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Abstract— This paper is concerned with rigid formations of
mobile autonomous agents using a leader-follower structure.
A formation is a group of agents moving in real 2- or 3-
dimensional space. A formation is called rigid if the distance
between each pair of agents does not change over time under
ideal conditions. Sensing/communication links between agents
are used to maintain a rigid formation. Two agents connected
by a sensing/communication link are called neighbors. There
are two types of neighbor relations in rigid formations. In the
first type, the neighbor relation is symmetric. In the second
type, the neighbor relation is asymmetric. Rigid formations
with a leader-follower structure have the asymmetric neigh-
bor relation. A framework to analyze rigid formations with
symmetric neighbor relations is given in our previous work.
This paper suggests an approach to analyze rigid formations
that have a leader-follower structure.

I. I NTRODUCTION

Multiagent systems have lately received considerable
attention due to recent advances in computation and com-
munication technologies (see for example [2], [8], [12],
[13], [1], [7], [17], [9]). In the context of this paper, agents
will simply be thought of as autonomous agents including
robots, underwater vehicles, microsatellites, unmanned air
vehicles, and ground vehicles. Aformation is a group
of agents moving in real 2- or 3-dimensional space. A
formation is calledrigid if the distance between each pair
of agents does not change over time under ideal conditions.
Sensing/communication links are used for maintaining fixed
distances between agents. The interconnection structure
of sensing/communication links is calledsensor/network
topology. In practice, actual agent groups cannot be ex-
pected to move exactly as a rigid formation because of
sensing errors, vehicle modelling errors, etc. The ideal
benchmark point formation against which the performance
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of an actual agent formation is to be measured is called a
reference formation.

Two agents connected by a sensing/communication link
are called neighbors. There are two types of neighbor
relations in rigid formations. In the first type, the neighbor
relation is symmetric, i.e., if agenti senses/communicates
with agentj and uses the received information for motion
planning, so does agentj with agent i. In the second
type, the neighbor relation is asymmetric, i.e., if agenti
senses/communicates with agentj and uses the received
information for motion planning, then agentj does not
make use of any information received from agenti although
it may sense/communicate with agenti. For example, rigid
formations with a leader-follower structure have the asym-
metric neighbor relation. A link with an asymmetric neigh-
bor relation between a leader and a follower is represented
with a directed edge pointing from the follower to the leader.
The terms, ‘undirected formation’ and ‘directed formation’,
are also used to describe formations with symmetric neigh-
bor relations and formations with leader-follower structure
[12]. Eren et al. [4], [5], [3] and Olfati-Saber and Murray
[8] suggested an approach based on rigidity for maintain-
ing formations of autonomous agents with sensor/network
topologies that use distance information between agents,
where the neighbor relation is symmetric. For formations
that have a leader-follower structure, Baillieul and Suri
give two separate conditions for stable rigidity, one of
which is a necessary condition and the other is a sufficient
condition [1]. This paper suggests an approach to analyze
rigid formations with a leader-follower structure and proves
that the necessary condition given by Baillieul and Suri is
a necessary and sufficient condition for stable rigidity in
formations that have a leader-follower structure.

The paper is organized as follows. In§II, we start
with definitions of point formations and rigidity. We then
review rigid formations with symmetric neighbor relations
in §III. We investigate rigid formations with leader-follower
structure in§IV. We end the paper with concluding remarks
in §V.

II. R IGIDITY AND POINT FORMATIONS

One way of visualizing rigidity is to imagine a collection
of rigid bars connected to one another by idealized ball
joints, which is called a bar-joint framework. By an ideal-
ized ball joint we mean a connection between a collection
of bars which imposes only the restriction that the bars
share common endpoints. Now, can the bars and joints
be moved in a continuous manner without changing the
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lengths of any of the bars, where translations and rotations
do not count? If so, the framework is flexible; if not, it
is rigid. (Precise definitions will appear in the sequel.)
In a bar-joint framework, the length of a bar imposes a
distance constraint for both end-joints. This is the same
situation in a formation where two agents connected by a
sensing/communication link are mutually affected by the
information conveyed by this link. For example, if two
agents connected by a sensing/communication link are set
to maintain a ten meter distance between each other, then
both agents perform action to maintain this distance. In the
graph theoretic setting, the edge corresponding to this link
is denoted by an undirected edge.

The situation in a rigid formation where the relation
between agents has a leader-follower structure is different.
Because the information on a sensing/communication link
between a leader-follower pair is used only by the follower.
For example, with the same distance requirement as in the
example above, if two agents, labelled withi and j, are
set to maintain a ten meter distance between themselves
where i is the leader andj is the follower, then only
agentj performs action to maintain this distance. Let us
assume the following properties in a formation of agents:
(i) there is a global formation leader that determines where
the entire formation moves, and it does not follow any
other member; (ii) there is a first-follower of the global
leader that maintains a predefined distance only to the global
leader; (iii) every other agent of the formation maintains
predefined distances to some other agents in the formation;
(iv) if an agent, sayB, maintains a predefined distance to
another agent, sayA, thenA does not perform any action
to maintain a predefined distance toB (in this relationA is
a leader andB is a follower). As the formation moves with
the leadership of the global leader, if the distance between
every pair of agents does not change over time under ideal
conditions, then such a formation is a rigid formation.

Certain directed information patterns in a formation can
be described by bar-joint frameworks. To do that, consider
creating a bar-joint framework in the plane starting from
two joints connected by a bar. Once the end-joints are held
fixed (i.e., translations and rotations are avoided), we can
insert a new joint by connecting it to the existing joints
using new bars. In this scenario, the constraints imposed by
the new bars act only on the newly inserted joint because
the initial bar-joint framework is already fixed and cannot
not be affected by the newly inserted bars and joints. If the
resulting bar-joint framework is not deformable, then this
new resulting bar-joint framework is rigid and it becomes
the new fixed bar-joint framework for the next step. In the
graph-theoretic setting, the directed edge points to the newly
inserted joint from the fixed bar-joint framework.

To summarize, there are two types of neighbor relations.
It can be symmetric, i.e., if agenti senses/communicates
with agentj and performs action upon the information it
receives, so does agentj. This corresponds to an undi-
rected graph. Alternatively, the formation can have a leader-

follower structure, i.e., agentj senses/communicates with
agent i and performs actions upon the information it re-
ceives, but the actions of agenti do not depend on the
information conveyed by the sensing/communication with
agent j. The underlying graph of such formations is a
directed graph. We will consider these two cases separately
in each section.

A point formationFp , (p,L) provides a way of repre-
senting a formation ofn agents.p , {p1, p2, . . . , pn} and
the pointspi represent the positions of agents inRd {d = 2
or 3} wherei is an integer in{1, 2, . . . , n} and denotes the
labels of agents.L is the set of “maintenance links,” labelled
(i, j), wherei and j are distinct integers in{1, 2, . . . , n}.
The maintenance linksin L correspond to constraints be-
tween specific agents, such as distances, which are to be
maintained over time by using sensing/communication links
between certain pairs of agents. Each point formationFp

uniquely determines a graphGFp
, (V,L) with vertex set

V , {1, 2, . . . , n}, which is the set of labels of agents,
and edge setL. A formation with distance constraints can
be represented by(V,L, f) where f : L 7−→ R. Each
maintenance link(i, j) ∈ L is used to maintain the distance
f((i, j)) between certain pairs of agents fixed.

A trajectory of a formation is a continuously parameter-
ized one-parameter family of curves(q1(t), q2(t), ..., qn(t))
in Rnd which containp and on which for eacht, Fq(t) is
a formation with the same measured values underf, g. A
rigid motion is a trajectory along which point formations
contained in this trajectory are congruent to each other.
We will say that two point formationsFp and Fr, where
p, r ∈ q(t), are congruent if they have the same graph and
if p and r are congruent.p is congruentto r in the sense
that there is a distance-preserving mapT : IRd → IRd such
that T (ri) = pi, i ∈ {1, 2, . . . , n}. If rigid motions are the
only possible trajectories then the formation is calledrigid;
otherwise it is calledflexible [4].

III. R IGIDITY IN POINT FORMATIONS WITH

SYMMETRIC NEIGHBOR RELATIONS

Whether a given point formation is rigid or not can
be studied by examining what happens to the given point
formationFp = ({p1, p2, . . . , pn},L) with m maintenance
links, along the trajectoryq([0,∞)) , {{q1(t), q2(t),
. . . , qn(t)} : t ≥ 0} on which the Euclidean distances
dij , ||pi − pj || between pairs of points(pi, pj) for which
(i, j) is a link are constant. Along such a trajectory

(qi − qj) · (qi − qj) = d2
ij , (i, j) ∈ L, t ≥ 0 (1)

We note that the existence of a trajectory is equivalent to the
existence of a piecewise analytic path, with all derivatives
at the initial point [11]. It is also equivalent to the existence
of a sequence of formations onp(n), n = 1, 2, . . . with the
same measurements, and withlimn→∞ p(n) converging to
p. Assuming a smooth (piecewise analytic) trajectory, we
can differentiate to get



(qi − qj) · (q̇i − q̇j) = 0, (i, j) ∈ L, t ≥ 0 (2)

Here, q̇i is the velocity of pointi. Them equations can be
collected into a single matrix equation

R(q)q̇ = 0 (3)

whereq̇ = column {q̇1, q̇2, . . . , q̇n} andR(q) is a specially
structuredm × dn matrix called therigidity matrix [10],
[15], [16].

Example 1. Consider a planar point formationFp shown
in Figure 1. This has a rigidity matrix as shown in Table I.

Let Mp be the manifold of points congruent top.
Because any trajectory ofFp which lies withinMp, is one
along whichFp undergoes rigid motion, (2) automatically
holds along any trajectory which lies withinMp. From
this, it follows that the tangent space toMp at p, written
Tp, must be contained in the kernel ofR(p). If the points
p1, p2, . . . , pn are in general position (which means that the
pointsp1, p2, . . . , pn do not lie on any hyperplane inIRn),
thenMp is n(n+1)/2 dimensional since it arises from the
n(n−1)/2-dimensional manifold of orthogonal transforma-
tions of IRn and then-dimensional manifold of translations
of IRn [10]. ThusMp is 6-dimensional forFp in IR3, and
3-dimensional forFp in IR2. We haverank R(p) = nd−
dimension kernelR(q) ≤ nd− n(n + 1)/2. The following
theorem holds [10], [15]:

Theorem 2. AssumeFp is a formation with at leastd points
in d-dimensional space{d = 2, or 3} whererank R(p) =
max{rank R(x) : x ∈ IRd}. Fp is rigid in IRd if and only
if

rank R(p) =

{
2n− 3 if d = 2,

3n− 6 if d = 3.

This theorem leads to the notion of the “generic” behavior
of rigidity. When the rank is less than the maximum, the
formation may still be rigid. However this type of rigidity
lacks the generic behavior and thus is not addressed in this
paper.

1) Generic Rigidity:We define a type of rigidity, called
“generic rigidity,” that is more useful for our purposes. It
is possible to characterize generic rigidity in terms of the
“generic rank” ofR where byR’s genericor maximal rank

Fig. 1. A planar point formation.

we mean the largest value ofrank{R(q)} asq ranges over
all values inIRnd. The following theorem is due to Roth
[10].

Theorem 3. A formationFp is generically rigid if and only
if

generic rank {R(p)} =

{
2n− 3 if d = 2,

3n− 6 if d = 3.

To understand this type of rigidity, it is useful to ob-
serve that the set of pointsp that satisfy the condition
rank R(p) = max{rank R(x) : x ∈ IRd} is a dense open
subset ofIRnd [10]. Thus, a generically rigid point forma-
tion Fp is rigid for almost all points in the neighborhood of
points aboutp in IRdn. The concept of generic rigidity does
not depend on the precise distances between the points of
Fp but examines how well the rigidity of formations can
be judged by knowing the vertices and their incidences,
in other words, by knowing the underlying graph. For this
reason, it is a desirable specialization of the concept of a
“rigid formation” for our purposes. The following theorem
holds for a generically rigid graph [15]:

Theorem 4. The following are equivalent:

1) a graph G = (V,L) is generically rigid in d-
dimensional space (d = 2, 3);

2) for somep, the formationFp with the underlying
graphG is generically rigid;

3) for almost allp, the formationFp with the underlying
graphG is generically rigid.

A point formationFp is strongly generically rigidif it
is generically rigid and ifrank R(p) = generic rank {R}.
Hence, a strongly generically rigid formation is rigid and it
remains rigid under small perturbations. This is the type of
rigidity that is useful for our purposes.

As noted above, the concept of generic rigidity does not
depend on the precise distances between the points inFp.
For 2-dimensional space, we have a complete combinatorial
characterization of generically rigid graphs, which was first
proved by Laman in 1970 [6]. In the theorem below,| . | is
used to denote the cardinal number of a set.

Theorem 5 (Laman [6]). A graphG = (V,L) is gener-
ically rigid in 2-dimensional space if and only if there is
a subsetL′ ⊆ L satisfying the following two conditions:
(1) |L′| = 2|V| − 3, (2) For all L′′ ⊆ L′,L′′ 6= ∅, |L′′| ≤
2|V(L′′)| − 3, where|V(L′′)| is the number of vertices that
are end-vertices of the edges inL′′.

2) Sequential Techniques:In this section, we present
sequential techniques to create minimally rigid point for-
mations. As noted earlier, Laman’s Theorem characterizes
rigidity in 2-dimensional space. But there is no comparable
complete result for 3-dimensional space. Although we lack
a characterization in 3-dimensional space, there are sequen-
tial techniques for generating rigid classes of graphs both



R(p) i j r s
(i, j) xi − xj yi − yj xj − xi yj − yi 0 0 0 0
(i, r) xi − xr yi − yr 0 0 xr − xi yr − yi 0 0
(i, s) xi − xs yi − ys 0 0 0 0 xs − xi ys − yi

(j, r) 0 0 xj − xr yj − yr xr − xj yr − yj 0 0
(j, s) 0 0 xj − xs yj − ys 0 0 xs − xj ys − yj

(r, s) 0 0 0 0 xr − xs yr − ys xs − xr ys − yr

TABLE I

RIGIDITY MATRIX EXAMPLE FOR DISTANCES

in 2- and 3-dimensional space based on what are known
as the vertex addition, edge splitting, and vertex splitting
operations. First, we introduce the first two of these three
operations, namely the vertex addition and edge splitting
operations. Then we present sequences to create rigid point
formations in which these operations are used. Before
explaining these operations and sequences, we introduce
some additional terminology.

If (i, j) is an edge, then we say thati andj areadjacent
or that j is a neighbor of i and i is a neighbor ofj.
The verticesi and j are incident with the edge(i, j). Two
edges areadjacentif they have exactly one common end-
vertex. Thedegreeor valencyof a vertexi is the number
of neighbors ofi. If a vertex hask neighbors, it is called a
vertex of degreek or a k-valent vertex.

One operation is thevertex addition: given a minimally
rigid graphG = (V,L), we add a new vertexi with d
edges betweeni andd other vertices inV in d-dimensional
space (d = 2, or 3). The other is theedge splitting: given
a minimally rigid graphG = (V,L), we remove an edge
(j, k) in L and then we add a new vertexi with d+1 edges
by inserting two edges(i, j), (i, k) andd−1 edges between
i andd− 1 vertices (other thanj, k) in V.

Now we are ready to present the following theorems:

Theorem 6 (vertex addition in undirected case - Tay,
Whiteley [14]). Let G = (V,L) be a graph with a vertex
i of degreed in d-dimensional space; letG∗ = (V∗,L∗)
denote the subgraph obtained by deletingi and the edges
incident with it. ThenG is generically minimally rigid if
and only ifG∗ is generically minimally rigid.

Example 7. Vertex addition operation in 2-dimensional
space for an undirected graph is shown in Figure 2.

Fig. 2. Vertex addition - undirected case.

Theorem 8 (edge splitting in undirected case - Tay,
Whiteley [14]). Let G = (V,L) be a graph with a vertex

i of degreed + 1; let Vi be the set of vertices incident
to i; and letG∗ = (V∗,L∗) be the subgraph obtained by
deletingi and itsd+1 incident edges. ThenG is generically
minimally rigid if and only if there is a pairj, k of vertices
of Vi such that the edge(j, k) is not inL∗ and the graph
G′ = (V∗,L∗⋃

(j, k)) is generically minimally rigid.

Example 9. Edge splitting operation in 2-dimensional
space for an undirected graph is shown in Figure 3.

Fig. 3. Edge splitting - undirected case.

Vertex addition and edge splitting operations are used in
Henneberg sequences.

Henneberg Sequences:Henneberg sequences are a sys-
tematic way of generating minimally rigid graphs based
on the vertex addition and edge splitting operations
[14]. In d-space, we are given a sequence of graphs:
Gd,Gd+1, . . . ,G|V| such that:

1) Gd is the complete graph ond vertices;
2) Gi+1 comes fromGi by adding a new vertex either

by (i) the vertex addition or (ii) the edge splitting
operation.

Note thatGi and Gi+1 correspond toG∗ and G in the
statements of Theorem 6 and Theorem 8. All graphs in the
sequence are minimally rigid ind-space.

IV. R IGIDITY IN POINT FORMATIONS WITH

LEADER-FOLLOWER STRUCTURE

First, we give some definitions from graph theory, which
are relevant to point formations with leader-follower struc-
ture. A graph in which each edge is replaced by a directed
edge is called adirected graph, also called adigraph. When
there is a danger of confusion, we will call a graph, which
is not a directed graph, anundirected graph. A directed
graph having no multiple edges or loops (corresponding to
a binary adjacency matrix with0’s on the diagonal) is called
a simple directed graph.



An arc, or directed edge, is an ordered pair of end-
vertices. It can be thought of as an edge associated with
a direction. Symmetric pairs of directed edges are called
bidirected edges. We will use only directed graphs with
no bidirected edges in the rest of the paper. The number
of inward directed graph edges from a given graph vertex
in a directed graph is called thein-degreeof the vertex.
The number of outward directed graph edges from a given
graph vertex in a directed graph is called theout-degreeof
the vertex. Acycle of a graphG is a subset of the edge
set ofG that forms a path such that the first vertex of the
path corresponds to the last. Adirected cycleis an oriented
cycle such that all arcs go the same direction. A digraph is
acyclic if it does not contain any directed cycle.

In a formation with leader-follower structure, each link is
denoted with a line directed from follower to leader. There
is one global leader and one first-follower of the global
leader. The global leader does not follow any other agent,
and the first-follower only follows the global leader. They
are connected with one link pointed from the first-follower
to the global leader. The rest of the agents are followers of
at least two other agents. They can also be leaders of other
agents.

In a rigid formation with leader-follower structure, once
we fix the positions of the global leader and the first-
follower, the formation cannot deform, including transla-
tions and rotations. The global leader and the first-follower
can make the entire rigid formation translate and rotate in
2-dimensional space by making maneuvers.

Recall that the first follower has a link of out-degree 1.
Since each agent in rigid formation, except the global-leader
and the first follower, has at least two links with an out-
degree of 2, we expect at least2(n− 2)+1 = 2n− 3 links
in total. We have the following conjecture:

Conjecture 10. A formation with leader-follower structure
is minimally rigid in 2-dimensional space if and only if the
following two conditions hold for the underlying graph: (1)
the undirected graph is minimally rigid; (2) the directed
graph has exactly one vertex of out-degree 0, one vertex of
out-degree 1, and the rest of the vertices are of out-degree
2.

We call these two conditionsminimal rigidity conditions
for directed graphs.

3) Sequential Techniques:One operation is thevertex
addition: given a minimally rigid graphG = (V,L), we
add a new vertexi of degree 2 with two edges betweeni
and two other vertices inV. The other is theedge splitting:
given a minimally rigid graphG = (V,L), we remove a
directed edge(j, k) (directed fromj to k) in L and then
we add a new vertexi of degree 3 with three edges by
inserting two edges(i, j), (i, k) and d − 1 edges between
i and one other vertex (other thanj, k) in V such that the
edge(i, j) is directed fromj to i.

Now we are ready to present the following theorems:

Theorem 11 (vertex addition - directed case).Let G =
(V,L) be a digraph with a vertexi of out-degree2 in 2-
dimensional space; letG∗ = (V∗,L∗) denote the subgraph
obtained by removingi and the edges incident with it.
ThenG satisfies the minimal rigidity conditions for directed
graphs if and only ifG∗ satisfies the minimal rigidity
conditions for directed graphs.

Proof: Inserting/removingi from the undirected graph
G is equivalent to vertex addition operation in undirected
graphs. Undirected minimally rigid graphs maintain rigidity
under vertex addition operation. Hence condition (1) is
satisfied in bothG andG∗.

Now suppose thatG satisfies the condition (2). If we
removei, then the out-degree of the vertices ofG∗ do not
change. Similarly, suppose thatG∗ satisfies the condition
(2). If insert i with out-degree 2, then the out-degree of the
remaining vertices do not change.

Example 12. Vertex addition operation for a directed graph
is shown in Figure 4.

Fig. 4. Vertex Addition - directed case.

Theorem 13 (edge splitting - directed case).Let G =
(V,L) be a graph with a vertexi of out-degree 2 and in-
degree1 (where this edge is betweeni and j); let Vi be
the set of vertices incident toi; and letG∗ = (V∗,L∗) be
the subgraph obtained by deletingi and its three incident
edges. ThenG satisfies the minimal rigidity conditions for
directed graphs if and only if there is a directed edge of a
pair j, k (directed fromj to k) of vertices ofVi such that
the directed edge(j, k) is not in L∗ and the graphG′ =
(V∗,L∗⋃

(j, k)) satisfies the minimal rigidity conditions for
directed graphs.

Proof: Condition (1) is the edge splitting operation
for undirected graphs as explained in§III. Suppose thatG
satisfies condition (2). Then removingi only changes the
out-degree ofj. However, an edge is inserted fromj to k.
So all the vertices ofG∗ have out-degree of 2. Conversely,
suppose thatG∗ satisfies condition (2). The newly inserted
vertex i is of out-degree 2. These edges do not change the
out-degree of other vertices. In the replacement of the edge
(j, k) by (j, i), the out-degree ofj is also preserved.

Example 14. Edge splitting operation for a directed graph
is shown in Figure 5.

For point formations with leader-follower structure, Bail-
lieul and Suri define stably rigid formations as follows: a



Fig. 5. Edge Splitting - directed case.

formation isstably rigidunder a distributed relative distance
control law as given in [1], if for any sufficiently small
perturbation in the relative positions of the agents, the con-
trol law steers them asymptotically back into the prescribed
formation in which the relative distance constraints are
satisfied. They give the following theorem as a sufficiency
condition for stably rigid formations:

Theorem 15 (Baillieul and Suri - Theorem 1 [1]). If a
formation is constructed from a single directed edge by a
sequence of vertex addition operation, then it is stably rigid.

Cycles in rigid formations that have a leader-follower
structure are not desirable (see for example [1], [13]).
Baillieul and Suri give the following proposition as a
necessary condition for stably rigid formations:

Proposition 16 (Baillieul and Suri - Proposition 1 [1]).
If a formation with directed links is stably rigid then the
following three conditions hold for the underlying graph:
(i) the undirected underlying graph is generically minimally
rigid; (ii) the directed graph is acyclic; (iii) the directed
graph has no vertex with an out-degree greater than 2.

Baillieul and Suri state that the conditions in Proposition
16 are not sufficient because there is a counterexample
graph shown in Figure 6. In [1] it is stated that the graph
satisfies the conditions of Proposition 16 but it is not stably
rigid. However, we note that this graph actually does not
satisfy the conditions of Proposition 16, because there is
a cycle (3, 5, 4, 6, 3) in the graph; hence it violates the
condition ii of Proposition 16.

Fig. 6. The figure given by Baillieul and Suri in [1] as a counterexample.

It can be proved that the conditions given in Proposition
16 are also sufficient conditions; hence these conditions are
necessary and sufficient conditions for stable rigidity. We

have the following proposition:

Proposition 17. A point formation in 2-dimensional space
with directed links is stably rigid if and only if the following
conditions hold for the underlying directed graph: (i) the
undirected graph is generically minimally rigid; (ii) the
directed graph is acyclic; (iii) the directed graph has no
vertex with an out degree greater than 2.

Proof: Baillieul and Suri prove the necessity part of
the proof in [1]. Here we prove the sufficiency part only.
Let us assume that the directed graph is acyclic. Then we
can take the directed edges to define a partial order on the
vertices:a ≥ b if the directed edge is pointed froma to b.
We can extend this by transitivity. Since there are no cycles,
this is a partial order with all vertices distinct. Since the
graph is minimally generically rigid, all vertices have degree
at least 2. Any maximal elements in this partial order have
only outgoing edges - and therefore has two such edges.
This can be removed (by reversed vertex addition operation)
to give a smaller, minimally rigid graph satisfying all of the
conditions. We continue this down to the initial directed
edge (the global leader and the first follower). Since this
reduction sequence can be reversed, the graph is constructed
using only the vertex addition operation. By Theorem 15,
such graphs are stably rigid.

Corollary 18. Equivalently a point formation in 2-
dimensional space that has a leader-follower structure is
stably rigid if and only if the point formation can be
constructed from the initial edge by the vertex addition
operation.

The edge split operation is not used in [1] because it is
stated in [1] that this operation results in vertices of degree
3. However, the edge split operation can be defined in such
a way that the out-degrees of vertices remain less than 3.
The definition given above for the edge split operation on
directed minimally rigid graphs results vertices of degree 2.
However, the edge splitting operation may or may not lead
to cycles in the directed graph as shown in Figure 7. The
question whether it can always be achieved so as to exclude
any cycle or so as to include at least one cycle, depending on
which we choose to aim for, is currently under investigation.

V. CONCLUDING REMARKS

In this paper, we suggested a way of analyzing rigid
formations that have a leader-follower structure in 2-
dimensional space. The necessity condition for stable rigid-
ity is given in [1]. We proved that this condition is
a necessary and sufficient condition for stable rigidity.
Rigid formations that have a leader-follower structure in
3-dimensional space will be addressed in future work.
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