X 0.02443461 rad/s
Minimum Y ­0.02687807 rad/s
Mean Y 0.0117317179953675 rad/s
Maximum Y 0.04153884 rad/s
Minimum Z ­0.03176499 rad/s
Mean Z ­0.00502757469160586 rad/s
Maximum Z 0.02687807 rad/s
Standard Deviation X 0.00884474442747728 rad/s
Standard Deviation Y 0.0103738133671091 rad/s
Standard Deviation Z 0.00956108287150725 rad/s
Android Version 4.3.1
App Version 1.0
App Version Code 9
Battery 100%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 1030316 μs
Minimum Resolution X 0.0012217164 rad/s
Min. Resolution Y 0.0012217164 rad/s
Min. Resolution Z 0.0012217164 rad/s
Minimum X ­0.42760566 rad/s
Maximum X 0.2773328 rad/s
Minimum Y ­0.6377433 rad/s
Maximum Y 0.6780604 rad/s
Minimum Z ­0.8368854 rad/s
Maximum Z 0.31887165 rad/s

Initialization

X
Y
Z

­0.050

­0.025

0.000

0.025

0.050

1,0001,0001,000 1,9001,9001,900 2,8002,8002,800 3,7003,7003,700

Download all values as JSON array

Number of events 4924
Timepitch (minimum) 1044881 μs
Timepitch (arithmetic
mean)

2031962.296364 μs

Timepitch (standard
deviation)

580817.836400734 μs

Minimum Resolution X 0.0012217164 rad/s
Min. Resolution Y 0.0012217164 rad/s
Min. Resolution Z 0.0012217164 rad/s
Minimum X ­0.42760566 rad/s
Maximum X 0.2773328 rad/s
Minimum Y ­0.6377433 rad/s
Maximum Y 0.6780604 rad/s
Minimum Z ­0.8368854 rad/s
Maximum Z 0.31887165 rad/s

About Device

Technical sensor specifications by device
Maximum Range 34.906586 rad/s
Minimum Delay 1190 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 6.1 mA The power in mA used by this sensor while in use.

Resolution 1 rad/s
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Android­x86
Manufacturer Bochs
Device x86
Model Bochs
Product android_x86
Hardware android_x86
Board unknown

X
Y
Z

­1.0

­0.5

0.0

0.5

1.0

1,3001,3001,300 2,5002,5002,500 3,7003,7003,700 4,9004,9004,900

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Gyroscope: Corrected Gyroscope Sensor by Google Inc.
Benchmark

Points
Total 23700
Events 7764
Deviation Timepitch 2408
Deviation Values 3778
Resolution 9750

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

2,000 9,000 16,000 23,000 30,000

GOOGLE NEXUS S

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 7764
Timepitch (minimum) 5000 μs
Timepitch (arithmetic
mean)

2712234.04804844 μs

Timepitch (standard
deviation)

46591804.9106864 μs

Minimum Resolution X 4.656613e­09 rad/s
Min. Resolution Y 3.4458935e­08 rad/s
Min. Resolution Z 3.7252903e­09 rad/s
Minimum X ­0.029162565 rad/s
Mean X 0.00135079758898791 rad/s
Maximum X 0.14878188 rad/s
Minimum Y ­0.06704378 rad/s
Mean Y 0.00105244149020005 rad/s
Maximum Y 0.06387907 rad/s
Minimum Z ­0.81840205 rad/s
Mean Z ­0.0306139868136419 rad/s
Maximum Z 0.13552837 rad/s
Standard Deviation X 0.0124841781918444 rad/s
Standard Deviation Y 0.0106674534661779 rad/s
Standard Deviation Z 0.124873303874371 rad/s
Android Version 4.3
App Version 1.0
App Version Code 9
Battery 72%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 5000 μs
Minimum Resolution X 4.656613e­09 rad/s
Min. Resolution Y 3.4458935e­08 rad/s
Min. Resolution Z 3.7252903e­09 rad/s
Minimum X ­0.47589684 rad/s
Maximum X 31.16835 rad/s
Minimum Y ­14.308565 rad/s
Maximum Y 0.62288666 rad/s
Minimum Z ­7.6624045 rad/s
Maximum Z 7.415291 rad/s

Initialization

X
Y
Z

­0.9

­0.6

­0.3

­0.0

0.3

1,0001,0001,000 2,5002,5002,500 4,0004,0004,000 5,5005,5005,500 7,0007,0007,000

Download all values as JSON array

Number of events 2160
Timepitch (minimum) 2019000 μs
Timepitch (arithmetic
mean)

4798122.68133396 μs

Timepitch (standard
deviation)

7459310.05262057 μs

Minimum Resolution X 1.4781952e­05 rad/s
Min. Resolution Y 3.1471252e­05 rad/s
Min. Resolution Z 1.013279e­06 rad/s
Minimum X ­0.47589684 rad/s
Maximum X 31.16835 rad/s
Minimum Y ­14.308565 rad/s
Maximum Y 0.62288666 rad/s
Minimum Z ­7.6624045 rad/s
Maximum Z 7.415291 rad/s

About Device

Technical sensor specifications by device
Maximum Range 34.906586 rad/s
Minimum Delay 1190 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 13.13 mA The power in mA used by this sensor while in use.

Resolution 1 rad/s
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Google
Manufacturer Samsung
Device crespo
Model Nexus S
Product soju
Hardware herring
Board herring

X
Y
Z

­15

0

15

30

45

400400400 800800800 1,2001,2001,200 1,6001,6001,600 2,0002,0002,000

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Gyroscope: Corrected Gyroscope Sensor Emulation!!!! by Google
Inc.
Benchmark

Points
Total 18521
Events 3762
Deviation Timepitch 2311
Deviation Values 3786
Resolution 8662

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

0 5,000 10,000 15,000 20,000

ANDROID­X86 BOCHS

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 3762
Timepitch (minimum) 1029845 μs
Timepitch (arithmetic
mean)

5015575.6833289 μs

Timepitch (standard
deviation)

14902575.0686187 μs

Minimum Resolution X 7.8231096e­08 rad/s
Min. Resolution Y 2.4598558e­07 rad/s
Min. Resolution Z 4.004687e­08 rad/s
Minimum X ­0.029162565 rad/s
Mean X 0.000703288323891424 rad/s
Maximum X 0.14878188 rad/s
Minimum Y ­0.06704378 rad/s
Mean Y 0.00102522614198671 rad/s
Maximum Y 0.06387907 rad/s
Minimum Z ­0.81840205 rad/s
Mean Z ­0.0373121408507692 rad/s
Maximum Z 0.060750667 rad/s
Standard Deviation X 0.0125816132428213 rad/s
Standard Deviation Y 0.0102227097479402 rad/s
Standard Deviation Z 0.125127977494517 rad/s
Android Version 4.3.1
App Version 1.0
App Version Code 9
Battery 100%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 1029845 μs
Minimum Resolution X 7.8231096e­08 rad/s
Min. Resolution Y 2.4598558e­07 rad/s
Min. Resolution Z 4.004687e­08 rad/s
Minimum X ­0.47589684 rad/s
Maximum X 31.107265 rad/s
Minimum Y ­14.308565 rad/s
Maximum Y 0.62288666 rad/s
Minimum Z ­7.6514087 rad/s
Maximum Z 7.415291 rad/s

Initialization

X
Y
Z

­0.9

­0.6

­0.3

­0.0

0.3

1,0001,0001,000 1,9001,9001,900 2,8002,8002,800 3,7003,7003,700

Download all values as JSON array

Number of events 1330
Timepitch (minimum) 1034347 μs
Timepitch (arithmetic
mean)

7456090.7945824 μs

Timepitch (standard
deviation)

17379266.2977709 μs

Minimum Resolution X 2.0980835e­05 rad/s
Min. Resolution Y 4.1007996e­05 rad/s
Min. Resolution Z 1.013279e­06 rad/s
Minimum X ­0.47589684 rad/s
Maximum X 31.141472 rad/s
Minimum Y ­14.308565 rad/s
Maximum Y 0.62288666 rad/s
Minimum Z ­7.6514087 rad/s
Maximum Z 7.415291 rad/s

About Device

Technical sensor specifications by device
Maximum Range 34.906586 rad/s
Minimum Delay 1190 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 13.13 mA The power in mA used by this sensor while in use.

Resolution 1 rad/s
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Android­x86
Manufacturer Bochs
Device x86
Model Bochs
Product android_x86
Hardware android_x86
Board unknown

X
Y
Z

­15

0

15

30

45

100100100 400400400 700700700 1,0001,0001,000 1,3001,3001,300

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Orientation: Orientation Sensor by Google Inc.
Benchmark

Points
Total 14554
Events 480
Deviation Timepitch 3433
Deviation Values 3074
Resolution 7567

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

0 4,000 8,000 12,000 16,000

GOOGLE NEXUS S

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 480
Timepitch (minimum) 17622000 μs
Timepitch (arithmetic
mean)

20061081.4196242 μs

Timepitch (standard
deviation)

617548.324171898 μs

Minimum Resolution X 0.0009613037 °
Min. Resolution Y 3.027916e­05 °
Min. Resolution Z 2.0176172e­05 °
Minimum X 149.31502 °
Mean X 195.168065897624 °
Maximum X 205.15082 °
Minimum Y 0.46560785 °
Mean Y 0.566474574866394 °
Maximum Y 1.0428673 °
Minimum Z 0.20484763 °
Mean Z 0.422226777952165 °
Maximum Z 0.66346294 °
Standard Deviation X 9.38154127085435 °
Standard Deviation Y 0.0633600304355813 °
Standard Deviation Z 0.0498417742964972 °
Android Version 4.3
App Version 1.0
App Version Code 9
Battery 0%
Charging 1

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 17501000 μs
Minimum Resolution X 3.0517578e­05 °
Min. Resolution Y 2.2172928e­05 °
Min. Resolution Z 5.505979e­06 °
Minimum X 0.1895307 °
Maximum X 359.90366 °
Minimum Y ­179.3778 °
Maximum Y 179.4094 °
Minimum Z ­87.197395 °
Maximum Z 87.90361 °

Initialization

X
Y
Z

0

60

120

180

240

404040 130130130 220220220 310310310 400400400

Download all values as JSON array

Number of events 421
Timepitch (minimum) 17500000 μs
Timepitch (arithmetic
mean)

23433764.2857143 μs

Timepitch (standard
deviation)

38809437.2601905 μs

Minimum Resolution X 0.040836334 °
Min. Resolution Y 0.08538437 °
Min. Resolution Z 0.021385193 °
Minimum X 0.010887903 °
Maximum X 359.65134 °
Minimum Y ­179.77525 °
Maximum Y 178.40813 °
Minimum Z ­89.15096 °
Maximum Z 47.53811 °

About Device

Technical sensor specifications by device
Maximum Range 360 °
Minimum Delay 20000 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 13.13 mA The power in mA used by this sensor while in use.

Resolution 1 °
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Google
Manufacturer Samsung
Device crespo
Model Nexus S
Product soju
Hardware herring
Board herring

X
Y
Z

­179.8

0.0

179.8

359.6

539.4

100100100 190190190 280280280 370370370

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Orientation: Orientation Sensor Emulation!!!! by Columbia University
­ NYC ­ Thesis ­ Raghavan Santhanam
Benchmark

Points
Total 11627
Events 346
Deviation Timepitch 2025
Deviation Values 3388
Resolution 5868

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

0 5,000 10,000 15,000 20,000

ANDROID­X86 BOCHS

ANDROID FULL AOSP

TOSHIBA AT10LE­A

LGE LG­F180K

SKY IM­A840S

XOLO LT900

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 346
Timepitch (minimum) 1093162 μs
Timepitch (arithmetic
mean)

20446264.6231884 μs

Timepitch (standard
deviation)

16655073.020031 μs

Minimum Resolution X 0.0009613037 °
Min. Resolution Y 6.198883e­05 °
Min. Resolution Z 1.9997358e­05 °
Minimum X 189.699 °
Mean X 197.91206417194 °
Maximum X 205.15082 °
Minimum Y 0.465608 °
Mean Y 0.553732951252447 °
Maximum Y 0.614884 °
Minimum Z 0.366172 °
Mean Z 0.429362644522176 °
Maximum Z 0.475049 °
Standard Deviation X 4.56719400212691 °
Standard Deviation Y 0.0304310834014855 °
Standard Deviation Z 0.0243395266548155 °
Android Version 4.3.1
App Version 1.0
App Version Code 9
Battery 100%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 9223372036854775807 μs
Minimum Resolution X 2147483648 °
Min. Resolution Y 2147483648 °
Min. Resolution Z 2147483648 °
Minimum X 2147483648 °
Maximum X ­2147483648 °
Minimum Y 2147483648 °
Maximum Y ­2147483648 °
Minimum Z 2147483648 °
Maximum Z ­2147483648 °

Initialization

X
Y
Z

0

60

120

180

240

202020 909090 160160160 230230230 300300300

Download all values as JSON array

Number of events 232
Timepitch (minimum) 1098953 μs
Timepitch (arithmetic
mean)

43284757.7878788 μs

Timepitch (standard
deviation)

225029837.817748 μs

Minimum Resolution X 0.040836334 °
Min. Resolution Y 3.1962662 °
Min. Resolution Z 0.021385193 °
Minimum X 0.010888 °
Maximum X 357.92697 °
Minimum Y ­174.34981 °
Maximum Y 178.40813 °
Minimum Z ­82.66958 °
Maximum Z 47.53811 °

About Device

Technical sensor specifications by device
Maximum Range 360 °
Minimum Delay 20000 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 13.13 mA The power in mA used by this sensor while in use.

Resolution 1 °
Version 1
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Android­x86
Manufacturer Bochs
Device x86
Model Bochs
Product android_x86
Hardware android_x86
Board unknown

X
Y
Z

­175

0

175

350

525

404040 808080 120120120 160160160 200200200

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Gravity: Gravity Sensor by Google Inc.
Benchmark

Points
Total 19940
Events 473
Deviation Timepitch 3688
Deviation Values 4983
Resolution 7194
Gravity 3602

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution
Gravity

0 5,000 10,000 15,000 20,000

GOOGLE NEXUS S

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 473
Timepitch (minimum) 18288000 μs
Timepitch (arithmetic
mean)

20120747.8813559 μs

Timepitch (standard
deviation)

487663.603116348 μs

Minimum Resolution X 2.7365983e­05 m/s²
Min. Resolution Y 2.95043e­06 m/s²
Min. Resolution Z 9.536743e­07 m/s²
Minimum X ­0.12489976 m/s²
Mean X ­0.0855280153736881 m/s²
Maximum X ­0.027305666 m/s²
Minimum Y ­0.35864648 m/s²
Mean Y ­0.3048672519829 m/s²
Maximum Y ­0.28636047 m/s²
Minimum Z 9.799911 m/s²
Mean Z 9.80151787973609 m/s²
Maximum Z 9.802134 m/s²
Standard Deviation X 0.0158366919384434 m/s²
Standard Deviation Y 0.0112219425303716 m/s²
Standard Deviation Z 0.000361846781994485 m/s²
Android Version 4.3
App Version 1.0
App Version Code 9
Battery 60%
Charging 1

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 17679000 μs
Minimum Resolution X 2.7365983e­05 m/s²
Min. Resolution Y 2.95043e­06 m/s²
Min. Resolution Z 9.536743e­07 m/s²
Minimum X ­9.7954445 m/s²
Maximum X 9.7625 m/s²
Minimum Y ­9.783341 m/s²
Maximum Y 6.3910346 m/s²
Minimum Z ­9.803465 m/s²
Maximum Z 9.802156 m/s²

Initialization

X
Y
Z

­4

0

4

8

12

404040 130130130 220220220 310310310 400400400

Download all values as JSON array

Number of events 479
Timepitch (minimum) 17679000 μs
Timepitch (arithmetic
mean)

20072422.5941422 μs

Timepitch (standard
deviation)

1095790.9319448 μs

Minimum Resolution X 0.0016345978 m/s²
Min. Resolution Y 3.6239624e­05 m/s²
Min. Resolution Z 0.007071018 m/s²
Minimum X ­9.7954445 m/s²
Maximum X 9.7625 m/s²
Minimum Y ­9.783341 m/s²
Maximum Y 6.3910346 m/s²
Minimum Z ­9.803465 m/s²
Maximum Z 9.79571 m/s²

About Device

Technical sensor specifications by device
Maximum Range 19.6133 m/s²
Minimum Delay 20000 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 13.13 mA The power in mA used by this sensor while in use.

Resolution 3 m/s²
Version 3
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Google
Manufacturer Samsung
Device crespo
Model Nexus S
Product soju
Hardware herring
Board herring

X
Y
Z

­10

­5

0

5

10

404040 130130130 220220220 310310310 400400400

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Gravity: Gravity Sensor Emulation!!!! by Columbia University ­ NYC ­
Thesis ­ Raghavan Santhanam
Benchmark

Points
Total 18643
Events 450
Deviation Timepitch 2424
Deviation Values 4973
Resolution 7194
Gravity 3602

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution
Gravity

0 7,000 14,000 21,000 28,000

ANDROID­X86 BOCHS

ANDROID FULL AOSP

XOLO LT900

LGE LG­F180K

SKY IM­A840S

GOOGLE NEXUS 5

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 450
Timepitch (minimum) 2147318 μs
Timepitch (arithmetic
mean)

22271104.454343 μs

Timepitch (standard
deviation)

39262237.2625193 μs

Minimum Resolution X 2.7365983e­05 m/s²
Min. Resolution Y 2.95043e­06 m/s²
Min. Resolution Z 9.536743e­07 m/s²
Minimum X ­0.12353363 m/s²
Mean X ­0.085820348304179 m/s²
Maximum X ­0.027305666 m/s²
Minimum Y ­0.35864648 m/s²
Mean Y ­0.304637827939458 m/s²
Maximum Y ­0.2827893 m/s²
Minimum Z 9.799911 m/s²
Mean Z 9.80152234183417 m/s²
Maximum Z 9.802156 m/s²
Standard Deviation X 0.015740546306606 m/s²
Standard Deviation Y 0.0114616348129756 m/s²
Standard Deviation Z 0.000370016797262376 m/s²
Android Version 4.3.1
App Version 1.0
App Version Code 9
Battery 100%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 2147318 μs
Minimum Resolution X 2.7365983e­05 m/s²
Min. Resolution Y 2.95043e­06 m/s²
Min. Resolution Z 9.536743e­07 m/s²
Minimum X ­9.777154 m/s²
Maximum X 9.268852 m/s²
Minimum Y ­5.1074166 m/s²
Maximum Y 6.3910346 m/s²
Minimum Z ­9.0365095 m/s²

Maximum Z 9.802156 m/s²

Initialization

X
Y
Z

­4

0

4

8

12

100100100 190190190 280280280 370370370

Download all values as JSON array

Number of events 39
Timepitch (minimum) 2192406 μs
Timepitch (arithmetic
mean)

19853208.3947368 μs

Timepitch (standard
deviation)

6421929.25196294 μs

Minimum Resolution X 0.01804161 m/s²
Min. Resolution Y 0.033097267 m/s²
Min. Resolution Z 0.07286453 m/s²
Minimum X ­9.777154 m/s²
Maximum X 9.268852 m/s²
Minimum Y ­5.1074166 m/s²
Maximum Y 6.3910346 m/s²
Minimum Z ­9.0365095 m/s²
Maximum Z 9.143451 m/s²

About Device

Technical sensor specifications by device
Maximum Range 19.6133 m/s²
Minimum Delay 20000 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 13.13 mA The power in mA used by this sensor while in use.

Resolution 3 m/s²
Version 3
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Android­x86
Manufacturer Bochs
Device x86
Model Bochs
Product android_x86
Hardware android_x86
Board unknown

X
Y
Z

­10

­5

0

5

10

101010 191919 282828 373737

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Linear Acceleration: Linear Acceleration Sensor by Google Inc.
Benchmark

Points
Total 14370
Events 472
Deviation Timepitch 3643
Deviation Values 3142
Resolution 7113

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

0 4,000 8,000 12,000 16,000

GOOGLE NEXUS S

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 472
Timepitch (minimum) 18014000 μs
Timepitch (arithmetic
mean)

20089690.0212314 μs

Timepitch (standard
deviation)

569211.494073441 μs

Minimum Resolution X 1.148507e­05 m/s²
Min. Resolution Y 2.1636486e­05 m/s²
Min. Resolution Z 9.536743e­07 m/s²
Minimum X ­0.15511778 m/s²
Mean X 0.00486194267395441 m/s²
Maximum X 0.169758 m/s²
Minimum Y ­0.17418107 m/s²
Mean Y 0.00929608593805362 m/s²
Maximum Y 0.2132689 m/s²
Minimum Z ­0.7222843 m/s²
Mean Z ­0.485175845986706 m/s²
Maximum Z ­0.2438364 m/s²
Standard Deviation X 0.0659597691762572 m/s²
Standard Deviation Y 0.0700731261394137 m/s²
Standard Deviation Z 0.0793987900856189 m/s²
Android Version 4.3
App Version 1.0
App Version Code 9
Battery 61%
Charging 1

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 17679000 μs
Minimum Resolution X 1.148507e­05 m/s²
Min. Resolution Y 2.1636486e­05 m/s²
Min. Resolution Z 9.536743e­07 m/s²
Minimum X ­18.800388 m/s²
Maximum X 26.709007 m/s²
Minimum Y ­13.391294 m/s²
Maximum Y 13.478722 m/s²
Minimum Z ­26.603035 m/s²
Maximum Z 25.05813 m/s²

Initialization

X
Y
Z

­0.9

­0.6

­0.3

­0.0

0.3

404040 130130130 220220220 310310310 400400400

Download all values as JSON array

Number of events 481
Timepitch (minimum) 17679000 μs
Timepitch (arithmetic
mean)

20072020.8333333 μs

Timepitch (standard
deviation)

1093518.64488217 μs

Minimum Resolution X 0.0019395351 m/s²
Min. Resolution Y 0.0076088905 m/s²
Min. Resolution Z 0.0051465034 m/s²
Minimum X ­18.800388 m/s²
Maximum X 26.709007 m/s²
Minimum Y ­13.391294 m/s²
Maximum Y 13.478722 m/s²
Minimum Z ­26.603035 m/s²
Maximum Z 25.05813 m/s²

About Device

Technical sensor specifications by device
Maximum Range 19.6133 m/s²
Minimum Delay 20000 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 13.13 mA The power in mA used by this sensor while in use.

Resolution 3 m/s²
Version 3
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Google
Manufacturer Samsung
Device crespo
Model Nexus S
Product soju
Hardware herring
Board herring

X
Y
Z

­40

­20

0

20

40

404040 130130130 220220220 310310310 400400400

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Linear Acceleration: Linear Acceleration Sensor Emulation!!!! by
Columbia University ­ NYC ­ Thesis ­ Raghavan Santhanam
Benchmark

Points
Total 12387
Events 414
Deviation Timepitch 2394
Deviation Values 2466
Resolution 7113

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

0 5,000 10,000 15,000 20,000

ANDROID­X86 BOCHS

SONY C6833

SONY C6903

LGE LG­E988

SAMSUNG GT­N8010

SAMSUNG GT­I9305T

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 414
Timepitch (minimum) 1083326 μs
Timepitch (arithmetic
mean)

24028233.1452785 μs

Timepitch (standard
deviation)

66808324.8242716 μs

Minimum Resolution X 1.148507e­05 m/s²
Min. Resolution Y 2.1636486e­05 m/s²
Min. Resolution Z 9.536743e­07 m/s²
Minimum X ­5.8484263 m/s²
Mean X ­0.00794493974887223 m/s²
Maximum X 0.169758 m/s²
Minimum Y ­0.17418107 m/s²
Mean Y ­0.000329550406890126 m/s²
Maximum Y 0.2132689 m/s²
Minimum Z ­0.7222843 m/s²
Mean Z ­0.447017812498526 m/s²
Maximum Z ­0.2438364 m/s²
Standard Deviation X 0.295365793331191 m/s²
Standard Deviation Y 0.23554844226197 m/s²
Standard Deviation Z 0.800892444776628 m/s²
Android Version 4.3.1
App Version 1.0
App Version Code 9
Battery 100%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 1083326 μs
Minimum Resolution X 1.148507e­05 m/s²
Min. Resolution Y 2.1636486e­05 m/s²
Min. Resolution Z 9.536743e­07 m/s²
Minimum X ­14.8026085 m/s²
Maximum X 16.57092 m/s²
Minimum Y ­9.418074 m/s²
Maximum Y 8.165609 m/s²
Minimum Z ­26.603035 m/s²
Maximum Z 15.725853 m/s²

Initialization

X
Y
Z

­6

0

6

12

18

100100100 190190190 280280280 370370370

Download all values as JSON array

Number of events 38
Timepitch (minimum) 5638455 μs
Timepitch (arithmetic
mean)

19931710.027027 μs

Timepitch (standard
deviation)

5986690.45291451 μs

Minimum Resolution X 0.18577003 m/s²
Min. Resolution Y 0.15843868 m/s²
Min. Resolution Z 0.1152606 m/s²
Minimum X ­14.8026085 m/s²
Maximum X 16.57092 m/s²
Minimum Y ­9.418074 m/s²
Maximum Y 8.165609 m/s²
Minimum Z ­26.603035 m/s²
Maximum Z 9.884876 m/s²

About Device

Technical sensor specifications by device
Maximum Range 19.6133 m/s²
Minimum Delay 20000 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 13.13 mA The power in mA used by this sensor while in use.

Resolution 3 m/s²
Version 3
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Android­x86
Manufacturer Bochs
Device x86
Model Bochs
Product android_x86
Hardware android_x86
Board unknown

X
Y
Z

­30

­15

0

15

30

101010 191919 282828 373737

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Rotation Vector: Rotation Vector Sensor by Google Inc.
Benchmark

Points
Total 17733
Events 476
Deviation Timepitch 3631
Deviation Values 5064
Resolution 8562

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

0 5,000 10,000 15,000 20,000

GOOGLE NEXUS S

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 476
Timepitch (minimum) 17168000 μs
Timepitch (arithmetic
mean)

20051648.4210526 μs

Timepitch (standard
deviation)

528809.386918055 μs

Minimum Resolution X 4.0978193e­08
Min. Resolution Y 1.7369166e­07
Min. Resolution Z 3.2782555e­07
Minimum X ­0.019098476
Mean X ­0.016902166526342
Maximum X ­0.014205839
Minimum Y ­0.0068445005
Mean Y ­0.00436856001045676
Maximum Y 0.0007874293
Minimum Z 0.31833655
Mean Z 0.407569030064995
Maximum Z 0.424591
Standard Deviation X 0.000494196573352458
Standard Deviation Y 0.000702911951333481
Standard Deviation Z 0.0137468119591385
Android Version 4.3
App Version 1.0
App Version Code 9
Battery 62%
Charging 1

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 17168000 μs
Minimum Resolution X 4.0978193e­08
Min. Resolution Y 1.7369166e­07
Min. Resolution Z 3.2782555e­07
Minimum X ­0.8421365
Maximum X 0.7704579
Minimum Y ­0.9470923
Maximum Y 0.9550614
Minimum Z ­0.52604866
Maximum Z 0.91146535

Initialization

X
Y
Z

­0.2

0.0

0.2

0.4

0.6

404040 130130130 220220220 310310310 400400400

Download all values as JSON array

Number of events 483
Timepitch (minimum) 17679000 μs
Timepitch (arithmetic
mean)

20118792.5311203 μs

Timepitch (standard
deviation)

1416171.98531898 μs

Minimum Resolution X 0.00040197372
Min. Resolution Y 0.0013104081
Min. Resolution Z 9.11355e­05
Minimum X ­0.8421365
Maximum X 0.7704579
Minimum Y ­0.9470923
Maximum Y 0.9550614
Minimum Z ­0.52604866
Maximum Z 0.91146535

About Device

Technical sensor specifications by device
Maximum Range 1
Minimum Delay 20000 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 13.13 mA The power in mA used by this sensor while in use.

Resolution 3
Version 3
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Google
Manufacturer Samsung
Device crespo
Model Nexus S
Product soju
Hardware herring
Board herring

X
Y
Z

­1.0

­0.5

0.0

0.5

1.0

404040 130130130 220220220 310310310 400400400

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Home › Sensor Benchmarks

Sensor Benchmarks
Rotation Vector: Rotation Vector Sensor Emulation!!!! by Columbia
University ­ NYC ­ Thesis ­ Raghavan Santhanam
Benchmark

Points
Total 16722
Events 450
Deviation Timepitch 2649
Deviation Values 5061
Resolution 8562

Benchmark results in comparisson to the top 5 sensors (points in arithmetic mea...
Total Points
Number of Events
Time Consistency
Standard Deviation
Resolution

0 6,000 12,000 18,000 24,000

ANDROID­X86 BOCHS

SKY IM­A840S

XOLO LT900

ANDROID FULL AOSP

TOSHIBA AT10LE­A

ASUS ME302C

D
ev
ic
es

Home News SensMark App Sensor Benchmarks Fragmentation Statistics Lab About Contact Privacy Policy

Download all values as JSON array

Number of events 450
Timepitch (minimum) 2195548 μs
Timepitch (arithmetic
mean)

20272161.0979955 μs

Timepitch (standard
deviation)

10132941.448023 μs

Minimum Resolution X 4.0978193e­08
Min. Resolution Y 1.7415732e­07
Min. Resolution Z 3.2782555e­07
Minimum X ­0.019098476
Mean X ­0.0168825882259343
Maximum X ­0.014205839
Minimum Y ­0.006844501
Mean Y ­0.00434953432659515
Maximum Y 0.000787429
Minimum Z 0.31833655
Mean Z 0.407424929539362
Maximum Z 0.424591
Standard Deviation X 0.000492848744413422
Standard Deviation Y 0.000717955381347782
Standard Deviation Z 0.0141189885758968
Android Version 4.3.1
App Version 1.0
App Version Code 9
Battery 100%
Charging 0

SensMark results based on all executed initializations and benchmarks with this specific sensor
Minimum Timepitch 2195548 μs
Minimum Resolution X 4.0978193e­08
Min. Resolution Y 1.7415732e­07
Min. Resolution Z 3.2782555e­07
Minimum X ­0.7687148
Maximum X 0.7704579
Minimum Y ­0.7998399
Maximum Y 0.6579724
Minimum Z ­0.4093267
Maximum Z 0.8874505

Initialization

X
Y
Z

­0.2

0.0

0.2

0.4

0.6

100100100 190190190 280280280 370370370

Download all values as JSON array

Number of events 38
Timepitch (minimum) 7404753 μs
Timepitch (arithmetic
mean)

20031652.9189189 μs

Timepitch (standard
deviation)

5700825.88316605 μs

Minimum Resolution X 0.0017365217
Min. Resolution Y 0.0059155226
Min. Resolution Z 0.013722479
Minimum X ­0.7687148
Maximum X 0.7704579
Minimum Y ­0.7998399
Maximum Y 0.6579724
Minimum Z ­0.4093267
Maximum Z 0.8874505

About Device

Technical sensor specifications by device
Maximum Range 1
Minimum Delay 20000 μs The minimum delay allowed between two events in microsecond or zero if this

sensor only returns a value when the data it's measuring changes.

Power 13.13 mA The power in mA used by this sensor while in use.

Resolution 3
Version 3
Note: In our research we found out that the specifications above do not have to be true.

Device
Brand Android­x86
Manufacturer Bochs
Device x86
Model Bochs
Product android_x86
Hardware android_x86
Board unknown

X
Y
Z

­1.0

­0.5

0.0

0.5

1.0

101010 191919 282828 373737

© 2013 SensMark ↑ Responsive Theme powered by
WordPress

Chapter 11
Challenges

This chapter outlines the major challenges that were

encountered while shaping up the Sensor Emulation into a work of great quality. This is
a ready-reference to the specific solutions chosen for overcoming the challenges
encountered and the specific reasons for not being able to overcome some of the
challenges.

11.1 Requirements-driven-challenges

11.1.1 Generic

The whole Sensor Emulation was intended to be done at
the device driver level. After deep investigation of all the possible alternatives, ease, and
portability of the needed Sensor Emulation technique, the HAL specific implementation
was finalized. The investigation was an exhaustive one involving the examination of
the couple of kernel-level device driver code namely,
<android_src_path>/kernel/drivers/input/misc/adxl34x.c and
<android_src_path>/ kernel/drivers/staging/iio/accel/lis3l02dq.c.

11.1.2 Wireless

The challenge of having the Sensor Emulation to remote
which means wireless as far as this work is concerned, was faced-off by having
socket-communication between the HAL modules be based on TCP/IP to facilitate the
correct order of the sensor readings in a reliable way. Thus, the real device being paired
can be anywhere in the world as long as it’s reachable over IP and also the remote
server when used can be running anywhere in this world as long as the host machine
running the remote server is reachable over IP.

11.1.3 Lossless and consistent

The real challenge was in getting the RAD sensor readings
onto VAD in real-time without any loss over the network. It involved experimenting
with many inter-process and inter-thread communication mechanisms as under.
Inter-process: 1) File synchronization done in a mutually exclusive manner between
two programs(server and client on the host) to communicate sensor readings from one
to another. Inter-thread(after merging client and server programs into one and running
as threads): 1) Shared-memory access guarded by semaphores. 2) Shared-memory access
guarded by futex. 3) Shared-memory access guarded by pipe.

Android-x86 Sensor Emulation 138 Raghavan Santhanam

11.1.4 Accurate

The challenge to have the sensor readings reaching the
emulator to be accurate was achieved by transmitting the sensor readings in their full
numerical precision from the RAD to VAD.

11.1.5 Swift

With respect to the device, the semaphore based
notification mechanism employed for letting know the device server that a new sensor
reading(more specifically, an individual component of the respective sensor readings
which could be triplet, etc), proved to be inefficient and was a hindrance to the real-time
nature expected in the Sensor Emulation process. Futex were thought of to be used as
they are claimed to be faster user-space mutexes than the generic kernel-based mutexes
and semaphores. But, then the pipe usage proved to be the just right choice in terms of
the sequentialization of the sensor data for a classic producer(server)-consumer(client)
problem. Pipes helped to retain the real-time nature of the readings end-to-end.

11.1.6 Tolerant to high-frequency transmission of
sensor readings

Though the problem of consistency and synchronization
got solved, there was a problem with the Qemu emulator that was being used. It was
crashing when the readings were sent at high-speed to cater for the real-time nature.
The reason became apparent after a detailed analysis of the Qemu logs and searching for
the specific error messages in the internet discussion forums. There was a problem in
the version of the Qemu(v1.2) in the way of handling the incoming packets in
slirp/slirp.c of Qemu source. The bug causing the problem was fixed later, and
using the latest Qemu(v1.6.1 at the time of this writing) which had kvm code merged
from v1.3 onwards, now the readings can be sent virtually any speed - no crash has
been experienced thereafter.

11.1.7 Auto-resetting and Auto-restoring

Initially, to keep things simpler, the whole client-server
connection setup was being carried out for each and every sensor reading that’s being
sent and received at all points of the Sensor Emulation. Soon, this proved to be
inefficient. This was replaced by on-demand and fault-tolerant connection logic which
ensures there is absolutely no activity if there’s no connected client in the first place and
also if either of the client or the server fail or crash, only then the connection is reset at
the failed point and that happens immediately. Some of the servers have a SIGPIPE
handler installed to prevent the entire sensor HAL module from exiting when there is a
socket-communication error triggering a SIGPIPE. Upon handling SIGPIPE, the state of
the respective program(thread) is restored performing a longjmp()from the previous

Android-x86 Sensor Emulation 139 Raghavan Santhanam

successful context saved using setjmp().

11.1.8 Optimized in terms of end-to-end
socket-communication

Until the port-mapping mechanism was studied and
deployed, there was no visual improvement in the sensor readings transmission
end-to-end. Then came the concept of the dummy forever-sleep server bridging the gap
between the host and guest by simply referring the mapped port on behalf of the
respective emulator server.

11.1.9 Rigorously tested

11.1.9.1 Graphics

Another big challenge was to find a 3D racing game for a
test and demo of the Sensor Emulation, that uses accelerometer sensor readings while
it’s running. This game-hunt took almost two whole weeks of tiresome experiment with
100+ games available free for testing from several websites. The real problem that was
faced was due to the lack of updated OpenGL ES support on Android-x86. At the time of
this writing, only OpenGL ES 1.1 was working on Android-x86 while all the top 3D
games would have never been tested in an emulated Android which anyway lacks
sensor support, but only real devices which come with OpenGL ES 3.0. So, it took a while
to realize that most of the games are ARM based and need ARM emulation in the x86
based Android on Qemu.

11.1.9.2 ARM translation SuppoRt

The ARM emulation support library, libhoudini which
was once hosted by formerly active website buildroid.org(now androvm.org and no
longer hosts these libraries) helped to at least launch some of the ARM based Android
games on the emulated Android-x86 which were failing solely for the lack of ARM
emulation support, in the first place. However, the binaries of libhoudini were not
available in the Android-x86 source either. So, it took 2-3 days of searching and hacking
to find the binaries ultimately in an ISO image hen Android-x86 JB 4.3 ISO was booted,
under /system/lib and /system/lib/hw.

The lack of the updated OpenGL ES support anyway didn’t take the success of having
launched the ARM based games any further. So, after few seconds of launch, these
games were crashing mostly with a java exception related to mismatch in config
specification in one of the graphics related Java sources under Android Framework.
Though, there was a workaround announced in some of the websites to a similar error
as there was a noted bug in the Android emulator source which was wrongly
determining the OpenGL ES version available on the system and was always returning

Android-x86 Sensor Emulation 140 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fandrovm.org%2F&sa=D&sntz=1&usg=AFQjCNFJM_44h01JW1om4njfp-WzLRN5rQ
http://www.google.com/url?q=http%3A%2F%2Fandrovm.org%2F&sa=D&sntz=1&usg=AFQjCNFJM_44h01JW1om4njfp-WzLRN5rQ

the old versions to be present which was causing the mismatch in the config
specification problem possibly due to the differences between the different versions of
OpenGL ES libraries. When the announced fix was incorporated into the corresponding
Java sources of Android Framework, that specific issue got fixed but something similar
kept cropping up. So, any attempt to fix these were given up as it was learned to be the
limitation of Android-x86 itself in not having the latest OpenGL ES version of library
capable of running the top 3D Android games which are accelerometer based.

11.1.9.3 Graphics, continued

As an effort to run the advanced 3D games,
Hardware(HW) Acceleration was enabled on Qemu for Android-x86 with HWACCEL=1 in
the kernel boot parameters. This at least enabled the latest Asphalt 8 Airborne and other
3D games to be fully launched and successfully run as well. But, the UI was way too
slow that could have been tolerated. It was learned from the android-x86.org discussion
forums that HW Acceleration isn’t fully supported on Android-x86 as the related
graphics drivers in Android-x86 are not quite functional at the time of this writing.

There is Intel Hardware Accelerated Execution Manager(Intel® HAXM) for Windows
hosted Android emulator for the necessary Hardware Acceleration. But, for Linux
variant, Ubuntu, KVM was used as informed here.

Other options of emulated Android were tested like Genymotion, etc. As they were not
open-source, nothing much helped. The Intel Atom x86 System image was also tried
once for running the 3D games with the Android Standard Emulator. There was no
difference but the games kept crashing. The reason wasn’t investigated further as it was
anyway not the problem of the game but was of the outdated graphics support. This was
tried with “GPU Support”.

GPU passthrough for Qemu was attempted to enable better HW Acceleration. Since,
there was only one graphics card in the machine that was being used and there was no
secondary machine to connect from, the idea of GPU passthrough was not tried, initially.
Also, for better graphics, before finalizing SPICE for Qemu, other VGA options were
tried. But, all of them were not as good as SPICE. Hence, SPICEd Qemu is the one that’s
being used now.

11.1.9.4 WiFi necessity

Apart from the graphics issue, there was a problem in
terms of the game data download forced over WiFi. Though the WiFi drivers were
loaded and wlan0 and wlan1 interfaces were listed in the emulated Android-x86
environment, they were not coming alive and hence some of the games mandating the
game download over WiFi were not tried. Even when the game data was manually
placed, they were not considered and download over WiFi was kept on being imposed.

Android-x86 Sensor Emulation 141 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fandroid-x86.org&sa=D&sntz=1&usg=AFQjCNF4_BbgLRz8ebWIp62XFWr04KUjLw
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-hardware-accelerated-execution-manager&sa=D&sntz=1&usg=AFQjCNE51O1jzunJg3uAE6KdCPevrSIRBw
http://www.google.com/url?q=http%3A%2F%2Fwww.linux-kvm.org%2F&sa=D&sntz=1&usg=AFQjCNHdQC4bsb8672wEU7PKYEZU9oCHJw
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Fblogs%2F2012%2F03%2F12%2Fhow-to-start-intel-hardware-assisted-virtualization-hypervisor-on-linux-to-speed-up-intel-android-x86-gingerbread-emulator&sa=D&sntz=1&usg=AFQjCNG7jeYxP0aqEAzyhb_tNGBuolYQQA
http://www.google.com/url?q=http%3A%2F%2Fwww.genymotion.com%2F&sa=D&sntz=1&usg=AFQjCNEPVs_-VtsmSfBX4qzyoL284t4ypQ

11.1.10 Real

The challenge of making the Sensor Emulation as real as
possible, as closer to the behavior of the real hardware sensors, was accomplished by
having no modifications in the behavior of the real hardware sensors - their existing
sampling frequencies, etc, were left untouched and instead, the emulated sensors’ code
was fine-tuned to be on par with the high sampling frequencies, etc in addition to
having the specifications of the emulated sensors to be exactly same as that of the real
hardware sensors like having the power consumption value for the emulated sensor to
be same as that of the real hardware sensor, and so on.

11.1.11 Demand-less

The existing emulator-compatible sensor-based applications
can work with the current work of Sensor Emulation without having to be modified at
all. This is possible since the current work at HAL level blends so well that it almost
becomes a part of the standard Android Sensors framework. All that is being done is to
provide the sensor readings from the HAL level instead of from the intended real
hardware sensor level. So, the rest of the actions from HAL level onwards until the
topmost level where the sensor-based application is running, are exactly same as it
would happen in a real device. Hence, the current work is demand-less as far as the
emulator-compatible sensor-based application’s existing code is concerned.

11.1.12 Independent

The performance of the Sensor Emulation is unaffected by
the sensor-based applications running in the virtualized smartphone environment.
Regardless of the way in which the sensor-based application is querying the sensor data
from the underlying emulated sensors using the Android framework APIs, the Sensor
Emulation is going to work independently. More specifically, the rate at which the
sensor-based applications are going to query the underlying emulated sensors for
sensor data is immaterial to the Sensor Emulation in every sense. The reason being, the
Sensor Emulation is happening at the HAL which is independent of what’s happening
above HAL including the application layer.

11.2 Proving the Generality of IDEa

In order to prove the generality of the idea of HAL-based
Sensor Emulation, the decision to emulate all the sensors of a real Android Smartphone,
Samsung Nexus S, was made. While exercising this decision, there were some obstacles
that need to be overcome and are mentioned below.

11.2.1 Additional sensors in short time

Android-x86 Sensor Emulation 142 Raghavan Santhanam

One of the last challenges was to emulate all the ten
sensors of a real device, Samsung Nexus S in a week’s time while whole of the initial
work on Sensor Emulation took an entire set of three months in making the emulation
as efficient as possible. So, in addition to Accelerometer, all the other sensors were
taken up for the emulation and accomplished in a week’s time as agreed upon. The
obstacle in accomplishing the seemingly mechanically task of emulating the remaining
sensors was due the split in the implementation for the real sensors and virtual sensors
wherein the virtual sensors are based on Sensor Fusion. The split meant two different
libraries - libsensorservice.sofor virtual and sensors.herring.sofor real. Due to
the fact that, the Samsung Nexus S had an official release of Android 4.1.2 as its last
update and the emulated Android-x86 and its corresponding source was from JB 4.3, for
libsensorservice.so, there was a mismatch in terms of the symbols in the
dependent library libutils.so. It took a span 3-4 days to stop hacking the 4.3 library
with dummy methods for the missing symbols from the dependent libraries. It was
decided that a custom ROM of Android 4.3 could be flashed onto the same Nexus S and
hence there will be no further problems as the both the device and the emulated
Android-x86 will be having Android 4.3. With Android 4.3, the missing symbol issue got
fixed and the real coding for emulating remaining nine sensors was started and
eventually completed.

11.2.2 Specialized applications to test additional
sensors

As the emulation of the first sensor, accelerometer was
tested with some general sensor-test applications, eventually a specialized accelerometer
sensor-based application was necessary and found as well. Similarly, the additional
sensors once emulated demanded specialized applications as well. Though not as
challenging as others described already, the search for the suitable specialized
sensor-based application across the internet and not limited to Android Market,
demanded some extra patience in trying out 40+ new sensor-based applications,
observing their behavior several times to ensure consistency of sensor readings, and
short-listing the applications that work smoothly using which the evaluation of the
additional sensors could be carried out. After testing the Sensor Emulation with the
basic sensor-test applications and advanced sensor-based 3D games, the overall Sensor
Emulation was benchmarked using a Sensor Benchmarks evaluator application. Details
of these specialized applications and the data collected in using them are mentioned in
the evaluation section.

11.3 Inevitable Problems
Among the miscellaneous but inevitable problems

challenging the work, there were quite a few. 1) The very initial troublesome download
of the entire Android-x86 JB 4.3 source from android-x86.org. The trouble was due to
the intermittent network failures on the download servers forcing repeated downloads

Android-x86 Sensor Emulation 143 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fandroid-x86.org&sa=D&sntz=1&usg=AFQjCNF4_BbgLRz8ebWIp62XFWr04KUjLw

which almost appeared never-ending until after a week when it was complete with no
syncing issues. To add, initially the attempts were made with number of syncing jobs to
be one but later to save time and speed up the work, more than one was started to be
used. 2) Insufficient disk space problems preventing full downloads which got fixed
after some cleanup. 3) While trying to flash Android 4.3 on the real device, Samsung
Nexus S, two of such devices got seemingly damaged and now they are not even
switching on. Reason for the same is still not clear as they don’t even go to fastboot
mode. So, the third device is what being now used with utmost care. 4) The
machine(laptop) being used for the entire work had its some of the keyboard keys
stopped from working needing an external keyboard, all of a sudden, for which an
external keyboard for the rest of the work. 5) The laptop’s screen came off needing to
tape it together with the base of the laptop.

11.4 HUman factors
Last but not the least, the endless determination, energy,

and passion to complete the entire Sensor Emulation work in a span of approximately
three months from September 2013 to November 2013, while the work was targeted for a
total of two semesters from Spring 2013 to Fall 2013, single-handedly.

Android-x86 Sensor Emulation 144 Raghavan Santhanam

Chapter 12
Usability Factor

Usability of the current work of Sensor Emulation by

sensor-based applications has been studied with the following factors in mind.

12.1 Graphical dependencies
Any Android sensor-based application can make

use of the Sensor Emulation as long as the sensor-based application is compatible with
emulated Android-x86, specifically in terms of graphical dependencies. All the possible
issues concerning graphics are discussed in the “Overcoming Challenges” chapter in
detail which could prevent an affected sensor-based application from using the Sensor
Emulation altogether. The application might just fail to launch itself. However, with
proper graphics support either with updated OpenGL ES library or with a working
Hardware Acceleration in Android-x86(as it still has bugs as discussed in the
“Overcoming Challenges” section) and/or with GPU-passthrough mechanism, those
graphics-dependent sensor-based applications failing to launch or crashing after
launching or executing slow once launched, will be able to use the sensor readings
from the emulated sensors.

Having said that graphical dependency issues of a sensor-based application can prevent
it from using the current work of Sensor Emulation as in such a case the application
won’t even launch or may crash after launch, it should be clear that the graphics and
sensors have absolutely no relation with each other and hence, so are the graphical
dependencies of a sensor-based application and the current work of Sensor Emulation.

12.2 Time Delays
Maximum reported time delay of 0.6 seconds for

the Sensor Emulation shouldn’t be a matter of concern given that there will be anyway a
minimum inevitable delay in the Sensor Emulation. The minimum inevitable delays are
due to mainly three factors:

1. Network overhead involved in favoring one of the main strengths of the current
work which is remoteness.

2. The virtual inherent limit on the number of sensor readings(bytes) incoming that
can be processed by the emulator of Android-x86(Qemu in the current work).

3. The necessity of having a minute sleep interval between the sock-receive calls
within the innermost loop of the sensor servers on the emulator receiving the
respective sensors’ readings. And this necessity is important as it prevents the

Android-x86 Sensor Emulation 145 Raghavan Santhanam

sensor servers from hogging the CPU making the whole Android-x96 UI appear
sluggish and hence unacceptable.

Hence, with a delay as moderate as 0.6 seconds, the current Sensor Emulation work can
safely be used to serve in real-time and remotely as well.

12.3 Multiple Sensors Simultaneously
Usage of more than one sensor at the same time might

lead to a slight increase in the time taken for the sensor readings for a particular sensor
to reach from the real phone to virtual phone due to number of factors such as
increased network bandwidth consumption as each emulated sensor would maintain a
dedicated network connection with the respective real hardware sensor(between the
respective Sensors HAL modules, to be specific) for retrieving the real hardware sensor
readings. So, there will be as many TCP/IP network connections as the number of
emulated sensors that are active. For the interested, there are lot of other minor factors
that affect the time taken in a small extent and these have been discussed in a more
detailed manner in one of the previous chapters called “Evaluation”. However, it should
be clear that these are inevitable delays when there are a number of stringent
requirements to be met at the same time - remoteness, real-timeness, speed, accuracy,
and a lot more. Fortunately, these inevitable delays are negligible as well. So, the
current work does fare well even when more than one emulated sensor is in use.

Android-x86 Sensor Emulation 146 Raghavan Santhanam

Chapter 13
Related Works

There is no other system level Sensor Emulation
for Android which is crucial in making the emulation much closer to a real
hardware-driven sensor environment.

13.1 Android Emulators
Below are the works related to Android Emulators

being discussed for their sensor support or the absence of.

SensorSimulator - A userspace Android application providing artificially generated
sensor readings based on input devices etc. However, this has no way of pairing virtual
Android device with a real Android device in real-time, although a record-replay
facility has been recently added. Any application requiring the readings from this
simulation needs to be modified so that it contact this stand-alone sensor simulator
stand-alone application to get the readings being generated. Not sure if this is
compatible with Android-x86 as well[9]

SensorEmulation is said to work but is a wired approach based on USB connectivity. It
can’t be done in a remote manner, say over the network using WiFi. Moreover,
according to the lead developer of that project in the respective
GoogleOnlineDiscussionGroup, there hasn’t been any work from long time, there will
be a little bit of delay in the emulation and also they haven’t measured anything. In
addition, this sensor emulation work only emulates accelerometer and compass. Not
sure if this is compatible with Android-x86 as well.[10]

SamsungSensorSimulator is a Windows-Mac-only solution does simulate all the
sensors that are emulated by the current work and some more as well, with a
linked(paired) device over WiFi similar to what the current work does in terms of
pairing a real Android device, as explained throughout this document. However, after
reading its documentation in detail, below are the conclusions made though questions
on these have been asked in its respective Samsung discussion forum and other Q&A
sites as well and answers are being awaited from quite a while ago.

1. First of all, the documentation doesn’t mention if there is any possibility of a
sensor-based application using those sensor readings(both artificially generated
and that of a linked device). Second of all, if it’s really possible for any

Android-x86 Sensor Emulation 147 Raghavan Santhanam

http://code.google.com/p/openintents/wiki/SensorSimulator
http://tools.android.com/recent/sensoremulation
https://groups.google.com/forum/#!topic/adt-dev/HTUfnwdpmNw
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.samsung.com%2Fandroid%2Ftools-sdks%2FSamsung-Sensor-Simulator&sa=D&sntz=1&usg=AFQjCNHPYd2boASY5n_YYyt4FHH-YIQJKg

sensor-based application to use these sensor readings in some way, it’s not clear
if it can be in real-time.

2. It mandates the Android version to be 2.2.
3. All the documentation says that is, it helps in visualizing a real linked device’s

sensor behavior on the PC, apart from simulating the sensor readings without
any linked device. The visualization requires the Samsung Sensor Simulator
plugin to be installed for Eclipse IDE and inside the Eclipse IDE, one can see the
visualization of these sensor readings with some controls as well. This
visualization is made possible by running SensorReplay(.apk) on the real Android
device which tries to connect to SimulatorAndroidDevice(.apk) running on the
emulator using a pre-agreed port and the ip address of the host running the
emulator.

4. The simulator is mentioned to be installable with a set of requirements about the
platform, etc which includes the OS requirements to be Windows XP sp2,
Windows 7, or Mac OS 10.6 which means no Linux-based support.

5. No information on how fast the simulation will be when using a linked device.
6. If at all any sensor-based application running on the emulator can use the sensor

readings of a linked device, it’s not clear whether that sensor-based application’s
code needs to be modified to include some extra specific code to interact with
some module of the simulator running within the emulator to get the sensor
readings.

7. If possible for any sensor-based application on the emulator to use the sensor
readings from a linked device, it’s not clear whether more than one such
sensor-based application on the emulator to use the same sensor readings at the
same time in real-time.

8. Not clear whether applicable to Android-x86 as well.[11]

Samsung GALAXY Tab Emulator - mandates Android-2.2 with API 8 revision 1. Limited
to emulating Samsung Galaxy Tab and hence only its sensors which are gyroscope,
geo-magnetic sensor, accelerometer, and light sensor. Below are the immediate
questions that one would have.

1. How are these sensors being emulated? It’s not documented at all.
2. Whether linking(pairing) with a real device is supported or not - not specified

anywhere in its webpage. And if supported, does the Sensor Emulation happen in
real-time with remoteness being supported for linking the real device?

3. Can the sensor-based applications running on the emulator use these sensor
readings in real-time? If yes, whether the applications need to be modified for
getting these readings and so on.

4. Again, not sure whether, this is compatible with Android-x86 as well, at least
Android-x86 2.2.

As it may be obvious, the above set of questions applicable for Samsung Sensor
Simulator also apply for this Samsung Galaxy Tab Simulator as well.[12]

Android-x86 Sensor Emulation 148 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2F&sa=D&sntz=1&usg=AFQjCNHjmBe6J3yE4kaaaDn62J1HeUn08A
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.samsung.com%2Fandroid%2Ftools-sdks%2FSamsung-GALAXY-Tab-Emulator&sa=D&sntz=1&usg=AFQjCNEclUVyy9__wqgZS6i8dWOi_-aCeQ

Standard Android Emulator lacks Sensor support altogether as mentioned below which
is taken from its online documentation.[13]

Manymo, claimed to be a better emulator that’s in-browser. However, there is no
information on the sensors being “simulated” and also not “emulated”, as there appears
no concept of linking(pairing) a real device with the virtual device run by Manymo. In
spite of this, the pre-installed API demo’s sensors demo application was launched and
only below stuff was seen as far as the information on available sensors is concerned.
With no sensor names being displayed, it’s really not clear as to what sensors do these
indicate -- the immediate guesses would be Orientation sensor being “simulated” and
not “emulated” as said earlier. As usual, no information on Android-x86 support.[14]

Genymotion, a Multi-OS solution claimed to be fastest/faster Android emulator available
just simulates(and not emulates!) very few sensors such as GPS, Rotation, etc but yet to
support other major sensors such as Gyroscope, etc as mentioned below which is taken
from its features webpage. However, it seems like going to be only “simulation” without
having the possibility to use real hardware sensor readings at all. As usual, no
information on Android-x86 support.[15]

Android-x86 Sensor Emulation 149 Raghavan Santhanam

https://developer.android.com/sdk
http://developer.android.com/guide/topics/sensors/sensors_overview.html
https://www.google.com/url?q=https%3A%2F%2Fwww.manymo.com%2F&sa=D&sntz=1&usg=AFQjCNEnLa4MO1Ng878QKozPhHEQPZM5XQ
http://www.google.com/url?q=http%3A%2F%2Fwww.genymotion.com%2F&sa=D&sntz=1&usg=AFQjCNEPVs_-VtsmSfBX4qzyoL284t4ypQ
http://www.google.com/url?q=http%3A%2F%2Fwww.genymotion.com%2Ffeatures%2F&sa=D&sntz=1&usg=AFQjCNHQA1NutIi-oy8TbLE2FXNmWM-ZLw

Bluestacks, a Windows-Mac only solution supports playing mobile games on PC
including Android ones. However, there is no much information about the sensors
being supported in the form of “simulation” at least. Some of the internet discussions
on stackoverflow.com, and other blogs(one is this) state that accelerometer is being
simulated with the keyboard inputs. As usual, no information on Android-x86
support.[16]

Jar Of Beans, a Windows-only solution, was a Android Emulator Portable x86 and it has
been discontinued by its developer due to some reasons related to adware, etc. Yet there
is no information on whether it supported at least simulation of sensors if not
emulation. But, it indeed supported Android-x86 as opposed to the ones mentioned
above. If one wants to try out this discontinued project’s old code, here are they
hosted.[17]

YouWave for Android - Android on Windows PC as the name says is a windows-only
solution. Most importantly, there is no sensor support at all in addition to some other

limitations which are seen in the
below snapshot from its
download page. And it’s not free
but has some free trial period.
And it’s not mentioned whether
Android-x86 is supported or
not.[18]

Android-x86 Sensor Emulation 150 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fbluestacks.com%2F&sa=D&sntz=1&usg=AFQjCNFNccc2CDXzSLr8cDUk25ccUJi1hA
http://www.google.com/url?q=http%3A%2F%2Fblog.18004memory.com%2F2012%2F03%2F29%2Fbluestacks-goes-into-beta-supports-more-apps%2F&sa=D&sntz=1&usg=AFQjCNEo1Ok_laq9aIMF-Nv2TtAtDqU6Og
http://www.google.com/url?q=http%3A%2F%2Fwww.xda-developers.com%2Fandroid%2Fjar-of-beans-a-portable-android-emulator%2F&sa=D&sntz=1&usg=AFQjCNGIGVNlrh6bSun9ieSWEotz4wNNTQ
https://drive.google.com/folderview?id=0BxKzTODvot0bYnZ2VFBGejhFRDQ&usp=sharing
http://www.google.com/url?q=http%3A%2F%2Fyouwave.com%2F&sa=D&sntz=1&usg=AFQjCNHSJ-PlI2u5L3L3PHa5rDdp4sqKZw

13.2 Works on Mobile Virtualization

Cells: A Virtual Mobile Smartphone Architecture is a virtualization architecture for
enabling multiple virtual smartphones to run simultaneously on the same physical
cellphone in an isolated, secure manner. This work allows access to the underlying real
hardware components of a physical cellphone for the multiple virtual smartphones
running on the same physical cellphone including sensors. But, this work doesn’t
emulate sensors at all but only allows the access to the existing real hardware sensors.
Hence, this work bears little relation with the current work due to the mobile
virtualization common topic but the relation ends there.[19, 20]

VMware Horizon Mobile, formerly known as VMware Horizon Mobile Virtualization
Platform and VMware Mobile Virtualization Platform, in that order, is a solution to
multiplex the real hardware(including sensors) between the host and guest running on
the same real smartphone. So, there is no aspect of Sensor Emulation happening in a
remote manner and in real-time.[21]

Clouds on the Academic Horizon talks about using virtualization technique in splitting
of a single physical piece of hardware into independent, self governed environments,
which can be scaled in terms of CPU, RAM, Disk and other elements. No emulation of
sensors has been discussed.[22]

Remote mobile test system: a mobile phone cloud for application testing(RMTS) is an
online mobile cloud facility from where end users could request a mobile phone to test
their mobile applications. Obviously, this does not have any emulation but some sort of
remote component is there in making use of a remote real phone for its real hardware
by transferring the needed application over the network onto that real phone on which
the application has to be installed and run.[23]

Cloud Computing- Banking on the Cloud just specifies the potential Mobile
Virtualization techniques available to be deployed on Cloud for the apparent advantage
of Cloud computing. But again, these techniques are just for accessing the existing real
hardware(including sensors) within the guest hosted by a guest on a real
smartphone.[24]

Enterprise 2020: Examining VMware's View of the Road Ahead for the Knowledge
Worker focuses on VMware Mobile Virtualization topic as already mentioned.[25]

Cooperative solutions for Bring Your Own Device (BYOD) talks about enterprise
solutions for secure workplace environments based on mobile separation techniques,
for example, VMware Horizon Mobile.[26]

Android-x86 Sensor Emulation 151 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fsystems.cs.columbia.edu%2Farchive%2Fpub%2F2011%2F10%2Fcells-a-virtual-mobile-smartphone-architecture%2F&sa=D&sntz=1&usg=AFQjCNGTLpEFhogwQY19NeEwoNz3BG5Vaw
https://www.google.com/url?q=https%3A%2F%2Fwww.vmware.com%2Fgo%2Fhorizon-mobile-download&sa=D&sntz=1&usg=AFQjCNEpLZEku5UcCj_DtonKVkBi079zfA
http://www.google.com/url?q=http%3A%2F%2Fwww.vmware.com%2Fworkforce-mobility%2F&sa=D&sntz=1&usg=AFQjCNGifgo6Ja3j-YZjkiQ0QNIwMsUuXQ
http://www.google.com/url?q=http%3A%2F%2Fwww.vmware.com%2Fworkforce-mobility%2F&sa=D&sntz=1&usg=AFQjCNGifgo6Ja3j-YZjkiQ0QNIwMsUuXQ
http://www.google.com/url?q=http%3A%2F%2Fwww.vmware.com%2Fworkforce-mobility%2F&sa=D&sntz=1&usg=AFQjCNGifgo6Ja3j-YZjkiQ0QNIwMsUuXQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ijcsmr.org%2Fvol2issue4%2Fpaper345.pdf&sa=D&sntz=1&usg=AFQjCNGiIHBhGrlFtlaq1ILeFXr7T_uHHA
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6512429&sa=D&sntz=1&usg=AFQjCNFhPZhDaFCyoEM9M8Biqq7XG3dzWg
http://www.google.com/url?q=http%3A%2F%2Fwww.irjcjournals.org%2Fijieasr%2FJuly2013%2F5.pdf&sa=D&sntz=1&usg=AFQjCNFod5xkOo91cBtQfMQ-0ED-U7fETg
http://www.google.com/url?q=http%3A%2F%2Fovum.com%2Fresearch%2Fenterprise-2020-examining-vmwares-view-of-the-road-ahead-for-the-knowledge-worker%2F&sa=D&sntz=1&usg=AFQjCNGGc5knAs_npLCeBVp3TPJ6LZEvAg
http://www.google.com/url?q=http%3A%2F%2Fovum.com%2Fresearch%2Fenterprise-2020-examining-vmwares-view-of-the-road-ahead-for-the-knowledge-worker%2F&sa=D&sntz=1&usg=AFQjCNGGc5knAs_npLCeBVp3TPJ6LZEvAg
https://www.google.com/url?q=https%3A%2F%2Fieeexplore.ieee.org%2Fxpl%2FarticleDetails.jsp%3Farnumber%3D6665081&sa=D&sntz=1&usg=AFQjCNG8E4KM-c4RRAjpkN1SFQvPduvjHA

Xen on ARM: System Virtualization using Xen Hypervisor for ARM-based Secure Mobile
Phones talks about a design of system virtualization for ARM CPU architecture and
describe implementation of prototype called Xen on Arm using Xen hypervisor. Again,
this allows virtualized access to the underlying real hardware(including sensors) as
already pointed out above in other works.[27]

13.2.1 Conclusion

A lot more including [28], [29], [30], [31], [32] form an endless list of works on Mobile
Virtualization that are virtually impossible to put in a finite list here. And they all talk
about virtualizing the access to the underlying hardware(including sensors) for the sake
of the guest operating systems running on a real smartphone. But, the sole concept of
remoteness and emulation of sensors are absent in these works but the current work.

13.3 Works focusing on remote and
real-time sensor data but not emulation
of sensors

All the below mentioned works are related to the
current work of Sensor Emulation, in limited senses as none of them emphasize the
emulation of sensors remotely and in real-time which is the main concept of the current
work. And the benefit of emulation of sensors remotely in real-time have been
discussed in depth in the Abstract, Introduction, and Use Cases sections of this
document.

PRISM: Platform for Remote Sensing using Smartphones comes closer to the current
work in terms of the remote-sensing features having been accomplished. But, it doesn’t
emulate sensors at all. It talks about an distributed network infrastructure built for the
remote-sensing using the smartphones’ real hardware sensors. So, the relation with the
current work ends with the remote-sensing.[33]

SociableSense: Exploring the Trade-offs of Adaptive Sampling and Computation
Offloading for Social Sensing shares a common factor of real-time sensing based on the
adaptive sampling of the real hardware sensors but the relation ends there - no
emulation of sensors at all.[34]

The Mobile Sensing Platform: An Embedded System for Activity Recognition is about a
small wearable device designed for embedded activity recognition with the aim of
broadly supporting context-aware ubiquitous computing applications. But apart from
the common factor of usage of sensors of a mobile in a context-sensitive manner which
is in a way considering the real-time nature of the surrounding environment, there’s no
other relation with the current work, especially in terms of emulating the sensors of a
smartphone.[35]

Android-x86 Sensor Emulation 152 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4446362&sa=D&sntz=1&usg=AFQjCNGxd60O-Veq8TAaldyxs5aOZ923eQ
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4446362&sa=D&sntz=1&usg=AFQjCNGxd60O-Veq8TAaldyxs5aOZ923eQ
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1814442&sa=D&sntz=1&usg=AFQjCNHlkQjBdrIUxZH73jnFuLMjyhkjcg
http://www.google.com/url?q=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F220926191_SociableSense_exploring_the_trade-offs_of_adaptive_sampling_and_computation_offloading_for_social_sensing%2Ffile%2F9c96051c5d4baa6fae.pdf&sa=D&sntz=1&usg=AFQjCNFW4yQ1R6x13PX1naT5SFdVapRU2g
http://www.google.com/url?q=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F220926191_SociableSense_exploring_the_trade-offs_of_adaptive_sampling_and_computation_offloading_for_social_sensing%2Ffile%2F9c96051c5d4baa6fae.pdf&sa=D&sntz=1&usg=AFQjCNFW4yQ1R6x13PX1naT5SFdVapRU2g
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4487086&sa=D&sntz=1&usg=AFQjCNGXrn9ATVT5I7OriqmHAHgOowGRJA

Location-log: Bringing Online Shopping Benefits to the Physical World with
Magnetic-based Proximity Detection is a mobile phone and cloud based system that
brings the benefits of online shopping to the physical world. It uses magnetic-based
proximity detection technology to obtain the physical proximity relationships between
customers and shops in a reliable and convenient manner. But the relation ends with
the common factor of using the magnetic-sensors in real-time with an external dongle
attached to the smartphone and has no concept of emulation of sensors in it.[36]

Design and Evaluation of a Wireless Magnetic-based Proximity Detection Platform for
Indoor Applications quantifies the notion of “within arm’s reach” using “proximity
zone”, and propose a methodology that empirically and systematically compare the
proximity zones created by various wireless technologies. It talks about a wireless
proximity detection platform based on magnetic induction - PULSAR. But, the common
factors end with the wireless-ness and sensor-usage in the system being designed and
evaluated. And it has nothing related to emulation of sensors.[37]

Demo: Creating Interactive Virtual Zones in Physical Space with Magnetic-Induction
uses real hardware sensors to sense the magnetic induction for creating virtual zones
for real-world objects. Apart from the usage of sensors in real-time to facilitate the
interactive virtual zones, there is no concept of emulation of sensors happening and
hence the relation ends there.[38]

EmotionSense: a mobile phones based adaptive platform for experimental social
psychology research is about a mobile sensing platform for social psychology studies
based on mobile phones. It discusses about the ability of sensing individual emotions as
well as activities, verbal and proximity interactions among members of social groups.
But the common factor ends with that. No emulation of sensors are being dealt with.[39]

Mobile Sensing for Mass-Scale Behavioural Intervention discusses about the need for
scalable sensing systems that can fully exploit the sensing abilities of smartphone to a
large extent. It also discusses about the need for no manual intervention in such a
scaleable system intended to be automatically configurable and updateable and so on.
But, it’s only an abstract discussion and not a core implementation oriented
presentation of possible issues and challenges that would come in the way of building
such a Mobile Sensing system and has no insight into the emulation of sensing system
which is what the current work is all about.[40]

The science of behaviour change just talks about potential usage of mobile sensors in a
wide range of use case scenarios emphasizing health of an individual. But, has no more
relation with the current work.[41]

Participatory Sensing talks about everyday mobile devices, such as cellular phones, to

Android-x86 Sensor Emulation 153 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fjump%2F163379&sa=D&sntz=1&usg=AFQjCNFwwWdDHiYmjOxJNxtuILZtlEssCg
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fjump%2F163379&sa=D&sntz=1&usg=AFQjCNFwwWdDHiYmjOxJNxtuILZtlEssCg
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fzhao%2Fpubs%2Fipsn12_livesynergy.pdf&sa=D&sntz=1&usg=AFQjCNFaEAvKzdxBsCAkg2lo6hsEoGczFA
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fzhao%2Fpubs%2Fipsn12_livesynergy.pdf&sa=D&sntz=1&usg=AFQjCNFaEAvKzdxBsCAkg2lo6hsEoGczFA
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fzhao%2Fpubs%2Fsensys12_demo.pdf&sa=D&sntz=1&usg=AFQjCNE9VejMGdegguay9WL_nMqpxPHGEg
https://www.google.com/url?q=https%3A%2F%2Fwww.cl.cam.ac.uk%2F~cm542%2Fpapers%2FUbicomp10.pdf&sa=D&sntz=1&usg=AFQjCNG2yfVYC54BvY5HJKQhkMi4OHV0Mg
https://www.google.com/url?q=https%3A%2F%2Fwww.cl.cam.ac.uk%2F~cm542%2Fpapers%2FUbicomp10.pdf&sa=D&sntz=1&usg=AFQjCNG2yfVYC54BvY5HJKQhkMi4OHV0Mg
http://www.google.com/url?q=http%3A%2F%2Fsensorlab.cs.dartmouth.edu%2FNSFPervasiveComputingAtScale%2Fpdf%2F1569391795.pdf&sa=D&sntz=1&usg=AFQjCNG_Trqe1zZfk2EqnfNOwYmP0ADo8g
http://www.google.com/url?q=http%3A%2F%2Fwww.ipsos-mori.com%2F_emails%2Fsri%2Funderstandingsociety%2Fapril_2013%2Fpdfs%2Fipsosmori_understandingsociety_april2013_thescienceofbehaviourchange1.pdf&sa=D&sntz=1&usg=AFQjCNFUctWJLxWRrLOcthAE9ganIScUTg
http://www.google.com/url?q=http%3A%2F%2Fescholarship.org%2Fuc%2Fitem%2F19h777qd.pdf&sa=D&sntz=1&usg=AFQjCNFnf9zqoDTS8ZU0Xfm_RzW_X-Njdw

form interactive, participatory sensor networks that enable public and professional
users to gather, analyze and share local knowledge. That’s it and no more common
factors with the current work other than using the network of real hardware sensors of
a real smartphones for the sake of Participatory Sensing.[42]

Darwin Phones: the Evolution of Sensing and Inference on Mobile Phones is about
Darwin that advances mobile phone sensing through the deployment of efficient but
sophisticated machine learning techniques specifically designed to run directly on
sensor-enabled mobile phones (i.e., smartphones). But the relation in using the Mobile
sensors ends there. No emulation of sensors are being dealt with at all.[43]

Feasibility of Mobile Phone-Based Management of Chronic Illness cleanly outlines the
benefits of Mobile Phone Sensors based monitoring of patients’ health concerning the
examination of their possible chronic illness. But it doesn’t really talk about how to
achieve such an effective system.[44]

Opportunities and Challenges for Smartphone Applications in Supporting Health
Behavior Change: Qualitative Study is one more study that discusses the benefits of
remote sensing using Mobile Phones. Just that it’s only a study and not a presentation of
accomplishing such a work.[45]

vNurse: Using virtualisation on mobile phones for remote health monitoring comes
very closer to the current work in providing the sensor readings reportedly in a remote
manner in real-time. However, the paper though claims that the sensor readings can be
made available in real-time, its evaluation section doesn’t mention any such
evaluations about the time taken for the real hardware sensor readings to reach from
the real smartphone to the remote-monitoring systems over some network
infrastructure like IPv4, etc. It is also not providing any sensor emulation which is the
sole concept of the current work which has many benefits discussed in the beginning of
this document. Moreover, it involves huge implementation effort when compared to the
current work which is as simple as only about inserting socket-communication logic in
the Sensor HAL modules to exchange the real hardware sensor readings in a seamless
manner - a generic lightweight solution. Whereas, vNurse involves a whole lot of
relatively complex entities in order to accomplish its task that calls for a huge overhead
when compared to that of the current work. First of all, it has guest OS image mounted
as a virtual file system on top of Android 2.2 host OS on a HTC smartphone. Second of
all, the real hardware sensor readings are being transmitted over the network to the
remote-monitoring systems from this Guest OS and not from the host OS. Moreover, the
guest and host(note that this is entirely within the real smartphone itself whereas the
current work has no such guest running in it but only the default host - any Android
release) interact through an internal network connectivity. In addition, there is a Python
daemon that’s being used to retrieve the underlying real hardware sensor readings
using the Android APIs. Now, it’s very apparent to say that this Python daemon running

Android-x86 Sensor Emulation 154 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FParticipatory_sensing&sa=D&sntz=1&usg=AFQjCNGLbL0UqC00LRuOcGhWJfE2EG0pfw
http://www.google.com/url?q=http%3A%2F%2Fwww.ists.dartmouth.edu%2Flibrary%2F478.pdf&sa=D&sntz=1&usg=AFQjCNFQ75BCZe5PBzyDnX3C4TkY7qGWAA
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F21347080&sa=D&sntz=1&usg=AFQjCNHL699qkAJ6dMO24NVHBKfPwWi9OA
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F23598614&sa=D&sntz=1&usg=AFQjCNGNKJnID5ZQfNeqfsX3zRrBafFxDg
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F23598614&sa=D&sntz=1&usg=AFQjCNGNKJnID5ZQfNeqfsX3zRrBafFxDg
http://www.google.com/url?q=http%3A%2F%2Fwww.deutsche-telekom-laboratories.de%2F~panhui%2Fpublications%2Fvnurse.pdf&sa=D&sntz=1&usg=AFQjCNG03HXZ_7X_oWx1j3Je3dxP833mOA

at the application layer will be inefficient in terms of time taken to retrieve the
underlying real hardware sensors’ readings when compared to that of the current work
which has its Sensor Emulation logic implemented way below the Application Layer and
closer to the metal(the hardware including sensors, with only Linux kernel between
them). As if this is not enough, there is one more Python daemon within the Guest OS
which is actually responsible for sending out the sensor readings obtained from the
host. Now, though time taken for the sensor readings in reaching the
remote-monitoring systems have not been discussed at all, one can easily understand
that the efficiency(being closer to the metal) and simplicity(less overhead and generic in
terms of Sensor Emulation at HAL level as opposed to Application Layer level with no
additional work for the applications in using the sensor readings on the emulator) of
the current work outsmarts the relatively complex and inefficient(in terms of time
taken) vNurse. And lastly, one of the requirements of the current work is that the
sensor-based applications deployed in an emulated smartphone environment must be
able to utilize the real hardware sensor readings obtained remotely in real-time, with
absolutely no modification. This very requirement having accomplished by the current
work successfully makes it generic, portable, and demand-less as discussed in the
challenges chapter earlier. All of these are not addressed by vNurse may be because it’s
not meant for such a purpose but when comparing the current work with vNurse, these
are the differences and advantages of the current work over vNurse.[46]

HARMONI: Context-aware Filtering of Sensor Data for Continuous Remote Health
Monitoring implements a Middleware(which usually sits above HAL and below
Application Layer in a standard software architecture) and hence in the first place is less
efficient in terms of time taken when compared to the current work based on HAL being
more closer to the metal. Next comes the absence of real-time transmission of sensor
readings(which is so for a reason as the paper claims that its for making meaningful
comparisons because uncontrollable physiological and environmental variations make
it impossible to get the exact same data stream from two different sessions). However,
real-time can’t be compromised as it’s one of the strengths of the current work and
hence HARMONI, lacking it isn’t effective when real-time sensor data is needed.
Obviously, it’s not about Sensor Emulation and hence the chance to run sensor-based
applications using those sensor readings in an emulated smartphone environment is
ruled out.[47]

13.3.1 Conclusion
There are lot more similar healthcare related works

including [48],[49],[50],[51] which emphasize on only remoteness and real-time aspects
of sensor data being transmitted but they don’t really talk about the emulation of
sensors which the current work does. Thus, the current work on Sensor Emulation is
unique.

Android-x86 Sensor Emulation 155 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fwww.cs.toronto.edu%2F~iq%2Fmohomedi-harmoni.pdf&sa=D&sntz=1&usg=AFQjCNH2UkrdDEy5huCnuMngSZr6xVo9HA
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.toronto.edu%2F~iq%2Fmohomedi-harmoni.pdf&sa=D&sntz=1&usg=AFQjCNH2UkrdDEy5huCnuMngSZr6xVo9HA

13.4 Works focusing on Wireless Sensor
Networks but not on sensor Emulation

Below are the works that are solely about
accomplishing a network of sensors or emulating the wireless sensor networks. These
are being listed and discussed in short since they involve network-based exchange of
sensor readings from one node(may be PDA, etc) to another either in real-time or in a
record-replay fashion. However, these anyway lack the Sensor Emulation in a
virtualized smartphone environment which is the heart and sole of the current work of
Sensor Emulation.

Radiation Detection with Distributed Sensor Networks focuses on using Distributed
Sensor Networks to detect harmful radiation level. It uses PDAs to process sensor data
from radiation detectors to which they are attached and these PDAs relay the sensor data
to other nodes. It also talks about Sensor Simulation Software but nothing about Sensor
Emulation which is more realistic which is achieved by the current work in real-time
remotely.[52]

Distributed Sensor Networks for Detection of Mobile Radioactive Sources focuses on
examining the distributed sensing problem by modeling a network of scintillation
detectors measuring a Cesium-137 source. It examines signal-to-noise behavior that
arises in the simple combination of data from networked radiation sensors. No
emulation of sensors but only a simulation model was developed for this.[53]

Wireless integrated network sensors(WINS) is about deploying many real hardware
sensors in a wireless network mesh model and let the associated systems communicate
and propagate the sensor readings to a centralized system to perform the needed action.
But, as said, there is no emulation of sensors happening in these systems which is
crucial to the current work as its one of its strengths.[54]

Wireless Integrated Network Sensors: Low Power Systems on a Chip, similar to the
above uses WINS but again no concept of emulation of sensors.[55]

Self-Organizing Sensor Networks for Integrated Target Surveillance is about a novel
self-organization protocol and describe other relevant, indigenous building blocks that
can be combined to build integrated surveillance applications for self-organized sensor
networks. It has been experimented in both simulated and real-world platforms. But
again, it’s not based on Sensor Emulation but based on real hardware sensors connected
via wireless distributed network and the current work embraces emulation of sensors,
thus being different and unique.[56]

Air-dropped sensor network for real-time high-fidelity volcano monitoring has some
relation to the current work since it involves real-time sensor data transmission

Android-x86 Sensor Emulation 156 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1323017&sa=D&sntz=1&usg=AFQjCNG25OAAYOZ88M-9PzUqoXTxptbq0w
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F23%2F29304%2F01323753.pdf%3Farnumber%3D1323753&sa=D&sntz=1&usg=AFQjCNHsxWk3oRZ9vqwC-dTl5TJGnCATKQ
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D332838&sa=D&sntz=1&usg=AFQjCNFFGSrI2htGGkMjSzIguCNMqTHEHg
http://www.google.com/url?q=http%3A%2F%2Fresenv.media.mit.edu%2Fclasses%2FMAS965%2Freadings%2Fwins98.pdf&sa=D&sntz=1&usg=AFQjCNFd4b4OTxqXOGfeyaAjSx5hPP5Obg
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F12%2F34603%2F01650200.pdf&sa=D&sntz=1&usg=AFQjCNFuePy_9ukiGUth1qz5BILM44urkg
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1555847&sa=D&sntz=1&usg=AFQjCNEftKO9-nSBpRzYvviQPV8BsVxW4Q

between real sensors deployed in a wireless sensor nodes network.[57][58][59]

Other similar works like [60],[61], a lot more that can be listed here deal with the
monitoring the natural events using wireless sensor networks as said earlier but with
no Sensor Emulation in them being accomplished.

13.4.1 Conclusion
There are a lot more works like the above on

Wireless Sensor Networks which employ many real hardware sensors connected
through distribute network to coordinate with each other and help in successfully
monitoring remote locations possibly in real-time. They also usually involve simulation
models to test their feasibility in real world. However, these works don’t focus on
emulating sensors in a virtualized environment remotely in real-time which is what the
current work is all about and emulation of sensors has many benefits which have been
discussed in Abstract, Motivation and Use Cases chapter in detail. Thus, the current
work of Sensor Emulation is unique.

13.5 Miscellaneous

Medusa: A Programming Framework for Crowd-Sensing Applications is about
crowd-sensing which is nothing but a capability that harnesses the power of crowds to
collect sensor data from a large number of mobile phone users. Apart from aggregating
the sensor data from the real hardware sensors of real phones obviously not in
real-time though over the network(and could be said as remote in some way), this work
has no other relation with the current work.[62]

Open data kit sensors: a sensor integration framework for android at the
application-level focuses on driving an external sensor from a real phone over USB or
Bluetooth as of now. However, it doesn’t support WiFi based driving as of now, so no
remoteness supported unlike in the current work. It doesn’t talk about emulating
sensors in a virtualized platform but only a real phone unlike in the current work. It
must be noted that emulating a standard Android sensor in a real phone (in addition to
the virtual phones) is also one of the use cases(as an out of box one!) of the current
work as listed in the Chapter 2 of this document. This work has an abstraction
framework to access both internal sensors of a real phone and the external sensors but
the framework being at application-level obviously and definitely is not as efficient as
the current work’s HAL-based Sensor Emulation which is much closer to the metal.
Moreover, there is a usage of interfacing board between the external sensor and the real
phone and there is a sensor driver for driving the external sensors from the real phone
via the interfacing board - all of these are absent in the current work as the current
work doesn’t focus on driving the external sensors at all or in other words, the current
work focuses on emulating real hardware sensors present in a real Android phone

Android-x86 Sensor Emulation 157 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fwww-scf.usc.edu%2F~binliu%2Fpapers%2Fmobisys_12.pdf&sa=D&sntz=1&usg=AFQjCNE9bki0s5zLyM9IugCMJqQ0FT7llQ
http://www.google.com/url?q=http%3A%2F%2Fhomes.cs.washington.edu%2F~wrb%2FODKSensorsMobiSys2012.pdf&sa=D&sntz=1&usg=AFQjCNF2T-LgnWpIM7fgdrmo-hWH8Bk9tQ
http://www.google.com/url?q=http%3A%2F%2Fhomes.cs.washington.edu%2F~wrb%2FODKSensorsMobiSys2012.pdf&sa=D&sntz=1&usg=AFQjCNF2T-LgnWpIM7fgdrmo-hWH8Bk9tQ

itself, and hence no question of comparison on these lines. As a direct consequence of
this common abstraction framework and hence the common user-space sensor drivers
for accessing both built-in and external sensors, the sensor-based applications needing
to access even just the built-in sensors, have to apparently face the overhead(may be
little but it’s anyway absent in the current work) of passing through this extra layer of
the abstraction framework before reaching out the existing standard Android layers to
get the needed built-in sensor reading. Though this work claims to reduce the
application’s lines of code in accessing even the built-in sensor(accelerometer, as
mentioned in its paper’s table 8), the lines of code are just shifted towards the sensor
driver. True that the sensor driver will be written once for any sensor(internal or
external) and any number of applications can use the same driver every time, but with
respect to the current work which focuses on internal sensors, the concept of the
user-space sensor drivers is totally absent and hence the corresponding number of lines
of code and thus, the total number of lines of code will be still lesser in the case of
current work. It must be noted that these sensor drivers are implemented in user-space
and in Java, and hence the obvious performance impact as opposed to kernel-space
drivers closer to the metal implemented in C. So, lastly, because of this performance
impact, this work sacrifices the real-time aspect in getting the sensor data to some
extent whereas the current work doesn’t compromise on the real-time aspect of the
Sensor Emulation at all since there are no such extra level of implementation like these
sensor drivers in user-space even for accessing underlying real hardware sensors if not
the external ones. All in all, this work comes very close to the current work as it
emulates external sensors in a real phone in a wireless (but not remote) manner almost
in real-time, but there ends the relation as it doesn’t talk about emulating sensors in a
virtualized platform but only on real phones.[63]

Enabling Multiple BSN Applications Using the SPINE Framework focuses on using the
SPINE framework to support heterogeneous health-care applications without
redeployment of the code running on the nodes. It’s actually about Wireless Body
Sensor Network based on SPINE where real hardware sensors are networked together
by some wireless means. The relation with the current work is that it emulates the
sensors in a virtual platform(but no yet in Android as reported) but these emulated
sensors are to be fed with recorded sensor data from real hardware sensors and hence
no real-time aspect is applicable for these emulated sensor readings. Thus the relation is
limited with no real-timeness in emulation and also not being available for Android as
of now.[64]

[65],[66],[67],[68],[69],[70],[71], and [72] are about Wireless Sensor Networks or Wireless
Body Sensor Networks and have no concept of emulation of sensors remotely in
real-time.

13.5.1 Conclusion
There are a lot more works than those can be listed here, that

Android-x86 Sensor Emulation 158 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5504805&sa=D&sntz=1&usg=AFQjCNGp5Pvoz4JFGy6UdQAl05ZeFXSuJA
http://www.google.com/url?q=http%3A%2F%2Fspine.deis.unical.it%2F&sa=D&sntz=1&usg=AFQjCNFmOdr-YpbfuBX3zwYDxrx4mtEoOw

just have real sensors’ usage in common with the current work but with no Sensor
Emulation happening. So, it’s virtually impossible to list all of them individually as they
are endless in numbers if even minute relations are to be considered under this Chapter
of related works.

13.6 Conclusion
In short, there is no such Sensor Emulation work

which is system level generic work and emulates the ten sensors the current work
emulates as described throughout this document, laying emphasis on remoteness and
real-time aspects.

Android-x86 Sensor Emulation 159 Raghavan Santhanam

Chapter 14
Conclusion and Future
Work

With this work on Sensor Emulation, any
sensor-based Android application can be run on the virtualized Android-x86 running
on any x86 emulator like Qemu as long as the application is compatible with the
emulator, especially in terms of graphics. This opens up a whole new opportunity for
the Android developers to test their sensor-based applications in an emulated
environment with the real device sensor readings, which was previously impossible
and it demanded to have real Android devices installed with the necessary Android OS
release, and so on. Due to the real-time nature of the sensor readings available on the
emulated Android-x86, there is absolutely no difference in running the same
applications on a real Android device and on the virtual Android device. Hence, the
sensor-based applications can be accurately tested in a virtualized Android-x86
environment.

14.1 Testing with the standard Android
emulator

The current work described in the paper is about
pairing a real Android device with virtualized Android-x86. But, the standard ARM
based Google’s Android emulator could also be used with no extra work by the simple
logic that Android-x86 is more or less the default main Android code with the target
being x86 platform. However, the current work has not been tested. So, it’s one of the
interesting future works. Also, since the standard Android emulator now includes an
Intel x86 Atom image as well, testing the current work with that as well would be
interesting to work on going forward.

14.2 One-server-many-clients
One-server-many-clients could be implemented to

take this Sensor Emulation to another level enabling the sensor-based testing
experience in an emulated Android-x86 to a whole new dimension. This would enable
pairing a single real Android device with many virtual Android devices. In addition, any
other sensors not already being emulated could be added to the to-do list of Sensor
Emulation.

Android-x86 Sensor Emulation 160 Raghavan Santhanam

14.3 Two-way communication :
One-Real-Many-But-One-Master-
Virtual

As of now, the communication between the real and
virtual phones is only one way wherein the real phone has the full control over its real
hardware sensors and communicates their behavior to all the connected(paired) virtual
phones for their emulated sensors. Enabling two-way communication between the real
and virtual phones, wherein one real phone feeds many virtual phones wherein only
one of them is a master virtual phone will be an interesting future work as the master
virtual phone can also appropriately control the real phone like initiating calibration
action on its emulated sensor so the paired real phone will calibrate the specific real
hardware sensor get, etc and all the virtual phones including the master virtual phone
can see this calibration in their specific emulated sensors. Thus two-way
communication is enabled between real and virtual phones.

14.4 Remaining Sensors
Sensors which are not being emulated as of now as

mentioned in Chapter 6, could be taken up for the emulation as per the need.

14.5 Continued testing with
graphics-intensive 3D games

The rigorous testing can be continued when the
graphics-intensive 3D sensor-based applications get their graphical dependency issues
resolved in a reliable way. For the list of graphics issues that prevented most of the 3D
sensor-based games from launching itself or running after launching, one may refer the
earlier chapter on “Challenges”.

14.5 Power Consumption Analysis
The Sensor Emulation work hasn’t been analyzed for

the power consumption on the real phone though everything is asynchronously driven
and is highly optimized end-to-end. So, analyzing the power consumption and
comparing the results from with and without Sensor Emulation scenarios would be a
potential future work.

14.6 Memory Footprint Analysis
The Sensor Emulation work hasn’t been analyzed for

its memory footprint though no big chunk of memories are being used and the code has
been free from memory leaks at the best of one’s knowledge. So, analyzing the memory
footprint of the Sensor Emulation end-to-end can be a good future work.

Android-x86 Sensor Emulation 161 Raghavan Santhanam

14.6 Runtime Overhead Analysis
The Sensor Emulation work hasn’t been analyzed for

its overhead induced for the real phone with respect to the sensor-based applications
running on it though it will be very minimal as code that has been added to Sensors
HAL module is carefully optimized end-to-end. So, analyzing the runtime overhead
which would anyway be minimal, will be an interesting future work.

14.7 Emulating An External Sensor
The Sensor Emulation work is limited to emulating

the real hardware sensors that are standard Android ones and hence are built into the
real phones. But, emulating a totally isolated sensor not defined by Android Sensors
subsystem can be a challenging future work if anytime found appropriate.

Android-x86 Sensor Emulation 162 Raghavan Santhanam

Chapter 15
Bibliography

1. android-x86.org from where the Android-x86 source was obtained.
2. https://android.googlesource.com for the Samsung Crespo device specific sensor

code and the virtual sensors code.
3. Online discussion groups: android-x86, adt-dev, android-contrib,

android-developers, stackoverflow.com.
4. stackoverflow.com Android sensor related questions and answers.
5. Android Open Source Code online documentation in general and on HAL and

sensors HAL, in specific.
6. In depth discussions with Duke University PhD student, Songchun Fan,

mentioned in the header of this document.
7. Several Android applications reviews websites to determine what are the best

available sensor based Android applications for testing the current work.
8. http://developer.samsung.com/forum/ for Samsung Sensor Simulator.
9. https://code.google.com/p/openintents/wiki/SensorSimulator for Sensor Simulator

by Openintents.
10. http://tools.android.com/recent/sensoremulation for Sensor Emulation in Google

Android tools.
11. http://developer.samsung.com/android/tools-sdks/Samsung-Sensor-Simulator for

Samsung Sensor Simulator from Samsung.
12. http://developer.samsung.com/android/tools-sdks/Samsung-GALAXY-Tab-Emulato

r for Samsung GALAXY Tab Emulator.
13. https://developer.android.com/sdk for the Standard Android Emulator.
14. https://www.manymo.com/ for Manymo, claimed as better emulator for Android.
15. http://www.genymotion.com/ for Genymotion, claimed as a faster/the fastest

Android emulator.
16. http://bluestacks.com/ for Bluestacks software to run Android games on PC.
17. http://www.xda-developers.com/android/jar-of-beans-a-portable-android-emulato

r/ for Jar of Beans, an Android-x86 emualtor that’s discontinued.
18. YouWave for Android - Android on Windows PC for YouWave Android emulator.
19. Cells: A Virtual Mobile Smartphone Architecture. Jeremy Andrus, Christoffer Dall,

Alexander Van't Hof, Oren Laadan, Jason Nieh. Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP 2011), October 2011

20. The Design, Implementation, and Evaluation of Cells: A Virtual Smartphone
Architecture. Christoffer Dall, Jeremy Andrus, Alexander Van't Hof, Oren Laadan,
Jason Nieh. ACM Transactions on Computer Systems (TOCS), Volume 30, Issue 3,
August 2012.

21. Barr, Ken, et al. "The vmware mobile virtualization platform: is that a hypervisor

Android-x86 Sensor Emulation 163 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fandroid-x86.org&sa=D&sntz=1&usg=AFQjCNF4_BbgLRz8ebWIp62XFWr04KUjLw
https://android.googlesource.com/
https://groups.google.com/forum/#!forum/android-x86
https://groups.google.com/forum/#!forum/adt-dev
https://groups.google.com/forum/#!forum/android-contrib
https://groups.google.com/forum/#!forum/android-developers
http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com&sa=D&sntz=1&usg=AFQjCNFUoKKmZVS3Nibgy4xGsagbeUbT-Q
http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com&sa=D&sntz=1&usg=AFQjCNFUoKKmZVS3Nibgy4xGsagbeUbT-Q
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.samsung.com%2Fforum%2F&sa=D&sntz=1&usg=AFQjCNHLWpnBhWJrcuH7DOSKMc463VX6rQ
https://code.google.com/p/openintents/wiki/SensorSimulator
http://tools.android.com/recent/sensoremulation
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.samsung.com%2Fandroid%2Ftools-sdks%2FSamsung-Sensor-Simulator&sa=D&sntz=1&usg=AFQjCNHPYd2boASY5n_YYyt4FHH-YIQJKg
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.samsung.com%2Fandroid%2Ftools-sdks%2FSamsung-GALAXY-Tab-Emulator&sa=D&sntz=1&usg=AFQjCNEclUVyy9__wqgZS6i8dWOi_-aCeQ
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.samsung.com%2Fandroid%2Ftools-sdks%2FSamsung-GALAXY-Tab-Emulator&sa=D&sntz=1&usg=AFQjCNEclUVyy9__wqgZS6i8dWOi_-aCeQ
https://developer.android.com/sdk
https://www.google.com/url?q=https%3A%2F%2Fwww.manymo.com%2F&sa=D&sntz=1&usg=AFQjCNEnLa4MO1Ng878QKozPhHEQPZM5XQ
http://www.google.com/url?q=http%3A%2F%2Fwww.genymotion.com%2F&sa=D&sntz=1&usg=AFQjCNEPVs_-VtsmSfBX4qzyoL284t4ypQ
http://www.google.com/url?q=http%3A%2F%2Fbluestacks.com%2F&sa=D&sntz=1&usg=AFQjCNFNccc2CDXzSLr8cDUk25ccUJi1hA
http://www.google.com/url?q=http%3A%2F%2Fwww.xda-developers.com%2Fandroid%2Fjar-of-beans-a-portable-android-emulator%2F&sa=D&sntz=1&usg=AFQjCNGIGVNlrh6bSun9ieSWEotz4wNNTQ
http://www.google.com/url?q=http%3A%2F%2Fwww.xda-developers.com%2Fandroid%2Fjar-of-beans-a-portable-android-emulator%2F&sa=D&sntz=1&usg=AFQjCNGIGVNlrh6bSun9ieSWEotz4wNNTQ
http://www.google.com/url?q=http%3A%2F%2Fyouwave.com%2F&sa=D&sntz=1&usg=AFQjCNHSJ-PlI2u5L3L3PHa5rDdp4sqKZw
http://www.google.com/url?q=http%3A%2F%2Fsystems.cs.columbia.edu%2Farchive%2Fpub%2F2011%2F10%2Fcells-a-virtual-mobile-smartphone-architecture%2F&sa=D&sntz=1&usg=AFQjCNGTLpEFhogwQY19NeEwoNz3BG5Vaw
http://www.google.com/url?q=http%3A%2F%2Fsystems.cs.columbia.edu%2Farchive%2Fpub%2F2012%2F08%2Fthe-design-implementation-and-evaluation-of-cells-a-virtual-smartphone-architecture%2F&sa=D&sntz=1&usg=AFQjCNElpvOXFbMGmPrZS1L8vHm-T540YQ
http://www.google.com/url?q=http%3A%2F%2Fsystems.cs.columbia.edu%2Farchive%2Fpub%2F2012%2F08%2Fthe-design-implementation-and-evaluation-of-cells-a-virtual-smartphone-architecture%2F&sa=D&sntz=1&usg=AFQjCNElpvOXFbMGmPrZS1L8vHm-T540YQ
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1899945&sa=D&sntz=1&usg=AFQjCNHK1kddICyoB_GWFv2o2Yjov4S1QA

in your pocket?." ACM SIGOPS Operating Systems Review 44.4 (2010): 124-135.
22. Kalim, Asra. "Clouds on the Academic Horizon."
23. Huang, J-F., and Y-Z. Gong. "Remote mobile test system: a mobile phone cloud for

application testing." Cloud Computing Technology and Science (CloudCom), 2012
IEEE 4th International Conference on. IEEE, 2012.

24. Goel, Pragati. "Cloud Computing-Banking on the Cloud."
25. Edwards, Richard. "Enterprise 2020: Examining VMware’s View of the Road Ahead

for the Knowledge Worker."
26. Jaramillo, D., et al. "Cooperative solutions for Bring Your Own Device (BYOD)."

IBM Journal of Research and Development 57.6 (2013): 5-1.
27. Hwang, Joo-Young, et al. "Xen on ARM: System virtualization using Xen

hypervisor for ARM-based secure mobile phones." Consumer Communications
and Networking Conference, 2008. CCNC 2008. 5th IEEE. IEEE, 2008.

28. Brakensiek, Jörg, et al. "Virtualization as an enabler for security in mobile
devices." Proceedings of the 1st workshop on Isolation and integration in
embedded systems. ACM, 2008.

29. Mijat, Roberto, and Andy Nightingale. "Virtualization is coming to a platform near
you." ARM White Paper (2011).

30. Gudeth, Kevin, et al. "Delivering secure applications on commercial mobile
devices: the case for bare metal hypervisors." Proceedings of the 1st ACM
workshop on Security and privacy in smartphones and mobile devices. ACM, 2011.

31. Inoue, Hiroaki, et al. "VIRTUS: a new processor virtualization architecture for
security-oriented next-generation mobile terminals." Proceedings of the 43rd
annual Design Automation Conference. ACM, 2006.

32. Ryu, Euiyoul, et al. "MyAV: An all-round virtual machine monitor for mobile
environments." Industrial Informatics (INDIN), 2010 8th IEEE International
Conference on. IEEE, 2010.

33. Das, Tathagata, et al. "PRISM: platform for remote sensing using smartphones."
Proceedings of the 8th international conference on Mobile systems, applications,
and services. ACM, 2010.

34. Rachuri, Kiran K., et al. "Sociablesense: exploring the trade-offs of adaptive
sampling and computation offloading for social sensing." Proceedings of the 17th
annual international conference on Mobile computing and networking. ACM, 2011.

35. Choudhury, Tanzeem, et al. "The mobile sensing platform: An embedded activity
recognition system." Pervasive Computing, IEEE 7.2 (2008): 32-41.

36. Zhang, Ben, et al. "Location-log: Bringing Online Shopping Benefits to the
Physical World with Magnetic-based Proximity Detection." (2012).

37. Jiang, Xiaofan, et al. "Design and evaluation of a wireless magnetic-based
proximity detection platform for indoor applications." Proceedings of the 11th
international conference on Information Processing in Sensor Networks. ACM,
2012.

38. Jiang, Xiaofan, et al. "Demo: Creating interactive virtual zones in physical space
with magnetic-induction." Proceedings of the 9th ACM Conference on Embedded

Android-x86 Sensor Emulation 164 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1899945&sa=D&sntz=1&usg=AFQjCNHK1kddICyoB_GWFv2o2Yjov4S1QA
http://www.google.com/url?q=http%3A%2F%2Fwww.ijcsmr.org%2Fvol2issue4%2Fpaper345.pdf&sa=D&sntz=1&usg=AFQjCNGiIHBhGrlFtlaq1ILeFXr7T_uHHA
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6512429&sa=D&sntz=1&usg=AFQjCNFhPZhDaFCyoEM9M8Biqq7XG3dzWg
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6512429&sa=D&sntz=1&usg=AFQjCNFhPZhDaFCyoEM9M8Biqq7XG3dzWg
http://www.google.com/url?q=http%3A%2F%2Fwww.irjcjournals.org%2Fijieasr%2FJuly2013%2F5.pdf&sa=D&sntz=1&usg=AFQjCNFod5xkOo91cBtQfMQ-0ED-U7fETg
http://www.google.com/url?q=http%3A%2F%2Finfo.ovum.com%2Fuploads%2Ffiles%2FOvum_Enterprise_2020_-_VMware%2527s_View_of_the_Road_Ahead_for_the_Knowledge_Worker.pdf&sa=D&sntz=1&usg=AFQjCNGeA7B9jXgULWBFW-Tgd0zZTkYAmw
http://www.google.com/url?q=http%3A%2F%2Finfo.ovum.com%2Fuploads%2Ffiles%2FOvum_Enterprise_2020_-_VMware%2527s_View_of_the_Road_Ahead_for_the_Knowledge_Worker.pdf&sa=D&sntz=1&usg=AFQjCNGeA7B9jXgULWBFW-Tgd0zZTkYAmw
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6665081&sa=D&sntz=1&usg=AFQjCNFbxykB6tEoxJXCeOyfxCfWOMHBxw
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4446362&sa=D&sntz=1&usg=AFQjCNGxd60O-Veq8TAaldyxs5aOZ923eQ
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4446362&sa=D&sntz=1&usg=AFQjCNGxd60O-Veq8TAaldyxs5aOZ923eQ
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fft_gateway.cfm%3Fid%3D1435462%26type%3Dpdf%26CFID%3D281268877%26CFTOKEN%3D36152163&sa=D&sntz=1&usg=AFQjCNFjRFnGWTb5ywoFVt61QmuynBnYNQ
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fft_gateway.cfm%3Fid%3D1435462%26type%3Dpdf%26CFID%3D281268877%26CFTOKEN%3D36152163&sa=D&sntz=1&usg=AFQjCNFjRFnGWTb5ywoFVt61QmuynBnYNQ
http://www.google.com/url?q=http%3A%2F%2Fmobile.arm.com%2Ffiles%2Fpdf%2FSystem-MMU-Whitepaper-v8.0.pdf&sa=D&sntz=1&usg=AFQjCNHpu2ycGK47qrH5ImdL9M1RJdyrrA
http://www.google.com/url?q=http%3A%2F%2Fmobile.arm.com%2Ffiles%2Fpdf%2FSystem-MMU-Whitepaper-v8.0.pdf&sa=D&sntz=1&usg=AFQjCNHpu2ycGK47qrH5ImdL9M1RJdyrrA
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2046622&sa=D&sntz=1&usg=AFQjCNEWus82KzabhdCRhb_Mc2UIxL8d9Q
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2046622&sa=D&sntz=1&usg=AFQjCNEWus82KzabhdCRhb_Mc2UIxL8d9Q
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1147038&sa=D&sntz=1&usg=AFQjCNF0hMstmI3_sgP0_h83DRn_8F9Veg
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1147038&sa=D&sntz=1&usg=AFQjCNF0hMstmI3_sgP0_h83DRn_8F9Veg
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5549664&sa=D&sntz=1&usg=AFQjCNFmtDc8lYvgS2R-VS-94Tot0ZXvRA
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5549664&sa=D&sntz=1&usg=AFQjCNFmtDc8lYvgS2R-VS-94Tot0ZXvRA
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1814442&sa=D&sntz=1&usg=AFQjCNHlkQjBdrIUxZH73jnFuLMjyhkjcg
http://www.google.com/url?q=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F220926191_SociableSense_exploring_the_trade-offs_of_adaptive_sampling_and_computation_offloading_for_social_sensing%2Ffile%2F9c96051c5d4baa6fae.pdf&sa=D&sntz=1&usg=AFQjCNFW4yQ1R6x13PX1naT5SFdVapRU2g
http://www.google.com/url?q=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F220926191_SociableSense_exploring_the_trade-offs_of_adaptive_sampling_and_computation_offloading_for_social_sensing%2Ffile%2F9c96051c5d4baa6fae.pdf&sa=D&sntz=1&usg=AFQjCNFW4yQ1R6x13PX1naT5SFdVapRU2g
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4487086&sa=D&sntz=1&usg=AFQjCNGXrn9ATVT5I7OriqmHAHgOowGRJA
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4487086&sa=D&sntz=1&usg=AFQjCNGXrn9ATVT5I7OriqmHAHgOowGRJA
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fjump%2F163379&sa=D&sntz=1&usg=AFQjCNFwwWdDHiYmjOxJNxtuILZtlEssCg
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fjump%2F163379&sa=D&sntz=1&usg=AFQjCNFwwWdDHiYmjOxJNxtuILZtlEssCg
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fzhao%2Fpubs%2Fipsn12_livesynergy.pdf&sa=D&sntz=1&usg=AFQjCNFaEAvKzdxBsCAkg2lo6hsEoGczFA
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fzhao%2Fpubs%2Fipsn12_livesynergy.pdf&sa=D&sntz=1&usg=AFQjCNFaEAvKzdxBsCAkg2lo6hsEoGczFA
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fzhao%2Fpubs%2Fsensys12_demo.pdf&sa=D&sntz=1&usg=AFQjCNE9VejMGdegguay9WL_nMqpxPHGEg
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fzhao%2Fpubs%2Fsensys12_demo.pdf&sa=D&sntz=1&usg=AFQjCNE9VejMGdegguay9WL_nMqpxPHGEg

Networked Sensor Systems. ACM, 2011.
39. Rachuri, Kiran K., et al. "EmotionSense: a mobile phones based adaptive platform

for experimental social psychology research." Proceedings of the 12th ACM
international conference on Ubiquitous computing. ACM, 2010.

40. Mascolo, Cecilia, Mirco Musolesi, and Peter J. Rentfrow. "Mobile sensing for
mass-scale behavioural intervention." NSF Workshop on Pervasive Computing at
Scale (PeCS). 2011.

41. Perry, Chris. "The science of behaviour change."
42. Burke, Jeffrey A., et al. "Participatory sensing." (2006).
43. Miluzzo, Emiliano, et al. "Darwin phones: the evolution of sensing and inference

on mobile phones." Proceedings of the 8th international conference on Mobile
systems, applications, and services. ACM, 2010.

44. Smith, Joshua C., and Bruce R. Schatz. "Feasibility of mobile phone-based
management of chronic illness." AMIA Annual Symposium Proceedings. Vol. 2010.
American Medical Informatics Association, 2010.

45. Dennison, Laura, et al. "Opportunities and Challenges for Smartphone
Applications in Supporting Health Behavior Change: Qualitative Study." Journal of
medical Internet research 15.4 (2013).

46. Rehunathan, Devan, et al. "vNurse: Using virtualisation on mobile phones for
remote health monitoring." e-Health Networking Applications and Services
(Healthcom), 2011 13th IEEE International Conference on. IEEE, 2011.

47. Misra, A., M. Ebling, and W. Jerome. "Harmoni: Context-aware filtering of sensor
data for continuous remote health monitoring." Pervasive Computing and
Communications, 2008. PerCom 2008. Sixth Annual IEEE International Conference
on. IEEE, 2008.

48. Chowdhury, Atanu Roy, Benjamin Falchuk, and Archan Misra. "Medially: A
provenance-aware remote health monitoring middleware." Pervasive Computing
and Communications (PerCom), 2010 IEEE International Conference on. IEEE, 2010.

49. Moulton, Bruce, Zenon Chaczko, and Mark Karatovic. "Data Fusion and
Aggregation Methods for Pre-Processing Ambulatory Monitoring and Remote
Sensor Data for Upload to Personal Electronic Health Records." JDCTA 3.4 (2009):
120-127.

50. Wyne, Mudasser F., et al. "Remote patient monitoring using GSM and GPS
technologies." Journal of computing sciences in colleges 24.4 (2009): 189-195.

51. Sha, Kewei, et al. "SPA: a smart phone assisted chronic illness self-management
system with participatory sensing." Proceedings of the 2nd International
Workshop on Systems and Networking Support for Health Care and Assisted
Living Environments. ACM, 2008.

52. Mielke, Angela M., et al. "Radiation detection with distributed sensor networks."
Defense and Security. International Society for Optics and Photonics, 2005.

53. Nemzek, Robert J., et al. "Distributed sensor networks for detection of mobile
radioactive sources." Nuclear Science, IEEE Transactions on 51.4 (2004): 1693-1700.

54. Pottie, Gregory J., and William J. Kaiser. "Wireless integrated network sensors."

Android-x86 Sensor Emulation 165 Raghavan Santhanam

https://www.google.com/url?q=https%3A%2F%2Fwww.cl.cam.ac.uk%2F~cm542%2Fpapers%2FUbicomp10.pdf&sa=D&sntz=1&usg=AFQjCNG2yfVYC54BvY5HJKQhkMi4OHV0Mg
https://www.google.com/url?q=https%3A%2F%2Fwww.cl.cam.ac.uk%2F~cm542%2Fpapers%2FUbicomp10.pdf&sa=D&sntz=1&usg=AFQjCNG2yfVYC54BvY5HJKQhkMi4OHV0Mg
http://www.google.com/url?q=http%3A%2F%2Fsensorlab.cs.dartmouth.edu%2FNSFPervasiveComputingAtScale%2Fpdf%2F1569391795.pdf&sa=D&sntz=1&usg=AFQjCNG_Trqe1zZfk2EqnfNOwYmP0ADo8g
http://www.google.com/url?q=http%3A%2F%2Fsensorlab.cs.dartmouth.edu%2FNSFPervasiveComputingAtScale%2Fpdf%2F1569391795.pdf&sa=D&sntz=1&usg=AFQjCNG_Trqe1zZfk2EqnfNOwYmP0ADo8g
http://www.google.com/url?q=http%3A%2F%2Fwww.ipsos-mori.com%2F_emails%2Fsri%2Funderstandingsociety%2Fapril_2013%2Fpdfs%2Fipsosmori_understandingsociety_april2013_thescienceofbehaviourchange1.pdf&sa=D&sntz=1&usg=AFQjCNFUctWJLxWRrLOcthAE9ganIScUTg
http://www.google.com/url?q=http%3A%2F%2Fescholarship.org%2Fuc%2Fitem%2F19h777qd.pdf&sa=D&sntz=1&usg=AFQjCNFnf9zqoDTS8ZU0Xfm_RzW_X-Njdw
http://www.google.com/url?q=http%3A%2F%2Fwww.ists.dartmouth.edu%2Flibrary%2F478.pdf&sa=D&sntz=1&usg=AFQjCNFQ75BCZe5PBzyDnX3C4TkY7qGWAA
http://www.google.com/url?q=http%3A%2F%2Fwww.ists.dartmouth.edu%2Flibrary%2F478.pdf&sa=D&sntz=1&usg=AFQjCNFQ75BCZe5PBzyDnX3C4TkY7qGWAA
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F21347080&sa=D&sntz=1&usg=AFQjCNHL699qkAJ6dMO24NVHBKfPwWi9OA
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F21347080&sa=D&sntz=1&usg=AFQjCNHL699qkAJ6dMO24NVHBKfPwWi9OA
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F23598614&sa=D&sntz=1&usg=AFQjCNGNKJnID5ZQfNeqfsX3zRrBafFxDg
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F23598614&sa=D&sntz=1&usg=AFQjCNGNKJnID5ZQfNeqfsX3zRrBafFxDg
http://www.google.com/url?q=http%3A%2F%2Fwww.deutsche-telekom-laboratories.de%2F~panhui%2Fpublications%2Fvnurse.pdf&sa=D&sntz=1&usg=AFQjCNG03HXZ_7X_oWx1j3Je3dxP833mOA
http://www.google.com/url?q=http%3A%2F%2Fwww.deutsche-telekom-laboratories.de%2F~panhui%2Fpublications%2Fvnurse.pdf&sa=D&sntz=1&usg=AFQjCNG03HXZ_7X_oWx1j3Je3dxP833mOA
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.toronto.edu%2F~iq%2Fmohomedi-harmoni.pdf&sa=D&sntz=1&usg=AFQjCNH2UkrdDEy5huCnuMngSZr6xVo9HA
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.toronto.edu%2F~iq%2Fmohomedi-harmoni.pdf&sa=D&sntz=1&usg=AFQjCNH2UkrdDEy5huCnuMngSZr6xVo9HA
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5462649%2F5466964%2F05466985.pdf%3Farnumber%3D5466985&sa=D&sntz=1&usg=AFQjCNEykg5I14h9eqvne7CWjyq5kqspTA
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5462649%2F5466964%2F05466985.pdf%3Farnumber%3D5466985&sa=D&sntz=1&usg=AFQjCNEykg5I14h9eqvne7CWjyq5kqspTA
http://www.google.com/url?q=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.185.121&sa=D&sntz=1&usg=AFQjCNFX2MABgrQEBKcrvfpnB2kQSSxAhQ
http://www.google.com/url?q=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.185.121&sa=D&sntz=1&usg=AFQjCNFX2MABgrQEBKcrvfpnB2kQSSxAhQ
http://www.google.com/url?q=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.185.121&sa=D&sntz=1&usg=AFQjCNFX2MABgrQEBKcrvfpnB2kQSSxAhQ
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1516578&sa=D&sntz=1&usg=AFQjCNHITCbv6uN1bqEae0lFOXTXURcjhQ
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1516578&sa=D&sntz=1&usg=AFQjCNHITCbv6uN1bqEae0lFOXTXURcjhQ
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.wayne.edu%2F~weisong%2Fpapers%2Fsha08-spa.pdf&sa=D&sntz=1&usg=AFQjCNHpyV07cYt92IsYY60cEBoGZ68DTQ
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.wayne.edu%2F~weisong%2Fpapers%2Fsha08-spa.pdf&sa=D&sntz=1&usg=AFQjCNHpyV07cYt92IsYY60cEBoGZ68DTQ
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1323017&sa=D&sntz=1&usg=AFQjCNG25OAAYOZ88M-9PzUqoXTxptbq0w
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F23%2F29304%2F01323753.pdf%3Farnumber%3D1323753&sa=D&sntz=1&usg=AFQjCNHsxWk3oRZ9vqwC-dTl5TJGnCATKQ
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F23%2F29304%2F01323753.pdf%3Farnumber%3D1323753&sa=D&sntz=1&usg=AFQjCNHsxWk3oRZ9vqwC-dTl5TJGnCATKQ
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D332838&sa=D&sntz=1&usg=AFQjCNFFGSrI2htGGkMjSzIguCNMqTHEHg

Communications of the ACM 43.5 (2000): 51-58.
55. Asada, G., et al. "Wireless integrated network sensors: Low power systems on a

chip." Solid-State Circuits Conference, 1998. ESSCIRC'98. Proceedings of the 24th
European. IEEE, 1998.

56. Agre, Jonathan R., et al. "Development platform for self-organizing wireless
sensor networks." AeroSense'99. International Society for Optics and Photonics,
1999.

57. Song, Wen-Zhan, et al. "Air-dropped sensor network for real-time high-fidelity
volcano monitoring." Proceedings of the 7th international conference on Mobile
systems, applications, and services. ACM, 2009.

58. Song, Wen-Zhan, et al. "Design and deployment of sensor network for real-time
high-fidelity volcano monitoring." Parallel and Distributed Systems, IEEE
Transactions on 21.11 (2010): 1658-1674.

59. Huang, Renjie, et al. "Real-world sensor network for long-term volcano
monitoring: design and findings." Parallel and Distributed Systems, IEEE
Transactions on 23.2 (2012): 321-329.

60. Tan, Rui, et al. "Quality-driven volcanic earthquake detection using wireless
sensor networks." Real-Time Systems Symposium (RTSS), 2010 IEEE 31st. IEEE,
2010.

61. Wang, Fei, and Hongyong Yuan. "Challenges of the Sensor Web for disaster
management." International Journal of Digital Earth 3.3 (2010): 260-279.

62. Ra, Moo-Ryong, et al. "Medusa: A programming framework for crowd-sensing
applications." Proceedings of the 10th international conference on Mobile systems,
applications, and services. ACM, 2012.

63. Brunette, Waylon, et al. "Open data kit sensors: a sensor integration framework
for android at the application-level." Proceedings of the 10th international
conference on Mobile systems, applications, and services. ACM, 2012.

64. Gravina, Raffaele, et al. "Enabling multiple BSN applications using the SPINE
framework." Body Sensor Networks (BSN), 2010 International Conference on. IEEE,
2010.

65. Gravina, Raffaele, et al. "Development of body sensor network applications using
SPINE." Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International
Conference on. IEEE, 2008.

66. Bellifemine, Fabio, et al. "SPINE: a domain‐specific framework for rapid
prototyping of WBSN applications." Software: Practice and Experience 41.3 (2011):
237-265.

67. Fortino, Giancarlo, et al. "SPINE2: developing BSN applications on heterogeneous
sensor nodes." Industrial Embedded Systems, 2009. SIES'09. IEEE International
Symposium on. IEEE, 2009.

68. Kuryloski, Philip, et al. "DexterNet: An open platform for heterogeneous body
sensor networks and its applications." Wearable and Implantable Body Sensor
Networks, 2009. BSN 2009. Sixth International Workshop on. IEEE, 2009.

69. Iyengar, Sameer, et al. "A framework for creating healthcare monitoring

Android-x86 Sensor Emulation 166 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fresenv.media.mit.edu%2Fclasses%2FMAS965%2Freadings%2Fwins98.pdf&sa=D&sntz=1&usg=AFQjCNFd4b4OTxqXOGfeyaAjSx5hPP5Obg
http://www.google.com/url?q=http%3A%2F%2Fresenv.media.mit.edu%2Fclasses%2FMAS965%2Freadings%2Fwins98.pdf&sa=D&sntz=1&usg=AFQjCNFd4b4OTxqXOGfeyaAjSx5hPP5Obg
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F12%2F34603%2F01650200.pdf&sa=D&sntz=1&usg=AFQjCNFuePy_9ukiGUth1qz5BILM44urkg
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F12%2F34603%2F01650200.pdf&sa=D&sntz=1&usg=AFQjCNFuePy_9ukiGUth1qz5BILM44urkg
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1555847&sa=D&sntz=1&usg=AFQjCNEftKO9-nSBpRzYvviQPV8BsVxW4Q
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1555847&sa=D&sntz=1&usg=AFQjCNEftKO9-nSBpRzYvviQPV8BsVxW4Q
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F71%2F5593295%2F05416697.pdf%3Farnumber%3D5416697&sa=D&sntz=1&usg=AFQjCNE8iSzXXLpEDNbPSZW3-DAYcGEbXQ
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F71%2F5593295%2F05416697.pdf%3Farnumber%3D5416697&sa=D&sntz=1&usg=AFQjCNE8iSzXXLpEDNbPSZW3-DAYcGEbXQ
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F71%2F6112276%2F05871608.pdf%3Farnumber%3D5871608&sa=D&sntz=1&usg=AFQjCNE9H6fzWOhOPyocsGm5qYk9M4bmDg
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F71%2F6112276%2F05871608.pdf%3Farnumber%3D5871608&sa=D&sntz=1&usg=AFQjCNE9H6fzWOhOPyocsGm5qYk9M4bmDg
http://www.google.com/url?q=http%3A%2F%2Fwww.cse.msu.edu%2F~glxing%2Fdocs%2Fvolcano-monitor-long.pdf&sa=D&sntz=1&usg=AFQjCNGYenMYmDSXBwHHy0xAR4lHjA04xg
http://www.google.com/url?q=http%3A%2F%2Fwww.cse.msu.edu%2F~glxing%2Fdocs%2Fvolcano-monitor-long.pdf&sa=D&sntz=1&usg=AFQjCNGYenMYmDSXBwHHy0xAR4lHjA04xg
http://www.google.com/url?q=http%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Fabs%2F10.1080%2F17538947.2010.484510&sa=D&sntz=1&usg=AFQjCNGRRAKVFIWn23YtryQ4np2UcCde3Q
http://www.google.com/url?q=http%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Fabs%2F10.1080%2F17538947.2010.484510&sa=D&sntz=1&usg=AFQjCNGRRAKVFIWn23YtryQ4np2UcCde3Q
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2307668&sa=D&sntz=1&usg=AFQjCNGxouirN9ss-xonY5jeCC_l4CYrLg
http://www.google.com/url?q=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2307668&sa=D&sntz=1&usg=AFQjCNGxouirN9ss-xonY5jeCC_l4CYrLg
http://www.google.com/url?q=http%3A%2F%2Fhomes.cs.washington.edu%2F~wrb%2FODKSensorsMobiSys2012.pdf&sa=D&sntz=1&usg=AFQjCNF2T-LgnWpIM7fgdrmo-hWH8Bk9tQ
http://www.google.com/url?q=http%3A%2F%2Fhomes.cs.washington.edu%2F~wrb%2FODKSensorsMobiSys2012.pdf&sa=D&sntz=1&usg=AFQjCNF2T-LgnWpIM7fgdrmo-hWH8Bk9tQ
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5504805&sa=D&sntz=1&usg=AFQjCNGp5Pvoz4JFGy6UdQAl05ZeFXSuJA
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5504805&sa=D&sntz=1&usg=AFQjCNGp5Pvoz4JFGy6UdQAl05ZeFXSuJA
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4803719%2F4811240%2F04811722.pdf%3Farnumber%3D4811722&sa=D&sntz=1&usg=AFQjCNGLQiSthExYjcJ58o53CkwcvhFLKg
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4803719%2F4811240%2F04811722.pdf%3Farnumber%3D4811722&sa=D&sntz=1&usg=AFQjCNGLQiSthExYjcJ58o53CkwcvhFLKg
http://www.google.com/url?q=http%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fspe.998%2Fabstract&sa=D&sntz=1&usg=AFQjCNFfOs17hGshikKnQindEDpeu1us9A
http://www.google.com/url?q=http%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fspe.998%2Fabstract&sa=D&sntz=1&usg=AFQjCNFfOs17hGshikKnQindEDpeu1us9A
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174534%2F5196184%2F05196205.pdf%3Farnumber%3D5196205&sa=D&sntz=1&usg=AFQjCNF-50GGg2Z5K8qhCKGMYgOBwbUYYg
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174534%2F5196184%2F05196205.pdf%3Farnumber%3D5196205&sa=D&sntz=1&usg=AFQjCNF-50GGg2Z5K8qhCKGMYgOBwbUYYg
http://www.google.com/url?q=http%3A%2F%2Fwww.eecs.berkeley.edu%2F~yang%2Fpaper%2FBSN2009.pdf&sa=D&sntz=1&usg=AFQjCNG0_kZFugJAKoUBxuG71hMXJUvSrg
http://www.google.com/url?q=http%3A%2F%2Fwww.eecs.berkeley.edu%2F~yang%2Fpaper%2FBSN2009.pdf&sa=D&sntz=1&usg=AFQjCNG0_kZFugJAKoUBxuG71hMXJUvSrg
http://www.google.com/url?q=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F234802437_A_framework_for_creating_healthcare_monitoring_applications_using_wireless_body_sensor_networks&sa=D&sntz=1&usg=AFQjCNFgsUlxLlTja8thZ08QyLyxAoQILQ

applications using wireless body sensor networks." Proceedings of the ICST 3rd
international conference on Body area networks. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2008.

70. Aiello, Francesco, et al. "An agent-based signal processing in-node environment
for real-time human activity monitoring based on wireless body sensor
networks." Engineering Applications of Artificial Intelligence 24.7 (2011):
1147-1161.

71. Aiello, Francesco, et al. "A java-based agent platform for programming wireless
sensor networks." The Computer Journal 54.3 (2011): 439-454.

72. Latré, Benoît, et al. "A survey on wireless body area networks." Wireless Networks
17.1 (2011): 1-18.

73. Operating System Usage Trend September – December 2013: Smartphone
Operating Systems Are Driving Growth!

74. Android, the world's most popular mobile platform

Android-x86 Sensor Emulation 167 Raghavan Santhanam

http://www.google.com/url?q=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F234802437_A_framework_for_creating_healthcare_monitoring_applications_using_wireless_body_sensor_networks&sa=D&sntz=1&usg=AFQjCNFgsUlxLlTja8thZ08QyLyxAoQILQ
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0952197611001072&sa=D&sntz=1&usg=AFQjCNF00xiqVHnncRQhgWK10VGxkU503A
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0952197611001072&sa=D&sntz=1&usg=AFQjCNF00xiqVHnncRQhgWK10VGxkU503A
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0952197611001072&sa=D&sntz=1&usg=AFQjCNF00xiqVHnncRQhgWK10VGxkU503A
http://www.google.com/url?q=http%3A%2F%2Fcomjnl.oxfordjournals.org%2Fcontent%2F54%2F3%2F439.abstract&sa=D&sntz=1&usg=AFQjCNGfF1T2Zkegh3tLJLeAuX2MViqf3Q
http://www.google.com/url?q=http%3A%2F%2Fcomjnl.oxfordjournals.org%2Fcontent%2F54%2F3%2F439.abstract&sa=D&sntz=1&usg=AFQjCNGfF1T2Zkegh3tLJLeAuX2MViqf3Q
https://www.google.com/url?q=https%3A%2F%2Fbiblio.ugent.be%2Fpublication%2F3234782%2Ffile%2F3234793.pdf&sa=D&sntz=1&usg=AFQjCNEcUeUMiKY6I6tZ_HYuEkOL_VrXLw
http://www.google.com/url?q=http%3A%2F%2Fwww.dazeinfo.com%2F2014%2F01%2F24%2Foperating-system-usage-trend-2013-smartphone-growth%2F&sa=D&sntz=1&usg=AFQjCNGZeTEa0cjVMqKlcAYZymy9wZMvKA
http://www.google.com/url?q=http%3A%2F%2Fwww.dazeinfo.com%2F2014%2F01%2F24%2Foperating-system-usage-trend-2013-smartphone-growth%2F&sa=D&sntz=1&usg=AFQjCNGZeTEa0cjVMqKlcAYZymy9wZMvKA
http://developer.android.com/about/index.html

