
Concurrent Algebras for
VLSI Design

T. S. 8alraj

CUCS-413-88

Concurrent Algebras for VLSI Design

1 Introduction

T. S. Balraj

5 August 1988
Revised 31 October 1988

As the size and complexity of VLSI chips incl'ea.ses, designers are beginning to rely more
and more on automated chip design systems to help layout, route, or even design circuits.
Silicon compilers convert the functional description of a system to a mask level design of a
chip that implements the system. In order to ease the task of describing the system, and
to help analyse and verify its working, the description languages are based on algebraic
systems. A typical circuit has a number of actions occurring at any given time. So we use
concurrent algebras as the basis for the description languages.

In this paper, we survey algebras that enable the description and analysis of concurrent
systems. We examine them particularily from the point of view of using them to implement
systems in VLSI. We therefore concentrate on the basics of each algebra, and omit features
that are not readily implementable, such as recursion.

We will look at four algebras: trace theory, path expressions, Milner's calculus of
communicating systems (CCS), and an algebra of finite events (CAFE). We choose the
first three since each has been used in some form of silicon compiler or other automated
hardware design s)"Item, and together they demonstrate all the features found in higher
level description systems for hardware. The fourth is an algebra that we are developing to
address the problems of describing systems of events of finite duration.

In chapter 2 we introduce an informal net notation and the concept of observers, which
we use in the next four chapters to to describe each algebra briefly. In chapter 7, we
compare the algebras in terms of their treatment of independence, the type of parallel
composition they use, and the inter-event dependencies they allow. We end by explaining
the relative advantages and disadvantages of the algebras in various situations.

The goal hoped that this comparative discussion of the algebras is to aid in the design
of process description languages to be used in silie'on compilers.

1

Research supponed in pan by DARPA contract #F-29601-87-C-0074

Concurrent Algebras for VLSI Design

1 Introduction

T. S. Balraj

5 August 1988
Revised 31 October 1988

As the size and complexity of VLSI chips incre('l~es, designers are beginning to rely more
and more on automated chip design systems to help layout, route, or even design circuits.
Silicon compilers convert the functional description of a system to a mask level design of a
chip that implements the system. In order to ease the task of describing the system, and
to help analyse and verify its working, the description languages are based on algebraic
systems. A typical circuit has a number of actions occurring at any given time. So we use
concurrent algebras as the basis for the description languages.

In this paper. we survey algebras that enable the description and analysis of concurrent
systems. vVe examine them particularily from the point of view of using them to implement
systems in VLSI. We therefore concentrate on the basics of each algebra, and omit features
that are not readily implementable, such as recursion.

We will look at four algebras: trace rheory. path expressions, Milner's calculus of
communicating systems (CCS), and an algebra of finite events (CAFE). We choose the
first three since each has been used in some form of silicon compiler or other automated
hardware design system, and together they demOll$trate all the features found in higher
level description aystems for hardware. The fourth is an algebra that we are developing to
address the problems of describing systems of e\'ents of finite duration.

In chapter 2 we introduce an informal net notation and the concept of observers, which
we use in the next four chapters to to describe each algebra briefly. In chapter 7, we
compare the algebras in terms of their treat·ment of independence, the type of parallel
composition they use, and the inter-e\'ent dependencies they allow. We end by explaining
the relative advantages and disadvantages of the algebras in various situations.

The goal hoped that this comparative discussion of the algebras is to aid in the design
of process description languages to be used in silicon compilers.

1

2 Basic Concepts

2.1 Terminology

The stated purpose of the algebras we shall discuss is to describe the behaviours of "con
current processes". In the literature. the term r.oncurrent is used loosely to express two
distinct concepts. The primary meaning of concurrence is causal independence. But the
term is also used to express simultaneity. which is the most interesting result of inde
pendence. However. forced simultaneity is actually a form of temporal dependence. So
we must keep the distinction between the two meanin.rz;s of concurrency in mind while we
examine the literature. In this paper. we will strictly limit the use of the term to mean
independence. \Ve shall also use the phrase occurs in parallel to imply concurrency rather
than simultaneity.

2.2 An Informal Net Notation

Throughout this paper. we represent processes by drawing them as nets. In this section,
we describe the notation we use. \Ve llse this diagrammatic representation of processes
rather than an expressional form to avoid confusion with the representation of processes
in the algebras we discuss.

We use a restricted form of Petri nets. .-\ Petri net is a 4-tuple (C, E, F, Mo) where
C and E are disjoint sets of conditions and events respectively, F is a binary relation
~ (C x E) u (E x C) called the flow relation. and JIo is a non-null subset of C called
the initial marking. \Ve draw conditions as circles. events as boxes. and the flow relation
as arrows from circles to boxes and vice versa. \Ve represent the marking of the net by
drawing tokens in the appropriate conditions. \Ve represent a process by drawing the
corresponding net with its initial marking.

If (c, e) E F for some condition c and event e. then c is called a pre-condition of e; if
(e,c) E Fe is a post-condition of e. We represent the sets of pre- and post-conditions of
an event e by pre(e) and post(e) respectively.

An event occurs. or fireJ. when all its pre-('()l1ditions are marked (have tokens), and all
its post-conditions are unmarked. After an P\'('llt fires. its pre-conditions are urunarked, but
its post-conditiona are marked. If two events ha\'e one or more pre-conditions in common,
they are said to be in conflict., and only one of them can fire at a time.

Two undesirable situations can arise with Petri nets. The first occurs when all the pre
conditions of an event are marked. but some its post-~onditions are also marked, This is
called a contact Jituation. In this situation. the definition of Petri nets prohibits the event
from occurring. If this prohibition were absent. so that in the net~, we allow
the event a to fire giving ()--@}--®, then in the situation •
if each event occurs once. either • or • re
sults, depending on which event occurs first. If the events occur simultaneously, it is
unclear what the resultant marking should be. "'e would like therefore to limit ourselves
to contact-free nets, in which contact situations cannot arise.

The other situation which we would like to <woid is called confu,Jion. In the net

It IS not obvious whether band c are in conflict: if c fires before a, there is no conflict,
while if a fires first. band c are in conflict. In a hardware implementation of the net, if a
and c are simultaneous, an anomalous firing of b may occur.

vVe therefore define a restricted form of llPtS. called simply matched nets, that is both
contact-free and confusion-free. This allows us to clearly represent and readily identify
branching and concurrency.

vVe formalise the concept of sequentiality by clefining a precedence relation. Intuitively,
a condition c precedes an event E, written c < e, if there exists a sequence of events in
which c holds before e fires, and if e never fires \vhile c holds. Similarily, e < c if there
exists a sequence of events in which c holds after e fires. and e never fires while c holds.

Definition 2.1 We define a binary relation ~ (c u E) x (E u C), precedes, aJ follow,,;

For condition" c and c', and event" e and e'.

1. e < c ¢:> (c E post(e}) V (3c',e'· e < c' /I. c' < e' /I. e' < c).

2. c < e ¢:> (c E pre(e)) V (3c', e'· c < e' 1\ e' < c' /I. c' < e).

J. c < c' ¢:> 3 e . c < e /I. e < c'.

4. e < e' ¢:> 3c· e < c /I. c < e'.

To describe processes, we use the restricted form of nets obtained by adding the fol
lowing restrictionl to Petri nets:

1. There exiata a condition Co E C called the initial condition such that the only initial
marking allo'W'ed is a single token in Co.

2. If a condition c is a post-condition of two en'nts e and e/, then there exists a condition
c' such that c' < e and c' < e', and for all e" I: c' such that e" < e or e" < e' , either
c' < e" or e" < e'.

3. If two conditions e and e' are pre-conditions of an event e, then there exists an event
e' such that e' < e and e' < e', and for all e" I: e' such that e" < c or e" < d, either
e' < e" or e" < e'.

3

Restriction 2 above ensures that the alternate sequences in a branching section cannot
interact until the end of the branch. Similarily, restriction 3 ensures that concurrent
sections can not-interact. These two taken together prohibit confusion.

Multiple arrows from or to a circle represent the start or end of a branching section in
which one of several alternate sequences could occur. Thus,

represents a process in which either a or b (but not both) might occur.
Multiple arrows leading from or to a box represent the start or end of a concurrent

section, in which several sequences occur in parallel. In

a and d are separated by concurrent occurrences of band c.
Branching preserves the number of tokens in t.he net. The start of a. concurrent section

multiplies tokens. generating one for each concurrent sequence, while the end of the con
current section restores the original number of tokens. Since by restriction 1 there is only
one token initially, we see that there is at most one token in each sequential portion of the
net, and the net is therefore contact-free.

We sometime! need the null event ~ to represent certain concurrent sequences. For
example, to repraent a. process in which a and b can occur concurrently, we use

We use dashed boxes to represent the null t"'ents to indicate that they are artifacts of
our representation. and ha\'e no significance in the actual process.

2.3 Observers

We will consider the behaviour of a process to be significant only as far as it interacts
with the extern8J. world. The least intrusive interaction of the environment with a process
is observation. An ob~erver proce3S records the events that occur during an execution
of a process, subject to its own limitations. Thus. the observation reflects not only the
behaviour of the observed process. but also the characteristics of the observer. The set
of observations of all possible execution sequences of the process constitute a complete
observation or image.

Observer processes may differ widely in t heir characteristics. and thus may jield im
ages that also vary widely. For example. 1111 OhS01"\'er process may be able to detect the
occurrence of any event. but be unable to percein> the time at which they occurred. If
such an observer encountered the process

the image produced would be simply the event set {a. b, c, d, e}. Observers may also be
limited in the events that they can detect. An observer that is unable to detect the event
d, but can detect all others, would see the above process as

One particularily interesting class of observer processes is that of sequential observer~.
A sequential observer can detect only one event at a time. If two or more events occur
simultaneously in an execution of the obsen'ed process, the sequential observer arbitrarily
assigns an ordering on them. Every execution of a process is seen as a sequential string
of event occurrences. which is called a trnce of the execution. We will usually use regular
expressions to represent sequential observation~ of a process.

The set of events that an observer can detect is called its event alphabet. Occurrences of
events not in tlUa set are ignored by the observer. "'p shall represent a sequential observer
with event alphabet A as [AJ. If P is a proc~s. we represent the complete observation of
P by [AJ as Pt A.

A sequential observer maps the set of all proC"{>Sses to the set of sequential processes on
its event alphabet; sequential processes are mapped onto themselves.

Property 2.2 For any proce~~ P. PT.-1 ~ A:.

Property 2.3 PTA = P ¢:> P ~ A:.

Sequential observers with larger event sets ,He in general more accurate observers than
those with smaller event sets.

5

Property 2.4 For any proce33 P and event oS et3 .4. and B, A ~ B => (P i A)j B = Pi B.

Property 2.5 For any proce3" P and event 8et" A. and B, (P i A) i B = P j(A n B).

Definition 2.6 The 3et inclwion operator on event alphabet.! define" a partial order on
sequential ob"erver3

[A.] C [B] ~ .4. C B.

If [A.] c [B], we say that the observation of a process by [A.] tJ more accurate than an
observation by [B].

An observer with a larger e ... ·ent alphabet not only detects more events and therefore gives
us a better approximation of the process, but it ('an also tell us what events do not occur
in the process.

If the observation of a process yields an empty trace set, then it is obvious that none
of the events in the event alphabet of the ohserver occur in the process. More generally,
if any event of the event alphabet of an obseryer is missing in the observation of a process
by that observer, then that event does not occur in the process.

Property 2.7 Pi A ~ B- ¢:? PHA. \ B) = 0.

In our discussion of concurrent algebras, we shall use observers of varying capabilities
to map the set of real processes onto the set of processes that the algebra can describe.

2.4 References

For the treatment of nets, we used [25]. The concept of observers was inspired by Milner's
experiments on acceptors in chapter 1 of [211.

3 Trace Theory

Trace theory began as a tool for analyzing t.he behaviour of Petri nets. The algebras of
strings and sets of strings had been very sllccessful in the analysis of sequential systems.
Trace theory attempted to describe concurrent. syst.ems in a manner which could allow the
use of classical string oriented methods and tpchniques of sequential system theory.

Today, trace theory forms a separate field in its own right, with links to the study of
temporal logic, &Del the theory of graph grammars. In this chapter, we present a brief
overview of basic trace theory, concentra.ting especia.lly on those aspects most relevant to
VLSI implementation. Our primary reference for this chapter is van de Snepscheut's thesis
[2i].

3.1 Observer

We shall use the class of sequential observers ciis('ussed in section 2.3. The sequential
observer sees each execution of a process as C\. string of events - a trace. The complete
observation is a set of such traces, called a trace .~et.

6

3.2 Basic Constructs

If an observation of a process P by a sequential observer [A.] gives a trace set R, then the
process is said to be approximated by the ordered pair < R, A >. which is called a trace
.3tru.cture. A trace structure approximating a process contains not only the trace set of
observations of the process. but also information Rbout which events do not occur in the
process. -YVe shall denote by tT the trace set of a tra.ce structure T. and by fJ.T the event
alphabet of T.

If PI is approximated by < {ab, ac}, {a, b. c. d} >. then PI i {a, b, c, d}
Pd{d} =0.

{ab,ac} and

Definition 3.1 If for a trace .3tructure P therp. exi,qt.3 an e·vent A .3uch that iP T {a} = 0,
then P i" said to be a-restrictive.

In the above example. PI T {a. b, c, d} is d-rest.rictive.
Note that the trace structure < {ab,ac}, {a.b,c} > also approximates PI, but is not

d-restrictive.
Often, we have several observations of the same process that we wish to put together to

form a better approximation of the process. These observations are usually observations
of sub-processes that are to be composed to yield a description of the entire process.

Definition 3.2 (Concatenation) If a proce"" P con"i"t.9 of two 3ub.proce""e" PI and P'J
"uch that PI occur" entirely before P'J'

and if TI and Tl are the ob",ervation.J of PI and P2 by "ome "equential ob"erver", then
P i" approxi~tu by the sequential composition of TI a.nd T'J written a" TI . T'J given by
< {r sir E tTl 1\. E tTl}, GTI U g,T'J >.

Definition 3.3 (Union) If a proce"" P con$i"t" of two alternate "ub-proce"",e" PI and P'J
"uch that in any given execution either PI or P~ i" performed,

-,

and ifTI and T2 are the ob"eMJation" of PI and P2 by "orne "equential ob"eMJer", then P i"
approximated by tAe union ofTI and T2 written a3 TI +Tl given by < tTl u tTl, f!Tl U f!Tl >.

T distributes-over + and " and . distributes over +.
Property 3.4 (TI • T1)T A = (TI T A.) . (T1 T A)

Property 3.5 CTI + T2)T A = (TI T .4.) + (T2 T A)

Property 3.6 TI . (T2 + T3) = TI . T'J + TI . T3

These two operators correspond to the cOEcatenation and union of trace sets.

3.3 Parallel Composition

Parallel composition of trace structures is defined in such a way that the descriptions of
the process given by the trace structures are merged.

Definition 3.7 (Weave) If Tl and T2 are the observations of some proceS3 P by two
different sequential observers, then P is better approximated by the weave of TI and Tl

written Tl w T2 given by < {r IrE A· ArT f!Tl E tTl t\ r T f!Tl E tTl}, f!TI U f!Tl >.

Note that TI is an approximation of TI w Tl .
Weaving is symmetric. idempotent. and associative.

Property 3.8 Tl w Tl = Tl w TI

Property 3.9 TI lQ. Tl = Tl

Property 3.10 (Tl w T1) ill. T3 = Tl .!Q (Tl !£. T3)

Event restriction is preserved by weaving.

Theorem 3.11 If a trace structure P is e-restrictive for some event e, then for any trace

"tructure Q, Pill Q is auo e·re"tridive.

Proof: tPT{e}=0
By property 2.7, tP <; (aP \ {e} t
From the definition of weaving, t(Pll!,Q)TaP <; (aP\ {e}t
By property !.7, 1(Pl&!.Q)T{e} = 0.

We define ~ adc:titional parallel composition operator.

Definition 3.12 (Blend) 1/ TI and Tl are the ()bservations of a proce.u by two different

sequential observers, then the blend of TI and Tl written Tl ~ Tl is given by

(Tl Y!. T1H «aTI U !!.T1) \ (aTI n f!T1»

The blend of two trace structures corresponds to composition of the sub-processes repre
sented by the trace structures, together with the elimination of all common events. These
events are internal events. and so are hidden from further external observation or interac
tion.

Blending is symmetric. but not idempotent or associative.

8

3.4 Example

P:

The following are all approximations of of P
Tl = < {a, cad}, {a, c, d} >
T2 =< {b,cb},{b,c} >
T3 = < {cd}, { c, d}
T4 =< {b, bd}, {b, d} >
Ts =< {ab,cab,cba},{a,b,c} >
T4WT2 =< {b,cbd},{b,c.d} >
Ts tv T4 w T2 =< {ab, cabd, cbad}, {a, b, c, d} >
T4 W Tl =< {ab, ba, bead, cbad, cabd} , {a, b. c. d} >
Ts W T4 1Q Tl =< {ab. cbad, cabd}. {a, b. c, d} >
Te = a . b + c . (a w b) . d, where we represent the singleton trace structure of an event e,
< {e}, {e} >, by the event.

3.5 Implementation

Implementation of proceses described by trace theory is relatively straightforward. If we
limit trace sets to regular sets, any scheme for implementing finite automata can be used.
Van de Snepscheut suggests an implementation scheme in his thesis, but this is complicated
by several additions to basic trace theory that we have not considered in this overview.

One problem of using a straightforward finite automata implementation is the exponen
tial blow-up in the nwnber of states due to enumeration of all possible execution sequences
of independent events. We a.re working on a scheme based on Anantharaman et al [1] that
will allow us to implement the weave operation directly without enumeration.

3.6 Limitations and Extensions

In trace theory, the process

is indistinguishable from the process

This is a serious flaw. since in PI, a and b are independent. while in P2 , they are mutually
exclusive - one of the most common forms of dependence.

This problem stems from the fact that sequential observation imposes mutual exclu
sion on the observed events. Thus information about true mutual exclusion is lost, and
independence and mutual exclusion become indistinguishable.

Several attempts at remedying this problem have been made. However, all lead to
much more complex algebras and lose the basic advantage of trace theory - simplicity.
Mazurkiewicz [18] uses a structure that contains dependency information in the form of
a dependency graph for the events in the structure. This scheme has several advantages,
the chief being the accurate representation of independence. Traces are defined only upto
equivalence under independence. Thus. if a and b are independent, cabd == cbad. The
corresponding trace is the equivalence class [cnbd\.

However, while the weaving operator remains more or less unchanged, it is not clear
how the union and concatenation (sequential composition) operations should be defined.
to preserve local independence information.

Black [3\ points out that the Trace Theory limited to finite traces lacks the expressive
power to specify the notion of fairness. He suggests extending Trace Theory to infinite
traces, utilising the theory developed. by Park [23\ and others.

3.7 References

The treatment of trace structures broadly follows C'hapter 1 of van de Snepscheut's thesis
[27]. Theorem 3.11 is previously unpublished.

4 Path Expressions

The use of path expressions in the description <md analysis of concurrent systems was first
suggested. by Campbell and Habennann [5.1O.0j. Since then. the growth of the field has
been sporadic. There was initial interest in using path expressions to describe and analyze
software systems [4,26]. but most such efforts were abandoned. when less limited algebras
became a· ... ailable. More recently, path expressions have been used. to describe systems for
VLSI implementation [1].

10

4.1 Observers

Path expression theory is closely related to trace theory. Again we use the concept of
sequential obserVers.

4.2 Basic Constructs

A path is a sequential observation of a process by an observer whose event alphabet does not
contain any mutually independent events. This restriction ensures that no independence
information is lost during observation. ,\Ve write a path as path R end. where R is a
regular expression representing the set of sequencf'S produced by the observation.

In the process P shown above. (a. b) IS the only pair of independent events. Some paths
describing Pare
PT {a, c, d} : path cad end
PT {b, d} : path bd end
PT {b, c} : path cb end
Note that an observation by [{a. b, c} I is not a path. since the event alphabet contains
independent events. The resultant trace set is {cab. cba} which incorrectly shows a and b
to be mutually exclusive.

There are no equivalents of the concatenation and union operations for path expressions.
The only composition of path expressions possible is parallel composition.

4.3 Parallel Composition

Path expression theory does not contain an explicit composition operator. This is because
the parallel composition of two path expressions in general is not a sequential process,
and cannot be described by a single path e)"-pression. Instead. we represent the composite
process simply by writing the path exprf"Ssions to~cther. The process P of the example in
the previous section can be described by the pilth expression system

path ('ad end
path cbd end

One way to understand the composition of path expressions is to consider each path
expression S which is added to a path expression system as adding a restriction on the
events in !!,S. In the example above, we start initially with a totally unconstrained set of
events {a, b, c, d} . The first path path cad end taken by itself restricts the events {a, c, d}
to occur in a specific order, but leaves b unconstrained.

11

The second path taken by itself restricts ollly {b. c. el}. leaving a unconstrained.

~ /
~.:.:

vVhen the two paths are composed, the restrictions are added. As a result, a and b
are each constrained with respect to c and d. but are unconstrained with respect to each
other. This gives,

~
&--i.::.;

or simplifying,

The addition of a third path path ab end 1.0 the path expression system would further
constrain it to sive

4.4 Example

In this section, we present an extended example illustrating how a system description in
terms of path expressions is produced.

The system we consider consists of two processors. a memory unit, and an I/O device
connected by a bus as shown in Fig. 1.

12

Figure 1:

A processor can read from or write to the> memory unit. and input or output data on
the I/O device. \Ve represent by R i , ~-Vi, h OJ. i E {I. 2} the read. write,input, and output
operations performed by processor Pi.

The memory unit can only handle one act.ion at a time. The I/O device can handle one
output action and any number of input actions simultaneously. PI is connected to the bus
by a single two-way data port. and can therefore perform only one action at a time. P l is
connected to the bus via :2 one-way ports. one in each direction. For simplicity, we assume
that the bus has no restrictions on the number of actions that can occur simultaneously

on it.
Each processor runs a pair of concurrent processes. One inputs data from the I/O

device and stores it in memory, while the other takes data from the memory unit and
outputs it on the I/O device.

To describe this system, we start from a set of totally unconstrained events, and add
constraints in the fonn of paths for each processor or device.

The event set is {R I • W1 ,I1 .01,R'2. vV2 ,I2.02 }.

Constraints on the memory unit:

Constraints on the I/O unit:

path (01 + O2 + 11)- end
path (0 1 + O2 + I 2r end

Note that II and 12 remain independent.
Constraints OIl on PI :

Constraints on P2 :

path (RI + tVI + II + 0 1 rend
path (II B'.)- end
path (RIO I)- end

path (R 2 + 12)- end
path (H!2 + O2 rend

path (I2 fl"2r end
path (R 20 2 rend

13

This completes the description of the system.
In general, each device has several paths that enforce mutual exclusion, while each

processor has paths that enforce mutual exclusion or indicate sequences of operations.

4.5 Implementation

Path expressions are relatively easy to implement in hardware. A system of path expres
sions consists essentially of a set of regular expressions operating in parallel. A general
implementation scheme would therefore be to us(' a standard implementation scheme for
regular expressions, and add additional circuitry to force parallel operation.

Several methods of implementing regular pxpressions have been described in the liter
ature [7,27,8]. Li and Lauer [17] use PLA's to implement the state machine corresponding
to each path, and add an additional PLA to handle synchronization. Foster's technique of
using cells organized in a tree-like structure is particularily compact and amenable to our
purposes. The Miss Manners synchronizer generator [2]. based on the scheme described.
in [IJ, compiles a set of path expressions into a set of trees, together with an arbiter and
additional circuitry to enforce parallelism.

4.6 Limitations

Since parallel composition is the only operation allowed on path expressions, the theory
has difficulty describing correctly processes that are the union or concatenation of two
s u b-processes.

P:

For example, consider the process P shown above. The path expression system

path a + cad end
path b + cbd end

COI"rectiy describes the pOI"tion of P in which a and b aI"e independent, but at the cost of
losing the sequence information in the other portion. Adding the path

path ab end

provides this infonnation. but now a and b are no longer independent in the other portion.
No path expression system can correctly describe P. since the sequence ab can only

be ensured by having a path containing both a and b, which prevents a and b from being

14

independent. However, we can represent a sequential approximation of P by using the
trace theory method of enumeration.

path ab + cabd + cbad end

4.7 References

Our primary references for this chapter are [2.1].

5 A Calculus of Communicating Systems

Since Milner described CCS in [21], the calculus has been extensively studied, and a vast
literature has been built up. In this section. \ve overview very briefly a small portion of
basic CCS. In its standard fonn. CCS is better suited to the analysis of software systems
than to the implementation of systems in hardware. However, several concepts introduced
by CCS have relevance to our study, and we shall concentrate on these features.

5.1 Observer

We extend the purely passive observers of the last two chapters to an interactive ob"eT1Jer.
This observer does not merely watch and record event occurrences, but instead conducts
experiments on the process to detennine its behaviour. It does so by repeatedly asking the
process to perlorm specific events. and then noting either the occurrence or non-occurrence
of the event. \Ve shall see a little later that this allows us to distinguish between processes
that are indistinguishable to a passive observer.

We shall specifically use the interactive "equential ob"eT1Jer, which is the interactive
version of the 3equential ob.H!T1Jer.

An interactive sequential observer with events alphabet A experiments on a process P
as follows. The observer requests P to perlonn some event a E A. If P can perlorm the
event in its current state, it does so and the ob~erver notes the outcome. If P is unable to
perform a in its current state, it does nothing and informs the observer accordingly. The
observer then tries other events in A.. \Ve shall assume tha.t P ca.n be reset to its initial
state and rerun .. often as necessary to determine its behaviour completely.

Consider the processes PI and P2 :

15

A passive sequential observer with event alphahet {a. c, d} would see both processes
as (acdta. An interactive sequential observer with the same event alphabet observing PI
will always be able to successfully request some event. \Vhen it observes P2 , however, it
may sometimes find that no request can be satisfied - when the token is in 81. So, the
interactive observer is able to distinguish between the two proceses which differ only in
their internal structure.

In practice, this difference may be critical in the implementation of the process if it is
required to communicate with other processes. If the process is implemented as in P'l, it
may deadlock under certain conditions.

5.2 Basic Constructs

It must be kept in mind throughout this chapter that the observations of processes by
interactive sequential observers are not sets of strings. since the distributive law a(b +
c) = ab + ac does not hold. We shall, however. use a notation similar to that of regular
expressions to describe observations.

Definition 5.1 (Concatenation) If a prOCe3J P conJiJt.! of two Jub-proceJJe3 PI and P'l
Juch that PI occurs entirely before P'l,

0--PI-O--P'l-+()

and ifTI and T'l are the ob3ervatioru of PI and P1 by 30me interactive 3equential ob3erver3,
then P iJ approximated by the concatenation of the JetJ Tl and T'l written as TIT'l given

by {r 8 IrE TI /\ S E T'l}'

Definition 5.~ (Union) If a prOCe3J P C0T1.~j.~t.1 of two alternate 3ub-proce3Jes PI and P'l
.w.ch that in an, giftn execution either PI or P l i3 performed,

PI

and ifTI and Tl are the ob3ervatioru of PI and P1 by Jome interactive 3equential ob3erver3,

then P i.! approximated by the union of the 3et.! TI and Tl written a3 Tl + T'l'

+ is associative and commutative.

16

5.3 Parallel Composition

Consider two processes that interact in a manner such that each behaves like an interactive
observer of the other. Each process can request the other to perform some action, which
the other does if possible. We v,:auld like to t hen consider the composition of the two
processes as a single process. and investigate its behaviour.

\Ve assume a set of events a. b. c, d, ... and a disjoint set of co-events IT, b, ... such
that the (-) operator is bijective. For any e\'ent a, Zi corresponds to a request for a. We
correspondingly expand the capabilities of interacti e observers to be able to detect and
satisfy event requests.

Let PI and P2 be two processes such that PI can perform a and P2 can perform a. PI
can perform a in response to a request either from P2 , or from the observer. Similarily, a
request a from Pz can be satisfied either by PI or by the observer. If the processes perform
the events in response to each other, the observer is unable to observe either event or
response (since it was not involved).

Let PI consist of an occurrence of a followed by a sub-process P{, and P1 an occurrence
of a followed by P; : Pi = aPt and P2 = ZiP;.

The composition PI 1 P2 can have three possibilities:

1. PI performs a in response to a request. from the observer

2. P2 has the request a satisfied by the observer

3. PI and P2 interact directly. We represent this unobservable communication by T.

To complete the definition of I, we add. for b :/:- a,

Although T ia DOi directly observable, it is in fact detectable by the effects of the change

in state of the procesa.
If PI and P1 are 88 shown,

17

If T occurs. the observer will be denied all further requests for events.
Parallel composition is symmetric and associative. but not idempotent.

If in this example. a and a: were events that were only used to communicate between PI
and Pl , we would like to prevent other processes from interacting with them. We introduce
the operation of restriction (\).

If P is a process and B is an event set. P \ B restricts the events in B (and their
co-events) making them unobservable. Since events can only occur through interaction
with requests, restriction in effect prevents unpaired events or requests from occurring.

In the example above. if a and a: are restricted. they cannot occur, and each of the three
sequences that contain either of these is prohibited since it contains impossible events.
Thus, (PI I P2) \ {a} = T.

The combination of parallel composition and restriction is closely related. to the blend
ing operation of trace theory, but separating the two allows parallel composition to be
associative.

5.4 Example

5:

18

5 = abS, PI = ac1dIbPI . and P2 = aC2d2bP2'
,\Ve compose all three processes.

Q (5 I PI I P2) \ {a. b}

Q:

T«cldlbP1 I P21 bS) \ {a.b})

+T((PI I C2d2bP2 I bS) \ {a, b})
= Tc1dIT((bP11 P2 1 bS)\ {a.b})

+TC2d2T((PI I TjP2 I bS) \ {a. b})

- Tc1dIT((P1 IP2 IS)\{a,b})

+TC2d2T((PI I P2 I 5) \ {a, b})

Tc1dlTQ + TC2d2TQ

5 behaves as a binary semaphore, with a and b being the request and release operations.
An n-bounded semaphore can be obtained simply by composing n copies of S. This
example is from Milner [21J.

5.5 Implementation

Implementa.tion echemes for systems described in CCS present severa.l problems. One chief
problem is that since the distribution law does not hold (a(b + c) #- ab + ac) , expressions of
CCS cannot be reprded as sets of strings. Thus, standard finite automata implementation
techniques cannot be used.

5.6 Limitations and Extensions

The choice operator + in CCS has lUlc1ear semantics. It exhibits a mixture of two forms of
non-deterministic behaviour - often referred to as internal and external non-determini,.,m
[11].

External non-determinism is exhibited in the process aPl + bP2• If the observer (or
another interacting process) requests a, the process will subsequently behave as described

10

by PI. while a request of b causes the process to continue as P2 • (Note that since we use
sequential observers, the process cannot receive requests for both a and b simultaneously.)

Internal non.-determinism is exhibited in aPl + aP2 and aPt + T P2• In the first, after a
request for a, the process will continue as either PI or P2 • In the second, a request for a
may sometimes be granted and sometimes denied.

De Nicola and Hennessy point out that the need for T to represent internal operations
which should be invisible is counterintuitive. They suggest replacement of + and T with
two combinators, EB to represent internal non-determinism. and 0 to represent external
non-determinism. \Vhile the resulting algebra has simpler operational semantics, certain
concepts of CCS, notably observational equivalence. cannot be expressed adequately in it.

Costa and Stirling (6J describe a "ariation of CCS that allows only fair execution se
quences. While the algebra is of interest. it is considerably bulkier and more awkward that
1Elner's CCS.

5.7 References

Our primary references are Milner's CCS papers [22,19,21,20J.

6 A Concurrent Algebra for Finite Events

In our discussion of concurrent processes, we have hitherto made the implicit assumption
that events occur instantaneously - they have an infinitesimal duration. This assumption
is a good approximation if we are dealing with purely sequential systems (as in Trace
Theory and CCS), or if the duration of the events is negligible compared to the inter
event interval. In practice. real events have distinct start and end points and may have
durations that are large compared to the inter-event time. This is especially true when we
are dealing with micro-events such as the raising or lowering of individual lines. To be able
to describe systems for VLSI implementation. we should be able to deal adequately with
such micro-events, and hence it is important to be able to describe and analyze systems
of events of finite duration (or finite eventJ l.

In this chapter, we describe briefly an algebra. called CAFE, to deal with finite events.
We derive a minimal set of relations and present a language that uses them to describe
processes.

6.1 Observer

Algebras of instantaneous events (or point evp.nt.,) have only two possible relations: prece
dence, and simultaneity. In contrast to this, occurrences of finite events can be related. to
each other in several ways. We will first list all possible combinations of two finite events,
and then derive a minimal set of relations that can describe all the cases. We shall use an
observer that detects relationships between the start and end times of events, which we
call a finite ob"ertJer. For an event a we represent its start and end time by a, and a e • We

20

'_'» b a e = 3

5) a. < b3 < be < a,

~
~

~
_--JI b L
~
~
~ al '--__
~

~
~

~
~b

~ a

~b

Figure 2:

shall use the relations <. >. and = to indicate relationships between these points. Thus,
ae < b3 represents the fact that a ends before b starts.

When two finite events occur, one of the conditions shown in Fig.2 holds. We have
omitted another set of six cases which are obtAined by interchanging a and b. We represent
all 13 possible cases in Fig. 3. A node numbered by I' where x > 7 represents the condition
obtained by interchanging a and b in condit-ion 14 - .1' of Fig. 2. Nodes are joined by a
line if they differ by one step in any direction.

A finite oLedner that could detect each of t hl?Se 13 cases individually would be much
too cumbersome to use. We would like to derive a smaller set of relations that can produce
any set of cases through intersection and union.

A relation would be represented on this chart as a region enclosing one or more nodes.
In the interests of implementability, we will restrict ourselves to continuous and convex
relations. A continuous relation is one which corresponds to a single connected region.
A convex relation corresponds to a convex region. Thus, the relation containing nodes
{2, 3, 4, 8} is continuous, but not convex. To make it convex, we could add node 7. We
want to find a set of relations that allow us to refer to any node by superimposing one or
more relations. In terms of regions on the chart. we want to find a set of partitions of the

21

Figure 3:

graph that can isolate every node.

Theorem 6.1 Six continuous and convex relation.$ are necessary and sufficient to extrad

every node.

Proof Outline: The relation {I} mU.$t be included. smee this is the only one that
separates nodes 1 and 2.

Similarily, either {l. 2} or {2} must be included. to separate nodes 2 and 9.

We need a relation to separate the pairs (3.4),{7,8),{9, 10) and another to separate
(3,8).(4,7),(5,6).

Finally, we need relations to extract (6. T, 8) and (4,7,10).

Figs 4 and 5 give the set of relations that we shall use. This particular set was chosen
because each relation has a straightforward semantics.

<p is read ,trictly precede." ~p is precedes, <<1. is startJ strictly within, <<1e is ends
strictly within, and <1. and <1. are startJ within and end" within.

When describing systems for \ LSI implpIllentation. we are usually concerned with
producing clel4y.iruen.Jitive descriptions. In this case. it is no longer meaningful to talk
about simultaneity. So we use a delay. insensitive obseMJer which can detect only the three
strict relations <,,<<1 •. and <<le.

6.2 Basic Constructs

As with path expressions, we use the idea of starting with an initially unrestricted set of
events, and adding restrictions in the form of relations.

22

0 b <1' a b ~1' a b <<1. a b <1. a b <<1e a b <1e a 0

• a <p b a ~p b a <<1. b a <I .. b a <<1e b a <1e b •
1 a. < ae < b .. < be • •
2 a .. < ae = b" < be • 0 •
3 a. < b .. < ae < be 0 0 • •
4 a .. < bs < ae = be 0 0 .0

5 a .. < b .. < be < a e 0 0 0 0

6 a .. = bs < be < a e .0 0 0

7 a .. = b .. < a e = be .0 .0

8 a" = b .. < ae < be .0 • •
9 b" < a" < a e < be • • • •

10 b .. < a .. < a e = be • • .0

11 b. < a" < be < a e • • 0 0

12 b. < a. = be < ae 0 • 0

13 b .. < be < a .. < a e 0 0

Figure -1:

i<:r:·························:::::::::::::::::::::::::::::::::::l····._··. . . .
V.-A· ·······!········· .. ····_·············:: :
r""-I.: :·············7·~ : :
1 I I • • • •

• • • • • I
• • • • • I ·

3)-...... !--<l ']).-.-1_(1' . iii . . .
: : 1 . . .

I • • • _ ... :...... : :

1 ! ! . . .
i .. .~.4 ~ <:.,
: .. _ ... _ -····i······ : ······i·+·: : :c::-.~~

: : : : : : Pi!
: : : : : , :: · . · . · . · . K<lf! I: . i i ~.... , .
~ e ~··············t················: ..

Figure 5:

23

A description of the process shown above is built up in steps as follows:

1. {a. b,c,d}

2. (a <pb, a <pc: {a,b.c,d})

3. (b <'I'd, c <'I'd: (a <pb, a <pc: {a, b, c, d}))
If c occurred entirely within b, we add

4. (c <<I~ b,c <<Ie b: (b <pd,c <pd: (a <pb,a <pc: {a,b,c,d}»)

+ has its usual significance of union.
We also use a reI b as a short hand for (a reI b : {a. b}).

6.3 Parallel Composition

As with path expressions, there is no explicit parallel composition operator. Events that are
not mutually restricted are concurrent. However, unlike path expressions, the composition
of two sub-processes can be expressed by a single expression.

6.4 Example

We consider the case of a processor P doing a memory write using a 4-phase, 2-line bus
protocol. The following sequence occurs :

1. P raises the request line to gain control of the bus.

2. The bus controller raises the acknowledge. granting the bus.

3. P puts the data and address on the bus

4. P raises the write line to write the data into memory.

5. P lowers write.

6. P releases the data and address buses.

7. Plowers req ues t

8. The bus controller lowers acknowledge.

24

The events we use are linked to the states of the lines. rather than state transitions.
Thus, r,a, and to represent the request. acknowledge, and write lines in the raised state,
while d represents the activation of the data and address buses.

vVe list the relations that hold:

1. a <<l$ r

2. d <<1, a

3. w <<1, d

4. w <<1" d

5. d <<1" a

6. r <<lea

So, we can describe the process by :

(a <<l. r, r <<le a: (d <<1. a, d <<1e a: (w <<l, a, W <<1e a: {r,a, w, d}))

6.5 Implementation

vVe are working on an implementation scheme for a subset of CAFE based on that of [1] for
the path expression language. The basic scheme is to implement the sequential portions
using the tree structure, and then to add on extra cells to enforce the other relations.

6.6 Limitations

\Ve have not fully developed the algebra yet. At present, it is rather cumbersome.

6.7 References

The material in this chapter is prevlously lUlpublished. But we were influenced in the
developement of the algebra by the work on the use of partial orders in describing concur
rency of Janicki (12,13], Knuth [14], and Pratt [24], and by Lamport's papers on mutual
exclusion [15,16).

7 Discussion

In this section, we compare the algebras that we have described in terms of their treatment
of independence. parallel composition, and inter-event dependency. It is to be noted that
path expressions and trace theory are closely related, and differ only in their treatment of
independence. \Ve give a theorem describing this relationship in section 7.1.

Figure 6:

7.1 Independence

\Ve say two events are independent when each can occur without regard for the occurrence
or non-occurrence of the other. In some systems, a pair of events can be independent
under some conditions and interdependent under others. Two events are said to be globally
independent when they are independent tUlder all conditions - when each occurrence of
one is independent of every occurrence of the other. When certain occurrences of the
events are independent but not others, the events are said to be locally independent.

Consider the system shown in Fig. 6. Two processors, PI and P'2 are connected via
two buses Bl and B2 to a pair of memory units .HI and ~Yf'2' We will denote by R;j a read
operation on ~[j by Pi, i and j E {l, 2}. The processors, memory units, and buses can each
handle only one operation at a time.

Then, (R ll • R22) and (R21 , R 12) are pairs of globally independent events. These are
the only independent pairs of events. since all other pairs are made mutually exclusive by
restrictions on the processors or memory units.

Now. consider the same system. but assume hus Bl is not always available, either due
to hardware faults, or to pre-emption by some other part of the system. When both buses
are available, Ru and R22 are independent. but when only one bus is available, they are
mutuallyexclua!ve. Thus, Rll and R21 are now locally independent.

The implemen~tion and analysis of systems containing local independence are in gen
eral hard problems. Most concurrent algebras avoid this problem in one way or the other.

Since path expressions allow parallel composition only on the top level, only global inde
pendence can occur. This restriction leads to t he inability of path expression to adequately
describe processes having local independence as described in section 4.6.

Both trace theory and CCS can describe systems containing local independence. How
ever, they deal with it by using the interleal1ing ..1emantiC3. In this model, two events that
occur independently are considered to occur one at a time in an arbitrary order. Thus, in
this semantics, the process

26

..

~
~.:.~

. ~
~.:.r-------v

in which a and b are independent is equivalent to the process

in which a and b occur in sequence. If two processes occur independently, their events
occur in sequence in some arbitrary interleaving.

This model of independence allows the preservation of local independence information,
but at the cost of making independence indistinguishable from mutual exclusion (refer
section 3.6).

CAFE also allows the description of systems containing local independence but does
not use the interleaving semantics. Instead. the independence information is handled in a
way analogous to the way path expressions handle global independence. This leads to an
increase in the complexity of analysis, which requires the use of labelled partial ordered
sets [18,24].

The primary difference between trace theory aud path expressions is the use of the
interleaving semantics by trace theory to model independence. \Ve end this section with a
theorem that describes the relationship between a path expression and the trace theoretic
descriptions of a system.

If 5 is a path. let [l5 denote the events in the pa.th. and t5 the set of traces described
by the path. Then, each path expression 5 corresponds to a trace structure 7(5) =<
t5. Q.5 >. If W is a system of path expressions. let W T A denote the trace structure
produced by the observation by the sequential observer [A] of the system described by W.
In general, the relultant trace structure does not correspond to a path in W.

Theorem 7.1 1/4 procell i.J repreJented by a "y"tem 0/ path ezpreJJionJ W, and i/ A iJ
the Jet of all event" in W, then the obJervation by [A] 0/ the JyJtem deJcribed by W IJ

equal to the weave of the individual ob"ervatioTW of every path in W.

Or, if tV = {PI.])1 ,Pn} and A = flPt U !!Pl U ... U f!Pn,
then tVT A = 7(pd y!. 7(/>2) 1Q ... lQ 7(Pn)

Proof Outline: If a pair of event" (a. b) are mutually re"tricted by W, then they mt.L3t

occur together in ,~ome path P in Ht. They there/ore occur in "equence in "orne trace of

tT(p). Thi.s .sequence i.s preserved by weaving, and therefore appears in the resultant of the

RHS.
If a and b /tre mutually unrestricted by l·V. then they never occur in the .same path.

Hence, they occur together in a trace on the RHS only through weaving, and therefore

RHSf{a,b} = ab+ ba =LHSf{a,b}.

7.2 Parallel Composition

The major difference between CCS and the other three algebras is their treatment of
parallel composition. In CCS. the composition of two sub-processes represents the process
formed by connecting the two subprocesses and allowing them to interact. In other words.
in CCS parallel composition is very closely related the physical construction of the system
from independent modules. In each of the other algebras, parallel composition corresponds
to the interaction of two descriptions of the .same global process. Trace theory, path
expressions, and CAFE describe each sub-process in terms of global events. Hence parallel
composition corresponds to the adding of restrictions on the occurrences of the global
events.

This distinction is easily seen by comparing the effects of composing and event a with
itself in the two systems. In CCS, a I a refers to the composition of two sub-proceses each
of which performs a once. So the resultant process is aa. In the other three algebras,
composition is idempotent since no extra restrictions are generated. For example, in trace
theory, a 1Q. a = a. \Ve use the term co-incidence to refer to the latter form of parallel
composition, events in the composed descriptions co-incide in the resultant.

Parallel composition in CCS. synchronlzation. is a one-to-one operation. One event
request merges with one event to produce r. As a result. CCS allows us to control the
number of times events can occur. as in the binary semaphore example of section 5.4. This
is not possible with co-incidence. Co-incidence can however be simulated in CCS, but
at the cost of adding a large number of dummy events. Some path expression languages
provide some numerical control by using additional constructs such as flags in [2] and states
in (7].

7.3 Dependency

The chief factor that distinguishes CAFE from the other three algebras is its ability to
describe dependeDciee between events of finite duration. In CCS, path expressions, and
trace theory, the only inter-event dependency possible is precedence. For CCS and trace
theory, no other relationship is possible between e.vents due to the use of the interleaving
semantics. CAFE allows the description of all possible inter-event relationships assuming
that each event has a distinct beginning and end.

7.4 Comparison

In fig 7 we present a comparison of the four algebras we have discussed in terms of the
main features that distinguish them.

28

•

Type of Interleaving Type of Inter-event
independence semantics for parallel dependencies

. handled independence? composition
Trace Theory local yes co-incidence precedence
Path Expressions global no co-incidence precedence
CCS local yes synchronization precedence
CAFE local no co-incidence 6 relations

Figure 7:

If the events that we are dealing with are of short duration, or do not overlap in
time (i.e. no two events are active at any moment), then the interleaving semantics is an
adequate approximation of independence. In this case, using either CCS or trace theory
has the adva.ntage that analysis of the system is simplified. If events overlap, then the
interleaving semantics cannot be used. Path expressions are simple to implement but are
useful only if no complex relations exist between events. CAFE allows us to describe in
detail relationships between overlapping events. It is our belief that this ability will make
it useful in the description and analysis of systems for VLSI implementation.

References

[1J T. S. Anantharaman. E. !vL Clarke. M. J. Foster. and B. Mishra. Compiling path
expressions into VLSI circuits. DiJtnbuted Computing, 1(3), 1986.

[2J T. S. Balraj and M. J. Foster. Miss !\,Ianners: a specialized silicon compiler for
synchronizers. In ProceedingJ of the Fou.rth MIT Conference on Advanced ReJearch
in VLSI, MIT, April 1986.

[3] D. L. Black. On the ExiJtence of Delay-InJenJitive Fair A rbiterJ: Trace Theory
and it.! LimitationJ. Technical Report CMU -CS-85-173, Carnegie-Mellon University,
October 1985.

[4] B. Bruegge and P. Hibbard. Generalized path expressions: a high-level debugging
mechanism. The Journal of SYJtemJ and Software. 3:265-276, 1983.

[5] R. H. Campbell and A. N. Habennann. The specification of process synchronization
by path expressions. In G. Goos and J. Hartmanis. editors, LNCS 16 : International
SympoJium on Operating SYJtemJ, VIII. pages 89-102, Springer Verlag, 1974.

[6] G. Costa and C. Stirling. A fair calculus of communicating systems. In M. Karpinski,
editor, LNCS 158 .' FoundationJ of Computation Theory, XI, pages 94-105, Springer
Verlag, 1983.

[7] R. W. Floyd and J. D. Ullman. The compilation of regular expressions into integrated
circuits. JACM, 29(3):603~22, July 1982.

29

[8] M. J. Foster. Specialized Silicon Compilers for Language Recognition. PhD thesis,
Carnegie-Mellon University, July 1984.

[9] A. N. Habermann. Implementation of Regular Path Expressions. Technical Re
port ANH7902, Carnegie-Mellon University, 1975.

[10] A. N. Habermann. Path Expressions. Technical Report ANH7901, Carnegie-Mellon
University, 1975.

[l1J C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[12] R. Janicki. A characterization of concurrency-like relations. In G. Kahn, editor, LNCS
70,' Semantics of Concurrent Computation, VI. pages 109-122, Springer-Verlag, 1979.

[13] R. Janicki. A method for developing concunent systems. In C. Girault and M. Paul,
editors, LNCS 167 " International Symposium on Programming, VI, pages 155-166,
Springer-Verlag, 1984.

[14] E. Knuth. Cycles of partial orders. In J. Winkowski. editor, LNCS 64 : Mathematical
Foundations Of Computer Science, X, pages 315-325, Springer-Verlag, 1978.

[15] L. Lamport. The mutual exclusion problem: part i-a theory of interprocess commu
nication. Journal of the Association for Computing Machinery, 33(2):313-326, April
1986.

[16] L. Lamport. The mutual exclusion problem: part ii - statement and solutions.
Journal of the AJsociation for Computing Machinery, 33(2):327-348, April 1986.

[17] \V. Li and P. E. Lauer. A VLSI Implementation for COSY. Technical Re-
port AS!vl/121. Computing Laboratory. The University of Newcastle Upon Tyne,
January 1984.

[18] A. ~1azurkiewicz. Trace theory. In W. Brauer. W. Reisig, and G. Rozenberg, editors,
LNCS 255: Advances in Petri NeLs, Part II. X. pages 279-324, Springer-Verlag, 1986.

[19J R. Milnet' •. An algebraic theory for synchroniza.tion. In K. Weihrauch, editor, LNCS
67: Theof'dial Computer Science, VII. pages 27-35, Springer-Verlag, 1979.

[20J R. Milner. Lectures on a. calculus of communicating systems. In S. D. Brookes,
A. W. Roscoe. and G. Winskel. editors. LNCS 197: Seminar on Concurrency, X,
pages 268-280. Springer-Verlag. 1985.

[21] R. Milner. LNCS 92 : A CalculuJ of Communicating SystemJ. Springer-Verlag, 1980.

[22] R. Milner. Synthesis of communicating behaviours. In J. Winkowski, editor, LNCS 64
: Mathematical Foundations of Computer Science, X, pages 71-83, Springer-Verlag,
1978.

30
•

•

..

•

[23J D. Park. Concurrency and automata on infinite sequences. In P. Deussen. editor,
LNCS 10~: Theoretical Computer Science. VII. pages 167-183, Springer-Verlag, 1981.

[24] V. Pratt. The pomset model of parallel processes : unifying the temporal and the
spatial. In S. D. Brookes, A. "V. Roscoe, and G. \Vinskel. editors, LNCS 197: Seminar
on Concurrency. X. pages 180-196, Springer-Verlag. 1985.

[25] VV. Reisig. Petri Nets. Springer-Verlag, 1985.

[26] !vI. "V. Shields. Adequate path expressions. In G. Kahn. editor. LNCS 70: Semantics
of Concurrent Computation. VI. pages 24:9-265, Springer-Verlag, 1979.

(27] J. 1. A. van de Snepscheut. LNCS 200: Trace Theory and VLSI Design. Springer
Verlag, 1985.

31

