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Abstract— This paper is concerned with rigid formations of ~ of an actual agent formation is to be measured is called a
mobile autonomous agents using a leader-follower structure. reference formation
A formation is a group of agents moving in real 2- or 3- Two agents connected by a sensing/communication link

dimensional space. A formation is called rigid if the distance lled neiahb Th ; " f iahb
between each pair of agents does not change over time under are calledneignbors ere are two types or neighbor

ideal conditions. Sensing/communication links between agents relations in rigid formations. In the first type, the neighbor
are used to maintain a rigid formation. Two agents connected relation is symmetric, i.e., if agertsenses/communicates
by a sensing/communication link are called neighbors. There \ith agent;j and uses the received information for motion
are two types of nelghbor rel_atlons in rigid f(_)rmatlons. In the planning, so does agent with agenti. In the second
first type, the neighbor relation is symmetric. In the second . s S . .
type, the neighbor relation is asymmetric. Rigid formations type, the ne'ghb_or relat"?n is asymmetric, i.e., if ag_e”t
with a leader-follower structure have the asymmetric neigh- Senses/communicates with agentnd uses the received
bor relation. A framework to analyze rigid formations with  information for motion planning, then agert does not
symmetric neighbor relations is given in our previous work.  make use of any information received from ageatthough
;Lr;f r?;%e;ﬁggggiﬁ%ﬁ%g?g{?ﬁé&o analyze rigid formations i 4y sense/communicate with agenfor example, rigid
' formations with a leader-follower structure have the asym-

metric neighbor relation. A link with an asymmetric neigh-
bor relation between a leader and a follower is represented

Multiagent systems have lately received considerabjith a directed gdge pointing from the fol!owerto the Iegder.
attention due to recent advances in computation and corhb® terms, ‘undirected formation and ‘directed formation’,
munication technologies (see for example [2], [8], [12]&€ also _used to descrlb(_e formz_itlons with symmetric neigh-
[13], [11, [7], [17], [9]). In the context of this paper, agentsbor relations and formations with IeaQer-foIIower structure
will simply be thought of as autonomous agents includinilz]- Eren et al. [4], [], [3] and Olfati-Saber and Murray
robots, underwater vehicles, microsatellites, unmanned affl Suggested an approach based on rigidity for maintain-
vehicles, and ground vehicles. formation is a group "9 formatlons of autonomous agents _W|th sensor/network
of agents moving in real 2- or 3-dimensional space. Aopologies thz?\t use d|sta_nce_ mformatlon between agents,
formation is calledrigid if the distance between each pairWhere the neighbor relation is symmetric. For formations
of agents does not change over time under ideal conditiorf§at have a leader-follower structure, Baillieul and Suri
Sensing/communication links are used for maintaining fixe@8ive o separate conditions for stable rigidity, one of
distances between agents. The interconnection struct#8ich is a necessary condition and the other is a sufficient
of sensing/communication links is callesensor/network condition [1]. This paper suggests an approach to analyze
topology In practice, actual agent groups cannot be exigid formations with aIengr-fquower stru_ct_ure and proves
pected to move exactly as a rigid formation because §fiat the necessary condition given by Baillieul and Suri is
sensing errors, vehicle modelling errors, etc. The ided necessary and sufficient condition for stable rigidity in

benchmark point formation against which the performanciormations that have a leader-follower structure.
The paper is organized as follows. I§ll, we start
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lengths of any of the bars, where translations and rotatiorfisllower structure, i.e., agent senses/communicates with
do not count? If so, the framework is flexible; if not, itagent: and performs actions upon the information it re-
is rigid. (Precise definitions will appear in the sequel.xeives, but the actions of ageitdo not depend on the
In a bar-joint framework, the length of a bar imposes anformation conveyed by the sensing/communication with
distance constraint for both end-joints. This is the samagent ;. The underlying graph of such formations is a
situation in a formation where two agents connected by directed graph. We will consider these two cases separately
sensing/communication link are mutually affected by thén each section.

information conveyed by this link. For example, if two A point formationF, = (p, £) provides a way of repre-
agents connected by a sensing/communication link are snting a formation of. agentsp = {py,ps,...,p,} and

to maintain a ten meter distance between each other, th#e pointsp; represent the positions of agentsifi {d = 2
both agents perform action to maintain this distance. In ther 3} wherei is an integer in{1,2,...,n} and denotes the
graph theoretic setting, the edge corresponding to this linkbels of agentsC is the set of “maintenance links,” labelled
is denoted by an undirected edge. (i,4), wherei and j are distinct integers id1,2,...,n}.

The situation in a rigid formation where the relationThe maintenance linksn £ correspond to constraints be-
between agents has a leader-follower structure is differertveen specific agents, such as distances, which are to be
Because the information on a sensing/communication linkaintained over time by using sensing/communication links
between a leader-follower pair is used only by the followehetween certain pairs of agents. Each point formatign
For example, with the same distance requirement as in tiiiquely determines a graghy, £ (v, L) with vertex set
example above, if two agents, labelled wittend j, are Vv = {1,2,...,n}, which is the set of labels of agents,
set to maintain a ten meter distance between themselvasd edge sef. A formation with distance constraints can
where i is the leader andj is the follower, then only be represented byV, L, f) where f : £L —— R. Each
agentj performs action to maintain this distance. Let usnaintenance linKi, j) € £ is used to maintain the distance
assume the following properties in a formation of agentsf((i, j)) between certain pairs of agents fixed.

(i) there is a global formation leader that determines where A trajectory of a formation is a continuously parameter-
the entire formation moves, and it does not follow anyzed one-parameter family of curvég (), g2(t), ..., gn(t))
other member; (i) there is a first-follower of the globalin R"* which containp and on which for each, F ) is
leader that maintains a predefined distance only to the globalformation with the same measured values untier A
leader; (iii) every other agent of the formation maintainsigid motion is a trajectory along which point formations
predefined distances to some other agents in the formatiamntained in this trajectory are congruent to each other.
(iv) if an agent, sayB, maintains a predefined distance towe will say that two point formation&, andF,, where
another agent, say, then A does not perform any action p,r € ¢(¢), are congruent if they have the same graph and
to maintain a predefined distanceBo(in this relationA is if p andr are congruentp is congruentto r in the sense

a leader and3 is a follower). As the formation moves with that there is a distance-preserving nap R? — IR¢ such

the leadership of the global leader, if the distance betweahat T'(r;) = p;,i € {1,2,...,n}. If rigid motions are the
every pair of agents does not change over time under ideathly possible trajectories then the formation is calligid
conditions, then such a formation is a rigid formation.  otherwise it is calledlexible [4].

Certain directed information patterns in a formation can
be described by bar-joint frameworks. To do that, consider
creating a bar-joint framework in the plane starting from
two joints connected by a bar. Once the end-joints are held Whether a given point formation is rigid or not can
fixed (i.e., translations and rotations are avoided), we cd¥e studied by examining what happens to the given point
insert a new joint by connecting it to the existing jointsformationF, = ({p1,p2,---,pn}, £) With m maintenance
using new bars. In this scenario, the constraints imposed ligks, along the trajectoryg([0,00)) £ {{q1(t),q(t),
the new bars act only on the newly inserted joint because-;q»(t)} : ¢ > 0} on which the Euclidean distances
the initial bar-joint framework is already fixed and cannotli; < |[p; — p;|| between pairs of pointép;, p;) for which
not be affected by the newly inserted bars and joints. If the/,j) is a link are constant. Along such a trajectory
resulting bar-joint framework is not deformable, then this
new resulting bar-joint framework is rigid and it becomes 2 .
the new fixeg bar-J!oint framework for tﬁe next step. In the (@i =) (6 —g;) =dij, @€l 20 (1)
graph-theoretic setting, the directed edge points to the newlye note that the existence of a trajectory is equivalent to the
inserted joint from the fixed bar-joint framework. existence of a piecewise analytic path, with all derivatives

To summarize, there are two types of neighbor relationst the initial point [11]. It is also equivalent to the existence
It can be symmetric, i.e., if agentsenses/communicates of a sequence of formations giin),n = 1,2, ... with the
with agentj and performs action upon the information itsame measurements, and wittn,, ., p(n) converging to
receives, so does agerit This corresponds to an undi- p. Assuming a smooth (piecewise analytic) trajectory, we
rected graph. Alternatively, the formation can have a leadecan differentiate to get

IIl. RIGIDITY IN POINT FORMATIONS WITH
SYMMETRIC NEIGHBOR RELATIONS



we mean the largest value oink{R(¢)} asq ranges over
L . all values inIR"?. The following theorem is due to Roth
(@~ ) (6 —d) =0, (Lj)eLl, t=20 @) g

Here, g; is the velocity of pointi. Them equations can be neqrem 3. A formationTF, is generically rigid if and only

collected into a single matrix equation if
R(q)g =0 3 ,
. . , 2n—3 ifd=2,
whereg = column {1, s, .- . , 4, } and R(q) is a specially generic rank {R(p)} = a6 ifde3
structuredm x dn matrix called therigidity matrix [10], '
[15], [16]. To understand this type of rigidity, it is useful to ob-

serve that the set of points that satisfy the condition
rank R(p) = max{rank R(z) : € IR?} is a dense open
subset oflR™¢ [10]. Thus, a generically rigid point forma-
Let M, be the manifold of points congruent tp. tionF, is rigid for almost all points in the neighborhood of
Because any trajectory df, which lies within. M,,, is one points aboup in IR%". The concept of generic rigidity does
along whichF,, undergoes rigid motion, (2) automatically not depend on the precise distances between the points of
holds along any trajectory which lies withid,. From F, but examines how well the rigidity of formations can
this, it follows that the tangent space fef, atp, written be judged by knowing the vertices and their incidences,
7,, must be contained in the kernel &fp). If the points in other words, by knowing the underlying graph. For this
p1,P2,- -, Py are in general position (which means that theeason, it is a desirable specialization of the concept of a
pointsp, po, ..., p, do not lie on any hyperplane iiR"), “rigid formation” for our purposes. The following theorem
then M,, is n(n+1)/2 dimensional since it arises from the holds for a generically rigid graph [15]:
n(n—1)/2-dimensional manifold of orthogonal transforma-
tions of R™ and then-dimensional manifold of translations . ) o
of IR" [10]. Thus M,, is 6-dimensional foiF, in R?, and 1) @ graph G = (V. L) is generically rigid in d-

Example 1. Consider a planar point formatioif, shown
in Figure 1. This has a rigidity matrix as shown in Table I.

Theorem 4. The following are equivalent:

3-dimensional forf, in IR?>. We haverank R(p) = nd— dimensional spaced(= 2,3); _
dimension kerneR(q) < nd — n(n + 1)/2. The following ~ 2) for somep, the formationF¥, with the underlying
theorem holds [10], [15]: graph G is generically r|g|_d; _ .

_ ) _ _ 3) for almost allp, the formation,, with the underlying
Theorem 2. AssuméF,, is a formation with at least points graph G is generically rigid.

in d-dimensional spacéd = 2, or 3} whererank R(p) = . ) ) ) L
max{rank R(z) : z € IRd}. F,, is rigid in R< if and only A point formation[F, is strongly generically rigidif it
if i is generically rigid and ifrank R(p) = generic rank { R}.
rank R(p) = 2n—3 ifd=2, Hence, a strongly generically rigid formation is rigid and it
3n—6 if d=3. remains rigid under small perturbations. This is the type of
This theorem leads to the notion of the “generic” behaviorrIgldlty that is useful for our purposes, S
- . . As noted above, the concept of generic rigidity does not
of rigidity. When the rank is less than the maximum, the . . S
. . - : ' “depend on the precise distances between the poirlfs.in
formation may still be rigid. However this type of rigidity . . . .
. . . . _For 2-dimensional space, we have a complete combinatorial
lacks the generic behavior and thus is not addressed in tfél
paper.
1) Generic Rigidity: We define a type of rigidity,
“generic rigidity,” that is more useful for our purposes. It
is possible to characterize generic rigidity in terms of th@heorem 5 (Laman [6]). A graphG = (V, £) is gener-
“generic rank” of R where byR'’s genericor maximal rank ically rigid in 2-dimensional space if and only if there is
a subsetl’ C L satisfying the following two conditions:
Q) 1L =2V| -3, @) Forall £’ C L', L" # 0,|L"] <
2|1V(L")| - 3, where|V(L")| is the number of vertices that
are end-vertices of the edges .

Raracterization of generically rigid graphs, which was first
proved by Laman in 1970 [6]. In the theorem beldw, is
called .
used to denote the cardinal number of a set.

2) Sequential Technigquesn this section, we present
sequential techniques to create minimally rigid point for-
mations. As noted earlier, Laman’s Theorem characterizes
rigidity in 2-dimensional space. But there is no comparable

i complete result for 3-dimensional space. Although we lack
a characterization in 3-dimensional space, there are sequen-
Fig. 1. A planar point formation. tial techniques for generating rigid classes of graphs both




R(p) 3 Jj r s

(J) | @i—m  yi—y; | 5= y; —vs 0 0 0 0
G,r) | i —xr  yi —yr 0 0 Tr — T  Yr —Ys 0 0
(4,8) | =i —xs  yi —ys 0 0 0 0 Ts —Ti  Ys — Yi
(J,m) 0 0 Tji—Tr Y —Yr | Tr — X5 Yr —Yj 0 0
(4, 9) 0 0 Tj—Ts  Yj —Ys 0 0 Ts — x5 Ys —Yj
(r,s) 0 0 0 0 Ty — Ts Yr —Ys | Ts —Tr  Ys — Yr

TABLE |

RIGIDITY MATRIX EXAMPLE FOR DISTANCES

in 2- and 3-dimensional space based on what are knownof degreed + 1; let V; be the set of vertices incident
as the vertex addition, edge splitting, and vertex splittingp ¢; and let G* = (V*, £L*) be the subgraph obtained by
operations. First, we introduce the first two of these thredeleting: and itsd+1 incident edges. The@ is generically
operations, namely the vertex addition and edge splittingninimally rigid if and only if there is a paiy, k& of vertices
operations. Then we present sequences to create rigid paift); such that the edgéj, k) is not in £* and the graph
formations in which these operations are used. Befor® = (V*, £*|J(4, k)) is generically minimally rigid.
explaining these operations and sequences, we introdug
some additional terminology.
If (,4) is an edge, then we say thaandj areadjacent
or that j is a neighbor of ¢ and i is a neighbor ofj.
The verticesi and j areincidentwith the edge(i, 7). Two PN G A
edges aredjacentif they have exactly one common end- /£ \ \‘/7 y -
////

gample 9. Edge splitting operation in 2-dimensional
space for an undirected graph is shown in Figure 3.

-G

vertex. Thedegreeor valencyof a vertex: is the number A ‘_’(\
of neighbors ofi. If a vertex hast neighbors, it is called a k ) N
vertex of degreé or a k-valent vertex \ \ //)
One operation is theertex addition given a minimally — \\N

rigid graphG = (V, L), we add a new vertex with d
edges betweehandd other vertices irV in d-dimensional
space { = 2, or 3). The other is theedge splitting given . " ) .
a minimally rigid graphG = (V, £), we remove an edge Vertex addition and edge splitting operations are used in
(j, k) in £ and then we add a new vertexvith d+1 edges Henneberg sequences.

by inserting two edge;, j), (i, k) andd— 1 edges between ~ Henneberg Sequencesienneberg sequences are a sys-
i andd — 1 vertices (other than, k) in V. tematic way of generating minimally rigid graphs based

Now we are ready to present the following theorems: ON the vertex addition and edge splitting operations
o ) [14]. In d-space, we are given a sequence of graphs:
Theorem 6 (vertex addition in undirected case - Tay, G, Gy, .-, Gy such that:

Whiteley [14]). Let G = (V, L) be a graph with a vertex
i of degreed in d-dimensional space; leG* = (V*, L*)
denote the subgraph obtained by deletingnd the edges
incident with it. ThenG is generically minimally rigid if
and only ifG* is generically minimally rigid.

4

%

Fig. 3. Edge splitting - undirected case.

1) Gy is the complete graph od vertices;

2) G;11 comes fromG; by adding a new vertex either
by (i) the vertex addition or (ii) the edge splitting
operation.

Note thatG; and G;4; correspond toG* and G in the
Example 7. Vertex addition operation in 2-dimensional statements of Theorem 6 and Theorem 8. All graphs in the

space for an undirected graph is shown in Figure 2. sequence are minimally rigid id-space.
iy G AP IV. RIGIDITY IN POINT FORMATIONS WITH
/’“/ \\ /,\/ \\) LEADER-FOLLOWER STRUCTURE
. / /
§ 4 \ > First, we give some definitions from graph theory, which
. \\ — ) are relevant to point formations with leader-follower struc-
\ — L /// ture. A graph in which each edge is replaced by a directed
a— | edge is called directed graphalso called aligraph When
. 3 . there is a danger of confusion, we will call a graph, which
Fig. 2. Vertex addition - undirected case. is not a directed graph, anndirected graph A directed

graph having no multiple edges or loops (corresponding to
Theorem 8 (edge splitting in undirected case - Tay, a binary adjacency matrix witt's on the diagonal) is called
Whiteley [14]). Let G = (V, £) be a graph with a vertex a simple directed graph



An arc, or directed edgeis an ordered pair of end- Theorem 11 (vertex addition - directed case)lLet G =
vertices. It can be thought of as an edge associated wifw, £) be a digraph with a vertex of out-degree2 in 2-
a direction. Symmetric pairs of directed edges are calledimensional space; le&* = (V*, £*) denote the subgraph
bidirected edgesWe will use only directed graphs with obtained by removing and the edges incident with it.
no bidirected edges in the rest of the paper. The numb&henG satisfies the minimal rigidity conditions for directed
of inward directed graph edges from a given graph vertegraphs if and only ifG* satisfies the minimal rigidity
in a directed graph is called the-degreeof the vertex. conditions for directed graphs.
The number of outward directed graph edges from a given
graph vertex in a directed graph is called the-degreeof
the vertex. Acycle of a graphG is a subset of the edge

Proof: Inserting/removing from the undirected graph
G is equivalent to vertex addition operation in undirected

set of G that forms a path such that the first vertex of theqraphs. Undlrecte(_j_m|n|mally T'g'd graphs mamt_a_m r|g|d|t3_/
. : under vertex addition operation. Hence condition (1) is
path corresponds to the last.dkected cycles an oriented P N
satisfied in bothG and G*.

cycle such that all arcs go the same direction. A digraph is Now suppose thaG satisfies the condition (2). If we

acyclicif it does not contain any directed cycle. removei, then the out-degree of the vertices®f do not

d In :;1fé)rm&ﬂonl'WML.Ieac:e;—ffoIlowfer”structltjrel, ezch “anl,( ISchange. Similarly, suppose th&t* satisfies the condition
enoted with a finé directed trom foflower to leader. 1 ner 2). If inserti with out-degree 2, then the out-degree of the

is one global leader and one first-follower of the globa - .

leader. The global leader does not follow any other agenrt(’amammg vertices do not change. =
and the first-follower only follows the global leader. TheyExample 12. Vertex addition operation for a directed graph
are connected with one link pointed from the first-followeris shown in Figure 4.

to the global leader. The rest of the agents are followers of

at least two other agents. They can also be leaders of other o g

agents. /@/ \\\\ /”LG//T\
In a rigid formation with leader-follower structure, once § . 4 ¢ '>)

we fix the positions of the global leader and the first- . 'i\ — ) <

follower, the formation cannot deform, including transla- \ / \ D

tions and rotations. The global leader and the first-follower \\\/ \\—L\\f

can make the entire rigid formation translate and rotate in

2-dimensional space by making maneuvers. Fig. 4. Vertex Addition - directed case.

Recall that the first follower has a link of out-degree 1.

Since each agent in rigid formation, except the global—leadqrheorem 13 (edge splitting - directed case)Let G —
and the first follower, has at least two links with an out—(V £) be a graph with a vertex of out-degree 2 and in-

Qegree of 2, we expect at Ige&{h— 2) +1=2n-3links degreel (where this edge is betweenand j); let V; be

in total. We have the following conjecture: the set of vertices incident t and letG* = (V*, £*) be
Conjecture 10. A formation with leader-follower structure the subgraph obtained by deletinigand its three incident

is minimally rigid in 2-dimensional space if and only if theedges. Theriz satisfies the minimal rigidity conditions for
following two conditions hold for the underlying graph: (1) directed graphs if and only if there is a directed edge of a
the undirected graph is minimally rigid; (2) the directedpPair j,k (directed fromj to k) of vertices of); such that
graph has exactly one vertex of out-degree 0, one vertex bfe directed edgéy, k) is not in £* and the graphG’ =
out-degree 1, and the rest of the vertices are of out-degrd®’™, £* (j, k)) satisfies the minimal rigidity conditions for

2. directed graphs.
We call these two conditionsiinimal rigidity conditions Proof: Condition (1) is the edge splitting operation
for directed graphs for undirected graphs as explained§hl. Suppose thatz

3) Sequential TechniquesOne operation is theertex satisfies condition (2). Then remoyin‘_gonly changes the
addition given a minimally rigid graphG = (V, L), we out-degree ofj_. However, an edge is inserted frofro k.
add a new vertex of degree 2 with two edges between SO all the vertices of* have out-degree of 2. Conversely,
and two other vertices i. The other is thedge splitting SUPPOSse that™ satisfies condition (2). The newly inserted
given a minimally rigid graphG = (V, £), we remove a vertexi is of out—degree' 2. These edges do not change the
directed edgdj, k) (directed fromj to k) in £ and then out-degree of other vertices. In th_e replacement of the edge
we add a new vertex of degree 3 with three edges by (J: k) by (4,4), the out-degree of is also preserved. []
inserting two edges:, j), (i,k) andd — 1 edges between Example 14. Edge splitting operation for a directed graph
i and one other vertex (other thgnk) in V such that the js shown in Figure 5.
edge(s, j) is directed fromj to i.

Now we are ready to present the following theorems: For point formations with leader-follower structure, Bail-

lieul and Suri define stably rigid formations as follows: a



/\G;//'\\\\ /J3’/ /ﬁ'\\\ have the following proposition:
<\ \ / \ % Proposition 17. A point formation in 2-dimensional space
( [ — ‘, N with directed links is stably rigid if and only if the following
\ > \ / conditions hold for the underlying directed graph: (i) the
~— S undirected graph is generically minimally rigid; (i) the
directed graph is acyclic; (iii) the directed graph has no
Fig. 5. Edge Splitting - directed case. vertex with an out degree greater than 2.

Proof. Balillieul and Suri prove the necessity part of

formation isstably rigidunder a distributed relative distancethe proof in [1]. Here we prove the sufficiency part only.
control law as given in [1], if for any sufficiently small Let us assume that the directed graph is acyclic. Then we
perturbation in the relative positions of the agents, the con take the directed edges to define a partial order on the
trol law steers them asymptotically back into the prescribe¥ertices:a > b if the directed edge is pointed fromto b.
formation in which the relative distance constraints ardVe can extend this by transitivity. Since there are no cycles,
satisfied. They give the following theorem as a Suﬁicienc§his is a partial order with all vertices distinct. Since the
condition for stably rigid formations: graph is minimally generically rigid, all vertices have degree
at least 2. Any maximal elements in this partial order have
Theorem 15 (Baillieul and Suri - Theorem 1 [1]). If & = only outgoing edges - and therefore has two such edges.
formation is constructed from a single directed edge by &hjs can be removed (by reversed vertex addition operation)
sequence of vertex addition operation, then it is stably rigic give a smaller, minimally rigid graph satisfying all of the

Cycles in rigid formations that have a leader-followerconditions. We continue this down to the initial directed
structure are not desirable (see for example [1], [13]£d9e (the global leader and the first follower). Since this
Baillieul and Suri give the following proposition as afeduction sequence can be reversed, the graph is constructed

necessary condition for stably rigid formations: using only the vertex addition operation. By Theorem 15,
such graphs are stably rigid. O
Proposition 16 (Baillieul and Suri - Proposition 1 [1]).

If a formation with directed links is stably rigid then the Corollary 18. Equivalently a point formation in 2-
following three conditions hold for the underlying graph:dimensional space that has a leader-follower structure is
(i) the undirected underlying graph is generically minimallyStably rigid if and only if the point formation can be
rigid; (ii) the directed graph is acyclic; (iii) the directed constructed from the initial edge by the vertex addition

graph has no vertex with an out-degree greater than 2. OPeration.

Baillieul and Suri state that the conditions in Proposition TN"€ €dge split operation is not used in [1] because it is
16 are not sufficient because there is a counterexampiited in [1] that this operation results in vertices of degree
graph shown in Figure 6. In [1] it is stated that the grapﬁ’- However, the edge split operation can be Qeflned in such
satisfies the conditions of Proposition 16 but it is not stabl Way that the out-degrees of vertices remain less than 3.
rigid. However, we note that this graph actually does nothe definition given above for the edge split operation on
satisfy the conditions of Proposition 16, because there firected minimally rigid graphs results vertices of degree 2.
a cycle (3,5,4,6,3) in the graph; hence it violates the However, the edge splitting operation may or may not lead

conditioni of Proposition 16. to cycles in the directed graph as shown in Figure 7. The
guestion whether it can always be achieved so as to exclude
3, any cycle or so as to include at least one cycle, depending on
\ which we choose to aim for, is currently under investigation.
J V. CONCLUDING REMARKS
; P In this paper, we suggested a way of analyzing rigid
o " formations that have a leader-follower structure in 2-

dimensional space. The necessity condition for stable rigid-
ity is given in [1]. We proved that this condition is

a necessary and sufficient condition for stable rigidity.

4/ Rigid formations that have a leader-follower structure in
¢ 3-dimensional space will be addressed in future work.

Fig. 6. The figure given by Baillieul and Suri in [1] as a counterexample.
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