
•

Experience with Process Modeling in the
Marvel Software Development Environment Kernel

Gail E. Kaiser

Columbia University
Deparnnent of Computer Science

New York, NY 10027
212-854-3856

Kaiser@cs.columbia.edu

CUCS-446-89

10 July 1989

Abstract

We have been working for several years on rule-based process modeling and the implementation
of such models as part of the foundation for software development environments. We have
defined a kernel, called MARVEL, for such an architecture and implemented several successive
versions of the kernel and several small environments using the kernel. We have evaluated our
results to date, and discovered several significant flaws and delineated several important open
problems. Although the details are specific to rule-based process modeling, we believe that our
insights will be valuable to other researchers and developers contemplating process modeling
mechanisms.

Copyright CO 1989 Gail E. Kaiser

Kaiser is suppor1ed by National Science Foundation grants CCR-88S8029 and CCR-8802741,
by grants from AT&T, DEC, IBM, Siemens. Sun and Xerox. by the Center for Advanced
Technology and by the Center for Telecommunications Research.

keywords: controlled automation, rule-based systems. software development environments

1. Introduction
The long-term goal of the MARVEL project is to investigate rule-based process modeling as the

basis for an architecture for design and engineering environments, particularly software

development environments. This is an instance of the "process programming" paradigm

proposed by Osterweil [Osterweil 87], although we began working on this problem (June 1986)

about nine months before learning of his work (March 1987, at the leSE conference). The gist

of "process programming" is (1) to defIne software processes (the design process, coding,

testing, and so on) in a formalism well-understood by software engineers - a programming

language and (2) take advantage of well-understood programming language implementation

techniques to "enact" (carry out, automate, or otherwise implement) as much as possible of the

software process.

We prefer to refer to our work as process modeling, although we do interpret the process

model for what we call controlled automation of the software process. The distinction is that

process programming (unfortunately) implies to many researchers use of an imperativey

sequential programming language, which seems obviously unsuitable for complex, many­

activities-in-parallel, changing-in-mid-stream software processes. We use instead a rule-based

language, where multiple rule sets can be employed separately or together and the currently in .
force rules can be changed dynamically by the software team or by the rules themselves.

Solving the concurrency control problem is one of our major concerns for future work.

The gist of our rule-based process model is that each software activity is defined by a rule,

consisting of three pans. The first part, the preconditio~ is a logical expression on the state of

the project including the contents and attributes of any software objects. The precondition must

be true in order to carry out the activity. The second pan is the activity itself, which may be the

invocation of a tool, or a description of some real-world activity to be performed off-line, or the

selection of another rule set defining the activities for the next phase of the process or for a

hierarchical subtilkiD the process.

The third part is one or more postCOnditio1U, each a logical assertion on the objectbase

representing the software effort. When the activity is completed, exactly one of the

postconditions becomes true, which one determined by the actual results of the activity.

Multiple postconditions are needed to reflect the different possible results of software activities

in the many cases where the COlTeCt direction can only be determined while the activity is in

1

progress, and thus cannot be pushed into the precondition. Three pans rather than the classical

two (condition/action) are necessary to treat the activity pan as a "black box" that has the

effects given by one of the postconditions on the working memory used for matching the

preconditions. This black box nature is necessary for activities involving commercial off-the­

shelf (COTS) tools, where modification of the tool is impossible (or at least avoided), as well as

for off-line activities.

Controlled automation is achieved by what we call opponunistic processing on the rules,

employing backward chaining and forward chaining as the opportunity arises to automatically

initiate activities. Other forms of controlled automation include monitoring user activities -

keeping a record and determining whether or not they conform to the rules, or using the

preconditions as constraints that the software development team must fulfill before moving on,

or as a way of leading the team by the hand through the various stages of the particular process

envisioned (or required) for that software project

We have defmed a kernel for software development environments, called MARVEL, based on

our design for rule-based process modeling and controlled automation. Our work on MARVEL

has been published widely [Kaiser 87a, Feiler 87, Barghouti 88a, Kaiser 88a, Kaiser 88b, Kaiser
I

88c, Kaiser 89]. Several versions of MARVEL have been implement~ and a small environment

for C programming (C/Marvel [Barghouti 88b]) and a small environment for documentation

production (see appendix) have been developed. Version 2.01 and the C/Marvel environment

were demonstrated at the ACM SIGSOFf Practical Software Development Environments

conference in November 1988. The latest version, 2.10, consists of approximately 35,()()() lines

of C code, 1000 lines of Yacc rules and subroutines and 300 lines of Lex rules. MARVEL runs on

4.2 and 4.3 Berkeley Unix nI, provides an XU windows graphical user interface and uses any

Unix shell language as its "envelope language" for interfacing between external tools and

MARVEL's objecdJllO.

MARVEL's objeac management system is "quick-and-dinyt': The object-oriented data model

is rather simple and does not support methods except for the special case of tools, all

relationships among objects are maintained in memory (but this data structure is checkpointed

before each substantial change), objects are mapped directly to the Unix file system in the

obvious manner, and object clustering is by alphabetical order. The Marvelizer and Organ tools

have been developed to immigrate existing software systems from the file system into the

2

objectbase and to reorganize the components of software systems within an objectbase,

respectively [Sokolsky 89]. MARVEL itself has been Marvelized into a ClMarvel environment;

this takes about ten minutes. The primary missing facility is schema evolution, a very hard

problem.

So far we have investigated only a small fraction of the potential for rule-based process

modeling and controlled automation, and their application to MARVEL. There is much more

work to do to fully understand how rule-based process modeling can and should work. how

controlled automation can and should work, how it can be applied to multiple users sharing an

objectbase with perhaps different rule sets, and whether the combination is indeed a good

foundation for a software development environment architecture. In the following sections, we

describe and evaluate our rule-based process modeling language, describe its current

implementation for controlled automation and open problems, and briefly discuss related work.

2. Rule-Based Process Modeling

name [?id:type, parameters ...]
precondition
{ activity }
postcondition;
postconditions ...

Figure 2·1: Generic Rule'

We have defined a rule language, the Marvel Strategy Language (MSL). A rule consists of a

name, typed parameters and a body, as shown in Figure 2-1. The body consists of a

precondition, an activity. and one or more postconditions.

tool opezatloD arguaent, argument •...

FllW"e 2·2: Generic Activity

The activity sends a message to a tool object to execute one of its operations, as depicted in

Figure 2-2. The tool object must be declared either in the same strategy (module) as the rule, or

exponed by one of the strategies imported by the containing strategy. The tool object must have

an operation (method) that corresponds to the operation named in the message from the activity.

1'Jm8.a«:tivities are currently restricted to simple tool invocations. It is not yet possible to invoke

3

arbitrary MARVEL commands, most notably load or unload a strategy, for example, to

automatically change the set of currently active rules under certain conditions. Although this

would be relatively easy to add to the implementation, the implications are unclear. One major

problem would be if there was a conflict, such as two exported rules with the same name but

different activities, between the strategy to be loaded and an already loaded strategy. It would be

easy enough to have the production of error messages as one of the alternative postconditions,

but it is unlikely that these messages would mean anything to a typical user. (We assume one or

more "superusers" who develop a library of strategies, which can be made available to users via

an information retrieval facility [Maarek 87].) A general exception handling facility will be

necessary to deal with opportunistic processing results that typical users are not prepared to

handle.

It will be much more difficult to add support for hierarchical andlor off-line activities, since we

do not yet fully understand what is needed or how to represent such activities within MSL. Yet

both hierarchical breakdown of software development tasks and representation of off-line

activities such as design meetings are necessary to extend MARVEL beyond our cUITent

experimentation with edit/compile/debug and document production activities.

2.1. Preconditions and Postconditions

The precondition of a rule specifies the logical condition that has to be satisfied before the

activity can be initiated. This logical condition can either be a simple predicate or it could be a

complex clause (either disjunctive or conjunctive). A precondition clause consists of three parts.

The first lists existential and universal quantifiers, together with a characteristic junction that

characterizes any or all of the quantified variables. The third pan is a property list that has to be

satisfied for the precondition to be true. The easiest way to think about what this means is in

tenns of sets. Tbe quantified variables together with the characteristic function selects a set of

objects that meet tbia characteristic; this is done for efficiency purposes, since the characteristic

set is typically rqftIeIlted explicitly in the objcctbase as an aggregate attribute of some object.

Then, all the predicates in the property list are matched against each element of the set. Each

predicate is an expression that tests the value of an attribute of an object with respect to a literal

value, another attribute or a special value such as the current system clock (NOW) or the userid

of the cUITent user (USER). Set expressions either test for membership of a particular element in

a set. or add or delete an element from a set. The member operation is usually used in the

4

preconditions of rules while the add and remove operations are used in the postconditions of

rules. A relation expression works on user-defined binary relations between objects.

Each rule has mutually exclusive postconditions, one of which is asserted after the activity part

of the rule is executed. Postconditions modify the attributes of objects. The choice of which

postcondition to assert depends on the result of the activity, and is selected by the envelope that

interfaces the external tool to MARVEL.

rules

edit [?p: PROCEDURE]:
suchthat

{ EDITOR edit ?p }

(?p.edited = Edited);

compile [?m: MODULE]:
~orall PROCEDURE ?p
suchthat
(member [?m.procs ?p])

and«?p.analyzed - Analyzed)
(?m.statu. - HOdNoComp»

{ COMPILER compile ~ }

(~.statu. - HOdlaComp);
(~ .• tatu. - HOdNoComp);

Figure 2·3: Two Example Rules from ClMarvel

Probably the simplest examples are the edit and compile rules shown in Figure 2-3. Additional

rules are given ill me appendix. The first rule states that editing a component results in updating

its timestamp. 'l1iiIn is no precondition for editing. since if the component does not exist the

editor creates iL The second rule states that the COMPILER canlshould be applied to a

MODULE object if all its PROCEDURE objects have been analyzed and the module has not yet

been compiled. The result of the COMPaER activity cbuld be either error messages or

successful compilation. reflected by the status variable; which one can be determined only by

running the compiler.

s

The language facilities available for use in preconditions and postconditions are currently

rather trivial: all preconditions and postconditions that can currently be expressed are analogous

to those in this example. We would like to express more general queries in preconditions, and be

able to express quantifiers and more complicated assignments in postconditions.

2.2. Strategies

The complete description of a target project is captured in a collection of interacting units in a

manner similar to modules in a conventional programming language. The unit of modularity of

MSL is called a strategy. A single strategy might provide only a partial view of the target

project. Several strategies are merged to provide a complete description of a project. The intent

is that different collections of strategies will support different phases of the software lifecycle,

different user roles, different tool sets, but that some subset of the strategies are likely to shared

among these. For example, early development versus maintenance might have different rules

that specify under what circumstances source code can be modified and what happens when it is,

but the same editor and compiler are likely to be used even though maintenance might require

additional tools such as a bug tracking system. Alternative strategies that share imported

strategies are illustrated in the appendix.

Each strategy has a name and consists of five pans.

• Interface in terms of exports and imports,

• Classes the describe the structure of the components of a software project,

• Tool objects in the form of suoclasses of the built-in TOOL class,

• Relations between classes, and

• Rules the describe the desired behavior of the environment during the process of
developing the target project.

A complete template for a strategy is given in Figure 2-4, and there are some small but complete

examples in the appendix.

Multiple stratqia loaded at the same time are IMTgtd. For example, classes with the same

name are combined in the style of multiple inheritance [Cardelli 84], so the resulting class used

by MARVEL defines the union of attributes from all the contributing classes from different

strategies. Conflicts such as separately inherited attributes with the same name but different

typeS are detected and the merge is disallowed. Conflict detection could be done in advance by

precomputing which sets of strateiies in a common library are compatible with each other, but

6

STRATEGY: name

Interface:
Imports: list of imported strategies;
Exports: list of exported classes,

tools, relations and rules;

Objectbase:

class_nama ::2 superclasses: list of superclasses:
Attributes:

attribute name: type = default value if any;

END

tool_name:: superclasses: TOOL:
operations:

operation_name : string - envelope_fila_nama;

END

Relations:

Rules

relation name domain class range_class;

rule_name [liat ot parameters 1:
precondition
{ activity }
liat ot poatconditiona

End n ...

F1gure 24: Generic Strategy

that would prevent users from developing and adding their own strategies on the fly - this is

currently supported but is probably not a good idea for anyone except a "wizard" user, because

rule sets am-difficult to debug as discussed later OD.

7

Multiple rules with the same name are combined by ANDing the preconditions, which makes

sense and usually works; originally MARVEL also XORed the postconditions, which may make

sense but does not really work. The problem is the envelope checks the results of external tools

to select among the postconditions, so the envelope must know about all the postconditions.

Since envelopes are currently imperative (shell scripts), it is not possible for MARVEL to

"merge" them. One longer-term goal is to develop a real envelope language, originally

imperative but hiding the details of MARVEL's objectbase implementation, and eventually

declarative.

As yet we have done relatively little investigation of strategies. As mentioned previously, we

would like to pennit loading and unloading of strategies as activities that could be defined by

rules. Loading a strategy (which can currently be initiated only by the human user invoking the

load command) operates by first merging all the strategies reachable by import chains, and then

merging the result with the already loaded set of strategies (perhaps none). MARVEL detects

minor naming conflicts, but does not carry out any inferencing to determine non-trivial logical

conflicts between rules. We would like to be able to mix and match strategies, including support

for different tools operating on different objects but triggering each others' activation and

bridging between different tools that should be operating on the same objects. To achieve this,

we must develop some way to express logical relationships such as implication (one property

implies another or the negation of another) and equivalence (two properties defined using

different terminology in different strategies really mean the same thing) and be able to do

inferencing on these relationships.

3. Controlled Automation

We have designed and implemented a kernel for software development environments that

interprets software processeS defined by rules. The basic mode of operation is as follows.

When the us. tmen a command corresponding to the name of a rule, a component of

MARVEL called me Opportunist checks the truth of the precondition against working memory

(the objectbase representing the software system under development). If the precondition is

satisfied, then the Opponunist sends the message defined in the activity pan of the rule. If the

precondition is not currently satisfi~ the Opportunist performs backward cha.iru.r.g to attempt to

satisfy the precondition. Once the precondition is satisfi~ the activity is executed, and one of

its postconditions assened. The Opponunist then performs forward chaining n:r m any rules

8

whose preconditions have now been satisfied, under the assumption that their results will be

required later on.

The Opportunist follows the AND-OR tree mechanism of other backward chaining systems,

with one significant exception. Since rules may have multiple alternative postconditions, it is

possible for the precondition of the rule to be true but firing the rule does not produce the

necessary postcondition. One way to deal with this would be to simulate firing such rules, and

commit the results with respect to working memory only if the desired postcondition is achieved.

But this is unrealistic in a context where executing the action (activity) component of the rule

may take an arbitrary period of time - a few minutes for most processing tools such as

compilers, and perhaps hours for interactive tools such as editors. Furthermore, access to the

undesired results of firing the rule is often necessary to eventually produce the desired result;

consider the case where the desired result of a compile rule is correct object code but the

undesired result produced was error messages. Therefore, all rules applied during backward

chaining are not simulated, but instead have "permanent" effects.

This leads to another problem: When there are alternatives, it is conceivable that firing one

alternate first, and getting an undesired result, c~uld negate the precondition of another

alternative, but if this second alternative had been fired first it would have resulted in the desired

result. The answer may be using planning to order consideration of alternatives.

The Opportunist also carries out forward chaining in a slightly different manner than most

forward chaining systems, in that the conflict resolution strategy is to fire all the rules whose

preconditions are satisfied. This makes sense given our assumption that all the results will

eventually be needed. There is again the question of ordering, since the postcondition of one

rule may negate the precondition of another rule that otherwise would have fired.

Another concan with both forward and backward chaining involves the different degrees of

control app~ far opportunistic processing and for the human user. If the human user wants

to compile a modale, or. edit a file, under most circumstances the Opportunist should let him.

However, facton such u load average 00 the machine and whether the user is likely to make

funher changes that will require recompilatioo of the same module may make it undesirable for

MARVEL to automatically compile the module.

Pan of the control problem can be solved by what we call hinlS, which are additional

preconditions that apply only during forward cbaining anet ~ do not affect activities initiated

9

by the human user. Hints as such have already been designed, and could easily be added to the

implementation. However, we need more experience using MARVEL to detennine what kinds of

hints are most useful in practice, and what kinds of language facilities are needed to express

them.

Another aspect of our solution is implicit queries, essentially a capability for self-reflection.

The idea is that at each step in forward or backward chaining, the Opponunist would ask itself

questions such as "how long is executing this activity likely to take?", "how many objects is it

likely to read or write?", "does this activity require human intervention?", and so fonh. When an

activity is too expensive or otherwise questionable, the Opponunist could request conflrmation

from the human user or apply some meta-rule to decide what to do. It would be easy to hardcode

special cases, such as the flrst two questions, user-specilled threshold values and user

confrrmation, but we would prefer to allow such implicit queries to be associated separately with

each rule and/or each tool, and meta-rules to be associated with strategies to account for the

specific semantics of the modeled software process. We will need to add suitable primitives to

MSL, both to extend the query language (used in the preconditions of rules and in the future to

become available for ad hoc queries from the user interface) and to express meta-rules.

There are cenain difflculties with the Opponunist automatically initiating an interactive

activity such as editing. It is not clear when it is appropriate to automatically activate an

interactive tool, and determining this would involve human-computer interactions research

outside the scope of this project. Assuming we allow the strategy implementor to decide this,

there is the very hard problem of capturing the full postconditions of an interactive tool. For

example. a user can do almost anything from within the Emacs text editor [Stal1man 81] and

nothing short of kernel modifications (which we do NOT plan to undertake!) seems capable of

detecting (or preventing) all unanticipated side-effects of black box tools.

3.1. Multiagent Rule Systems

There is another problem with interactions among rules more significant than incompatible

attribute naming, ordering alternatives and controlling runaway opportunism. We would like

forward chaining to go on in one or more background processes. permitting the human user of

MARVEL to continue carrying out software development activities in the foreground. This was

implemented in the ftrst version of the MARVEL kernel. V nfortunately , it did not work -

because we did not then have a sufficient understanding of what we now call the "multiagent

10

problem".

Classical rule systems are designed for one agent to be modifying working memory at a time:

either the human user adds and deletes objects, or the forward and/or backward chaining system

fIres rules that add and delete objects. We know of no rule system that pennits both to proceed

in parallel. Even parallel rule systems, such as Stolfo's [Stolfo 84] and Gupta's [Gupta 86] work

on parallelizing OPS5, assume and in fact require independence of the parallel rules. Multiple

rules may modify working memory concurrently, but the writesets are guaranteed to be disjoint

from each other and from the readsets of parallel chains.

In addition to supporting multiple agents, where only one is the human user and the rest are

rule chains, it will be necessary to extend MARVEL to suppon multiple human users cooperating

to develop/maintain the same software system. This compounds the problem, since in the first

case at least the background chains are operating on behalf of the human user and we might

pragmatically leave sorting out any inconsistencies that might arise to this human. but this option

is not acceptable when there are multiple human users whose activities affect the same objects.

Partitioning the objectbase among the humans might work for those objects representing source

code, object code, documentation, and so on, but cannot for those objects reflecting the global

status of the project and other shared information.

3.2. Match Algorithms for Controlled Automation

In the current implementation. the performance of both backward and forward chaining is

improved by building two tables of potential chaining "links" when loading (unloading)

strategies. The two tables are the activity table, which has an entry for each rule keyed by

activity, and the predicate table, which has an entry for each predicate or assertion that appears in

a precondition or a postcondition respectively. Each entry of the activity table contains the

bindings of quantifiers in the corresponding rule, and pointers to the precondition and

postconditions in 1be predicate table. The bindings associate a type with each variable used in

the activity of the rule. Each entry of the predicate table stores a list of pointers to all activities

whose postconditions might satisfy it (backward chaining) and another list of pointers to all rules

whose preconditions might be satisfied if this predicate becomes true (forward chaining). In

other words, MARVEL detects all potential chaining when it first loads a strategy and merges it

with active strategies. This enables the Opponunist to quickly scan the rule base during

operation to decide which rule(s) can be fired. The figure below shows how the rules given

11

Activicy Bindings Precon. Postcon.

EDITOR edit ?c ?c : COMPON£lIn" -.........
\ COMPILER compile ?Ill ?m: MODUU: ~

)R

eltisu fuDCtioo ?f !I ~

Boaw.ro Forward

~ ~ca~ pointers pomters

~ componeoLUmeswnp
edit compile

2~OW

module.swus -compLied compile Link

module.timestamp. Now compile

module.JtID.1.S~ compile

i {\IDt;UOD.bmnr,mp >
malul&.1imet1lmP edit compile

Figure 3-1: Example Chaining Tables

above are stored in the two tables. Example tables are shown in Figure 3-1.

The obvious question is why do we not use the Rete algorithm [Forgy 82] or some parallel

variant such as Treat [Miranker 87]. The reason is that existing match algorithms assume a

relatively large number of rul~ a relatively small number of objects. certain restrictions on

quantifien. and that it is feasible to treat the modification of an object as a delete followed by an

add. In contt'llt, for ruJe.bued process modeling we anticipate a relatively small number of

rules (most liblr DO more thaD O(Nl) for N tools) and. relatively larp number of objects (e.g.,

each procedure fa alOftware system might be represented u • distiDct object). Many rules are

of the form "forall members of the characteristic set, such-and-such properties must be true (or

false)". Objects are too larae and complex to delete and recreate, so the match algorithm has to

permit them to be modified in place; this is relatively minor difficulty compared to the

rule/object ratio. since Rete could easily be extending to keep two way links between objects and

to permit modified objects to be unlinked.

12

We are not satisfied, however, with our (admittedly trivial) match network. The ftrst is it does

not yet provide any special support for quantifters. We have designed a simple extension to

handle this for the special case where the characteristic set is an aggregate attribute of an object,

which has been typical for the rules we have developed so far. For each precondition that could

be applied to the aggregate. a precondition/count pair is maintained with the object to keep track

of how many members of the aggregate currently satisfy the precondition's clauses. This will

make precondition queries involving quantifiers much faster than currently, since keeping the

count up to date will be amortized over all modifications to objects in the aggregate.

The second problem is really pan of solving the multiagent problem. Our current match

network does not contain pointers to objects, so there would be no problem with each user

keeping his own copy reflecting the rules defined by his currently loaded strategies, even though

multiple users (and their rules) may operate on the same objectbase concurrently. Keeping the

counts in the objects also works fme for multiple users, although some form of concurrency

control will be needed for accessing the counts - but as discussed above concurrency control

will be needed in any case for the shared objectbase. But a more efficient match algorithm tuned

to the problems of controlled automation must be developed in concert with our solution to the

multiagent problem, for example. we anticipate tl}at a concurrent data structure will be

necessary.

4. Related Work
The first version of MARVEL was implemented by modifying the Smile programming

environment [Kaiser 87b] developed as part of the Gandalf project [Habermann 86] at Carnegie

Mellon University starting in 1979 and continuing through the early 1980's (the current MARVEL

implementation is entirely independent of Smile). Smile suppons multiple users programming in

C and runs on Unix. Smile has been relied on by the Gandalf and Gnome [Garlan 84] projects at

CMU and by the __ pc project [Peny 89] at AT&T Bell Labs, and has been distributed to at

least fony sites. Smile passes the crucial test of supporting its own maintenance. It has

supponed the simultaneous activities of at least seven programmers, and the largest software

system developed and maintained in Smile has approximately 61,000 lines of source code.

Smile provides a "fileless environment" to its users, answers simple queries, coordinates the

activities of multiple programmers. and automatically invokes various tools under cenain

conditions; it hides the particularities of the Unix. file system and utilities and presents its own

13

model of the programming world. Smile's objectbase is implemented through a combination of

the file system and an in-core object structure that is kept persistent in a file. Smile's knowledge

of software objects and the programming process is hardcoded into the environment, and cannot

be changed except by modifying the code. From experience with Smile and other environments

we gained insights into the development of practical environments and became convinced that a

generalization of Smile's internal architecture would be a good basis for a software development

environment architecture. Unfortunately, Smile's suppon for multiple programmers is overly

restrictive - for example, a programmer has to exclusively lock all modules that impon his

module in order to modify the interface of his module - and thus was not adapted for MARVEL.

The ongoing research projects closest to MARVEL include the Fonnalized System

Development project [Balzer 85] being developed by Balzer's group at lSI (the distributed

version of the system is called the CommonLisp Framework (CLF) [CLF 88]), Refme [Smith

85] developed by Kestrel Institute and marketed by Reasoning Systems, Darwin [Minsky

88] being developed by Minsky and Rozenshtein at Rutgers University, Grapple [Huff

88] developed by Huff and Lesser at University of Massachusetts, and Arcadia [Taylor 88] being

developed by a consortium including the University of Massachusetts, University of Colorado,

University of California at Irvine, TRW and other institutions.

CLF is the direct intellectual ancestor of MARVEL, dating back to our original work in 1986 at

the CMU Software Engineering Institute. The motivation for initiating the Marvel project was to

develop a rule-based programming environment kernel similar to CLF that (1) operated in the

Unix rather than the Usp world, (2) provided controlled automation of existing stand-alone tools

and (3) supponed multiple users cooperating on a software project. We have achieved the first

two goals, although improvements are needed as discussed in this paper. eLF is limited by its

CommonLisp implementation. use of the APS specification language [Cohen 86] for rule~

forward chaininJ.lrChitecture and single-user emphasis. Funhermore, the FSD project is more

concerned with eucutable specification languages and rapid prototyping than with controlled

automation. Refine is primarily an automatic transformation system, for the purpose of program

synthesis, although it also provides a limited form of controlled automation in the style of CLF.

In contrast, we are not interested in trying to automate the creative aspects of software

development, since that is the proper realm of AI research, but instead offload menial chores

onto the software development environment

14

Darwin is a rule-based system closer to Prolog, while MARVEL is closer to OPS5. Darwin

restricts what programmers can do by treating rules as constraints, which is also a reasonable

extension of MARVEL as mentioned in the introduction, but does not automate activities. It is

also limited by its Prolog implementation, and cannot handle "black box" activities. Grapple's

rules are closest in form to MARVEL'S, but interpreted solely for planning and plan recognition,

with the goal of new insights into AI. Arcadia focuses on process programming as the basis for a

software development architecture, but as yet is considering neither rule-based process modeling

nor concurrency control for multiple users. Their focus is on object management systems and

user interfaces suitable for software development activities, as well as investigating the process

programming paradigm in general.

5. Discussion

We have discovered several difficulties with the MARVEL paradigm that seem likely to apply

at least partially to implementation of other process modeling notations. First, constructing and

debugging a process model is hard. We have run into many unanticipated interactions among

rules, particularly among those defined in different strategies that happen to be loaded into the

MARVEL kernel at the same time. We are working on debugging facilities that will uncover all

direct and transitive dependencies by constructing a "graphical dataflow graph of the currently

active rules. We would like to permit the user to enable and disable individual rules, both during

debugging to see how that affects the dataflow among rules and also during operation because

cenain behavior is not currently desired.. This would be dangerous, however, if done by a naive

user: if rules are turned off and on at arbitrary points, it is possible for MARVEL to get into what

is an inconsistent state with respect to the full set of rules in such a way that automatic recovery

is innpossible.

Similar difficulties seem likely to arise for any executable process modeling paradigm. The

following questiau need to be answered: How does an implementor go about writing, testing

and debugging a JMocess model? For non-trivial processes, the model is likely to be very large

and hence should be modu.larized. What is the appropriate style of interface among process

model modules and how is it enforced? Is the process model visible to the users anet if so, how

is it presented? If the users can modify the process model during execution, how does this affect

continuing the process? Should (can) consistency be enforced or should (can) inconsistencies be

detected and repaired?

IS

Second, constructing envelopes is even harder. We currently use the various Unix shell

languages as notations for defining envelopes. Writing the scripts requires knowledge of both

the tool interface and the MARVEL objectbase implementation. Although there is no way to

avoid the fonner, we hope to minimize the latter by developing a higher level envelope language

that includes facilities to query the the MARVEL objectbase to obtain objects in file system form.

Again. similar difficulties seem inevitable for other process modeling mechanisms intended to

work with external tools. The questions: Is it possible (or desirable) to support existing tools,

particularly tools where retrofitting is impractical or impossible? If only new tools are

supported, can a relatively simple standard interface be developed and published so these tools

can be developed separately by vendors? Would such an interface pre-empt too many design

decisions. or would it be feasible for vendors to upgrade their current products?

Third, supporting multiple users is hardest of all. This is a well-known general problem of

current software development environments [Rowe 89]. Developing a suitable extended

transaction model is the major focus of our current research effort.

In summary, MARVEL is implemented and in limited use, it works in some cases, it doesn't

work in others, it raises a lot of questions. and both VIle the MARVEL group and we the software

engineering community have a lot more work to do to deliver the promise of process modeling.

Acknowledgmen ts

Nasser Barghouti and Mike Sokolsky are primarily responsible for developing and testing

MARVEL. David Jamroga. Ari Shamac;h, Miriam Sporn, Mike Tannenblatt and Kok-Yong Tan

are also working on the cUITent version of MARVEL. Laura Johnson and Victor Kan developed

the DocPrep document production environment given in the appendix and Shyhtsun Felix Wu

contributed to the ClMarvel programming environment Peter Feiler and Steve Popovich

collaborated with ~ on the initial conception of MARVEL, Bob Schwanke contributed to an

early design. aDd WeDdy Dilliard, Russel Goldberg. Christine Hong. Wai Keung Hui. Qifan Ju,

Christine Lombardi. Alexander Mogieleff. Joe Milligan, Michael Sacks, Tam Tran. and Timothy

Yuan participated in the implementation of earlier versions of MARVFl...

16

References

. [Balzer 85] Robert Balzer.
A 15 Year Perspective on Automatic Programming.
IEEE Transactions on Software Engineering SE-l1(11):1257-1268,

November, 1985.

[Barghouti 88a] Naser S. Barghouti and Gail E. Kaiser.
Implementation of a Knowledge-Based Programming Environment
In 21st Annual Hawaii International Conference on System Sciences, pages

54-63. Kona fIT, January, 1988.

[Barghouti 88b] Naser S. Barghouti and Michael H. Sokolsky.
MARVEL User's Manual Version 2.01.
Technical Report CUCS-371-88, Columbia University Department of

Computer Science, November, 1988.

[Cardelli 84] Luca Cardelli.
A Semantics of Multiple Inheritance.
In G. Kahn, D.E. MacQueen and G. Plotkin (editor), Semantics of Data Types

International Symposium, pages 51-67. Springer-Verlag, New York, June,
1984.

[eLF 88] CLF Project.
CU'Manual
USC Information Sciences Institute, 1988;

[Cohen 86] Donald Cohen.
Automatic Compilation of Logical Specifications into Efficient Programs.
In 5th National Conference on Artijiciallnlelligence, pages 20-25. AAAI,

Philadelphia, PA, August, 1986.

[Feiler 87] Peter H. Feiler and Gail E. Kaiser.
Granularity issues in a knowledge-based programming environment
Information and Software Technology 29(10):531-539. December. 1987.

[Forgy 82] Charles L. Forgy.
Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match

Problem.
Artificiallntelligence 19:17-37. 1982.

[Garlan 84] David B. Garlan and Philip L. Miller.
GNOME: An Introductory Programming Environment Based on a Family of

Structure Editors.
.r. Peta' Henderson (editor). SIGSoft/SIGPIan Software Engineering

Symposium 011 Practical Software Deve/opmelll EllVironme1tlS, pages
65-72. Pittsburgh. April. 1984.

Special issue of SIGPIan Notices. 19(5). May 1984.

[Gupta 86] Anoop Gupta.
Parallelism ill Productioll Systems.
PhD thesi~ Carnegie Mellon University, March. 1986.
CMU-CS-86-122.

17

[Habennann 86] A.N. Habermann and D. Notkin.
Gandalf: Software Development Environments.
IEEE Transactions on Software Engineering SE-12(12): 1117-1127,

December, 1986.

[Huff 88] Karen E. Huff and Victor R. Lesser.
A Plan-based Intelligent Assistant that Supports the Software Development

Process.
In Peter Henderson (editor), ACM SIGSoftlSIGPlan Software Engineering

Symposiwn on Practical Software Development Environments. pages
97-106. ACM Press, Boston MA, November, 1988.

Special issue of SIGPlan Notices, 24(2), February 1989.

[Kaiser 87a] Gail E. Kaiser and Peter H. Feiler.
An Architecture for Intelligent Assistance in Software Development
In 9th International Conference on Software Engineering, pages 180-188.

Monterey CA, March, 1987.

[Kaiser 87b] Gail E. Kaiser and Peter H. Feiler.
Intelligent Assistance without Artificial Intelligence.
In 32nd IEEE Computer Society International Conference, pages 236-241.

IEEE Computer Society Press, San Francisco CA, February, 1987.

(Kaiser 88a] Gail E. Kaiser, Peter H. Feiler and Steven S. Popovich.
Intelligent Assistance for Software Development and Maintenance.
IEEE Software :40-49, May, 1988.

(Kaiser 88b] Gail E. Kaiser, Naser S. Barghouti, Peter H. Feiler and Roben W. Schwanke.
Database Support for Knowledge-Based Engineering Environments.
IEEE £Xpen 3(2):18-32, Summer, 1988.

[Kaiser 88c] Gail E. Kaiser and Naser S. Barghouti.
An Expen System for Software Design and Development
In Joim Statistical Meetings, pages 10-19. New Orleans LA, August. 1988.
Invited paper.

[Kaiser 89] Gail E. Kaiser.
A Marvelous Extended Transaction Processing Model.
In Gerhard Ritter (editor), 11th World Computer Conference IFIP Congress

, 89. Elsevier Science Publishers B.V., San Francisco CA, August, 1989.
In press.

[Maarek 87] Yoelle S. Maarek and Gail E. Kaiser.
Ulin. Conceptual Clustering for Classifying Reusable Ada Code.
III UsiIIg Ada: ACM SIGAdtJ 111lernationai Conference, pages 208-21S. ACM

Press, Boston MA, December, 1987.
Special issue of Ada lEITERS, December 1987.

18

[Minsky 88] Naftaly H. Minsky and David Rozenshtein.
A Software Development Environment for Law-Governed Systems.
In Peter Henderson (editor), ACM SIGSOFTISIGPLAN Software Engineering

Symposiwn on Practical Software Development Environments, pages
65-75. ACM Press, Boston MA, November, 1988.

Special issue of SIGPlan Notices, 24(2), February 1989.

[Miranker 87] Daniel P. Miranker.
TREA T: A Better Match Algorithm for AI Production Systems.
In AAAl 87 6th National Conference on Artificial Intelligence, pages 42-47.

AAAl, Seattle W A. July, 1987.

[Osterweil 87] Leon Osterweil.
Software Processes are Software Too.
In 9th International Conference on Software Engineering, pages 1-13.

Monterey CA, March, 1987.

[Perry 89] Dewayne E. Perry.
The Inscape Environment.
In 11th International Conference on Software Engineering, pages 2-9. IEEE

Computer Society Press, Pittsburgh PA, May, 1989.

[Rowe 89] Lawrence A. Rowe and Sharon Wensel (editors).
1989 ACM SIGMOD Workshop on Software CAD Databases.
, Napa CA, 1989.

[Smith 85] Douglas R. Smith, Gordon B. Kotik and Stephen J. Westfold.
Research on Knowledge-Based Software Environments at Kestrel Institute.
IEEE Transactions on Software Engineering SE-ll(11):1278-1295,

November, 1985.

[Sokolsky 89] Michael H. Sokolsky.
Data Migration in an Object-Oriented Software Development Environment.
Master's thesis. Columbia University Department of Computer Science. April.

1989.
CUCS-424-89.

[Stallman 81] Richard M. StaJJman.
Emacs The Extensible. Customizable. Self-Documenting Display Editor.
In SIGPlan SIGOA Symposium 011 Tat ManipuLatioll. pages 147-156. ACM.

June, 1981.
Special issue of SIGPlan Notices. 16(6), June 1981.

[Stolfo 84] Salvatore J. Stolfo.
Ave Parallel Algorithms for Production System Execution on the DADO

Machine.
In AAAI 84 National Conference 011 Artificial Intelligence. AAAl, August.

1984.

19

[Taylor 88] Richard N. Taylor, Richard W. Selby, Michael Young, Frank C. Belz. Lori
A. Clarke, Jack C. Wileden, Leon Osterweil and Alex L. Wolf.
Foundations for the Arcadia Environment Architecture.
In Peter Henderson (editor), ACM SIGSo!tISIGPLAN Software Engineering

Symposium on Practical Software Development Environments, pages
1-13. ACM Press, Boston MA. November, 1988.

Special issue of SIGPLAN Notices, 24(2), February 1989.

20

I. Example MARVEL Strategies

The following DocPrep strategies were developed by two students, Laura Johnson (MS

student) and Victor Kan (undergraduate), as their term project in the E6123y Programming

Environments and Software Tools course in Spring 1989. Neither student had any prior

knowledge of or experience with MARVEL, and were not familiar with its internal

implementation. They successfully used the Doc Prep environment to produce their final project

report. The twelve envelopes, bind, delete-sect-order, format, printdoc, printsec, review-format­

err, review-spell-err, runeditor, specify-header, specify-printer, specify-sect-order and spell­

check. are omitted.

STRATEGY: docprep_ob_defs:
Imports: doc_tools_rules;
E%ports: all;

ObjectBase:

DOC_PROJ :: superclass: ENTITY:
status : (Complete, Modify) ::I "Modify";
types set_of DOC_TYPES;

END

DOC_TYPES :: superclasa: ENTITY: •

END

printn~ : (Reaume, Thesis, Hmwk, Uaer-_Manual, Book) a "User_Manual";
timestamp: real - "0.0";
bind all stat : (YeaBindAll, NoBindAll) • "NoBindAll";
print: (YeaPrint,NoPrint) • "No_Print";
head created : (Hea~ile&z.iata, Hea~ileNon.Zziata) - "HeadJ'ileNonZzists";
printer_creat.c1 : (PRrile&z.iata, Pd'ileNon.Zziata) • "Prl'ileNonExists";
secta_ordered : (Ye.SeCOrder,NoSecOrder) - "NoSecOrder";
secta : set_of SECTIONS;
header : set_of BZADKR_rILK;
printer .et_of PRIHTER_~a;

SECTIONS auperclaaa: ICN'l'I'rY:
prin~ : (IDt~, Chapa, Body, Biblio, Index, Prob_Seca) • "Intro";
timea~ : re.~ • "0.0";
edit .. : (IecI.-c1,8acHoad) • "SecNoad";
apel.latiio_ : (8ec%aSpe~~, SeclfoSpell) - "SecHoSpell";
fO=-a~ : (lecIaJ'ozaat, SecIloro=-at) • "Seclfol'ocut";
.pe~~ ~ chk : (~r, Te.arr) • "lfoarrlt;
focut ui chk : (.~~r,Te.arr,.oBeacDrr) • ".oarr";
printei CNted : (prI'i~e&zi.t., Prl'i~"on.Zzi.t.) - "PrrildonZldat.";
pre ... ie. -: (SecTeaVie., Sec.MoVie.) • It SeclroVie." ;

END

END ObjectBaae

21

STRATEGY: doc_tools_rules;
Imports: non.;
Exports: all;

ObjectBas.:

DOC HEAD
doc head
END

superclass: TOOL:
string' = "specify-header";

ORO SECTS:: superclass: TOOL:
ord sects: string' = "specify-sect-order";
END

BIND:: superclass: TOOL:
bind : string' = "bind";
END

DOC DEV :: superclass: TOOL:
doc dev : string' = "specify-printer";
END

PRN DOC :: superclass: TOOL:
pm_doc : string' - "printdoc";
END

END Obj.ctBas.

Rules:

doc_head[?d:DOC_TYPES] :
suchthat

{ DOC_HEAD doc_h. ad ?d }
(?d.head_cr.ated - a.adrile&zists):
(?d.h.ad_cr.ated - H.adrileNo~sta);

ord_s.cts(?d:DOC_TYP&S] :
suchthat

bind[?d:DOC 'rDU]:
auchthat -

(BDm b.u.. N)
(?d.b~_~atat • Ye.BiadAll)
(?d.biDd_all_atat • NoBiadAll)

doc da~[?d:DOC 'rD&S]:
sUc:htha t -

(DOC_DB doc_de~ ?d }
(?d.printer created. Prrile&ziata);
(?d.printer:created • PrrileNo~.ta);

22

•

suchthat

{ PRN_DOC pm_doc ?d }

23

STRATEGY: sect_tools;
Imports: nona;
Exports: all;

ObjectSasa:

EDIT :: suparclass: TOOL:
edi.t : string = "runedi.tor";
END

FORMAT :: superclass: TOOL:
format: string = "format";
END

li'MT ERR :: superclass: TOOL:
£tnt err: string = "reviaw-format-arr";
END

SPELL CHIt :: superclass: TOOL:
spell_chk : string = "spell-check";
END

SPELL ERR :: suparclass: TOOL:
spall_arr : string .. "raview-spall-err";
END

SECT OZV :: superclass: TOOL:
sect dav : string. "specify-printer";
END

PRN_SECT :: superclaaa: TOOL:
pm sect : string - "printsact";
END

END ObjectS-se

24

:

STRATEGY: auto sect rules: - -Imports: docprep_ob_defs, sect tools:
Exports: all;

Rules:

edit(?s:SECTIONS]:
suchthat

(EDIT edit ?s }
(?s.edited SecIsEd) (?s.format = SecNoFormat);
(?s.edited = SecNoEd) (?s.format = SecIsFormat);

format [?s: SECTIONS] :
suchthat

{ FORMAT format ?s
(?s.format_err_chk = NoErr) (?s.format = SecIsFormat);
(?s.format_err_chk = YesErr);

fmt_err(?s:SECTIONS] :
!'tuchthat

a.format_err chk = YasErr)
FMT_ERR fmt_arr ?s }

(?s.format = SacNoFormat) (?s.editad - SacIsEd);

spell_chk[?s:SECTIONS] :
suchthat

and«?s.format_arr chk 2 NoErr) (1s.fo%mAt - SaclsFormat»
{ SPELL_CHX spall_chk 1. }
(?s.spall_arr_chk 2 NoErr) (?.spallchack - SaclsSpall);
(?s.spall_arr_chk = YasErr);

spell_err[?s:SECTIONS] :
~uchthat

?s.spall_err_chk - Ya.Zrr)
\ SPELL_ERR spall_err ? }
(?s.spall_err_chk - NoZrr)

sact_dev[?:SKC~IONS]:

suchthat

(? s . spall_eft_chk - No&rr)
(SECT_OW ~_dey ?)
(?s.print8%_created - Prrile&xista):
(?s.printer_created - PrrilaNon&zi.ta)i

pm_sect [?a: SEC'tIONS] :
suchthat

(?s.printar_created - Prrile&xists)
(PRN_S&c~ pm_sact 1.)

25

STRATEGY: man sect rules;
Imports: docp~ep_ob_defs, sect tools;
Exports: all;

Rul.es:

edit[?s:SECTIONS] :
l!Iuchthat

(EDIT edit ?s }
(?s.edited 2 SecIsEd) (?s.format • SecNoFormat);
(?s.edited z SecNoEd) (?s.format • SecIsFormat);

format [?s: SECTIONS] :
suchthat

{ FORMAT format ?s
(?s.format_err_chk = NoErr) (?s.format = SecIsFormat):
(?s.format_err_chk = YesErr):

fmt_err[?s:SECTIONS] :
suchthat

(?s.format_err chk = YesErr)
{ FMT ERR fmt err ? s }
(?s.format = SecNorormat) (?s.&dited. SecIsEd);

spell._chk[?s:SZCTIONS] :
suchthat

{ SPELL_CHK spel.l._chk ?s }
(?s.spel.l_err_chk • NoErr) (?s.spellcheck = SecIsSpell.);
(?s.spell_err_chk • YesErr):

spel.l_err[?a:SZCTIONS] :
suchthat

(?s.spell_err_chk • YeaZrr)
{ SPELL_ERR spell_err ?

sect_de.[?:SECTIONS]:
auchthat

{ SECT_Dn Met_de. ? }
(?a.print .. ~ted • PrWile&zi.t.):
(?s.print .. -~ted. PrWileNon&ziat.): -
prn_sect[?:~IONS]:
suchthat

26

