
CUCS-lJ-81

Memory-Based Parsing

by

Michael Lebowitz

Department of Computer Science

C 1umb ' U' . t 1 o ~a n~vers~ y

406 audd Building, }tew York, }ty 10027

1
r1uch of the research described here was done while the author

as at Yale University, supported in part by the Advanced Research -

Projects Agency of the Department of Defense and monitored by the

Office of Naval Research under contract NOOOl4-7S-C-llll.

.'

MEMORY-BASED PARSING

by

Michael Lebowitz -- Columbia University1

Department of Computer Science, 406 Mudd Building

New York, NY 10021

ABSTRACT
The development of robust parsing systems can be greatly expedited by the

application of memory-based parsing techniques. Described here are the
parsing techniques used by the Integrated Partial Parser <IF?), a system
de~igned to read and generalize from large numbers of news stories. These
techniques include top-down predictions generated from high-level ~emory

structures, and simple bottom-up heuristics to handle language-specific
problems. A detailed example is presented.

1. Introduction

One important aspect of a complete natural language under~tanding system,

involves the determination of a conceptual representation from the input text.

As part of the development of the Integrated Partial Parser (IPP), a system

intended primarily to illustrate the process of learning and generali zation,

several powerful techniques for the extraction of conceptual meaning from text

(hereafter "parsing") were developed. This was crucial for the success of the

projec t, since in order for the program to learn by making interesting

generalizations, it had to be robust enough to read large numbers of texts

that it was not specially prepared.

In this paper I will describe in detail the parsing techniques used by

IFP. These techniques are largely independen t of the particular program for

1Much of the research described here was done while the author was at Yale
University. supported in part by the Advanced Research Projects Agency of the
Department of Defense and monitored by the Office of Naval Research under
contract N00014-75-C-1111.

2

which they were developed.

should refer to (8].

The reader interested in other aspects of I?P

There are tloK> key aspects behind IPP' s parsing strategy. The first is

the extensive use of top-down processing driven by predictions made from high­

level memory structures. A small number of relatively simple, automatically

activated, data-driven predictions perform most of the parsing of text. These

predictions are quite robust, and carry out the bulk of the parsing task.

The second element of IPP' 09 parsing scheme is to use a relatively small

number of simple bottom-up recogni tion techniques, integrated into the top­

down processing, to handle syntactic information. These techniques deal

primarily with identifying noun phrases and the initial recognition of memory

structures to activate the memory-based predictions. The simplici ty of both

the top-down and bottom-up techniques used in IPP is crucial for a system that

must be robust enough to handle many tex ts. This strategy is particular

successful for IPP, where it is normally only necessary to represent a story

in terms of high-level structures.

To illustrate the goal of the parsing process in IPP, I will consider S1,

a rather typical news story. (IPP's primary domain is international

terrorism, which provides the examples used in this paper.)

3

S1 - UPI. 18 January 80, Lebanon2

A hijacker gunman seized a Middle East Airlines jetliner enroute to
Cyprus today, ordered the plane back to Beirut, then surrendered after
two hours of negotiations in which he demanded an investigation in to
the disappearance of a Lebanese Shiite Moslem leader.

The hijacker identified as Fuad Hamade. 19. a Lebanese ShUte Moslem
surrendered to police after two hours of negotiations with government
ministers and officials of Middle East Airlines.

The parSing task that must be carried out on this story is the relation

of the various events in this story such as the hijacking, negotiations and

surrender in to a single, coherent memory representation. In addition. the

various role fillers for these events must be determined. This story can be

well-understood in terms of high level memory structures.

Figure illustrates the level of detail that IFP' s parsing process

extracts from S1. (The slashes in the descriptions of role fillers separate

i·nformation taken from different parts of the text.)

This representation illustrates that IFP has identified the main actions

in the story - the hijacking, surrender and negotiations - along wi th who

did what. As I will describe in this paper, this is done almost entirely with

information from the memory structures instantiated, independent of the

specific words used.

This story also illustrates. however t some limi ta tions of the analysis

provided by IFP. The demand of the hijacker t "an investigation into the

2All the stories used as examples that include a dateline and reference to a
newspaper or the UPI wire are actual t unedi ted news stories. I?P does not
require any special preparation of the stories it reads and adds to memory.

4

·(PARSE S1)

Story: S1 LEBANON

(A HIJACKER GUNMAN SEIZED A MIDDLE EAST AIRLINES JETLINER
ENROUTE TO CYPRUS TODAY ·COMMA· ORDERED THE PLANE BACK TO
BEIRUT .COMMA. THEN SURRENDERED AFTER TWO HOURS OF
NEGOTIATIONS IN WHICH HE DEMANDED AN INVESTIGATION INTO THE
DISAPPEARANCE OF A LEBANESE SHIITE MOSLEM LEADER)

(THE HIJACKER IDENTIFIED AS FUAD HAMADE ·COMMA· 19 ·COMMA· A
LEBANESE SHIITE MOSLEM ·COMMA· SURRENDERED TO POLICE AFTER
TWO HOURS OF NEGOTIATIONS ~rrH GOVERNMENT MINISTERS AND
OFFICIALS OF MIDDLE EAST AIRLINES)

Story Representation:

•• MAIN EVENT ..
EV1 =

MEM-NAME
ACTOR
METHODS

S-EXTORT

EVa =
MEM-NAME
ACTOR
VEHICLE
TO

RESULTS
EV2 =

MEM-NAME
OBJECT

SCENES
EV3 =

MEM-NAME
ACTOR
OBJECT

DEMANDS
NIL

HIJACKER GUNMAN / 19 YEAR-OLD FUAD HAMADE

$HIJACK
HIJACKER GUNMAN / 19
MIDDLE-EAST JETLINER
CYPRUS

GS-CAPTURE-TERRORIST

YEAR-OLD FUAD HAMADE

HIJACKER GUNMAN / 19 YEAR-OLD FUAD HAMADE

G$-NEGOTIATE
OFFICIALS
HIJACKER GUNMAN / 19 YEAR-OLD FUAD HAMADE

Figure 1: IPP representation of S1

disappearance of a Lebanese Shiite Moslem leader," is hardly typical of

terrorist demands. It cannot be understood with the high-level structures IPP

uses for representation. Note, however, that this does not imply a failure of

IPP's parsing techniques. Rather, it suggests, in conjunction with the

overall success of IPP, that the same techniques simply must be applied using

5

a more detailed set of knowledge structures.

In the remainder of this paper, I will look at the overall structure of

IPP's parsing algori thm, followed by a detailed description of both the

bottom-up and top-down techniques that are used. I will then present an

extended example of IPP in action, and a comparison of this scheme to other AI

parsers.

2. IPP's Overall Parsing Design

IFP employs a highly top-<iown parsing scheme. Memory-based predictions

always take precedence over bottom-up processing that might otherwise be done.

Issues such as the specific syntax of the tex-t are considered only when needed

to initiate top-down processing, or when they affect the application of

predictions. This -is similar to the philosophy of programs at Yale such as

ELI (12], CA C1] and FRUMP (3] (see Section 7).

In order to understand a story, IPP must identify high-level memory

structures needed to represent the even ts in the story. In IPP, events are

represented in terms of Action Units (AUs) and Simple MOPs (S-."10Ps) [8]. AUs

describe concrete events such as shootings, deaths and bombings, while S-<"10Ps

represent more abstract levels of action such as extortion and attacks on

people. The aspects of these structures that are relevant to parsing are that

AU's contain descriptions of typical fillers for each of their roles, and S-

MOPs relate various AUs that serve as methods, resul ts and scenes. Other

necessary details will be presented as necessary. In the examples presented,

the structures with an S- prefix are S-MOPs, and all other structures are AUs.

To complete the representation of a story, IPP ~ust identify the proper

6

role fillers for each AU and S~OP. Tnis information is sufficient to allow

the events being described to be recorded in memory so that they can be

recalled. The Action Units and S~OPs describe what happened, and the role

fillers represent who was involved.

2.1. Top-down precedence

Top-down predic tions are given precedence in IPP'.3 flow-of -control to

bottom-up considerations. S2 illustrates the advantage of this scheme.

S2 - UPI, 18 January 80, Lebanon

A hijacker gunman seized a Middle East Airlines jetliner enroute to
Cyprus today ordered the plane back to Beirut then surrendered after
two hours of negotiations in which he demanded an investigation into
the disappearance of a Lebanese Shiite Moslem leader.

Consider the processing of the word "seized" in S2. Out of context the

word is extremely ambiguous, and even in the terrorism domain it can have

several meanings - hij ack a plane, take over a building, or kidnap an

individual. Normal bottom-up processing would activate a mechanism to

disambiguate the word by looking at the syntactic object.

However, in this case such a mechanism is clearly not necessary. The

description of the actor as a "hijacker gunman" provides the clue as to the

meaning of "seized". IPP accomplishes this through a memory-based rule that

will be described in detail later. Basically, both "gunman" and "hijacker"

have as part of their definitions pointers to hijacking CLe., that is

something they are known to do). This causes IPP to look for action words

that describe this action. Since one of the definitions of "seized" describes

hijacking, IPP selects that meaning, immediately disambiguating the word.

Expectations in IPP are implemented with requests -- test/action pairs of

7

the sort described by Riesbeck [11]. The most important group of these

requests implementing the memory-based rules to be described in Sec tion 3.

Requests may look for lexical items with specified properties, Picture

Producers [13] of a given type (to fill roles, generally), or new events that

might be expected.

The use of requests and the priority given to expectations leads to IPP's

top-level flow of control is shown in Figure 2.

read lexical it~~ <----------------------------\

I
I .

v

Is this lexical
item explained

by existing
expectations?
(Are the tests
of any active

predictions
satisfied'?)

v

yes
--->

try bottom-up processing

Execute the satisfied
prediction's action

->

--------------------1

Figure 2: Top level flow of control

The flow chart in Figure 2 indicates that IPP reads a story one lexical

item at a time (phrases of more than one word are allowed in the dictionary;

henceforth any references to words also applies too mul ti-word phrases),

checking to see whether any ac tive requests ar.e expecting each i tern. If so,

the lexical item is processed according to that request; otherwise, the

-

8

bottom-up algorithm described in the next section is used.

While the processing of a story usually begins with largely bottom-up

processing, this continues only until enough has been read to create top-down

predictions of the sort that will be described in Section 3. In most news

stories, this happens very 'quickly (as in 52 where "A hijacker gunman" was

enough to create predictions), allowing knowledge of typical si tuations to

quickly dominate processing.

2.2. Bottom-up processing

Even though top-down processing is ex tremely powerful, there are still

times when there are no active predictions that explain a piece of text and so

bottom-up processing is required. Bottom-up processing is especially

important when reading the beginning of a story before a context has been

established. The goal of bottom-up processing is to create a sufficient

conceptual representation of a story to allow memory-based predictions to be

made.

In IPP, bottom-up processing is based on a process-oriented

classification of lexical items. The words in IPP's vocabulary are broken down

in to classes that depend on how they add information to the meaning of a

story, and the manner in which they should be processed bottom-up. I will

describe here the different word classes used by IPP, followed by the required

processing for members of each class in bottom-up situations.

9

2.2.1. Word types

There are five different types of words used by IPP t each requiring

different bottom-up processing.

'.iords in two of the classes provide most of the semantic content of

stories. These are Event Builders (EBs) t words whose definitions point to

specific Action Units in memory, and Token Makers (TMs) , that describe Picture

Producers, and may point to associated Ac tion Units. Typical EBs are

"kidnapped", "hijacking" and "death". 1i-ts include words such as "banker" t

"hijacker", and "747". Words in each of these classes, and particularly EBs t

usually must be processed immediately in order to provide the context from

which to create top-down predictions. Notice that while many verbs are EBs,

and many concrete nouns are 11-1s, the classification is based on processing

considerations, and class membership frequently crosses syntactic boundaries.

The next two classes of words tend to be less important, but do modify

the conceptual content of a story somewhat. These classes are Token Refiners

(TRs) , words that add info~ation to the conceptual Picture Producers

specified by Token Makers, and Event Refiners (ERs), that alter some aspect of

an even t being described. Token Refiners are words like "old", II Basque" and

"broken-down", while typical ERs are "unharmed", "severely", and "often".

Words in these two classes are normally not processed until the concepts that

they modify are identified.

The final group in IPP' s classification of lexical items are Function

Words (Ns). These words carry no semantic content of their own and instead

provide information for processing. F'unction Words inclllde '2rt.i ... l.c:::> t

prepositions such as "to", "by" and "from" and auxiliary verbs including

-

10

"was", "were" and "been".

These five classes of lexical items comprise all those involved in IPP's

bottom-up processing. The classes are summarized in Figure 3.

1) Event Builder SHOT, HIJACKER, KILLING

2) Token Maker EMBASSY, AMBASSADOR, OFFICIAL

3) Token Refiner ARABIC, LEFT-WING, TWENTY-TWO

q) Event Refiner ATTEMPTED, FATALLY, FAILED

5) Func tion Word BY, AN, INTO

Figure 3: IPP word types for bottom-up processing

2.2.2. Bottom-up word processing

When an unpredicted lexical item is read, bottom-up processing is used.

The processing depends on a lexical item's class. The top-level bottom-up

processing algorithm is shown in Figure 4.

Most bottom-up processing revolves around Event Builders and Token

Makers. The key aspects to proceSSing EBs bottom-up include the instantiation

of Action Units and S-MOPs. The details of this will be discussed in Section

q. One minor aspect of this process is that the short-term !Ilemory buffer

containing any Event Refiners preceding the Event Builder can be processed

fully when the EB is read. In a phrase such as "attempted hijacking

means recognizing that the hijacking did not succeed.

" this

The specific rules for processing EBs are as follows. Assuming there is

not an outstanding S-.lofOP explaining the Action Uni t (which would be handled

TR
ER

v

Save
and
skip

IN

v

Save and
skip

unless
predicted

Read a \liard

v

What is the
\liard's type?

EBl

II

Use Action
Unit

instantiation
rules

'I

1 1

TM

processing of IoiOrd complete

II

Create token
to represent

the PP if
head noun,

otherwise save
3!ld skip.

Figure 4: Basic bottom-up IPP flow of control

top-down) then IPP 1) instantiates the Action Unit (creates an internal symbol

of this instance) (see Section 4), 2) gathers any modifying Event Refiners

from short-term memory (see below), 3) tests any preceding Picture Producers

(also saved in short-term memory) for possible slot-filling, 4) activates a

request looking for role fillers (using the AU Role Filling Rule) (see Section

3.2.1), and 5), if the AU has a normal S-MOP, instantiates it. attaches the AU

to it. and performs S-MOP processing (see Section 4.2).

This relatively simple EB processing is sufficient to identify enough of

the actions in a story to create predictions to explain the rest.

Token Makers cause the creation of internal symbols (tokens) to be used

to represent Picture Producers described in text (including any ehat I~'r ~,

12

hypothetical) • This involves the collection of any preceding Token Refiners

that have been saved in short-term memory (in the manner described below), and

their application to the token. This processing will be described more fully

when I consider the problems of noun groups in Section 5.2.

Once a token has been crea ted for the Picture Producer referred to by a

TH, a test is made to see whether the top-down role-filling rule described in

Section 3.2.1 is applicable. This rule causes the filling of roles in the

memory structures created by Event Builder processing, thereby completing the

representation of the story being read.

Both Token Refiners and Event Refiners are Simply saved in short term

- memory buffers until a Token Maker or Event Builder, respectively is found. At

that point TRs are applied to the Picture Producer being represented and ERs

are used to modify the event description.

This "save and skip" strategy allows modifiers to be processed when most

appropriate. Appropriate conceptual proceSSing of a modifier is much easier

when we know what is being modified. In English this requires waiting, as both

TRs and ERs usually precede the words that they modify.

Function Words are most often processed in a predictive fashion. For

example, certain Action Units specify how various preposi tions should be

treated. The $HIJACK script, for instance, specifies the Function Word "to"

will indicate that the filler of the TO role of the script is to follow, and

"from" does the same for the FROM role.

By and large, Function Words that are not predicted have little effect on

IPP's proceSSing. Prepositions and articles have very little intrinsic

13

meaning. They usually convey information that is either redundant or changes

the meaning of the sentence in only a minor way, too subtle to have an effect

at the level of understanding performed by IPP.

At IPP's level of understanding, articles make a contribution to

delimiting noun phrases, but can otherwise be ignored. For example, "Armenian

gunman" can be understood just as well as "An Armenian gunman". Similarly,

preposi tions that are not predic ted by Event Builders can often be ignored.

For example, in the phrase, "the terrorist ambush of an army general,"

semantic considerations identify the general as the victim of the ambush,

without reference to the preposition "of".

The- major exception to the general rule of ignoring Function Words. are

auxiliary forms of the verb "to be" that indicate a verb is being used in the

passive form. Passives are one of the few syntactic constructions that must

be paid careful attention. The issue of passives will be discussed in Section

S. 1.

In general, the bottom-up processing of IPP is relatively simple, and

deSigned to allow top-down understanding to begin as rapidly as possible. It

is the memory-based predictive processing of IPP that provides most of its

power and robustness.

3. Memory-based predictions

As indicated in the previous section, IPP always gives precedence to top­

down predictions during parsing. The key to using such a scheme is the ability

to effectively create predictions early in the processing of a story. without

storing an exorbitant amount of information with every word. This is done in

14

IP? by generation of most predictions from instantiated memory structures.

In this section I will look first at the advantages of generating

predictions from memory structures, and then at the specific rules used by IP?

to identify memory structures and create top-down predictions from them.

3.1. Why memory-based predictions?

In any particular domain there are a relatively small number of memory

structures (S-MO?s and Action Units in I?P). In contrast, there are thousands

of lexical items and an unlimited variety of syntactic constructions that can

indicate the relevance of those memory structures. Thus, it is certainly

desirable to make as much of the processing relatively independent of the

specific text being read. This allows most of the necessary information for

understanding to be organized around the small number of memory structures

instead of the many lexical items. The parSing process need only rely on

minimal information from specific lexical items, using them mostly to identify

Action Units and Picture Producers.

As an example of this, since we know that a shooting involves a victim,

it is more effective to store this information once with the Action Unit

$SHOOT rather than many times with each of the lexical items that indicates a

shooting occurred. This has the further advantage that if we learn a new piece

of information about an AU, such as $SHOOT, it is not necessary to change the

definitions of every relevant word. The information is concentrated where we

would expect it, with the conceptual descriptions of the various events.

This concentration of information with the conceptual definitions of

Action Units and S-MOPs is especially valuable in the design of an

15

understanding program such as IP? It allows us to concentrate on providing

detailed defini tions of the memory structures to provide information to the

program, with the large number of words being defined simply.

3.2. IPP's memory-based expectations

IP? uses two general rules to generate memory-based predictions, one

concerning Action Units and the other S-MOPs, that largely guide processing.

These two rules identify the roles various Picture Producers play in the

relevant Action Units, and explain the Action Units in terms of the proper S­

MOPs.

When an Action Unit is used to represent a story, it is important to

identify how the various roles of the AU are filled by the characters in the

story. Instead of using separate predictions based on the words that cause an

Action Unit to be instantiated, IP? use~ a prediction implementing a rule

known as the AU Role Filler Rule that allows the determination of how the

roles of each AU are filled. Action Uni ts contain infonnation describing

typical role fillers. This is sufficient to determine how the various Picture

Producers mentioned in a story fill the roles of Action Units by using top­

down expectations largely independent of the specific description of the AU in

the text.

The prediction from S-MOPs simplifies the recogni tion and explanation of

Action Units. S-MOP defini tions describe the Action Uni ts that are likely to

be found as part of the stereotypical si tuation they describe - methods,

resul ts and .scenes. This infonnation - employed by the s-MOP/ AU Rule - is

used to identify Action Units that appear later in the tex t, including those

that may be described using ambiguous words.

-

16

3.2.1. The AU Role Filling Rule

Each Action Unit contains information about its various roles, and simple

descriptions of the PPs that are likely to fill them, that allows memory-based

predictions to be made. For instance, the $HIJACK script has five different

roles - the ACTOR of the hijacking, normally a person associated with

terrorist type acts, the VEHICLE that is hijacked, typically an airplane,

PASSENGERS aboard the plane, a group of ordinary people. and the places the

plane was going TO and FROM, usually cities or airports.

By using information about stereotypical role fillers it is often

possible to identify the Picture Producers that fill each role, disregarding

the specific wayan Action Unit such as $HIJACK is presented in the text.

To illustrate this point, I will look at several terrorism stories

involving shooting. In these stories the shooting is specified in a variety of

different ways, but the details of the action specification can largely be

ignored once the memory structure has been identified.

Shooting is represented in IPP with the AU, shown in Figure 5. The

important aspect of $SHOOT here is that it includes information about the

various role fillers that are expected in a description of a shooting. From

this definition, it can be recognized that every time a shooting is mentioned,

there may also be mention of the actor, the victim, the weapon used in the

shooting, and the part of the body in which the victim was shot.

Each of the four stories below describes a shooting incident, and each

time the shooting is presented in a somewha t different way. The first two

stories both use the verb "firing" to mean shooting, but S3 has the pistols

(DEF -A U $SHOOT
AU-TYPE
TEMPLATE

SCRIPT
($SHOOT ACTOR

VICTIM
WEAPON
HURT-PART

S-ATTACK-PERSON

17

!PROTO-TERRORIST
! PROTO-VICTIM
!PROTo-GUN
!PROTO-BODYPART)

NORMAL-S-t"!OP
PASSIVE-SL.OT (SUBJECT is ACTOR => VICTIM role

SUBJECT is '~?oN => WEAPON role]

Figure 5: $SHOOT definition

used as the direct object while the second example never ~entions a weapon at

all. The third story uses a completely different verb. "shot" and the fourth

has no verb at all that indicates a shooting. but instead has a noun. "gunman"

that strongly implies that event.

All four of these stories can be understood using a single. memory-based

role filling rule. rather than specialized definitions for each action word.

S3 - UPI. 12 February 80. Italy

Red Brigades guerrillas firing silenced pistols killed a prominent
judge with strong ties to the Vatican while he was at a conference on
terrorism today.

S4 - UPI. 12 March 80. Puerto Rico

Three terrorists f1ring from a car attacked a US ~rmy vehicle carrying
three military science professors early today on San Juan' 3 busiest
freeway.

55 - Washington Star. 23 December 79. France

Terrorists armed with submachine guns yesterday shot and ~illed

Turkish embassy press attache Y1lmaz Kolpan. 31. on the Champs Elysees
in a decades-old international feud.

56 - New York Times. 11 November 79. Northern Ireland

A suspected Irish Republican Army gunman killed a 50-year-old unarmed
security guard in East Belfast early today. the police said.

-

..

18

Each of the emphasized action words in these stories gives direct access

to the Action Unit $SHOOT. From this it is immediately known that the text is

likely to make reference to the ac tor of the shooting, who is likely to fi t

into a memory class of people we expect to do such things, the victim, who can

be just about any person, and the weapon used.

Using this information it is a relatively simple matter to process all of

these stories. In the first of these stories, the syntactic subject fi ts

perfectly the stereotyped description of an actor for $SHOOT, the direc t

object "silenced pistols" is clearly the weapon, and "a prominent judge" must

be the victim.

In the next story, the subjec t is again the actor of a $SHOOT, but this

time the phrase after the verb "firing", "fran a car attacked a US Army

vehicle" does not describe any of the items involved in $SHOOT, and so for

many understanding purposes can be largely ignored. Eventually there is

something we are :nore interested in, It three military science professors", tha t

is suitable for filling the victim role.
)

In S5, the verb that identifies $SHOOT is different "shot" •

Nonetheless, it is still possible to pick out the same major elements of

importance from the story -- the actor (terrorists), weapon (submachine guns),

and victim (Yllmaz Kolpan). (The final role presents some interesting noun

group problems that will be discussed later.) This despite the fact that

"shot" has different syntactic properties than "firing".

The point here is that the same roles must be filled for an Action Unit

no matter how it is expressed in the text. Assuming we have a good idea of

19

what sort of filler is likely to be found, we can ignore any special

peculiarities of the specific action words in the story and simply use this

knowledge of the stereotypical situation to identify the role of each Picture

Producer.

56, the Action Unit $SHOOT is identified primarily from a noun. not a verb.

"Gunman" indicates a shooting can be expected, and the existence of one of

$SHOOT's outcomes ("killed") strongly implies that there was indeed a shooting

(see Section 4.1.3), Once this has occurred, the important roles. the actor

and victim in particular. can be identified.

These stories indicate that a feasible plan of action for a parser is to

assume that whenever an Action Unit is instantiated the necessary role fillers

will baSically fit the known stereotype. This allows it to simply look in the

text for Picture Producers that fit the descriptions of any ~issing roles for

the AU, and ignore the specific nature of the action words in the text. This

plan is the one used by IPP, and is able to deal with all the above examples,

as well as most other role filling problems. It is referred to as the AU Role

Filling Rule.

'''henever an AU is instantiated in :I piece of text. assume its role
fillers will fit the stereotypes in memory. Then check each new ?P to
see if it can be a role filler of the AU.

This process is terminated at the next action word.

Figure 6: The AU Role Filling Rule

The termination test in the AU Role Filling Rule is worth noting. It

•

•

20

concentrates upon avoiding picking up irrelevant PPs as role fillers, rather

than finding every conceivable filler. It relies on the fact that by using

the 5-MOP based inference rules described below, identifying one role of a PP

f111s is usually sufficient to infer all its roles. This can be seen in S7.

S7 - UPI, 12 June 80, Guatemala

Unidentified gunman shot and killed a leader of Guatemala's Christian
Democratic Party in a street ambush early Thursday, authorities said.

The issue in this story is identifying that the Guatemalan politician was

the person shot. The AU Role Filling rule easily identifies him as the person

kill~, and using an S-MOP (S-ATTACK-PER50N) we can invoke the inference rule

that the person shot in an attack is also likely to be the person killed.

Thus it is not necessary to extract directly from the text that he was the

shooting victim. This illustrates how the AU Role Filler Rule can afford to

be 11mi ted to the most reliable cases, as there are alternate, redundant

sources of information to determine fully who did what. We need only extract

directly from the text the role fillers that can be determined easily.

58 is a typical story in which the AU Role Filling Rule is sufficient to

explain the roles of all the PPs. I will use it to illustrate IPP I S role

filling processing.

58 - UPI, 24 July 80, Bahrain

A Jordanian gunman hijacked a Kuwaiti jetliner with 112 passengers
aboard Thursday and forced it to fly to Bahrain.

He released women and children passengers in Kuwait.

Hij ackings tend to provide especially good tests of the AU Role Find ing

Rule, as there are a number of different roles to be found. Figure 7 lists the

21

various 'roles of $HIJACK, along wi th a br ief description of a typical role

filler.

ACTOR
PASSENGERS
VEHICLE
TO
FROM

(terrorist]
(group of people]
(airplane]
(city or country] (prep ~to"]
[city or country] (prep "from"]

Figure 7: $HIJACK roles

Notice that the roles the AU Role Filling Rule is concerned with are only

those par:ticular to $HIJACK and that can be filled with Picture Producers.

More abstract role fillers, such as the demands of the hijacker, are common to

all forms of extortion, and hence processed at the S-MOP level. Also note that

the description of the TO and FROM roles indicates that the prepositions "to"

and "from" will often be used to distinguish those roles. This information

holds without regard to the specific way $HIJACK is instantiated. indicating

that information about the way a given natural language uses Function ',%rds

can be associated with Action Units.

Figure 8 shows IPP parsing the first section of 58, up to the point where

$HIJACK is instantiated.

',o/hen it reads this story, IPP instantiates $HIJACK using a rule that will

be described in section 4.1.2. Basically. it simply knows that the word

"hijacked" indicates an occurrence of $HIJACK, with the syntactic subject (if

it is a person or group) filling the actor role of that AU.

The important thing to notice here is that when $HIJACK is instantiated,

-

22

'(PARSE 58)

Story: S8 BAHRAIN

(A JORDANIAN GUNMAN HIJACKED A KUWAITI JETLINER WITH
112 PASSENGERS ABOARD THURSDAY AND FORCED IT TO FLY TO
BAHRAIN)

(HE RELEASED WOMEN AND CHILDREN PASSENGERS IN KUWAIT)

Proces.51ng:

A
JORDANIAN
GUNMAN

Predictions

HIJACKED

Function word - Token refiner - save and skip
Token refiner - save and skip
Interesting token - JORDANIAN GUNMAN

- LOOK-FOR-GUNMAN-ASSOCIATED-AU
FIND-GUNMAN-ASSOC-SIBLING

: Word satisfies prediction

Prediction confirmed _ LOOK-FOR-GUNMAN-ASSOCIATED-AU

»> Instantiated $HIJACK structure

Prediction. - $HIJACK-ROLE-FINDER REDUNDANT-AU-WORDS

.. , Filling .lot -> $HIJACK, ACTOR, JORDANIAN GUNMAN

»> In3tantiated S-EXTORT structure

Predictions _ S-EXTORT-RELATED-AUS

••• Filling slot -> S-EXTORT, ACTOR, JORDANIAN GUNMAN

Figure 8: In::stantiatlon of $HIJACK

a toP-down expectation is activated lmple~entlng the AU Role Filling Rule. It

is called $HIJACK-ROLE-f'INDER in the output in Figure 8. This expectation

will cause IPP to check each incoming ?P to see if it fits any of the as yet

unfilled "ole~ of SHIJACK.

A
KUWAITI
JETLINER

23

Function word - Token refiner - save and skip
Token refiner - save and skip
Normal token - JETLINER

Prediction confirmed _ $HIJACK_ROLE_fINDER(VEHICLE)

t •• filling .lot _> $HIJACK, VEHICLE, KUWAITI JETLINER

WITH

112
PASSENGERS

Function word - save and skip

Token refiner - save and skip
Normal token - PASSENGERS

Prediction confirmed - $HIJACK-ROLE-fINDER(PASSENGERS)

••• filling slot _> $HIJACK, PASSENGERS, 112 PASSENGERS

••• filling .lot _> S-EXTORT, HOSTAGES, 112 PASSENGERS

ABOARD
THURSDAY

Skip
Normal token _ THURSDAY

Figure 9: Plane and passengers found

In the segmen t of processing shown above. IPP finds the ?Ps "Kuwai t1

jetliner" and 111'2 passengers", and checks to see whether they fit the top-

down expectation for role fillers of SHIJACK. In each case . they do . The

jetliner matches the description for the vehicle role -- it 1s a plane -- and

the passengers are a group of people, matching the description for the

passenger role . Notice that 3ubtletie, ,uch as the function word n i th"

indicating that the 112 people are inside the plane can be di5pen5ed '"",1 th,

since what we are concerned with is who is being held hostage, and that can be

determined by the AU Role Filler Rule.

Figure 10 shows the conclusion of the processing of the first sentence of

sa. includ i ng the identification of th e destination of the hijacking,

-

•

AND
FORCED
IT
TO

24

Function word - conjunction - save and skip
Dull verb - skipped
Skip
Word satisfies prediction

Prediction confirmed - $HIJACK-SYN-FINDER-TO
Predictions - GET-SYN-FILLER

FLY : Dull verb - skipped

Prediction deactivated - GET-SYN-FILLER

TO : Word satisfies prediction

Prediction confirmed - $HIJACK-SYN-FINDER-TO
Predictions - GET-SYN-FILLER

BAHRAIN : Normal token - BAHRAIN

Prediction confirmed - GET-SYN-FILLER

••• Filling slot -> $HIJACK, TO, BAHRAIN

[the second sentence is processed in the same fashion]

Figure 10: Roles filled in $HIJACK

The TO and FROM roles of $HIJACK can be filled wi th similar conceptual

items. Hence in some cases it does become necessary to pay attention to simple

syntactic rules, such as function words specifying the role to be filled.

However, once again it is possible to organize this information under a few

memory structures rather than many lexical items.

In the output above we can see IPP find the function word n to", ',oIhich is

also part of the top-down role filling expectation (as part of the description

of the to role), found twice. The first time it is not followed by a PP that

can fill the TO role of $HIJACK, but the second time it is, and so IPP fills

that role with nBahrain n •

25

IPP's processing of S8 as shown above produced the representation shown

in Figure 11, which successfully explains all the PPs in the story.

Story Representation:

*. MAIN EVENT ..
EV1 =

MEM-NAME
ACTOR
HOSTAGES

METHODS
EVO =

HEM-NAME
ACTOR
VEHICLE
TO
CARRYING

RESULTS
EV2 =

HEM-NAME
ACTOR
OBJECT

S-EXTORT
JORDANIAN GUNMAN
112 PASSENGERS / WOMEN AND CHILDREN PASSENGERS

$HIJACK
JORDANIAN GUNMAN
KUWAITI JETLINER
BAHRAIN
112 PASSENGERS / WOMEN AND CHILDREN
PASSENGERS

GS-RELEASE-HOSTAGES
JORDANIAN GUNMAN
112 PASSENGERS / WOMEN AND CHILDREN
PASSENGERS

Figure 11: Final representation for S8

The examples in this section have illustrated that in situations where we

have a great deal of knowledge about what to expect, such as the stories in

IP?' s domain, it is possible to explain the roles of most ?Ps in stories

wi thout making use of detailed knowledge about the speci fic words involved.

While it is possible to construct examples that will not be correctly

understood using the AU Role Filling Rule, use of domain-dependent information

accurately allows IPP to be successful in a large percentage of stories

describing relatively stereotyped situations.

26

3.2.2. The S-MOP/AU Rule

S-MOPs, once instantiated by IPP, are used as a source of predictions

concerning Action Units that may appear in the text. In particular, a

prediction is made that any of the Action Units serving as an S-MOP I S methods,

resul ts and scenes might be found in the text. When these AUs are found,

their roles as part of the S-MOP immediately explain their presence in the

story as part of an abstract stereotypical situation represented by the S-MOP.

S9 illustrates the kind of si tuation for which knowledge of an S-MOP 's

related AUs is used 1n processing.

S9 - UPI, 21 April 80

A bomb exploded 1n front of the Iraqi Culture and Information Ministry
1n Baghdad killing an Iraqi policeman and injuring several people, the
Kuwaiti news agency quoted Baghdad radio as saying today.

The radio said the bomb was placed by an Iranian agent who was
arrested by another policeman near the building.

In this story, the mention of a bomb explosion immediately causes the S-

MOP S-DESTRUCTIVE-A!!ACK to be instantiated, in a manner described in Section

4.2. This 1n turn creates the prediction that any of S-DESTRUCTIVE-ATTACK's

other methods, scenes, and results may be described in the story. Then when

the Event Builders, "killing", "injuring" and "arrested" are found, they are

analyzed as meaning Action Units that should be considered part of the S-

DESTRUCTIVE-ATTACK. The details of this identification will be described

shortly.

This S-MOP based parsing by IPP leads to the following representation.

Notice in Figure 12 how each of the three Action Units, CAUSE-DEATH,

27

It (PARSE S9)

Story: S9 IRAQ

(A BOMB EXPLODED IN FRONT OF THE IRAQI CULTURE AND
INFORMATION MINISTRY IN BAGHDAD KILLING AN IRAQI POLICEMAN
AND INJURING SEVERAL PEOPLE THE KUWAITI NEWS AGENCY QUOTED
BAGHDAD RADIO AS SAYING TODAY)

(THE RADIO SAID THE BOMB WAS PLACED BY AN IRANIAN AGENT
WHO WAS ARRESTED BY ANOTHER POLICEMAN NEAR THE BUILDING)

Story Repre3entation:

.it MAIN EVENT n
EV1 =

MEM-NAME
ACTOR
TARGET
'"UPON
VICTIM

METHODS
EVO =

MEM-NAME
ACTOR
TARGET
BOMB

RESULTS
EV2 =

MEM-NAME
ACTOR
VICTIM
HEALTH

EV3 =
MEM-NAME
ACTOR
VICTIM
HEALTH

EV4 :
MEM-NAME
ACTOR
OBJECT

S-DESTRUCTIVE-ATTACK
IRANI AGENT
CULTURE AND INFORMATION MINISTRY
BOMB
IRAQI POLICEMAN

$EXPLODE-BOMB
IRANI AGENT
CULTURE AND INFORMATION MINISTRY
BOMB

CAUSE-DEATH
IRANI AGENT
IRAQI POLICEMAN
-10

CAUSE-WOUND
IRANI AGENT
MORE THAN 2 PEOPLE
-5

GS-CAPTURE-TERRORIST
POLICEMAN NEAR BUILDING
IRANI AGENT

Figure 12: S9 parsed by IPP

CAUSE-WOUND and GS-CAPTURE-TERRORIST • in addition to $EXPLODE-BOMB. have been

28

instantiated and attached to the S-DESTRUCTIVE-ATTACK, explaining these

events.

Figure 12 illustrates another advantage in using S-MOP~ to explain the

presence of Action Units in a story. The representation of S9 lists the Irani

agent captured by the police as the actor in the bombing, killing and

wounding, despite the fact that none of this is clearly stated in the story.

Without using existing knowledge about attacks, this role of the agent would

have to be inferred through a complex inferential chain involving

understanding the part of the second sentence describing the placing of the

bomb and using a rule that the person who places a bomb is responsible for its

explosion.

IPP, however, uses a simpler rule. Based on its stereotypical knowledge

of destructive attacks in the abstract captured in the S-MOP, it can infer

that person who was captured by the authorities is likely the actor of the

attack, who is in turn the actor of the method (the bombing in this case), and

responsible for any of the results (the killing and injuring in S9).

The basic idea here is that by using the stereotypical infornation

contained in S-MOP~ it is possible deternine the role fillers for many Action

Uni ts without specifically identifying them in the text, or using a complex

inference process. This allows the AU Role Filling Rule to concentrate on

avoiding errors, rather than making a large computational effort to identify

every role filler.

Role filling inferences are very common and required throughout parsing.

It is handled in a very clean fashion by IPP's use of S-MOPs.

29

The solution implemented in IPP for recognizing AUs involves a rule that

examines the definitions of incoming lexical items, looking for words wi th

meanings that correspond with any of an instantiated S_,",OP's methods, scenes

or results. The situation is illustrated schematically in Figure 13.

I
I

: method
: AUs
V

M 1 ••• Mx

S~OP :

: scene
: AUs
V

S1 ••• Sy

I
I

:result
: AUs
V

R 1 ••• Rz

Figure 13: S_,",OP related AUs

Figure 13 represents an S-MOP with x different methods, M1 - Mx, Y

scenes, S1 - Sy and z resul ts, R 1 - Rz. Whenever this S-MOP is instantiated,

IPP's rule for identifying AUs will cause an examination of each new word to

see if it has among its meanings a pointer to any of the Action Units ~1 - Mx,

S1 - Sy or R1 - Rz. If so, that meaning 1s assumed to be the correct one for

that word, the AU is instantiated and attached to the S-MO? as a method,

result or scene, as appropriate.

The specific rule, known as the S-MOP/AU Rule, is shown below.

Whenever a situation represented by an S-MOP is identified, predict
that its methods, scenes and results will be mentioned in the text.

Use this prediction to specify the appropriate meanings for ambiguous
words and to determine the relations between new action words and
instantiated $-MOPs.

Figure 14: The S~,",O?/AU Rule

This rule is a simple and yet ex tremely powerful way to apply knowledge

--

30

of abstract stereotypical situations 1n parsing. There are only a small

number of abstract situations, $-MOPs, relevant to a particular domain. Once

one has been identi fied, the analysis of many Event Builders, including

complex and ambiguous ones, becomes very simple. Their underlying meaning and

relation to the relevant S_~OPs can be determined all at once.

The advantage of the S-MOP/ AU Rule, then, is that it allows the easy

identification and explanation of Action Units described in text. In addition,

it makes extremely simple an important kind of inference involving PPs wi th

roles in more than one AU explained by a single S-MOP. A further example of

the $-MOP/AU rule in action can be found in Section 6.

4. Identifying memory structures in the text

I have illustrated in the previous sections of this paper that it is

possible to make useful top-down predictions based upon the memory structures

used to represent a piece of text. However, for this process to be useful, it

must be possible to instantiate some of these structures initially.

Specifically, many Action Units can be identified directly in news

stories. I will present five specific methods that IPP uses to recognize AUs.

The first four of these methods depend upon the ability of various words to

include in their definitions pointers to Action Uni ts in the same fashion as

words point to Picture Producers. This will be discussed further below.

S-MOPs are generally inferred fran Action Uni ts. Certain key Action

Units appear only in certain situations, and hence can identify the relevant

s-MOPs.

31

4.1. Recognizing AUs

Since Action Units describe concrete events, they normally must be

identified in order to represent what is actually happening in a story. Once

the first AUs in a story have been identified, 1 t 1s possible to infer !!lore

abstract structures, such as S~"'OPs, which can in turn help recognize later

AUs.

For texts of the sort IPP deals with, there are five distinct methods for

identifying Action Units, including the S~"'OP/AU rule, which is often crucial

in the most difficul t cases. The five AU identifying rules are listed in

Figure 15. I will look at each in turn.

These five methods are the only ways that Action Units can be

instantiated in IPP's scheme of memory-based parsing. While there are

undoubtedly other s1 tuations where Action Uni ts need to be inferred, perhaps

from lower level primitives, limiting their instantiation to the five

situations in Figure 15 allows for a clearly specified process, and seems to

cover the large majority of situations.

At this point I will describe each of the five situations described in

Figure 15 in a bit more detail, and explain how AUs are instantiated in each

case.

4.1.1. Explicit mention

The most frequent way that Action Units are recognized in text is from

words that unambiguously mention them. Many action words, the Event Builders

(EBs) described in Section 2.2.1, have as their definitions pointers to

particular AUs. These include obvious words such as "shot", "hijacked" and

32

1 - There is an explicit mention of an AU by an
Event Builder in the text.
(exs: A Serbian nationalist hijacked ••.•

A twelve-year-old boy shot ..•)

2 - A Token Maker with an associated AU is followed
by an Event Builder describing that AU.
(exs: A Russian hijacker took over ••.•

Six gunmen attacked .••)

3 - A Token Maker with an associated AU is followed
by an Event Builder with a related AU.
(exs: Four bombs killed three bystanders ••.•

The Moluccan hijackers negotiated ..•)

4 - An Event Builder describing an AU predicted by an
instantiated S-MOP is found.
(exs: Terrorists shot and killed .•.•

After hijacking a 747. the gunman released •••)

5 - There is a default AU specified by an $-MOP.
(exs: Three businessmen were killed by terrorists.

(The default is that they were shot.)
Members of the Red Brigades wounded six

executives .••
(The default is that they were shot in

the legs.»

Figure 15: Methods for recognizing AUs in a text

"negotiated". When such a word is found. the specified AU is instantiated.

Many of these words are verbs. but other words that are syntactically nouns.

such as "death". "negotiation" and "hijacking" also fall into this class.

It is not at all surprising that words should include AUs in definitions.

Since Action Units are in effect "conceptual pictures." there is no more

reason these pictures should not be identifiable by words than the Picture

Producers of Conceptual Dependency [13]. Just as "book" or "Ronald Reagan"

point directly to descriptions of concrete objects. words such as "hijacked"

and "shot" point to Action Units.

33

Figure 16 lists a few words in English that point to each of several

different AUs.

CAUSE-DEATH
murdered, slayed, dead, died, deaths, killed
slain, executed, assassination, assassinated

$HIJACK
hijacked, boarded, commandeered, piracy, diverted

GS-CAPTURE-TERRORIST
captured, arrested, surrendered

$SHOOT
gunned, shooting, shot, machlnegunned, raked,
fired, submachine-gunned, firing, sprayed

$EXPLODE-BOHB
explosion, exploded, blew up, bombed, firebombed
bombing, blasted, detonated

F1gure 16: Assorted EBs and the AUs they point to

Notice from Figure 16 how an AU like CAUSE-DEATH can be described by

words wi th totally different syntactic properties - "deaths" and "killed" for

example. However, they all point to the same Action Unit, and, using the AU

Role Filling Rule, it is possible to detennine the various important role

fillers largely disregarding the specific action word in the story.

S10 is a typical example of the direct form of Action Unit instantiation.

S10 - UPI, 14 July 80, Mexico

Five students were shot to death and 15 others were wounded by hooded
gunmen who sprayed submachine gun fire at the volatile San Carlos
University in a mid-morning raid Monday authorities said.

In this story, "shot" unambiguously causes $SHOOT to be instantiated. In

cases such as this it is not hard for an understander using AUs as a parsing

-

34

target to determine the actions in the story. The definition of "shot" is

shown in Figure 17.

(DEF -EB SHOT
AU
USE-SUSJECT =
SYN-T!PE

= $SHOOT
if ACTOR then ACTOR role

= PP)

Figure 17: Definition of "shot"

This definition specifies that when "shot" is read, $SHOOT should be

instantiated, the syntactic subj ect, if a person or group, should fill the

actor role (in S10 the "unidentified couple" is the actor), and the word is a

past participle (i.e., can be made passive).

In this particular example, "shot" is in the passive fonn, so that the

use of the syntactic subject must be modified. Passives are one of the few

syntactic constructions that must be paid close attention to, and their

processing will be outlined in Section 5.1. The only point I would like to

make here is that the processing of passives depends almost entirely on the

Action Unit being built, and not the specific verb. So virtually any passive

verb that points to $SHOOT, for example, will use the syntactic subject in the

same fashion.

4.1.2. TM - EB combinations

Event Builders are not the only words that suggest the actions being

described in a story. Many IoIOrdS that primarily describe Picture Producers,

known as Token Makers (TMs) , also have Action Units associated with them.

Words such as "killer", "bombl! and "gunman" strongly indicate that CAUSE-

DEATH. $EXPLODE-80MB and $SHOOT or $SHOOT-ATTACK will be events mentioned in

35

the story.

It is not nonmally possible to instantiate an associated AU directly from

the Token Maker, since there is no guarantee the AU describes an event that

actually took place. For example, we might find a story such as 511.

511 - In Rome today, three terrorist gunmen were sentenced •••

While there is an implication in 511 that the terrorists did shoot

someone, that is not the event being described in the story, and should not be

at the center of our representation. Furthenmore, we would not want to expect

to immediately hear about the things normally associated with a shooting, such

as the victim or weapon.

Despi te these caveats, any confinming evidence for a 'I'M-related AU will

cause the AU to be instantiated. This evidence can take two forms, one of

which I will discuss in this section, and the other in the next.

The easiest way for a 'I'M-associated AU to finally be instantiated is

Simply to find an Event Builder later in the story that points to one of the

nt's associated AUs. The rule used in such cases, called the Pred ic ted AU

Instantiation Rule, is shown below.

When a Token Maker wi th one or more associated AUs is found, predict
that an Event Builder pointing to one of those AUs will appear later,
disambiguating 1n favor of such a meaning if necessary.

If such an EB is found, instantiate the AU.

Figure 18: The Predicted AU Instantiation Rule

512 is an example requiring this rule's application.

....

36

S12 - UP!, 23 July 80, Lebanon

Gunmen today shot and killed Riyad Taha, president of the Lebanese
newspaper publishers' association, and his driver in an ambush.

Taha, 54, a ShUte Moslem was shoot as he was going to his office in
predominantly Moslem west Beirut.

In S 12, "gunman" has the associated AU $SHOOT. Since the definition of

"shot" also points to this AU, the prediction from the Predicted AU

Instantiation Rule is satisfied, and $SHOOT is immediately instantiated.

Of course in this case, the gain in using the information from the tM is

rather slight, as "shot" could cause the instantiation of $SHOOT by itself (as

in the previous section). However, the tM knowledge becomes more important

when the confirming action word is less specific than in this case, since as

mentioned in the definition of the Predicted AU Instantiation Rule, we always

disambiguate words in favor of the associated AUs.

S13 illustrates this process.

S13 - UPI, 14 July 80, E1 Salvador

Heavily armed gunmen believed to be leftist guerrillas attacked the
National University early Monday but were beaten back by army troops
occupying the campus for the past three weeks witnesses said.

The word "attacked" is a general term that in the terrorism domain can

describe a variety of different acts of violence -- shooting, bombing and so

forth. In IPP it has several senses pointing to the different Action Uni ts

that are relevant. In S13, the word "gunmen" with its associated AU $SHOOT

makes the disambiguation of this word a simple matter. So while nei ther

"gunmen" or "attacked" by itself can cause the instantiation of $SHOOT, the

combination can.

37

This disambiguation ability can also apply in situations in which a word

has a secondary defini tion that would not normally be considered. So for

instance, while "sprayed" does not nonnally mean $SHOOT, in the context,

"gunmen sprayed "i t certainly does. This can be recognized using the

disambiguation rule described above, assuming $SHOOT is listed as a secondary

meaning for "sprayed". (Learning that "sprayed" can mean $SHOOT the first time

is a problem I will not discuss here.)

There is also a situation in which TH's with associated AUs can be useful

even when the Event 8uilder found later provides an unambiguous pointer to the

same AU. This comes about because in addition to knowing what AUs are related

to an TH, we also know wha t role the PP described by the TH will play in the

Action Unit. This can be quite useful in syntactically ambiguous situations.

Consider, for instance, the following two story openings.

S14 - An elderly man shot yesterday

S15 - Three gunman shot yesterday •••

In S14, we would undoubtedly aSSlDe that "shot" was being used in an

implicitly passive sense (partially because it is not followed by an object),

and that the man was actually the victim of the shooting.

For S15, on the other hand, since we know "gunman" normally acts as the

actor of $SHOOT, we will assume that this is in fact the case in this story.

Thus by using the memory-based knowledge of the AUs related to this Token

Maker, it is possible to avoid any serious syntactic disambiguation.

Finally, the AU" related to a TH do not all have to be part of the word's

38

literal definition, as is the oase for "hijaokers." It 1s possible that a

reader may learn over time that other events should be expeoted along ..nth the

deftni tional ones. For ins tanoe, in IPP, "gunman" has assooia ted wi th it

$KIDNAP and $HIJACK, among others, as' well as $SHOOT.

So in situations where Event Builders do not provide unambiguous

identifioation of Aotion Units, it is often possible to use Token Makers that

have assooiated AUs to olarify the situation.

4.1.3. 'I'M and related EB

Stories with TM-assooiated AUs frequently do not oontain an Event Builder

that explioitly poin ts to the AU. Instead, the presenoe of the AU must be

inferred from related even ts. For instanoe, it is immediately inferred from

"the sniper wounded •.• " that the wounding was a result of shooting, despite

the faot this is not mentioned direotly.

The rule used, oalled the Related AU Instantiation Rule, is presented

below.

If a Token Maker is found with an assooiated AU that has a role in a
given S-MOP, predict that the other methods, scenes and results of
that S-MOP will be mentioned.

If one does, assume that the associated AU also took plaoe.

Figure 19: The Related AU Instantiation Rule

This rule means that as well as ;:>redioting the AUs directly assooiated

with a TM (as in the Related AU Instantiation Rule), we also expeot EBs

describing related AUs. Figure 20 illustrates the situation abstraotly.

Assuming a TM has been found with the assooiated AU X1 (which can be a method,

resul t, or scene, al though method is the :nost common), IPP begins to check

39

each new Event Builder to see of it describes any of the AU" M1 - Mx, S1 - Sy

or R1 - Rz. If so, it assumes that both that AU and X1 did occur. This check

i~ not too computationally taxing as the mmber of S-MOP-related AUs is not

large, and any given Event Builder t's likely to have only one or two possible

AU definitions.

S-MOP I

: methods I scenes resul ts

V v V V
X1 M1 Mx S1 Sy R 1 ••• Rz ...

---------------:---,---------..... --
.\3sociated AU Predicted AUs

Figure 20: S-MOP related AUs

The Related AU Instantiation Rule i3 illustrated by the two examples

below.

S 16 - UPI, 3 February 80, El. Salvador

Unidentified gunmen killed two people and wounded 15 others in a
lightning attack on a church in downtown San Salvador, witnes3es said
Sunday.

S17 - Boston Globe, 17 January 1979, Lebanon

Six Moslem hijackers relea~ed all 66 passengers and nine crew members
of a Lebanese airliner early today ending a seven-hour drama they had
staged to protest the disappearance of a religious leader Imam Mousa
al-Sadr.

In the first example, the combination of the TM "gunman" with its

associated AU $SHOOT, and the EB "killed" wi th its related AU CAUSE-DEATH

result in $SHOOT being inferred, despite never being explicitly mentioned in

40

the text. Since CAUSE-DEATH is a result of S-ATTACK-PERSON, and $SHOOT is a

method, the Related AU Instantiation Rule can be applied, implicitly causing

the inference to be made that the attack took the form of a shooting.

S16is similar, except the Action Unit specifically mentioned in the text,

G$-RELEASE-HOSTAGES (from nreleased n) is a scene rather than a result. Again

the method, $HIJACK, can be inferred using the Related AU Instantiation Rule,

since $HIJACK is an associated AU of the PP "hijackern •

4. 1 .4. S40fOP pred ic ted AUs

The fourth way that AUs can be instantiated is from a combination of EBs

and predictions from already instantiated S-MOPs. This is a result of the S­

HOP/AU Rule described in Section 3.2.2. The only point I will reiterate here

is that this rule can be important in some of the same cases where TM­

associated AUs were important - when an EB' s definition includes more than

one AU that can be built, or for words that only imply an AU when strongly in

context.

4. 1 • 5. De fa ul ts

The final wayan Action Unit can be instantiated involves a case in which

it is not actually mentioned at all in the text. There are situa tions for

which we have defaul t expectations about the AUs that are likely to be

present, and if there is nothing to contradict that expectation, then we

assume it to be correct.

IPP starts out with a small number of such defaul ts that are needed to

understand news stories. An example would be that when we are told of an

attack against a person (i.e., the 5-ATTACK-PERSON S-HOP is instantiated) t and

do not hear about the results, then '",e assune the victim died. S18 is an

41

example of such a story.

S18 - UPI, 28 May 80, Italy

Two spectacular terrorist attacks in Rome and Milan 'oiedne~day jol ted
hope~ that police finally were w~nning against Italy's 10-year wave of
terrorism.

In Rome a commando squad of five right-wing gunmen shot three
policeman before score~ of high school students.

If this story ended at this point we would assume that the three

policemen had been killed in the attack. If the story specified their

condition more explicitly, the result Action Unit would override the default.

However, since none is specified, the default result, CAUSE-DEATH, for an S-

ATTACK-PERSON is instantiated.

As described in (8], defaults can often be learned by IPP. For example,

the program might generalize that shootings of businessmen in Italy usually

re~ult in their being wounded (and not killed). Such generalizations are then

applied in the same manner as the buil t-in defaul ts provided to the program.

4.2. Instantiation of s-MOPs

In order to use the s-MOP/AU rule presented in Section 3.2.2, IPP must

quickly instantiate S-MOPs as well as AUs, despite the fact that S ... "!OPs are

not nonnally mentioned explic i tly in a piece of tex t. '''e are not told

directly that terrorists attacked a person. Instead we hear that they shot the

person, or perhaps that they killed him, and we have to infer 5-ATTACK-PERSON.

S-MOPs thus have to be inferred. This normally happens by inference from

Action Units. The key determiners are Action Units that are are only used in a

Single S-MOP. So while an S~~OP like S-EXTORT can have an number of different

42

methods, an Action Unit such as $HIJACK virtually always occurs in service of

5-EX'rORT.

Thus when IPP reads a story such as S19, it can instantiate S-EXTORT as

soon as it recognizes that "hijacked" is identifying the AU $HIJACK. Then that

S-MOP can be used along with the S-MOP/AU Rule to explain the rest of the AUs

in the story.

S19 - UPI, 30 June 80, Argentina

A well-dressed gunman Monday hijacked an Aerolineas Argentinas Boeing
737 jet on a domestic flight and demanded $100000 and enough fuel to
fly to Mexico.

The man said to be in his twenties, released 45 passengers when the
flight fran the seaside cormnuni ty of Mar del Plata landed in Buenos
Aires, but at least seven people plus crewnembers remained on the
plane.

The plane, fl ight 601, was surrounded by air force pol ice when it
landed at Jorge Newbury metropolitan airport in Buenos Aires.

The $-MOP Instantiation Rule, then, is a simple one.

'.¥henever an Action Unit is instantiated that most commonly occurs as
part of a single $-MOP, also instantiate that S-MOP.

Figure 21: S-MOP Instantiation Rule

This rule proves to be quite effective, as virtually all stories specify

at least one appropriate Action Unit early on. If a widely used Action Unit

is found first in a story, IPP simply waits until an S-MOP is instantiated,

and then explains the AU in terms of it. One frequent example of this is the

AU CAUSE-DEATH, which is a result of both S-ATTACK-PERSON (a direct attack).

and S-DESTRUCTIVE-ATTACK, (where the deaths are a side-effect of the attack).

So if a story starts "Three men were killed ••.• " IPP will wai t and see

43

whether it continues "in a shooting " or "by a bomb explosion " before

deciding what $-MOP CAUSE-DEATH is a result of.

!he key to effective proce.ssin~ of a story by IPP, then, is to find as

rapidly as possible an AU that specifies an S-MOP that can them be used to

explain the rest of the actions that are described.

5. Language specific processing

Not all of the problems of text understanding can be handled by appealing

to top-down con tex t crea ted from memory. There are some language-specific

problems that must be dealt with. Three such issues are processing passive

verb constructions, recognizing noun groups, and disambiguating words with

mul tiple meanings. These three problems turn out to' be the only language

specific issues that IPP, must be concerned with.

IPP does not abandon its use of high-level memory structures in handling

language specific problems. In fact, the unifying theme behind the solutions

to the three problems I will discuss here is the way IPP continues to rely on

high-level structures as much as possible. As wi th all of IPP' s bottom-up

processing, the goal is to allow memory-based processing to take over as soon

as possible.

5.1. Passives

The passive construction in English is used to modify the role played by

the syntactic subject of a transitive verb. The crucial nature of recognizing

passives is illustrated by S20.

44

520 - UPI, 15 July 80, El Salvador

Five guerrillas were killed Wednesday in a shootout at a Salvadoran
graomar school where children were pinned to the noor by bullets
blasting into their classroom.

If we used strictly semantic considerations to determine the role of the

"fi ve guerrillas" in the killing described in 520, we would undoubtedly

conclude that they were the actors, due to our knowledge of the kind:s of

action:s often performed by guerrillas. However, the passive nature of the verb

"killed" overrides this possibility.

Recognizing most passive constructions is not difficult. IPP does so by

saving auxiliary forms of the verb "to be" in a short-term memory buffer, and

checking that buffer whenever a transitive Event Builder causes the

instantiation of an Action Unit.

More difficult is the question of deciding what to do with the syntactic

subject of an Event Builder that is passive. An Action Unit can have a number

of different roles, and all we know initially from the fact that the verb is

passive is that the normal slot filled by the subject is not correct.

One possiblli ty would be to have specific rules associated IoIi th each

Event Builder as to how role filling should be modi fied in the passive case.

However, this would go against the goal of making processing as independent as

possible of the specific language used.

Fortunately, there is another solution. It is illustrated by the set of

s tor i es below.

45

S21 - New York Times, 23 March 79, Guatemala

Manuel Colom Argueta, former mayor of Guatemala City and Guatemala's
most popular leftist leader, was murdered by unidentified gunmen as he
drove to his office in the Guatemalan capital this morning.

S22 - New York Times, 23 December 79. France

A TUrkish official was slain by a machine-gun-wielding terrorist today
on the Champs-Elysees.

S23 - UPI, 22 July 80, United States

A former Iranian diplomat who feared for his life because followers of
Ayatollah Ruhollah Khomeini are "mad, really mad" was killed on his
doorstep Tuesday by a man dressed as a postal worker.

These stories use different Event Builders to describe a person being

killed. In each case the verb is passive. Despite the different verbs in the

stories, the use of the subject in each is the same - it fills the VICTIM

role of the CAUSE-DEATH Action Unit.

This example illustrates a general rule, confirmed by looking at a number

of other stories with passive Event Builders. Knowledge about handling

passives can effectively be stored with Action Units rather than individual

Eas. PaSSive EBs that describe the same Action Unit use the syntactic subject

in the same way. In the examples above, the use of the passive subjects of

the EB's "murdered", "slain" and "killed" can be determined by refering to the

AU CAUSE-DEATH, and not the individual words.

All the stories above are processed correctly by a rule that the

syntactic subjects of Event Builders pointing to CAUSE-DEATH are used to fill

the VICTIM slot of the AU. This allows an accurate passive rule to remain

based on structures in memory.

46

Another situation worth noting involving passives concerns cases where

the passive nature of the verb is not made explicit in the story. This case is

also important, and requires the use of our world knowledge.

S24 is an example of such a situation.

S24 - UPI, 29 July 80, Unites States

A National1"t Chinese businessman kille<! by a bomb as he opened the
front door of the home he was visiting apparently was the victim of a
terrorist group seeking out Taiwanese officials, police said Tuesday.

The verb "killed" in S24 functions as if it were passive despite the lack

of any form of the verb "to be". (The verb is technically part of a modifying

clause.) Normally, the subject of killed indicates the actor of the CAUSE-

DEATH Action Unit (as in "the terrorist killed .•. "), but here it is the

victim. ~ with the more conventional passives, we must recognize this case in

order to correctly fill in roles. In fact, this turns out to be a very common

construction in news stories, and is qui te important for accurate

understanding.

Recogni tion of this case depends upon access of high-level structures.

Whenever IPP processes an Event Builder that has the potential of being made

passive (e.g., nonnally takes an object), it checks to see whether the nex t

word could initiate a noun phrase that might be the object of the Event

Builder. If not, the EB is potentially passive, and IPP checks further to see

whether this is actually the case.

IPP uses its knowledge of typical role fillers for the AU being

instantiated to see whether the syntactic subject is a particularly good

filler for the role nonnally filled by the subject of the EB (usually the

ACTOR role), thus overriding the hypothesi5 that the EB is pas5ive.

Otherwise, IPP assumes the construction to be passive and processing continues

as if there had been a form of "to be" preceding the EB (e.g., "the

businessman was killed").

It is the use of the Action Unit memory structure and its typical fillers

that provides the crucial knowledge needed to distinguish the unspecified

pa5sive case ("the businessman killed ••• ") from a 5tandard, active use of the

same Event Builder ("the terrorist killed ..• ").

5.2. Recognizing noun groups

The proce5sing of noun group5 1n English provide5 a difficult problem for

any under5tanding system. The positioning of the head noun last, and the

frequent use of noun-noun constructions contribute to the problem. One

example, admittedly a bi t extreme, that IPP enco'untered is 5hown in 525.

525 - Bo5ton Globe, 2 May 79

Two men disguised as police officers yesterday kidnapped and shot
prominent Cleveland Jewish community leader Julius Kravitz, chainnan
of the board of Pick In Pay Supermarkets and his wife Georgia in an
abortive $1.5 million ransom plot, police said.

The problem in S25 is recognizing that "prominent Cleveland Jewish

Community leader Julius Kravitz chairman of the board of Pick 'n Pay

Supermarkets" describes a single individual, while "his wife Georgia" is

someone else. Deciding the boundaries of a noun group, and how the parts go

together can be quite a problem. Gershman (4] has considered this problem in

some detail.

IPP concentrates on accurately determining the boundaries of noun groups.

'ihile this leaves some problem5 with creating the internal representation of

...

48

the Picture Producers described by noun groups, it does minimize confusion in

processing the surrounding text, preventing parts of the noun group to be

picked up by predictions as separate tokens.

The basic plan for IPP is to use Simple semantic and syntactic rules to

find the head noun in a noun group, using the save and skip strategy mentioned

in Section 2.2.2, to save the words in the noun group until the head noun is

found. Location of the head noun is performed using a series of Simple

heuristics. Their application is diagrammed in Figure 22.

While Figure 22 may appear complicated, in fact it is just the

implementation of a series of simple heuristics. The first heuristic is, 1) a

Token Maker followed by a non-TM is the head of a noun phrase.

remaining heuristics apply to TM/TM (noun/noun) constructions.

All the

2) Noun-

pronoun constructions do not exist as part of the same simple noun group. 3)

Last names end noun phrases. 4) Names appear only at the beginning of noun

phrases (possibly in groups), hence a name following a non-name must be in a

new noun group. 5) Time TM words do not combine with non-time TMs in the same

noun phrase. These 5 simple heuristics suffice to delimit almost all Simple

noun groups.

At this point in the processing of the noun group, with the head noun

located, it is possible to combine the previous words in the group (that were

saved in a short-term memory buffer) with the head noun to form a

representation of a conceptual Picture Producer. This part of the processing

was not considered in great depth in the design of IPP, but does clearly

involve the use of knowledge in memory about stereotypical Picture Producers.

49

no
r" the word following : ---> End of ~P
the current word a TM? :

yes
v

yes
Is the next word a pronoun? -----> End of NP

no
v

:-> End of NP
: yes

Is this word a

name?
yes Is thi s word a

-----> : known last name?

no
v

Is the next word a name?

no
v

Is either this or: yes
the nex t word a >

time word?

: no
V

<I)

yes
---> End of NP

: --> End of NP
: no

Are they both
time words?

Not end of NP; Save and skip word;

Go to next word

Figure 22: End of noun phrase determination

By using Simple heuristics to locate the head noun, IPP is able to apply

whatever information is available about the noun group at the most convenient

time, once it knows what is being described.

The remaining major problem in delimiting noun groups is recognizing when

two consecutive simple noun groups actually describe the same Picture

Producer. This was the problem in handling the description of "Julius Kravitz"

in 525.

50

Here again IPP uses simple syntactic and memory-based rules. It assumes

any two noun groups not separated by an Event Builder or function word may be

describing the same PP. Memory is then consul ted to see if any of the

properties of the two Simple noun groups are in conflict. In the absence of

any such conflict. the noun groups are aSSLmed to be describing the same PP.

and the information from them is combined.

With the Julius Kravitz example this rule indicates that "Julius Kravitz"

and "chairman of the board" are potentially the same person. A memory check

determines that a role such as "chairman" does not conflict with a name, and

hence they are assumed to be describing the same person.

This contrasts with the processing of "and his wife Georgia", Again

these could be describing the same person (as in "chairman of the board and

member of the executive colIltlittee •• ,If) • but this time the role and gender of

the new noun phrase conflict with the· previous and cannot be assumed to

describe the same person.

The rules currently implemented in IPP for determining Ioihether noun

groups can be merged are quite simple. The focus has been on making the tests

at the correct times. The eventual solution will require using knowledge about

the features of people and objects. (See [2] and [14] for a discussion of the

kinds of information available about people.)

As with the processing of passives, the solution to deciding whether noun

groups can be merged is again one of using simple syntactic rules that allow

semantic information to take priority Ioihen possible.

51

5.3. Re~olution of ambiguity

One problem any natural language understander must address is the

ambiguity of mo~t words. With no restriction upon domain, nearly all common

words have more than one meaning, and some, such as "got" and "ran" have

literally score~. Some par~ing systems have considered this problem to be the

central one in understanding, and have had their design centered about a

solution to it ((6, 15J, for example).

IPP does not use a single solution to ambiguity. Instead several methods

involving our knowledge of the world, simple syntactic rules, and the

redundancy of language. These methods include 1) disambiguation by domain, 2)

disambiguation by prediction, 3) syntactic disambiguation, and 4) skipping

ambiguous words.

5.3.1. Disambiguation by domain

The primary method of disambiguating interesting words in IP? arose from

the observation that very few significant words seem to be ambiguous wi thin

the terrorism domain. Once the domain of a story has been iden ti fled, it is

often easy to pick single, appropriate deftni tions for words. For example,

consider the word "sprayed" in S26.

S26 - New Haven Journal Courier, 12 June 79, El Salvador

Terrorists sprayed a cal" carrying a group of school teachers wi th
automatic weapons fire Monday, killing three and wounding two, police
said.

usually means something like "propel liquid in stream," but in this

story, and in fact throughout the terrorism domain, its definition is a

pOinter to the Action Unit $SHOOT. Once a story has been identified as being

in the terrorism domain, words like "sprayed" cease to be ambiguous. Other

•

52

words of this type include "divert" ($HIJACK), II fired" ($SHOOT), and

"occupied" ($TAKEOVER).

For IPP, as currently implemented, this scheme of definition means many

lexical items need have just one sense, since IPP deals wi th only a single

domain. However, in the long run we would need lexical definitions sensitive

to the domains that have been recognized. We might want words to have default

defini tions that are active unless certain domains have been found. I. e. ,

"sprayed" would have the standard meaning, unless we were in the terrorism (or

a similar) domain.

Domain dependent definitions will require that some interesting problems

of domain delineation be solved. For example, for "sprayed" to mean "shot" in

a domain implies that the domain covers acts of terrorist violence, but not

vandalisM or low-key protests, where "sprayed slogans on the walls" would

become a reasonable possibil.i ty. Learning how such domains are del1mi ted and

recognized, as well as how the overlap among domains is handled is an

important topic to be considered in future research.

Disambiguation by domain brings up the problem of recognizing an

appropriate domain in the first place. This is not a problem that IPP deals

with. Some ideas on domain selection can be found in [3, 9J.

5.3.2. Predictive disambiguation

Disambiguation by prediction is another powerful tool. It has been used

by many conceptual analysis systems. It can be applied in two basic ways.

One is the actual prediction of certain words which might appear in the text.

This is especially important for Function Words. As seen earlier, Action

Units such as $HIJACK often fully specify how subsequent prepositions should

53

be processed. In general, most Function Words have no real meaning of their

own, and can only be handled by proper predictions.

The second method of predictive-disambiguation uses the rule that when we

expect to see a word with a specified conceptual meaning, and a word is found

with several meanings, one of the which matches the prediction, then it should

be assumed that it is the intended meaning. This rule has been used in other

predictive parsing systems such as ELI (12) and CA (1). It can be used in

conjunc tion with many of the memory-based predictions. such as the S-~OP/ AU

rule and the Associated AU Instantiation rule. This is an extremely powerful

technique, and is in fact one of the main advantages of predictive processing.

Predictive disambiguation is necessary 1n S27.

S27 - Washington Star, 23 December 79. Rhodesia

Black gunmen attacked the suburban heme of Patriotic Front guerrilla
co-leader Robert Mugabe I s sister on the first day of the Rhodesian
truce yesterday and wounded two of her children.

The Event Builder "attacked" underspecifies the events it describes, even

within the terrorism domain. It can refer to any of the Action Units $SHOOT,

SEXPLODE-BOMB or $ASSAULT. However. in this case it is nicely disambiguated

using the Associated AU Instantiation rule in conjunction wi th the

disambiguation philosophy stated above. The Token Maker "gunmen" has $SHOOT

as an associated Action Unit. Fran this the Associated AU Instantiation rule

predicts that an Event Builder pointing to the same AU is likely to follow.

Since one of the meanings of "attacked" does refer to $SHOOT, that meaning is

selected as the correct one, thereby disambiguating the word.

It seems to be true in many cases that when an ambiguous word serves a

..

54

crucial role in a story it can be disambiguated by predictions such as those

from the Associated AU Instantiation and s-MOP/AU rules.

5.3.3. Syntactic disambiguation

There is a moderately large group of lexical items that appear in the

terrorism domain that are ambiguous in a rather simple fashion. They have

mul tiple definitions, but each word sense is a different word type. For

instance, Token Refiners such as "Russian" or "American" also have Token Maker

senses. So we can have ei ther "The Russian gunmen shot ••• " or "The Russian

shot .•• " The similarity between the semantics of the senses in the example

above ls not coincidental. The senses of most of the words in this class have

this property. One way to handle these words might be simply to have only one

definition for each word and manipulate the meanings cleverly.

IPP adopts another solution. however. IPP definitions are always bas~

around the processing to be done. In the example above, when "Russian" is

acting as a TM we want to build a token. For the TR case, we should simply

save and skip "Russian," since processing will be Simpler if we wait for the

head noun (see Section 5.2, above). Therefore, if it is not too hard to do

so, we would like to use different definitions for the two cases.

Fortunately, in this case, as in many others, the disambiguation test is

a simple syntactic test. We can determine with a high degree of certainty the

sense of "Russian" to pick by simply looking at the next word. If the next

word could be part of the same noun phrase, them we assume the TR sense,

otherwise the TM sense must be the right one.

This kind of simple, one-word look ahead, disambiguation test is adequate

for most of the syntactically ambiguous words used by IPP. In fact, the very

55

test described above handles the largest subclass of these words. By using

tests of this kind, IPP avoids a great many other processing problems.

5.3.4. Skipping ambiguous words

The final technique IPP uses for disambiguation that I will describe here

relies heavily on the fundamental redundancy of language. The technique is to

try and skip words which are ambiguous, whenever possible. This counts on the

fact that if a word is hopelessly ambiguous, there will be other words wi th

the same meaning that get the point across.

An example of the practical nature of this strategy can be seen in S28.

S28 - UPI, 11 January 80, Corsica

Thirty nationalist gunmen who held 10 hostages in a hotel for two days
surrendered peacefully early today and released their captives
unharmed •

is a word that is extremely ambiguous. ("Hold" has 32 major definitions

in Webster's Third New International Dictionary). In fact, it is so ambiguous

that there will always be other clues as to what is going on. In this case,

the definition of the word "hostage" itself indicates the relevance of the

$TAKEOVER Action Unit.

It is feasible to save "held" in a short-term memory buffer rather than

totally skipping it, so that words like "hostage" can check and be sure it was

appropriate (and not a word like "shot"). However, an IPP style processor

would never do extensive bottom-up proceSSing on "held". due to the extreme

ambiguity and corresponding lack of clear meaning.

A plausible explanation for the success of this strategy is that many of

the more common words in English are used to convey shades of meaning. and the

55

less common, and usually less ambiguous words carry the bulk of the

communicative load. At many levels of understanding, it is possible to pay

little attention to the very ambiguous words.

6. A Detailed IPP Example

The following story, S29), will be be used to exemplify the parSing

techniques described in this paper. In this paper I will only illustrate the

parsing of the first sentence. Parsing repeated mentions of the same event,

as in the second sentence, raises new problems, discussed in [8].

S29 - UPI, 23 July 80, Lebanon

Gunmen today shot and killed Riyad Taha, president of the Lebanese
newspaper publishers' association and his driver in an ambush.

Taha, 54, a Shiite Moslem, was shot as he was going to his office in
predominantly Moslem West Beirut.

The gunmen who opened fire at his car escaped.

IPP begins its processing of a story such as S29 with no specific

expectations about what is likely to be described. Its first processing goal

is to create a context allowing memory-based rules to be used. In the

processing of this story, as with most news stories, it is possible to get an

idea as to what the story is about almost immediately.

ProceSSing begins in Figure 23. "Gunmen" provides the first source of

toP-down expectations. It is a Token Maker with several associated Action

Units. Specifically, it is defined as the plural of "gunman", inheriting most

of its properties from the definition of that word which has several

associated AUs, as shown in Figure 24.

51

[PH: Initiation. 9-Sep-80 3:25PM]

TOOLS TOPS-20 Command processor 4(560)-1
@IPP

IPP, ready 9-Sep-80 15:25:19

·(PARSE S29)

Story: S29 LEBANON

(GUNMEN TODAY SHOT AND KILLED RIYAD TAHA *COMMA*
PRESIDENT OF THE LEBANESE NEWSPAPER PUBLISHERS'
ASSOCIATION AND HIS DRIVER IN AN AMBUSH)

Processing:

GUNMEN : Interesting token - GUNMEN

Pr~ictions - LOOK-FOR-GUNMEN-ASSOCIATED-AU
FIND-GUNMEN-ASSOC-SIBLING

Figure 23: 1M with associated AUs

(D-SYN GUNMEN GUNMAN PLURAL]

(DEF-TM GUNMAN
SUBTYPE
ACTOR-TYPE
ASSOCIATED-AU

ACTOR
A-ROLE
«$SHOOT

($SHOOT-ATTACK
($KIDNAP
($HIJACK

TOKEN
*TOKEN·
·TOKEN*
*TOKEN·

= ACTOR)
= ACTOR)
= ACTOR)
= ACTOR]

Figure 24: Definitions of "gunmen" and "gunman"

Reading "gunmen" causes IPP to activate requests that implement the

Predicted AU Instantiation Rule and the Associated AU Instantiation Rule. In

this case the first request, LOOK-rOR-GUNMEN-ASSOCIATED-AU, has a test

examining incoming lexical items to see whether they have definitions pointing

to any of the associated AU's for "gunmen" (1.e., $SHOOT, $SHOOT-ATTACK,

58

$KIDNA? or $HIJACK). If such an AU is found, it is instantiated with the

token created for the conceptual Picture Producer "gunmen", used to fill the

ACTOR role (as in the definition of "gunman" for each AU). FIND-GUNMEN-ASSOC-

SIBLING implements the Associated AU 'Instantiation rule in the same fashion.

It does not take long for LOOK-FOR-GUNMEN-ASSOCIATED-AU to be satisfied

by the text, as seen in Figure 25.

TODAY
SHOT

Nonnal token - TODA Y
Word satisfies prediction

Prediction confinned - LOOK-FOR-GUNMEN-ASSOCIATED-AU

Figure 25: Associated AU request satisfied

When "shot" is read, the Predicted AU Instantiation Rule is satisfied,

since that word's definition includes a pointer to the script $SHOOT, one of

the associated AUs of "gunman". This would happen even if IP? had several

definitions for "shot", only one of which indicated an associated AU.

The confirmation of LOOK-FOR-GUNMEN-ASSOCIATED-AU causes $SHOOT to be

instantiated, i.e., added to the description being built up for S29. In

addi tion, the token created for the gunmen is identified as filling the ACTOR

role of $SHOOT based on the definition of "gunmen". The identification of the

first :nemory structure in the story resul ts in further processing, shown in

Figure 26.

Once $SHOOT has been instantiated, two separate types of processing take

place new requests are activated to create top..down context for

59

»> Instantiated $SHOOT structure

Predictions - $SHOOT-ROLE-FINDER REDUNDANT-AU-WORDS
$SHOOT -S YN-F INDER

Figure 26: $SHOOT instantiated

understanding later text, and a check Is made to see if an appropriate S-MOP

can be instantiated.

The first request shown activated in Figure 26, $SHOOT-ROLE-FINDER,

implements the AU Role Filling Rule. As presented in Section 3.2.1, this rule

uses the descriptions of typical role fillers included in the definition of

$SHOOT to attempt to determine the roles of Picture Producers that follow in

the text. (The definition of $SHOOT can be found in Figure 5.) In this case,

IPP loo~ for ?Ps that could be construed as the vic tim, weapon, or wounded

body part role of $SHOOT.

The second request activated by the instantiation of $SHOOT, REDUNDANT-

AU-WORDS, looks for repeated mentions of that AU. This implements the idea

that once an Action Unit has been mentioned in a text, it is likely to be

mentioned again. Later mentions can provide additional details for our

description of the event.

The final request activated at this point in the processing is $SHOO'l"-

SYN-FINDER. It is based on the definition of the Event Builder "shot" t and

checks for the preposition "In" indicating the part of the victim's body that

was shot.

Along with the activation of top-down predictions, the recognition of an

60

Action Unit causes a check to be made for potential S-MOP instantiation.

»> Instantiated 5-ATTACK-PERSON structure

Predictions - 5-ATTACK-PERSON-RELATED-AUS

Figure 27: S-ATTACK-PERSON instantiated

As shown in Figure 27, the instantiation of $SHOOT does cause the

selection of an S-MOP to be used in describing S29. $SHOOT, as shown in its

definition, has a nonnal S-MOP, 5-ATTACK-PERSON, that should be instantiated

when $SHOOT is found, but not already explained by another S-MOP. This is

feasible, since although the method of the 5-ATTACK-PERSON S-MOP can be any of

a number of AUs, the only S-MOP that $SHOOT is a method for is S-ATTACK­

PERSON.

The final parsing action taken at this point is to activate a request

implementing the S-MOP/ AU rule. This request, S-ATTACK-PERSON-RELATED-AUS,

checks incoming text for Event Builders that refer to any of 5-ATTACK-PERSON's

other methods, scenes or results.

At this point, considerable top-down context has been created by the

instantiation of the memory structures S-ATTACK-PERSON and $SHOOT. There are

three active semantic requests looking for $SHOOT's role fillers, additional

mentions of $SHOOT, and other AUs related to S-ATTACK-PERSON.

IPP's processing of "shot" is complete at this point. What is worth

noting is how quickly and how thoroughly it was possible to set up a context

to be used as a source of top-down predic tions. Almost all the rest 0 f the

61

understanding of S29 is toP-down to at least sane degree.

The first example of the use of the context set up is shown in Figure 28.

when "killed" is encountered.

AND
KILLED

Function word - conjunction - save and skip
Word satisfies prediction

Prediction confirmed - S-ATTACK-PERSON-RELATED-AUS

»> In3tantiated CAUSE-DEATH structure

Predictions - REDUNDANT-AU-WORDS CAUSE-DEATH-ROLE-FINDER

Figure 28: S-MOP/AU Rule sati3fied

The S-MOP/AU Rule is used to identify "killed" as describing the CAUSE-

DEATH Action Uni t - a result of S-AT'I'ACK-PERSON. This occurs in a similar

fashion to the way, $SHOOT was identified from "shot" using the A:ssociated AU

Instantiation Rule. by looking through its definitions for one that points to

any of S-ATTACK-PERSON' s related AUs. The action of this request cause3

CAUSE-DEATH to be in3tantiated and attached to the existing S-ATTACK-?ERSON as

a result. In addition. a new role filling request ba3ed on the AU Role Filling

Rule is activated which attempts to fill the roles of CAUSE-DEATH.

Notice that the satisfaction of the S-MOP/AU prediction immediately

specifies the causality between the shooting and the killing (fran information

built into 5-ATTACK-PERSON). without any extensive inference process.

Another benefit of the attachment of this instance of CAUSE-DEATH to S-

ATTACK-PERSON is that the role relation process. as described in Section

3.2.2. immediately determines that the actor of CAUSE-DEATH is the same as the

62

ac tor of $SHOO'I', the gunmen . Again this is done Simply, ignoring any

syntactic considerations, relying on our knowledge of the stereotypical

aspects of the situation.

RIYAD
TAHA

Token refiner - save and skip
Normal token - TAHA

Prediction confirmed - CAUSE-DEATH-ROLE-FINDER(VICTIM)

Figure 29: AU Role Filling Rule confirmed

In Figure 29, IPP begins the processing of a rather complex noun group.

As soon as it has identi ned it as a name however, a token is buH t for the

Picture Producer being described, and the role finding request that was

activated during the instantiation of CAUSE-DEATH tests to see whether this

token might fill any of the AU's roles. (The recognition of novel words that

indicate names is not a problem deal t with by IPP. Work on this problem was

done for the FRUMP program [3].)

The new token does satisfy the predicate describing the VICTIM role of

CAUSE-DEATH, since it accepts any person or group not normally associated with

terrorist acts. Nothing in particular is known about Riya Taha yet, except his

name, but he assumed to be the victim. Using the relation among roles provided

by S-ATTACK-PERSON, Taha is also identified as the victim of $SHOOT.

The remainder of the noun group, in Figure 3D, provides additional

information about Riya Taha.

"President" specifies a role that could feasibly be further describing

·COMMA·

PRESIDENT
_> Adding

OF
THE
['EBANESE
NEIISPAPER

_) Adding

63

Skip

Interesting token - PRESIDENT
information to: RIYAD TAHA
Function word _ preposition -
Function word _ Token refiner - save and skip
Token refiner - save ·and skip
Interesting token - LEBANESE NEWSPAPER
information to: PRESIDENT

Figure 30: Noun grouping

Taha I and w is a~~umed to do so. The phrase "of the Lebanese new15paper" is

treated as a prepositional phrase modifying "president". IPP does not analyze

such phrases deeply. It assumes that since the object of the preposition is an

organization, it is specifying that the actor described by the token (Taha)

has something to do with a ne~spaper in Lebanon.

?UB['ISHERS'
ASSOCIATION

-> Adding

Token refiner _ save and skip
Intere.ting token - PUB['ISHERS' ASSOCIATION
information to: LEBANESE NEWSPAPER

Figure 31: Further noun grouping

The rema-inder of the processing of the noun group descrlbeing Taha, in

Figure 31, specifies that the organization he is president of is not actually

a ne~paper, but a newspaper publishers' aSSOCiation, using a simple rule that

two simple noun groups in succession ("newspaper" and "publisher's

association") are describing the same token if they have no known properties

that conflict. ""i" additional information 1s added to the token . for Taha.

The parsing of the rest of the sentence, in Figure 32, is rather

"uperficial. "ince no predictions are satisfied and no word3 requiring

extensive bottom_up processing are found, until the Event Builder "ambu3h" is

encountered •

AND
HIS
DRIVER
IN
AN
AMBUSH

64

Function word - conjunction - save and skip
Token refiner - save and skip
Normal token - DRIVER
Function word - preposition
Function word - Token refiner - save and skip
Word satisfies prediction

Prediction confirmed - S-ATTACK-PERSON-RELATED-AUS

»> Instantiated $AMBUSH structure

Predictions - $AHBUSH-ROLE-FINDER REDUNDANT-AU-WORDS

Figure 32: End of first sentence

The first sentence of S29 ends wi th the mention of another Action Unit

related to S-ATTACK-PERSON. Since "ambush" has as its definition a pointer to

$AMBUSH, a method for 5-ATTACK-PERSON, that AU is instantiated and attached to

the S-MOP by the S-ATTACK-PERSON-RELATED-AUS request that implements the S-

MOP/AU Rule.

The role filling for this AU must be done entirely on semantic grounds.

Using the relation between $AMBUSH and S-ATTACK-PERSON, IPP can determine that

the gunmen were the actors of the ambush, and Taha the person ambushed.

Notice that had the story been, "Taha was shot and killed by gunmen in an

ambush", IPP would fill the roles of $AMBUSH in a similar fashion, despite the

different syntactic construction.

By the time the first sentence has been read, IPP has Identi ned an

instance of S-ATTACK-PERSON. with the method being $SHOOT and the resul t

CAUSE-DEATH. The ACTOR of all these events is known to be a group of gunmen,

65

and a token has been created for the victim. the president of a pUbli3hers'

association in Lebanon.

1. A Comparison to Other AI Parsers

In this paper I have dhcussed the methods that IP? uses to parse natural

language. As a parser, it can be compared to other AI programs that transfol'"al

natural language into internal repre sentations .

The basic style of parsing performed by IPP has much 1n COrmlon with the

conceptua l analysis systems that originated with Rlesbeck's ELI (1',12] and

include Birnbaum and Selfridge's CA [1] that were designed to create a

Conceptual Dependency representation for sentences. Like these programs, IP?

makes use of prediction. as implemented by a production-11ke system of

test/action pairs (requests). to identify dements in text. Many of the

refinements of IPP's noun grouping process are related to the work of Gershman

(5J.

Despl te the underlying similarity between the conceptual analyzers and

IPP. there is an important d1fference in the way predictive understanding is

carried out. This involves the source of the predictions. In all the systems

mentioned above, the primary sources of predictions are complex, procedurally

oriented, word definitions. In contrast, IPP i3 able to create the ;najority

of the pr edictions it needs frem the memory :structures identified to describe

the :story being read. Thi3 13 done by rapidly identifying high-level memory

structures. and u3ing our knowledge of the stereotypical 51tuat1ons they

describe to proce33 later elements of the text.

The difference in the Source of prediction3 contra3t3 even
more stransly

66

wi th the conceptual analysis system of ~all, the Word Expert Parser (15].

This program focuses on the problem of multiple senses of words, and uses very

complex word definitions to achieve disambiguation and create a

representation.

Another way that IPP contrasts with all these programs lies in the lack

of total dependence on request-stYle processing in bottom-up situations. IPP

relies on a procedural flow-of-control that uses declarative word definitions

when there are no top-down predictions that explain a piece of text. It does

not try and force request technology, which is well-suited for forward looking

predictions, to handle non-predictive cases.

Another program that was influential in the creation of IPP was FRUMP

(3]. This program was deSigned to be a robust skimmer of news stories. It

has a novel design, consisting of two major modules, the Predictor, which

creates top-down expectations based on the scripts it believes are relevant to

the story, and the Substantiator. which attempts to confirm the expectations

made by the Predictor. This design has enabled FRUMP to process hundreds of

stories taken directly from the UPI news wire and produce representations

based on "sketchy scripts".

The shared goal of robust understanding has lead both IPP and FRUMP to

highly top-down. predictive designs. However. there are many important

differences between the programs. The two most notable involve order of

processing. and initial action representation.

IPP is a much more text driven program than FRUMP. It reads a story

sequentially from beginning to end, creating top-down context, and using it to

67

proce~s succeeding text. FRUMP instead moves its attention around in the

text. It first looks for information to seleet a sketchy script that

indicates what pieces of information should be searched for, and then goes

back to try and find this information. In this phase of the proceSSing. it

looks for action word~. and then goes back and forth looking at various words

surrounding these words.

The initial representation of actions in FRUMP is also different from

IPP. Rather than par se action words direetl,y into their ul tima te high-level

representation. FRUMP first uses Conceptual Dependency [13] deftni tions, and

then determines how the conceptualizations fit into the sketchy script being

used to describe the story. While this allows additional generality in some

cases, it also introduces a new level of processing that is often not

neces~ary in IPP.

Parsers that first perfonn syntactio analYSis on sentences have little in

common with IPP. Augmented Transition Network parser~ such as those described

in [16, 18. 19, 7], a~ well as other parsers by Winograd [17J and Marcus [10],

all treat syntactic analysis as a largely isolatable sub-part of the

understanding process, that can be followed by semantic· analysi~. Since the

syntactic structure of a sentence is of little use 1n itself. IPP does not

explicitly determine it as a story is being read. It pays attention to

syntactic details only when they affect the meaning being conveyed.

68

8. Conclusion

In this paper I have described 1n detail the parsing algori thIn used by

IPP, considering the novel elements of both its top-down, memory-based

proceSSing, and it bottom-up, heuristic techniques. The integration of these

procedures has led to the creation of a very successful. robust understanding

system.

IPP, wri ten in Yale/Rutgers/UCI LISP on a DECSystem 20/60, requires

about 100K words of storage for the program and 3200+ dictionaries en tries

(including part of the generalization code). It was able to successfully

process about 300 hundred stories, representing about 70 - 80S of the

unedi ted stories it was tested on (all the relevant stories that appeared in

local papers and the UPI newswire). It takes approximately 3 to 4 CPU seconds

to process a typical story.

These statistics indi?ate that it is possible to develop a high-powered

parser by making use of high-level memory structures to guide understanding.

69

REFERENCES

1. Birnbaum, L. and Selfridge, M. Problems in conceptual analysis of natural
language. Tech. Rept. 168, Yale University Department of Computer Science,
1919.

2. carbonell, J. G. Jr. Subjective understanding: Computer models of belief
systems. Tech. Rept. 150, Yale University Department of Computer Science,
1919.

3. DeJong, G. F. Skimming stories in real time: An experiment in integrated
understanding. Tech. Rept. 158, Yale University Department of Computer
Science, 1919.

~. Gershman, A. V. Analyzing English noun groups for their conceptual
content. Tech. Rept. 110, Yale University Department of Computer Science,
1911.

5. Gershman, A. V. Knowledge-based parsing. Tech. Rept. 156, Yale
University Department of Computer Science, 1979.

6. Hayes, P. Some association-based techniques for disambiguation by
machine. Tech. Rept. 25, Department of Computer Science, University of
Rochester, Rochester, NY, 1971.

7. Kaplan, R. M. In process models for sentence analysis. In D. A. Norman
and D. E. Rumelhart, Ed., Explorations ~ Cognition, W. H. Freeman and
Company, San FranCiSCO, CA, 1975.

8. Lebowitz, M. Generalization and memory in an integrated understanding
system. TeCh. Rept. 186, Yale University Department of Computer Science,
1980. PhD Thesis

9. Lehnert, W. G. Script selection. unpublished manuscript

10. Marcus, M.. ! Theory of SyntactiC Recognition for Natural Language. MIT
Press, cambridge, MA, 1980.

". Riesbeck, C. K. Conceptual analysis. In R. C. Schank, Ed., Conceptual
Information Processing, North Holland, Amsterdam, 1975.

'2. Riesbeck, C. K. and Schank, R. C. ComprehenSion by computer:
Expectation-based analysis of sentences in context. Tech. Rept. 78, Yale
University Department of Computer Science, 1916.

'3. Schank, R. C. "Conceptual Dependency: A theory of natural language
understanding." Cognitive Psychology ~, 4 (1972),532 - 631.

,-. Schank, R. C. and Lebowitz, M. Does a hippie own a hairdrier? Tech.
Rept. 1~4, Yale University Department of Computer Science, 1979.

15. 31Ia11. S. Word expert par:slng.
of the ~soclatlon for Computational
Computational Linguistics, La Jolla.

70

Proceedings of the 17th Annual
Linguistics. Association for
California, 1919. pp. 9 - 14 .

Meeting

16. Thorne, J., Bratley, P. and Dewar, H. The syntactic analys1" of English
by machine. In D. Michie. Ed' f Machine Intelligence],. American El!evier
Publ1shing Company. New York, 1968.

17. Winograd, T •• Understanding Natural Language. Academic Press, New York,
1972.

18. Woods.
analysis ,It

W. A. "Transition network grammars for natural
Communications ~ ~ ~ll (1970), 591 - 606 .

language

19. Woods, W. A. "Cascaded ATN grammars." Amerlcan Journal of Computational
Llngul.tlc. !. 1 (19801.

