
AN ANALYSIS OF ABSTRACTION IN 

PROBLEM SOLVING 

Richard E. Korf 

CUCS-l08-84 



An Analysis of Abstraction in Problem Solving 

Richard E. Korf 

Department of Computer Science 
Columbia University 

New York, N.Y. 10027 
(212)280-8193 

Korf@Columbia-20.ARPA 

March, 1985 

Abstract 
A quantitative model of abstraction in problem solving is presented which explains 

how and to what extent it reduces the amount of search necessary to solve a 
problem. It is shown that a single level of abstraction can reduce search time by a 
factor of the square root of the size of the original space. Multiple hierarchical 
levels of abstraction can reduce the search complexity of a problem from linear in 
the size of the original problem space to logarithmic. 

1. Introduction 
The value of abstraction is well-known in artificial intelligence: The basic idea is 

that in order to efficiently solve a complex problem, a problem solver should at 
first ignore low level details and concentrate on the essential features of the 
problem, filling in the details later. The idea readily generalizes to multiple 
hierarchical levels of abstraction, each focused on a different level of detail. 
Empirically, the technique has proven to be very effective in reducing the 
complexity of large problems. 

Like many ideas in AI, the value of abstraction in human problem solving was 
pointed out by George Polya in How to Solve It [21. The first explicit use of 
abstraction in an AI program was in the planning version of the General Problem 
Solver (GPS) developed by Newell and Simon [11. The most thorough exploration 
of abstraction to date is Sacerdoti's work on the ABSTRIPS system [31. 

This paper presents a quantitative analysis of abstraction in problem solving. Our 
goal is to provide an analytic explanation for the empirical observation that 
abstraction reduces complexity. The questions we address are: ho'w much search 

This research was sUP.Rorted in 'part by the Defense Advanced Research Projects 
Agency under contract N00039-84-C-0165, and by the National Science Foundation 
DIvision of Information Science and Technology under grant IST-84-18879. 



1 

efficiency is gained by the use of abstraction, and what is the optimum level of 
detail for each level of abstraction. To do so, we first formalize a model of 
abstraction Next, we consider the special case of a single level of abstraction. 
Finally, we turn our attention to the general case of multiple abstraction levels. 
The analysis is done in the average case. The main result is that an abstraction 
hierarchy can reduce the amount of search to solve a problem from linear in the 
size of the problem space to logarithmic. A practical result of the analysis is that 
many levels of abstract.ion, with only small differences between them, reduce search 
the most. 

2. A Model of Abstraction 
Our model of abstraction in problem solving is based on the problem space model 

of Newell and Simon [I]. A problem space consists of a set of states and a set of 
operators which are partial functions from states to states. A problem is a problem 
space together with an initial state and a goal state. The task is to find a sequence 
of operators that map the initial state to the goal state. For example, if the domain 
were transportation, the states might be towns and the operators might be all direct 
means of transportation between towns. 

\Ve model the states of an abstract space as a subset of the states in the original 
problem space (the base space). Continuing our example, a suitable set of abstract 
states for the transportation problem would be the set of major cities. An 
alternative model is for each state of the abstract space to correspond to a subset 
of the states in the base space. In the transportation e;<ample, a state of the 
abstract space would then correspond to a region in the base space. In many cases, 
hO'wever, operators only apply to particular states as opposed to sets of states. For 
example, while an airline route may serve an entire area, it departs from a 
particular point in that area. In any case, the r.:~n difference between the subset 
and region models is that in t.he region model, no effort is required to get into the 
abstract space, since any node in a region is already a member of the region as a 
whole. This reduces the search complexity by a constant factor, and for this reason 
we adopt the more restricted subset model. 

The operators of the abstraction map states in the abstract space to other states 
in the abstract space. In the case of CPS and Sacerdoti's work, the abstract 
operators were that subset of the primitive operator set that mapped abstract states 
to abstract states. In the transportation example, the operators of the abstract 
space would be direct means of transportation between major cities, such as airline 
routes. Alternatively, the abstract operators may be macro-operators or sequences of 
primitive operators that 'go between abstract states. A necessary property of the 
macro-operators is that they be stored or otherwise known to the system and do 
not require search to find. If we restricted our example to road navigation, the 
abstract operators might be driving routes between major cities, which in general 



2 

are sequences of different roads marked by signs. Regardless of which type of 
abstract operators we choose, the assumption of known operators between abstract 
states is an important aspect of our model. An abstract space requires both a set of 
abstract states and a set of abstract operators between those states. If paths 
between the abstract states must be found by search among the operators of the 
base space, then abstraction by itself makes no improvement in search efficiency. 
For example, if we have to search for routes between nearby major cities, then the 
abstraction of major cities is of no use in routefinding. Note that we do not require 
an abstract operator between every pair of abstract states, but simply that the set 
of abstract states be connected by abstract operators. 

Problem solving using an abstraction space involves three steps. First, a path must 
be found from the initial state to the nearest state in the abstract space using the 
operators of the base space. Next, a path from the initial abstract state to the 
abstract state nearest the goal state must be found using the operators of the 
abstract space. Finally, a path must be found from the abstract goal state to the 
actual goal state using the operators of the base space. For example, in the 
transportation domain, the problem of getting from a starting point to a destination 
point is solved by finding a route from the starting point to the nearest major city, 
finding a route from that city to the major city nearest the destination, and finally 
finding a route from there to the actual destination. One way of recognizing the 
abstract state which is closest to the goal state is to search backward from the goal 
state to the nearest abstract state. 

For purposes of this analysis, we assume that the relative distribution of abstract 
states over the base space, while not necessarily uniform, is the same for all levels 
of abstraction. In our example, this corresponds to the observation that while there 
are more towns in the eastern U.S. than in the west, the relative distribution of 
large cities is roughly the same as that for small cities. An average case analysis 
can be done independent of the actual distribution, as long as the distribution 
remains constant over different levels of abstraction. 

3. Single Level of Abstraction 
\Ve begin our analysis with the special case of a single level of abstraction. Let 

the number of states in the base space be n and the number of states in the 
abstract space be u/k, with k being the ratio of the size of the base space to the 
size of the abstract space. The first issue we address is the expected amount of 
search required to find a solution to an average problem, using the abstraction. By 
average problem, we mean one where the initial and goal states are randomly 
selected from all states with equal probability. 

\Ve assume that the amount of time to search for a solution is proportional to the 
number of nodes visited in the search. The expected number of nodes visited is the 



3 

sum of the expected number of nodes visited 1n the three phases of the search: 
getting int.o the abstract space, solving in the abstract space, and getting to the 
goa~ in the base space. Since we assume that the distribution of states in the 
abstract space is the same as the base space, the probability that any randomly 
selected node is a member of the abstract space is l/k. Thus, the expected 
num ber of nodes that must be generat.ed in a search before a node in the abstract 
space is encountered is k. This is both the expected number of nodes to be 
searched in going from the initial state to the abstract space and also in going from 
the abstract space to the goal state. 

Since the total number of abstract states is njk, to find a path between an 
arbitrary pair of abstract states, we would expect to have to examine {1/2}njk 
nodes on the average. Thus, the total expected number of nodes expanded is 
t=2k+{1/2Jn/k. Note that this is actually an upper bound on the expected 
number of nodes because it ignores the slight possibility that the goal state will be 
found before the abstract space is encountered when searching from the initial state. 

\Vhat value of k minimizes this total search time? The minimum occurs at 
k={1/2}11 1/ 2, or njk=2n1/ 2, giving a value of t=2n1/ 2. Thus, for a single level of 
abstraction, if the base space is of size n, the optimum size for the abstract space 
IS on the order of the square root of n. This abstraction reduces total search time 
from O{n} 'without any abstraction, to 0{n1/ 2). 

4. Multiple Levels of Abstraction 
\Ve now consider the general case of multiple hierarchical levels of abstraction. In 

order to solve a problem in a hierarchy of abstraction spaces, we first map the 
imtial" state to the nearest state in the first level of abstraction, then map this state 
to the nearest state in the second level of abstraction, etc., until the };righest level 
of abstraction is reached. At the same time, this process is repeated starting from 
the goal state and working up through successive levels of abstraction until the 
paths from the initial and goal states meet at the highest abstraction level. The 
questions we want to answer are how much do multiple levels of abstraction reduce 
search, how many levels of abstraction should there be, and what should the ratios 
between their sizes be in order to minimize the search time to solve an average 
problem. 

Again, let the number of states in the base space be n. Let k1 be th~ ratio 
between the size of the base space and the size of the first level of abstraction, k 2 
be the ratio of the sizes of the first and second levels of abstraction, etc. In order 
to make the search at the top level the same as in the lower levels, let the highest 
level of abstraction consist of a single node. The task at the top level then is to 
find paths from both the initial and goal states to this single common state. With 
this slight simplification, the expected amount of time to find a solution to an 



4 

average problem in this hierarchy of aDstraction spaces is 2k 1+2k2+ ... +2km' where 
m is the number of levels of abstraction, since two searches must be made at each 
level to find a node in the next higher level. As in the case of a single abstraction, 
this is actually an upper bound on the expected time since it ignores the possibility 
that the actual goal state will be found before the highest level of abstraction is 

reached. 

In order to mlmmlze this expression, we must mlmmlze the sum of the kis. The 
constraint on the kis is that their product must equal n, since they represent the 
ratios between the number of nodes at each level and n is the total number of 
nodes. Thus, the problem becomes one of factoring a number such that the sum of 
the factors is minimized, or in other words, finding a minimum sum factorization. 

If the factors are constrained to be integ~rs, then the prime factorization of n is a 
minimum sum factorization. However, in our case the kis are ratios which need 
not be integral but rather can be arbitrary rational numbers. In that case, the 
minimum sum factorization of a number n consists of /n 11 factors, each of which is 
equal to e. To see this, first note that all the factors must be equal, because two 
unequal factors could be replaced by two factors between them, such that the sum 
is reduced without changing the product. This implies that there must be /09kn 
factors of k, and minimizing their sum; k /09kn, yields k=e. 

This implies that the optimum abstraction hierarchy for a problem space with n 
nodes consists of In n levels of abstraction and the ratio of the sizes of successive 
levels of abstraction is e. Of course, in a real problem, such an optimum abstraction 
hierarchy may not be achievable. However, this result suggests that in general a 
deep abstraction hierarchy, in terms of number of levels, will reduce search more 
than a shallow one. 

The average case time to find a solution given an optimum abstraction hierarchy 
is proportional to 2k1+2k2+ ... +2km or 2e(ln n). Thus, the use of such an 
abstraction hierarchy can reduce the expected search time from O(n) to O(log n). 
This improvement makes exponential problems tractable. 

5. Conclusions 
\Ve have presented a quantitative model of the use of abstraction in problem 

solving. The main result is that for a problem with n states, the abstraction 
hierarchy which minimizes the amount of search to solve an average problem 
consists of log T1 levels where the ratio between the number of states in successive 
levels is a constant. Such an abstraction hierarchy reduces the amount of search 
from O(n) to O(log n). This reduction from linear to logarithmic time explains how 
abstraction can make exponential problems tractable. Furthermore, it suggests that 
deep abstraction hierarchies reduce search m'ore than shallow ones. 



5 

The only quantitative empirical data in the literature on the use of abstraction in 
problem solving is Sacerdoti's comparison of STRIPS and ABSTRIPS on five 
different problems. For, these problems, ABSTRIPS provided an approximately 
logarithmic speedup over STRIPS in time to find a solution. While five data points 
are too small a sample to support the model, Sacerdoti's data is at least consistent 
with our theory. 

Acknow ledgments 
The solution to the minimum sum factorization problem was .pointed out to me by 

Herl?ert Simon in a different context. Several ideas were clarified in discussions with 
Tom Ellman. In addition, Kathy McKeown, Judea Pearl, and Steve Taylor carefully 
read an earlier draft of this paper and provided many helpful suggestions. 



6 

References 

[1) i\ewell, A. and H. A. Simon. 
Human Problem Solving. 
Prentice-Hall, Englewood Cliffs, N.l, 1972. 

[~] Polya, George. 
How to Solve It. 
Princeton University Press, Princeton, N.J., 1945. 

[3} Sacerdoti, Earl D. 
Planning in a Hierarchy of Abstraction Spaces. 
Artificial Intelligence 5:115-135, 1974. 


