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Abstract—An important problem in reliability engineering is
to predict the failure rate, that is, the frequency with which
an engineered system or component fails. This paper presents a
new method of estimating failure rate using a semiparametric
model with Gaussian process smoothing. The method is able to
provide accurate estimation based on historical data and it does
not make strong a priori assumptions of failure rate pattern (e.g.,
constant or monotonic). Our experiments of applying this method
in power system failure data compared with other models show
its efficacy and accuracy. This method can be used in estimating
reliability for many other systems, such as software systems or
components.

Index Terms—estimation theory, failure analysis, Gaussian
processes, parametric statistics, power system reliability, predic-
tion methods, reliability engineering, software reliability, statis-
tical analysis, stochastic processes.

I. INTRODUCTION

RELIABILITY is one of the most important requirements

of the smart grid and other sustainable energy systems.

By smart grid, we refer to an automated electric power system

that monitors and controls grid activities, ensuring the two-

way flow of electricity and information between power plants

and consumers—and all points in between [1]. In the past

ten years, the U.S. power grid has become less reliable and

more failure-prone; according to two data sets, one from the

U.S. Department of Energy and the other one from the North

American Electric Reliability Corp., the number of power

outages greater than 100 Megawatts or affecting more than

50,000 customers in the U.S. almost doubles every five years,

resulting in about $49 billion outage costs per year [2].

How to accurately and effectively evaluate system reliability

has been a long-time research challenge. One commonly used

indictor for system reliability is failure rate, which is the

frequency with which an engineered system or component

fails. To estimate the failure rate, historical failure information

and/or testing of a current sample of equipment are commonly

used as the basis of the estimation. After these data have
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been collected, a failure distribution model, i.e., a cumulative

distribution function that describes the probability of failure

up to and including time t, is assumed (e.g., the exponential

failure distribution or more generally, the Weibull distribution)

and used to estimate the failure rate.

Our experimental results indicate that using an exponential

or Weibull distribution prior may not be as effective for power

grid failure modeling as a particular semiparametric model

introduced in this work. This semiparametric model does

not assume a constant or monotonic failure rate pattern as

the other models do. We introduce Gaussian smoothing that

further helps the semiparametric model to closely resemble

the true failure rate. We applied this method to power network

component failure data and compared its blind-test estimation

results with the subsequent real failures. We also compared

it with other models during these experiments. In all of

these cases, the semiparametric model outperformed the other

models.

The paper is organized as follows. In the following section,

we will present some background information on reliability

analysis. Then we will describe our new model in detail,

followed by experimental results and analysis. We will further

compare our approach with other models. We will conclude

the paper after discussing related work.

II. BACKGROUND ON RELIABILITY ANALYSIS

The failure rate can be defined as the total number of failures

within an item population, divided by the total time expended

by that population, during a particular measurement interval

under stated conditions [3]. We use λ(t) to denote the failure

rate at time t, and R(t) to denote the reliability function (or

survival function), which is the probability of no failure before

time t. Then the failure rate is:

λ(t) =
R(t)−R(t+∆t)

∆t ·R(t)
.

As ∆t tends to zero, the above λ becomes the instantaneous

failure rate, which is also called hazard function (or hazard

rate) h(t):

h(t) = lim
∆t→0

R(t)−R(t+∆t)

∆t ·R(t)
.

A failure distribution F (t) is a cumulative failure distribution

function that describes the probability of failure up to and

including time t:

F (t) = 1−R(t), t ≥ 0.
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For system with a continuous failure rate, F (t) is the integral

of the failure density function f(t):

F (t) =

∫ t

0

f(x) dx.

Then the hazard function becomes

h(t) =
f(t)

R(t)
.

A. Weibull and Exponential Failure Distribution

For the Weibull failure distribution, the failure density

function f(t) and cumulative failure distribution function F (t)
are

f(t;λ, k) =

{

k
λ (

t
λ )
k−1e−(t/λ)k , t ≥ 0

0, t < 0

F (t;λ, k) =

{

1− e−(t/λ)k , t ≥ 0
0, t < 0

where k > 0 is the shape parameter and λ > 0 is the scale

parameter of the distribution. The hazard function when t ≥ 0
can be derived as

h(t;λ, k) =
f(t;λ, k)

R(t;λ, k)
=

f(t;λ, k)

1− F (t;λ, k)
=
k

λ

(

t

λ

)k−1

.

A value of k < 1 indicates that the failure rate decreases

over time. A value of k = 1 indicates that the failure rate

is constant (i.e., k/λ) over time. In this case, the Weibull

distribution becomes an exponential distribution. A value of

k > 1 indicates that the failure rate increases with time.

III. SEMIPARAMETRIC MODEL WITH GAUSSIAN

SMOOTHING

We consider the semiparametric estimation of the longitu-

dinal effect of a blip treatment (i.e., a single “all-or-nothing”

treatment occurring at a precisely recorded time) on a system

with recurring events (e.g., immediately-recoverable failures

in a mechanical/electronic system). The estimand is the effect

of the most recent blip treatment on the future arrival rate.

The method assumes that the effect of treatment is to scale

the underlying rate, and is thus an extension of Cox regression

with internal covariates, using the Gaussian process to provide

much-needed smoothing.

Although the method applies to any blip treatment, we focus

on estimating the effect of an event (failure) on future failures.

For example, an association of an event with an immediate

increase in failure rate provides a finely-detailed explanation

for “infant mortality” which can be compared with parametric

models such as the Weibull.

A. Probability and Regression Model

We assume each of N units is under observation for some

interval of time [0, T ]. The method can be easily adapted to

allow for units with missing observation periods (known in

advance). Let T denote the (finite) set of times at which an

event occurs. The unit to fail at time t (if any) is denoted

as i(t); ties are broken in preprocessing, if necessary, by

randomly selecting tied units and shifting their failures by one

second. For any unit j under observation at time t denote

by τt,i the time of the treatment (which is here the time

of previous outage). It turns out to be important to remove

“unobserved” units (i.e. those for which t − τt,i is unknown

due to left-truncation of the study); thus, the index-set of fully-

observed units at time t is given by R(t), and commonly called

the “risk set.” Note that if the mechanism for observation is

independent of the treatment and failure processes (i.e., if it is

fixed in advance), this does not introduce bias [4]. We consider

the non-parametric rate model as follows:

λ(t; i) = λ0(t)ψ(t− τt,i);

ψ(·) = eφ(·),

that is, 20 seconds after treatment the effect will be to make

failure ψ(20) = eφ(20) times more likely.

The full likelihood is then [4]:

l(λ0(·), ψ(·)) =
(
∏

t∈T
λ0(t)ψ(t− τt,i(t))

)

×

e−
∫

T

0

∑
j∈R(t) λ0(t)ψ(t−τt,j)dt.

The estimation proceeds in two steps, detailed in Appendix

B. The λ0 term is first shown to be estimated as 0 at all times

t /∈ T. Thus, conditioning on the failure times, the λ0 term is

cancelled out (since it affects all units equally). This allows

convenient estimation of ψ(t) = eφ(t). After the estimation

of ψ(t), the λ0 term may be estimated by a weighted non-

parametric estimator (which uses the estimate of ψ). For

simplicity, in this paper we fit the λ0 as a constant (within

each network) by using the method of moments (Appendix

C).

Since only the time since last treatment is tracked, it is

implicitly assumed that any prior treatments are immediately

“forgotten” by the system upon administration of a new

treatment.

The connection between the hazard λ and the distribution

function is detailed in Appendix A.

The information reduction induced by the Cox framework

should be very useful, especially in the Gaussian process setup

which scales as O(p3) in the number of predictors. To achieve

further reduction of data for numerical stability and to expedite

cross-validation, we “bin” values of t − τt,· (which can be

viewed as the predictors of φ(t− τt,·)) into percentiles.

B. Application

The method is applied to the failure rate of distribution

power feeders in three boroughs of New York City (Manhattan,

Queens, and Brooklyn). Distribution feeders are the power

cables that feed intermediate voltage power in distribution

grids. In New York City, underground distribution feeders,

mostly 27KV or 13KV, are one of the most failure-prone

electrical components in the power grid. The effect of infant

mortality and the changing hazard rate are of interest for

maintenance scheduling applications.

In our application, N = 81 and there are |T| = T = 667
distinct failure times (i.e., 667 total failures are observed

among the 81 units).
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C. Preliminary Fit

The model predictions without smoothing are provided in

Figure 1, which shows the failure rate versus time since

treatment, and they are clearly overfitted to the data. Since

events occur rarely, we have that some (t− τt,i)-bins may be

observed only once, associated with a failure, causing a direct

estimate of ψ(·) to overestimate. Likewise, many bins will be

associated only with the non-failed risk set, and ψ(·) will go

to 0. This effect will be more pronounced with a large number

of units and rare failures.
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Fig. 1: Preliminary fit

D. Gaussian Process

We apply a Gaussian process prior to the values φ(t) with

a radial basis function. After the standard marginalizing of the

prior [5] onto t ∈ T, the φ(t) are normally distributed with

mean 0 and covariance matrix K with

Kt,t′ = ae−(t−t′)2/b.

This marginal prior distribution will be referred to as π.

The parameters a, b are the marginal variance and so-called

“characteristic time-scale” respectively. We use the parameter

values a = 5, b = 1 · 103 based on good performance on the

training data. Alternatively, cross-validation on a grid search

on these parameters can be used to obtain approximate “point

estimates” of a, b.
Details of the fitting process are in Appendix D.

Figure 2 shows the smoothed fit using the Gaussian process

prior. It is much better than the unsmoothed fit.

IV. EMPIRICAL STUDY

We implemented the semiparametric model with Gaussian

smoothing and applied it to five years of distribution power

feeder failure data collected in New York City, as discussed in

Section III B. We further compared the estimation with what

actually happened. We also applied the exponential distribution
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Fig. 2: Smoothed fit

and Weibull distribution models on the same set of data and

compared their results with the results from the semiparametric

model.

A. Experimental Setup

Our experiments consist of three main groups of blind tests.

In New York City, the distribution power feeder failures are

seasonal. Duing summer heat waves, more feeder failures

are likely to happen. The three groups are estimates of the

failure rate for the summer, winter, and the whole year using

the historical data for the first three years, i.e., from year

2006 through 2008. Then we compare these estimates with

the actual failure rates measured for the years 2009–2010

using the failure data. We perform similar experiments on the

exponential and Weibull models.

B. Results and Analysis

The results of fitting the model are summarized in Table

I (giving the constants) and Figure 3 (giving the estimated

failure rate multiplier ψ(t)) for each network.

TABLE I: Summary of results (units are in days)
Network # of Units # of Failures Exponential λ

Queens: 01Q 26 327 75.2
Brooklyn: 01B 29 197 154.12

Manhattan: 02M 26 143 114.1

Network Weibull k Weibull λ Semiparametric λ0

Queens: 01Q 0.48 42 71.0
Brooklyn: 01B 0.69 120.4 130.0

Manhattan: 02M 0.62 108.0 112.1

To analyze the fit of each model, we integrate (numerically

for the semiparametric) to convert the hazard estimates to

estimates of the cumulative distribution function (see Section

3 and Appendix A). The resulting model fits are then visu-

ally and numerically compared to the empirical distribution

function of the data.
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Fig. 3: Semiparametric infant mortality rate estimates

TABLE II: Kolmogorov-Smirnoff test of fit
Training

Network Exponential Weibull Semiparametric
Queens: 01Q 0.40 0.19 0.13

Brooklyn: 01B 0.25 0.17 0.14

Manhattan: 02M 0.27 0.17 0.12

Testing
Network Exponential Weibull Semiparametric

Queens: 01Q 0.35 0.23 0.20

Brooklyn: 01B 0.27 0.20 0.16

Manhattan: 02M 0.38 0.31 0.32

The fit of each model is evaluated on the training (2006–

08) and test (2009–10) sets using the Kolmogorov-Smirnoff

(K-S) statistic [6], which is a distance between the empirical

distribution of the cumulative distribution function F , F̂emp,

and the F provided by each model fit. Since none of these

models are to be considered true, we use the statistic simply

as a “measure of fit” on training and holdout data, rather than

as a formal hypothesis test. The empirical distribution function

is defined as

F̂emp(t) =
1

T

∑

Iti<t,

with the sum being over all inter-arrival times in the data. The

K-S statistic is the maximum absolute discrepancy between

the two distributions, defined as

KS(F̂emp, F ) = sup
t

|F̂emp(t)− Fmodel(t)|.

As expected, the Weibull uniformly performs better than

the exponential. Table II shows the K-S test of fit. The

semiparametric method uniformly outperforms the Weibull

on the training data, and outperforms the Weibull on the

holdout test data in Queens and Brooklyn, demonstrating

accuracy in prediction. The semiparametric method comes

very close to the Weibull in test performance on the Manhattan

network which, notably, also exhibits the worst degradation

from training to test performance, across all models.

The comparison of the estimation results shows that the

failure rate estimates using the semiparametric model are

closer to the actual measured inter-arrival times, which means

the semiparametric model with Gaussian smoothing is more

accurate in estimating the failure rate.

V. RELATED WORK

Estimation of system reliability by modeling failure rate has

been an active research area. Various estimation models have

been proposed for different kinds of systems including power

electrical components, semiconductor chips and boards, and

software systems. The exponential, Bayesian, log-normal, and

Weibull approaches were popular in prior research. In 1974,

Littlewood and Verrall used a Bayesian reliability model to

estimate stochastic monotone failure rates [3]. Ibrahim et al.

formalized the field of Bayesian survival analysis in 2001 [7].

Rigdon and Basu described a way to estimate the intensity

function of a Weibull process [8]. Mudholkar and Srivastava

used the exponential Weibull family for analyzing the bathtub

failure rate model [9]. In prior sections, we compared our

approach with the exponential and Weibull models. Our ap-

proach differs from previous Bayesian models in making fewer

assumptions on a continuous failure distribution.

Among the failure patterns, the bathtub model and infant

mortality are perhaps the most well-studied [10], [9]. To

model non-constant failure rates, Jones used a constant failure

intensity assumption and exponential failure distribution-based

method to do the estimation, and experimented with the

method in reliability analysis of digital circuit devices [11].

Our approach does not assume a constant failure rate or

a constant failure intensity. The semiparametric model we

described is not a modified version of the exponential or

Weibull models.

In 1984, Laprie described a mathematical model for the

failure behavior of component-based software systems with

physical and design faults [12]. Hierons and Wiper researched

the estimation of software system failure rate using random

and partition testing methods [13]. Kubal et al. proposed a

way of estimating software system failure rate based on the

failure rates of the underlying components using a Bayesian

approach [14]. Although we directly applied our approach to

distribution power feeder failures here, our approach can be

directly applied to other areas, for instance, software reliability

analysis.

VI. CONCLUSION

This paper presented a new method of estimating failure

rate using a semiparametric model with Gaussian process

smoothing. The method is able to provide accurate estimation

based on historical data and it does not make strong a

priori assumptions of the failure rate pattern (e.g., constant

or monotonic). Our empirical studies of applying such an

approach in power system failure data and a comparison of

this approach with other existing models show its efficacy

and accuracy. This method may also be used in estimating

reliability for many other systems, such as software systems

or components.
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APPENDIX A

EQUIVALENCE OF HAZARD AND DISTRIBUTION

FUNCTIONS

From definition of the hazard function,

λ(t) = f(t)/(1− F (t)),

and from the definitions of

f(t) = −
∂(1− F (t))

∂t
,

and finally, from calculus,

∂ log(f(t))

∂t
=
f ′(t)

f(t)
.

Therefore:
−∂(1−F (t))

∂t

1− F (t)
= λ(t),

−
∂ log(1− F (t))

∂t
= λ(t),

− log(1− F (t)) =

∫ t

0

λ(u)du,

1− F (t) = e−
∫

t

0
λ(u)du,

F (t) = 1− e−
∫

t

0
λ(u)du.

APPENDIX B

MARGINALIZING TIMES WITHOUT FAILURE

We consider the contribution to the likelihood from the

observation of no failures between times ti−1, ti, assuming

no censoring and that φ(·) <∞:

L = e
−

∫ ti
ti−1

λ0(u)
∑

j∈R(u) e
φ(i−τu,j)du

.

Taking the functional derivative of λ0 at time s ∈ (ti−1, ti):

∂L
∂λ0(s)

=

(

e
−

∫ ti
ti−1

λ0(u)
∑

j∈R(u) e
φ(i−τu,j)du

)

×
(

−λ0(s)
∑

j e
φ(s−τs,j)

)

,

which is negative for all positive values of λ0(s). Since λ0 ≥ 0
by definition, the maximum likelihood estimate of baseline

hazard is λ̂0(s) = 0, which gives the MLE (i.e., Maximum

Likelihood Estimation) of failure rate

λ̂0(s)
∑

j

eφ(s−τs,j) = 0.

Substituting this into the likelihood, we see that it does

not depend on φ when there are no failures, reducing the

estimation problem to event times. This result, derived more

formally [15], is also valid under random censoring, as shown

by Cox and given in [4].

Thus, since intervals without failures give no information

about φ, we can reduce the problem of estimating φ to the

conditional probability of each observed unit failing at time t,
given that some unit failed at time t, which is:

∏

t

unit i fails at t

some unit fails at t

=
∏

t

λ0(t)e
φ(t−τt,i)

λ0(t)
∑

j e
φ(t−τt,j)

=
∏

t

eφ(t−τt,i)
∑

j e
φ(t−τt,j)

,

which gives the “Cox likelihood” for φ at those values t−τt,j ,
which are observed.

After the estimate of φ is obtained, we can derive an

estimate of Λ0 =
∫ t

0
λ0 through the weighted non-parametric

Nelson-Aalen estimator [16]. This Λ0 is smoothed and used

directly in computing the test-penalty, or if desired λ0 may

be approximately estimated by differentiating the smoothed

version.

APPENDIX C

FITTING λ0

For simplicity we take the baseline hazard λ0 to be constant

for each network. After estimating ψ, the reliability function

is

R(t) = e−
∫

t

0
h(t) = e−λ0

∫
t

0
ψ(u)du,

from which the mean time to failure can be computed directly

by the so-called layered representation of the expectation

(which follows from integration by parts):

Eλ0
[T ] =

∫ ∞

0

e−λ0

∫
u

0
ψ(u)dudt.

At this point, the λ0 is chosen by grid search over numeric

approximations of this integral, so that the mean time to failure

equals the empirical mean time to failure: Eλ0 [T ] = T .

APPENDIX D

FITTING THE GAUSSIAN PROCESS

The log-posterior probability is proportional to the sum

of the log of the Cox likelihood (l) and the log of the

marginalized Gaussian process prior (π):

∂L
∂λ0(s)

= l + π =
∑

t log φ(t− τt,i)−

log
∑

j∈R(t) φ(t− τt,j)+
(

− 1
2φ

†K−1φ
)

.

We apply the Newton-Raphson method to find the maximum

a-posteriori estimate. The gradient with respect to φ is

∇(l + π) =
∑

t

−ψ(t− τ·,t) + ei(t)st

st
+K−1φ,

with Hessian

(∇∇(l + π))i,j = ψ(t− τi,t)ψ(t− τj,t)/s
2
t +K−1,

where

st =
∑

j

ψ(t− τj,t),

the total hazard of observed units at time t, and ei(t) is the

unit basis vector indicating the failed unit at time t, δi(t).
The step-size is dynamically adjusted, and is stopped on a

relative improvement of the quasi-posterior probability by less

than 1.4e− 08.
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