
Real Time Data Mining-based Intrusion Detection

Wenke Lee
�
, Salvatore J. Stolfo

�
, Philip K. Chan

�
,

Eleazar Eskin
�
, Wei Fan

�
, Matthew Miller

�
, Shlomo Hershkop

�
, and Junxin Zhang

�

�
Computer Science Department, North Carolina State University, Raleigh, NC 27695

wenke@csc.ncsu.edu

�
Computer Science Department, Columbia University, New York, NY 10027�

sal,eeskin,mmiller,sh53,jzhang � @cs.columbia.edu

�
Computer Science Department, Florida Institute of Technology, Melbourne, FL 32901

pkc@cs.fit.edu

�
IBM T.J.Watson Research Center, Hawthorne, NY 10532

weifan@us.ibm.com

Abstract

In this paper, we present an overview of our research
in real time data mining-based intrusion detection systems
(IDSs). We focus on issues related to deploying a data
mining-based IDS in a real time environment. We describe
our approaches to address three types of issues: accuracy,
efficiency, and usability. To improve accuracy, data mining
programs are used to analyze audit data and extract fea-
tures that can distinguish normal activities from intrusions;
we use artificial anomalies along with normal and/or in-
trusion data to produce more effective misuse and anomaly
detection models. To improve efficiency, the computational
costs of features are analyzed and a multiple-model cost-
based approach is used to produce detection models with
low cost and high accuracy. We also present a distributed
architecture for evaluating cost-sensitive models in real-
time. To improve usability, adaptive learning algorithms are
used to facilitate model construction and incremental up-
dates; unsupervised anomaly detection algorithms are used
to reduce the reliance on labeled data. We also present an
architecture consisting of sensors, detectors, a data ware-
house, and model generation components. This architecture
facilitates the sharing and storage of audit data and the dis-
tribution of new or updated models. This architecture also
improves the efficiency and scalability of the IDS.

1 Introduction

Security of network systems is becoming increasingly
important as more and more sensitive information is being
stored and manipulated online. Intrusion Detection Systems
(IDSs) have thus become a critical technology to help pro-
tect these systems.

Most IDSs are based on hand-crafted signatures that
are developed by manual encoding of expert knowledge.
These systems match activity on the system being moni-
tored to known signatures of attacks. The major problem
with this approach is that these IDSs fail to generalize to
detect new attacks or attacks without known signatures. Re-
cently, there has been an increased interest in data mining-
based approaches to building detection models for IDSs.
These models generalize from both known attacks and nor-
mal behavior in order to detect unknown attacks. They can
also be generated in a quicker and more automated method
than manually encoded models that require difficult analy-
sis of audit data by domain experts. Several effective data
mining techniques for detecting intrusions have been devel-
oped [23, 11, 34, 5], many of which perform close to or
better than systems engineered by domain experts.

However, successful data mining techniques are them-
selves not enough to create deployable IDSs. Despite the
promise of better detection performance and generalization
ability of data mining-based IDSs, there are some inherent
difficulties in the implementation and deployment of these

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

systems. We can group these difficulties into three gen-
eral categories: accuracy (i.e., detection performance), ef-
ficiency, and usability. Typically, data mining-based IDSs
(especially anomaly detection systems) have higher false
positive rates than traditional hand-crafted signature based
methods, making them unusable in real environments. Also,
these systems tend to be inefficient (i.e., computationally
expensive) during both training and evaluation. This pre-
vents them from being able to process audit data and detect
intrusions in real time. Finally, these systems require large
amounts of training data and are significantly more com-
plex than traditional systems. In order to be able to deploy
real time data mining-based IDSs, these issues must be ad-
dressed.

In this paper, we discuss several problems inherent in de-
veloping and deploying a real-time data mining-based IDS
and present an overview of our research, which addresses
these problems. These problems are independent of the ac-
tual learning algorithms or models used by an IDS and must
be overcome in order to implement data mining methods in
a deployable system.

An effective data mining-based IDS must address each
of these three groups of issues. Although there are tradeoffs
between these groups, each can generally be handled sepa-
rately. We present the key design elements and group them
into which general issues they address.

The rest of this paper is organized as follows. In
Section 2, we discuss the issues related to detection per-
formance and provide several algorithm independent ap-
proaches to improve the accuracy of a system. In Section 3,
we discuss efficiency issues and present techniques for ef-
ficient model computation. In Section 4, we discuss gen-
eral usability issues and techniques to address these issues
and in Section 5 we discuss a system architecture for im-
plementing the techniques presented throughout the paper.
Section 6 surveys related research, and Section 7 offers dis-
cussion of future work and conclusive remarks.

2 Accuracy

Crucial to the design and implementation of effective
data mining-based IDS is defining specifically how detec-
tion performance, or accuracy, of these systems is mea-
sured. Because of the difference in nature between a data
mining-based system and a typical IDS, the evaluation met-
rics must take into account factors which are not important
for traditional IDSs.

At the most basic level, accuracy measures how well an
IDS detects attacks. There are several key components of
an accuracy measurement. One important component is de-
tection rate, which is the percentage of attacks that a system
detects. Another component is the false positive rate, which
is the percentage of normal data that the system falsely de-

termines to be intrusive. These quantities are typically mea-
sured by testing the system on a set of data (normal and in-
trusions) that are not seen during the training of the system
in order to simulate an actual deployment.

There is an inherent tradeoff between detection rate and
false positive rate. One way to represent this tradeoff is
by plotting the detection rate versus false positive rate on
a curve under different parameter values creating a ROC
curve1. A method to compare accuracy between two IDSs
is to examine their ROC curves.

In practice, only the small portion of a ROC curve corre-
sponding to acceptably low false positives is of interest, as
in a deployable system, only a low false positive rate can be
tolerated. Hand-crafted methods typically have a fixed de-
tection threshold, they perform at a constant detection rate
across different false positive rates. In a ROC curve, we can
assume that their curve is a straight line at each detection
level. Data mining-based systems have the advantage of po-
tentially being able to detect new attacks that hand-crafted
methods tend to miss. Data mining-based IDSs are only
useful if their detection rate is higher than a hand-crafted
method’s detection rate with an acceptably low false pos-
itive rate. Given this framework, our goal is to develop
a data mining-based IDS that is capable of outperforming
hand-crafted signature-based systems at the tolerated false
positive rate.

We have developed and applied a number of algorithm-
independent techniques to improve the performance of data
mining-based IDSs. In this section, we focus on a few par-
ticular techniques that have been proven to be empirically
successful. We first present a generic framework for ex-
tracting features from audit data which help discriminate
attacks from normal data. These features can then be used
by any detection model building algorithm. We then de-
scribe a method for generating artificial anomalies in order
to decrease the false positive rate of anomaly detection algo-
rithms. Our research has shown that by generating artificial
anomalies, we can improve the accuracy of these ID mod-
els. Finally, we present a method for combining anomaly
and misuse (or signature) detection models. Typically mis-
use and anomaly detection models are trained and used in
complete isolation from each other. Our research has shown
that by combining the two types of models, we can improve
the overall detection rate of the system without compromis-
ing the benefits of either detection method.

2.1 Feature Extraction for IDS

Two basic premises of intrusion detection are that system
activities are observable, e.g., via auditing, and there is dis-

1Receiver Operating Characteristic (ROC) graphs are used in many de-
tection problems because they depict the tradeoffs between detection rate
and false positive rate [4].

tinct evidence that can distinguish normal and intrusive ac-
tivities. We call the evidence extracted from raw audit data
features, and use these features for building and evaluating
intrusion detection models. Feature extraction (or construc-
tion) is the processes of determining what evidence that can
be taken from raw audit data is most useful for analysis.
Feature extraction is thus a critical step in building an IDS.
That is, having a set of features whose values in normal au-
dit records differ significantly from the values in intrusion
records is essential for having good detection performance.

We have developed a set of data mining algorithms for
selecting and constructing features from audit data [19].
First, raw (binary) audit data is processed and summarized
into discrete records containing a number of basic features
such as in the case of network traffic: timestamp, dura-
tion, source and destination IP addresses and ports, and er-
ror condition flags. Specialized data mining programs [24]
are then applied to these records to compute frequent pat-
terns describing correlations among features and frequently
co-occurring events across many records. A pattern is typi-
cally in the form ���������	��
�� confidence � support which
translates to event � and � are followed by events � and

 with a certain confidence and occur with a certain fre-
quency in the data (the pattern’s support). The consistent
patterns of normal activities and the “unique” patterns asso-
ciated with an intrusion are then identified and analyzed to
construct additional features for connection records. It can
be shown that the constructed features can indeed clearly
separate intrusion records from normal ones. Using this ap-
proach, the constructed features are more grounded on em-
pirical data, and thus more objective than expert knowledge.
Results from the 1998 DARPA Intrusion Detection Evalua-
tion [25] showed that an IDS model constructed using these
algorithms was one of the best performing of all the partic-
ipating systems.

As an example, let us consider the SYN flood attack.
When launching this attack, an attacker uses many spoofed
source addresses to open many connections which never be-
come completely established (i.e., only the first SYN packet
is sent, and the connection remains in the “S0” state) to
some port on a victim host (e.g., http). We compared the
patterns from the 1998 DARPA dataset that contain SYN
flood attacks with the patterns from a “baseline” normal
dataset (of the same network), by first encoding the pat-
terns into numbers and then computing “difference” scores.
The following pattern, a frequent episode [26], has the high-
est “intrusion-only” (i.e., unique for the intrusion) score:
“ ��������������� , ��� �"!$#&%'���)(+*,*.- , /$��* (102�'*3�)!�#,%4*,#&576 ,
�����8���9�:��� , ��� �"!$#&%'�;�<(=*,*.- , /$��* (102��*>�?!�#,%4*,#&576
�@�����8���A�B��� , � � �"!�#,%C�3�B(+*,*.- , /D�'* (102��*E�F!�#,%4*,#&576
� �+G H�I=���+G ��I=�KJ" .” This means that 93% of the time, after
two http connections with ��� flag are made to host victim,
within 2 seconds from the first of these two, the third sim-

ilar connection is made; and this pattern occurs in 3% of
the data. Accordingly, our feature construction algorithm
parses the pattern features: “a count of connections to the
same /$��* (102��* in the past 2 seconds,” and among these
connections, “the percentage of those that have the same
� ���"!$#,%C� , and the percentage of those that have the S0 ������� .”
For the two “percentage” features, the normal connection
records have values close to 0, but the connection records
belonging to syn flood have values above LM�DN . Once these
discriminative features are constructed, it is easy to generate
the detection rules via either manual (i.e. hand-coding) or
automated (i.e., machine learning) techniques. For exam-
ple, we use RIPPER [3], an inductive rule learner, to com-
pute a detection rule for syn flood using these extracted fea-
tures: if for the past 2 seconds, the count of connections to
the same dst host is greater than 4; and the the percentage
of those that have the same service is greater than 75%; and
the percentage of those that have the “S0” flag is greater
than 75%, then there is a syn flood attack. Details of the
algorithm are given in [24].

2.2 Artificial Anomaly Generation

A major difficulty in using machine learning methods
for anomaly detection lies in making the learner discover
boundaries between known and unknown classes. Since
there are no examples of anomalies in our training data
(by definition of anomaly), a machine learning algorithm
will only uncover boundaries that separate different known
classes in the training data. A machine learning algorithm
will not specify a boundary between the known data and
unseen data (anomalies). We present the technique of ar-
tificial anomaly generation to enable traditional learners to
detect anomalies. Artificial anomalies are injected into the
training data to help the learner discover a boundary around
the original data. All artificial anomalies are given the class
label anomaly. Our approach to generating artificial anoma-
lies focuses on “near misses,” instances that are close to the
known data, but are not in the training data. We assume the
training data are representative, hence near misses can be
safely assumed to be anomalous.

Since we do not know where the exact decision bound-
ary is between known and anomalous instances, we assume
that the boundary may be very close to the existing data.
To generate artificial anomalies close to the known data, a
useful heuristic is to randomly change the value of one fea-
ture of an example to a value that does not occur in the data
while leaving the other features unaltered.

Some regions of known data in the instance space may
be sparsely populated. We can think of the sparse regions as
small islands and dense regions as large islands in an ocean.
To avoid overfitting, learning algorithms are usually biased
towards discovering more general models. Since we only

have known data, we want to prevent models from being
overly general when predicting these known classes. That
is, we want to avoid the situation where sparse regions may
be grouped into dense regions to produce singularly large
regions covered by overly general models. It is possible
to produce artificial anomalies around the edges of these
sparse regions and coerce the learning algorithm to discover
the specific boundaries that distinguish these regions from
the rest of the instance space. In other words, we want to
generate data that will amplify these sparse regions.

Sparse regions are characterized by infrequent values of
individual features. To amplify sparse regions, we propor-
tionally generate more artificial anomalies around sparse
regions depending on their sparsity using the Distribution
Based Artificial Anomaly algorithm (DBA2) presented in
detail in [7] along with results of experiments demonstrat-
ing the effectiveness of the method. The algorithm uses the
frequency distribution of each feature’s values to propor-
tionally generate a sufficient amount of anomalies.

2.3 Combined Misuse and Anomaly Detection

Traditionally, anomaly detection and misuse detection
are considered separate problems. Anomaly detection al-
gorithms typically train over normal data while misuse al-
gorithms typically train over labeled normal and intrusion
data. Intuitively a hybrid approach should perform better,
in addition, it has the obvious efficiency advantages in both
model training and deployment than using two different
models. We use the artificial anomaly generation method to
create a single model that is both a misuse and anomaly de-
tection method. This allows us to use traditional supervised
inductive learning methods for both anomaly detection and
misuse detection at the same time. We train a single model
from a set of data that contains both normal records and
records corresponding to intrusions. In addition, we also
generate artificial anomalies using the DBA2 algorithm and
train a learning algorithm over the combined dataset. The
learned model can detect anomalies and intrusions concur-
rently.

We learn a single ruleset for combined misuse and
anomaly detection. The ruleset has rules to classify a con-
nection to be normal, one of the known intrusion classes, or
anomaly. In order to evaluate this combined approach, we
group intrusions together into a number of small clusters.
We create multiple datasets by incrementally adding each
cluster into the dataset and re-generating artificial anoma-
lies. This is to simulate the real world process of develop-
ing and discovering new intrusions and incorporating them
into the training set. We learn models that contain misuse
rules for the intrusions that are known in the training data,
anomaly detection rules for unknown intrusions in left-out
clusters, and rules that characterize normal behavior.

We have seen that the detection rates of known intrusions
classified by misuse rules in models learned with and with-
out artificial anomalies are indistinguishable or completely
identical. This observation shows that the proposed DBA2
method does not diminish the effectiveness of misuse rules
in detecting particular categories of known intrusions. Our
experiments with pure anomaly and combined anomaly and
misuse detection can be found in [7].

3 Efficiency

In typical applications of data mining to intrusion de-
tection, detection models are produced off-line because the
learning algorithms must process tremendous amounts of
archived audit data. These models can naturally be used for
off-line intrusion detection (i.e., analyzing audit data off-
line after intrusions have run their course). Effective intru-
sion detection should happen in real-time, as intrusions take
place, to minimize security compromises. In this section,
we discuss our approaches to make data mining-based ID
models work efficiently for real-time intrusion detection.

In contrast to off-line IDSs, a key objective of real-time
IDS is to detect intrusions as early as possible. Therefore,
the efficiency of the detection model is a very important
consideration. Because our data mining-based models are
computed using off-line data, they implicitly assume that
when an event is being inspected (i.e., classified using an
ID model), all activities related to the event have completed
so that all features have meaningful values available for
model checking. As a consequence, if we use these mod-
els in real time without any modification, then an event is
not inspected until complete information about that event
has arrived and been summarized, and all temporal and sta-
tistical features (i.e., the various temporal statistics of the
events in the past � seconds, see Section 2.1) are com-
puted. This scheme can fail miserably under real-time con-
straints. When the volume of an event stream is high, the
amount of time taken to process the event records within
the past � seconds and calculate statistical features is also
very high. Many subsequent events may have terminated
(and thus completed with attack actions) when the “current”
event is finally inspected by the model. That is, the detec-
tion of intrusions is severely delayed. Unfortunately, DoS
attacks, which typically generate a large amount of traffic in
a very short period time, are often used by intruders to first
overload an IDS, and use the detection delay as a window of
opportunity to quickly perform their malicious intent. For
example, they can even seize control of the host on which
the IDS lives, thus eliminating the effectiveness of intrusion
detection altogether.

It is necessary to examine the time delay associated with
computing each feature in order to speed up model evalua-
tion. The time delay of a feature includes not only the time

spent for its computation, but also the time spent waiting for
its readiness (i.e., when it can be computed). For example,
in the case of network auditing, the total duration of a net-
work connection can only be computed after the last packet
of the connection has arrived, whereas the destination host
of a connection can be obtained by checking the header of
the first packet.

From the perspective of cost analysis, the efficiency of an
intrusion detection model is its computational cost, which is
the sum of the time delay of the features used in the model.
Based on the feature construction approaches discussed in
Section 2.1, we can categorize features used for network
intrusion detection into 4 cost levels:

� Level 1 features can be computed from the first packet,
e.g., the service.� Level 2 features can be computed at any point during
the life of the connection, e.g., the connection state
(SYN WAIT, CONNECTED, FIN WAIT, etc.).� Level 3 features can be computed at the end of the con-
nection, using only information about the connection
being examined, e.g., the total number of bytes sent
from source to destination.� Level 4 features can be computed at the end of the con-
nection, but require access to data of potentially many
other prior connections. These are the temporal and
statistical features and are the most costly to compute.

In order to conveniently estimate the cost of a rule, we
assign a cost of 1 to the level 1 features, 5 to the level 2 fea-
tures, 10 to level 3, and 100 to level 4. These cost assign-
ments are very close to the actual measurements we have
obtained via extensive real-time experiments. However, we
have found that the cost of computing level 4 features is lin-
early dependent on the amount of connections being moni-
tored by the IDS within the time window used for compu-
tation, as they require iteration of the complete set of recent
connections.

In this section, we discuss approaches to reduce com-
putational cost and improve the efficiency of the real-time
intrusion detection models. In Section 3.1, we describe
our techniques for cost-sensitive modeling. In Section 3.2,
we discuss a real-time system for implementing distributed
feature computation for evaluating multiple cost-sensitive
models.

3.1 Cost-Sensitive Modeling

In order to reduce the computational cost of an IDS, de-
tection rules need to use low cost features as often as possi-
ble while maintaining a desired accuracy level. We propose
a multiple ruleset approach in which each ruleset uses fea-
tures from different cost levels. Low cost rules are always

evaluated first by the IDS, and high cost rules are used only
when low cost rules cannot predict with sufficient accuracy.

In the domain of network intrusion detection, we use
four different levels of costs to compute features, as dis-
cussed in Section 3. Features of costs 1, 5, and 10 are com-
puted individually and features of costs 100 can be com-
puted in a single lookup of all the connections in the past

� seconds. With the above costs and goals in mind, we use
the following multiple ruleset approach:

� We first generate multiple training sets
�������

using dif-
ferent feature subsets.

���
uses only cost 1 features.

�
	
uses features of costs 1 and 5, and so forth, up to

�
�
,

which uses all available features.� Rulesets � ���� are learned using their respective train-
ing sets. � � is learned as an ordered ruleset2 for its
efficiency, as it may contain the most costly features.
� ����� are learned as un-ordered rulesets3, as they will
contain accurate rules for classifying � 0"�"5 �$� connec-
tions.� A -1� � %C#,��#,0 � measurement -�� 4 is computed for every
rule, � , except for the rules in � � .� A threshold value ��� is obtained for every single class
which determines the tolerable precision required in
order for a classification to be made by any ruleset ex-
cept for � � .

In real-time execution, the feature computation and rule
evaluation proceed as follows:

� All cost 1 features used in � � are computed for the
connection being examined. � � is then evaluated and
a prediction # is made.� If - ��� � � , the prediction # is fired. In this case, no
more features are computed and the system examines
the next connection. Otherwise, additional features re-
quired by � 	 are computed and � 	 is evaluated in the
same manner as � � .� Evaluation continues with � � , followed by � � , until a
prediction is made.� When � � (an ordered ruleset) is reached, features are
computed as needed while evaluation proceeds from
the top of the ruleset to the bottom. The evaluation
of � � does not require any firing condition and will
always generate a prediction.

2An ordered ruleset is in the form of “if condition � then action � else if
condition � then action ������� else action � .” The rules are checked sequen-
tially. We typically place rule for the most prevalent class, i.e., normal, as
the first rule.

3An unordered ruleset is in the form of “if condition � then action � ; if
condition � then action � ; ����� ; if condition � then action � .” The rules can
be checked in parallel.

4Precision describes how accurate a prediction is. Precision is defined

as � �"! #%$'&(!! #
! , where) is the set of predictions with label * , and + is
the set of all instances with label * in the data set.

In our experiments, we used data from the 1998 DARPA
evaluation. The detailed experimental set-up and results can
be found in [8]. In summary, our multiple model approach
can reduce the computational cost by as much as 97% with-
out compromising predictive accuracy, where the cost for
inspecting a connection is the total computational cost of
all unique features used before a prediction is made. If mul-
tiple features of cost 100 are used, the cost is counted only
once since they can all be calculated in a single iteration
through the table of recent connections.

3.2 Distributed Feature Computation

We have implemented a system that is capable of evalu-
ating a set of cost-sensitive models in real-time. This system
uses a sensor for extracting light-weight, or “primitive,” fea-
tures from raw network traffic data to produce connection
records, and then offloads model evaluation and higher level
feature computation to a separate entity, called JUDGE. The
motivation for offloading this computation and evaluation is
that it is quite costly and we do not wish to overburden the
sensor (in this case a packet sniffing engine).

JUDGE uses models that have been learned using the
techniques described in Section 3.1. That is, there exists a
sequence of models, each of which uses increasingly more
costly features than the previous model. Models are eval-
uated and higher level features are computed at different
points in a connection by JUDGE as more primitive fea-
tures become available.

The sensor informs JUDGE of new feature values, or up-
dates to feature values that are maintained throughout the
connection’s life, whenever there is a change in the connec-
tion’s state (e.g., a connection has gone from SYN WAIT
to CONNECTED). Sensors also update certain feature val-
ues whenever there is an “exception” event. Exceptions are
certain occurrences which should immediately update the
value of a specific feature. For example, if two fragmented
packets come in and the offsets for defragmentation are cor-
rect, the bad frag offset feature must be updated immedi-
ately.

Upon each state change and exception event, JUDGE
computes the set of features that are available for the given
connection. If the set of features is a proper subset of the
set of light-weight features (the level 1 and level 2 features
described earlier) used by one of the ID models, then higher
level features are computed and that model is evaluated.
The logic for determining when a prediction is made is the
same as is described in Section 3.1.

Once a prediction is made by JUDGE, a complete con-
nection record, with the label, is inserted into a data ware-
house, as described in our system architecture outline in
Section 5.

We have currently implemented this system using NFR’s

Network Flight Recorder as the sensor, although the pro-
tocol for communication between the sensor and JUDGE
would allow any sensor which extracts features from a data
stream to be used.

4 Usability

A data mining-based IDS is significantly more complex
than a traditional system. The main cause for this is that
data mining systems require large sets of data from which
to train. The hope to reduce the complexity of data mining
systems has led to many active research areas.

First, management of both training and historical data
sets is a difficult task, especially if the system handles many
different kinds of data. Second, once new data has been
analyzed, models need to be updated. It is impractical to
update models by retraining over all available data, as re-
training can take weeks, or even months, and updated mod-
els are required immediately to ensure the protection of our
systems. Some mechanism is needed to adapt a model to in-
corporate new information. Third, many data mining-based
IDSs are difficult to deploy because they need a large set of
clean (i.e., not noisy) labeled training data. Typically the
attacks within the data must either be manually labeled for
training signature detection models, or removed for training
anomaly detection models. Manually cleaning training data
is expensive, especially in the context of large networks. In
order to reduce the cost of deploying a system, we must be
able to minimize the amount of clean data that is required
by the data mining process.

We present an approach to each of these problems. We
use the technique adaptive learning, which is a generic
mechanism for adding new information to a model with-
out retraining. We employ unsupervised anomaly detection
which is a new class of intrusion detection algorithms that
do not rely on labeled data. In the next section, we present a
system architecture which automates model and data man-
agement.

4.1 Adaptive Learning

We propose to use ensembles of classification models
(� � ��G'G�GC��� � described earlier is an example of an ensem-
ble of classification models) as a general and algorithm-
independent method to adapt existing models in order to
detect newly established patterns. Our goal is to improve
the efficiency of both learning and deployment. In reality,
when a new type of intrusion is discovered, it is very desir-
able to be able to quickly adjust an existing detection system
to detect the new attack, even if the adjustment is tempo-
rary and may not detect all occurrence of the new attack.
At the same time, after we have at least some method of
defense, we can look for possibly better ways to detect the

attack which involves recomputing the detection model and
may take a much longer period of time to compute. When
a better model is computed, we may choose to replace the
temporary model. For such purposes, we seek a “plug-in”
method, i.e., we efficiently generate a simple model that is
only good at detecting the new intrusion, and plug or at-
tach it to the existing models to enable detection of new in-
trusions. Essentially, we efficiently generate a light-weight
classifier (i.e., classification model) for the new pattern. The
existing main detection model remain the same. When the
old model detects an anomaly, this data record is sent to the
new classifier for further classification. The final predic-
tion is a function of the predictions of both the old classifier
and the new classifier. Computing the new classifier is sig-
nificantly faster than generating a monolithic model for all
established patterns and anomalies.

In [7], different configurations for adaptive learning are
discussed. In one such configuration, given an existing clas-
sifier � � , an additional classifier, � 	 , is trained from data
containing normal records and records corresponding to the
new intrusion. We refer to � � as the existing IDS model,
while � 	 refers to a new model trained specifically for a
new or recently discovered attack. The decision rules in
Figure 1 are evaluated to compute the final outcome. This
method is independent of the actual model building algo-
rithm. Each classifier can be anything from a decision tree,
to a rule based learner, to a neural network, etc.

We have experimented with different configurations to
test the effectiveness of this approach. As shown in [7],
the cost of training of the proposed method (as measured in
Section 3.1) is almost 150 times less expensive than learn-
ing a monolithic classifier trained from all available data,
and the accuracy of both are essentially equivalent.

4.2 Unsupervised Learning

Traditional model building algorithms typically require
a large amount of labeled data in order to create effective
detection models. One major difficulty in deploying a data
mining-based IDS is the need for labeling system audit data
for use by these algorithms. For misuse detection systems,
the data needs to be accurately labeled as either normal or
attack. For anomaly detection system, the data must be ver-
ified to ensure it is completely normal, which requires the
same effort. Since models (and data) are specific to the envi-
ronment on which the training data was gathered , this cost
of labeling the data must be incurred for each deployment
of the system.

Ideally, we would like to build detection models from
collected data without needing to manually label it. In this
case, the deployment cost would greatly be decreased be-
cause the data would not need to be labeled. In order to
build these detection models, we need a new class of model

building algorithms. These model building algorithms can
take as input unlabeled data and create a detection model.
We call these algorithms unsupervised anomaly detection
algorithms.

In this section, we present the problem of unsupervised
anomaly detection and relate it to the problem of outlier
detection in statistics [1]. We present an overview of two
unsupervised anomaly detection algorithms that have been
applied to intrusion detection.

These algorithms can also be referred to as anomaly de-
tection over noisy data. The reason the algorithm must be
able to handle noise in the data is that we do not want to
manually verify that the audit data collected is absolutely
clean (i.e., contains no intrusions).

Unsupervised anomaly detection algorithms are moti-
vated by two major assumptions about the data which are
reasonable for intrusion detection. The first assumption is
that anomalies are very rare. This corresponds to the fact
that normal use of the system greatly outnumbers the oc-
currence of intrusions. This means that the attacks compose
a relatively small proportion of the total data. The second
assumption is that the anomalies are quantitatively different
from the normal elements. In intrusion detection this corre-
sponds to the fact that attacks are drastically different from
normal usage.

Since anomalies are very rare and quantitatively different
from the normal data, they stand out as outliers in the data
set. Thus, we can cast the problem of detecting the attacks
into an outlier detection problem. Outlier detection is the
focus of much literature in the field of statistics [1].

In intrusion detection, intuitively, if the ratio of attacks
to normal data is small enough, then because the attacks
are different, the attacks stand out against the background
of normal data. We can thus detect the attack within the
dataset.

We have performed experiments with two types of unsu-
pervised anomaly detection algorithms, each for a different
type of data. We applied a probabilistic based unsupervised
anomaly detection algorithm to build detection models over
system calls and a clustering based unsupervised anomaly
detection algorithm for network traffic.

The probabilistic approaches detect outliers by estimat-
ing the likelihood of each element in the data. We partition
the data into two sets, normal elements and anomalous el-
ements. Using a probability modeling algorithm over the
data, we compute the most likely partition of the data. De-
tails and experimental results of the algorithm applied to
system call data are given in [5].

The clustering approach detects outliers by clustering the
data. The intuition is that the normal data will cluster to-
gether because there is a lot of it. Because anomalous data
and normal data are very different from each other, they do
not cluster together. Since there is very little anomalous data

����� � �
� ��� 6 � � 0"�"5 �D��6�� � �

� ��� 6 �3� � 0"5 �$��	=6�
�����
– ��� � 	 ��� 6 � � 0"� 5 �D�

����� 0��1*.-��1*�� � � ��� 6 � � 0"� 5 �D� or � � 0"5 �$��	=6

– ������� 0��1*.-��1*�� � ��� # � *,��� ��#,0 �

� ������ 0�� *.-�� *�� �
� ��� 6

Figure 1. Ensemble-based Adaptive Learning Configuration

relative to the normal data, after clustering, the anomalous
data will be in the small clusters. The algorithm first clusters
the data and then labels the smallest clusters as anomalies.
Details and experimental results applied to network data are
given in [27].

5 System Architecture

The overall system architecture is designed to support
a data mining-based IDS with the properties described
throughout this paper. As shown in Figure 2, the architec-
ture consists of sensors, detectors, a data warehouse, and a
model generation component. This architecture is capable
of supporting not only data gathering, sharing, and analysis,
but also data archiving and model generation and distribu-
tion.

The system is designed to be independent of the sensor
data format and model representation. A piece of sensor
data can contain an arbitrary number of features. Each fea-
ture can be continuous or discrete, numerical or symbolic.
In this framework, a model can be anything from a neural
network, to a set of rules, to a probabilistic model. To deal
with this heterogeneity, an XML encoding is used so each
component can easily exchange data and/or models.

Our design was influenced by the work in standardizing
the message formats and protocols for IDS communication
and collaboration: the Common Intrusion Detection Frame-
work (CIDF, funded by DARPA) [29] and the more recent
Intrusion Detection Message Exchange Format (IDMEF, by
the Intrusion Detection Working Group of IETF, the Inter-
net Engineering Task Force). Using CIDF or IDMEF, IDSs
can securely exchange attack information, encoded in the
standard formats, to collaboratively detect distributed intru-
sions. In our architecture, data and model exchanged be-
tween the components are encoded in our standard message
format, which can be trivially mapped to either CIDF or ID-
MEF formats. The key advantage of our architecture is its
high performance and scalability. That is, all components
can reside in the same local network, in which case, the
work load is distributed among the components; or the com-
ponents can be in different networks, in which case, they
can also participate in the collaboration with other IDSs in
the Internet.

In the following sections we describe the components de-
picted in Figure 2 in more detail. A complete description of
the system architecture is given in [6].

5.1 Sensors

Sensors observe raw data on a monitored system and
compute features for use in model evaluation. Sensors insu-
late the rest of the IDS from the specific low level properties
of the target system being monitored. This is done by hav-
ing all of the sensors implement a Basic Auditing Module
(BAM) framework. In a BAM, features are computed from
the raw data and encoded in XML.

5.2 Detectors

Detectors take processed data from sensors and use a de-
tection model to evaluate the data and determine if it is an
attack. The detectors also send back the result to the data
warehouse for further analysis and report.

There can be several (or multiple layers of) detectors
monitoring the same system. For example, work loads can
be distributed to different detectors to analyze events in
parallel. There can also be a “back-end” detector, which
employs very sophisticated models for correlation or trend
analysis, and several “front-end” detectors that perform
quick and simple intrusion detection. The front-end detec-
tors keep up with high-speed and high-volume traffic, and
must pass data to the back-end detector to perform more
thorough and time consuming analysis.

5.3 Data Warehouse

The data warehouse serves as a centralized storage for
data and models. One advantage of a centralized repository
for the data is that different components can manipulate the
same piece of data asynchronously with the existence of a
database, such as off-line training and manually labeling.
The same type of components, such as multiple sensors, can
manipulate data concurrently. Relational database features
support “stored procedure calls” which enable easy imple-
mentation of complicated calculations, such as efficient data
sampling carried out automatically on the server. Arbitrary

DetectorSensor

Adaptive
Model

Generator

model

formatted
data

raw data

model

Data
Warehouse

formatted
data

Figure 2. The Architecture of Data Mining-based IDS

amount of sensor data can also be retrieved by a single SQL
query. Distribution of detection models can be configured
to push or pull.

The data warehouse also facilitates the integration of
data from multiple sensors. By correlating data/results from
different IDSs or data collected over a longer period of
time, the detection of complicated and large scale attacks
becomes possible.

5.4 Model Generator

The main purpose of the model generator is to facilitate
the rapid development and distribution of new (or updated)
intrusion detection models. In this architecture, an attack
detected first as an anomaly may have its exemplary data
processed by the model generator, which in turn, using the
archived (historical) normal and intrusion data sets from the
data warehouse, automatically generates a model that can
detect the new intrusion and distributes it to the detectors (or
any other IDSs that may use these models). Especially use-
ful are unsupervised anomaly detection algorithms because
they can operate on unlabeled data which can be directly
collected by the sensors.

We have successfully completed a prototype implemen-
tation of a data mining and CIDF based IDS [20]. In this
system, a data mining engine, equipped with our feature ex-
traction programs (see Section 2.1) and machine learning
programs, serves as the model generator for several detec-
tors. It receives audit data for anomalous events (encoded as
a GIDO, the Generalized Intrusion Detection Objects) from
a detector, computes patterns from the data, compares them

with historical normal patterns to identify the “unique” in-
trusion patterns, and constructs features accordingly. Ma-
chine learning algorithms are then applied to compute the
detection model, which is encoded as a GIDO and sent to
all the detectors. Much of the design and implementation
efforts had been on extending the Common Intrusion Spec-
ification Language (CISL) to represent intrusion detection
models (see [20] for details). Our preliminary experiments
show that the model generator is able to produce and dis-
tribute new effective models upon receiving audit data.

6 Related Work

Our research encompasses many areas of intrusion de-
tection, data mining, and machine learning. In this section,
we briefly compare our approaches with related efforts.

In terms of feature construction for detection models,
DC-1 (Detector Constructor) [9], first invokes a sequence of
operations for constructing features (indicators) before con-
structing a cellular phone fraud detector (a classifier). We
are faced with a more difficult problem here because there is
no standard record format for connection or session records
(we had to invent our own). We also need to construct tem-
poral and statistical features not just for individual records,
but also over different connections and services. That is, we
are modeling different logical entities that take on different
roles and whose behavior is recorded in great detail. Ex-
tracting these from a vast and overwhelming stream of data
adds considerable complexity to the problem.

The work most similar to unsupervised model genera-
tion is a technique developed at SRI in the Emerald system

[15]. Emerald uses historical records to build normal detec-
tion models and compares distributions of new instances to
historical distributions. Discrepancies between the distribu-
tions signify an intrusion. One problem with this approach
is that intrusions present in the historical distributions may
cause the system to not detect similar intrusions in unseen
data.

Related to automatic model generation is adaptive intru-
sion detection. Teng et al. [33] perform adaptive real time
anomaly detection by using inductively generated sequen-
tial patterns. Also relevant is Sobirey’s work on adaptive
intrusion detection using an expert system to collect data
from audit sources [28].

Many different approaches to building anomaly detec-
tion models have been proposed. A survey and com-
parison of anomaly detection techniques is given in [34].
Stephanie Forrest presents an approach for modeling nor-
mal sequences using look ahead pairs [10] and contigu-
ous sequences [13]. Helman and Bhangoo [12] present
a statistical method to determine sequences which occur
more frequently in intrusion data as opposed to normal
data. Lee et al. [22, 21] uses a prediction model trained
by a decision tree applied over the normal data. Ghosh
and Schwartzbard [11] use neural networks to model nor-
mal data. Lane and Brodley [16, 17, 18] examine unlabeled
data for anomaly detection by looking at user profiles and
comparing the activity during an intrusion to the activity
under normal use.

Cost-sensitive modeling is an active research area in the
data mining and machine learning communities because of
the demand from application domains such as medical diag-
nosis and fraud and intrusion detection. Several techniques
have been proposed for building models optimized for given
cost metrics. In our research we study the principles behind
these general techniques and develop new approaches ac-
cording to the cost models specific to IDSs.

In intrusion data representation, related work is the IETF
Intrusion Detection Exchange Format project [14] and the
CIDF effort [30].

7 Conclusion

In this paper, we have outlined the breadth of our re-
search efforts to address important and challenging issues
of accuracy, efficiency, and usability of real-time IDSs.

We have implemented feature extraction and construc-
tion algorithms for labeled audit data (i.e., when both nor-
mal and intrusion data sets are given) [19]. We are imple-
menting algorithms for unlabeled data (which can be purely
normal or possibly containing unknown intrusions).

We have developed several anomaly detection algo-
rithms. In particular, we have completed the implemen-
tation of and extensive experimentation with “artificial

anomaly generation” approaches. We are exploring the use
of information-theoretic measures, i.e., entropy, conditional
entropy, relative entropy, information gain, and information
cost to capture intrinsic characteristics of normal data and
use such measures to guide the process of building and eval-
uating anomaly detection models. We are also developing
efficient approaches that use statistics on packet header val-
ues for network anomaly detection.

We studied the computational costs of features and mod-
els, and have implemented a multiple model based approach
for building models that incurs minimal computational cost
while maintaining accuracy. We have also developed a real-
time system, “Judge,” for evaluating models learned using
this method.

We are developing adaptive learning algorithms to fa-
cilitate model construction and incremental updates. We
are also developing unsupervised anomaly detection algo-
rithms to reduce the reliance on labeled training data. We
have completed the design and specification of our sys-
tem architecture with sensor, detector, data warehouse, and
modeler components. A prototype system has been imple-
mented [20] and we will continue to build on and experi-
ment with this system.

We are developing algorithms for data mining over the
output of multiple sensors. This is strongly motivated by
the fact that single sensors do not typically observe entire
attack scenarios. By combining the information from mul-
tiple sensors we hope to improve detection accuracy.

The ultimate goal of our research is to not only demon-
strate the advantages of our approaches but also provide
useful architectures, algorithms, and tool sets to the commu-
nity to build better IDSs in less time and with greater ease.
Toward this end, we are integrating our feature construction
and unsupervised anomaly detection algorithms into the
model generator, and building detectors that are equipped
with our misuse and anomaly detection algorithms. We are
deploying our prototype IDS on real-world networks in or-
der to improve our techniques.

A serious limitation of our current approaches (as well as
with most existing IDSs) is that we only do intrusion detec-
tion at the network or system level. However, with the ad-
vent and rapid growth of e-Commerce (or e-Business) and
e-Government (or digital government) applications, there is
an urgent need to do intrusion and fraud detection at the
application-level. This is because many attacks may focus
on applications that have no effect on the underlying net-
work or system activities. We have previously successfully
developed data mining approaches for credit card fraud de-
tection [2, 31, 32]. We plan to start research efforts on IDSs
for e-Commerce and e-Government applications in the near
future. We anticipate that we will be able to extend our cur-
rent approaches to develop application-level IDSs because
the system architecture and many of our data mining algo-

rithms are generic (i.e., data format independent). For ex-
ample, we can develop (and deploy) a sensor for a specific
application, and extend the correlation algorithms, with ap-
plication domain knowledge, in the detectors to combine
evidences from the application and the underlying system
in order to detect intrusion and frauds.

The relevant reports detailing the results described in
this paper can be found at http://www.csc.ncsu.
edu/faculty/lee/project/id.html, http://
www.cs.columbia.edu/ids, and http://www.
cs.fit.edu/˜pkc/id.

Acknowledgment

This research is supported in part by grants from DARPA
(F30602-00-1-0603).

References

[1] V. Barnett and T. Lewis. Outliers in Statistical Data. John
Wiley and Sons, 1994.

[2] P. Chan, W. Fan, A. Prodromidis, and S. Stolfo. Distributed
data mining in credit card fraud detection. IEEE Intelligent
Systems, pages 67–74, Nov/Dec 1999.

[3] W. W. Cohen. Fast effective rule induction. In Machine
Learning: the 12th International Conference, Lake Taho,
CA, 1995. Morgan Kaufmann.

[4] J. P. Egan. Signal detection theory and roc analysis. In Series
in Cognition and Perception. Academic Press, New York,
1975.

[5] E. Eskin. Anomaly detection over noisy data using learned
probability distributions. In Proceedings of the Seventeenth
International Conference on Machine Learning (ICML-
2000), 2000.

[6] E. Eskin, M. Miller, Z.-D. Zhong, G. Yi, W.-A. Lee, and
S. Stolfo. Adaptive model generation for intrusion detec-
tion. In Proceedings of the ACMCCS Workshop on Intrusion
Detection and Prevention, Athens, Greece, 2000.

[7] W. Fan. Cost-senstive, Scalable and Adaptive Learning Us-
ing Ensemble-based Methods. PhD thesis, Columbia Uni-
versity, Feb 2001.

[8] W. Fan, W. Lee, S. Stolfo, and M. Miller. A multiple
model approach for cost-sensitive intrusion detection. In
Proc. 2000 European Conference on Machine Learning,
Barcelona, Spain, May 2000.

[9] T. Fawcett and F. Provost. Adaptive fraud detection. Data
Mining and Knowledge Discovery, 1:291–316, 1997.

[10] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.
A sense of self for unix processes. In In 1996 IEEE Sympo-
sium on Security and Privacy, pages 120–128. IEEE Com-
puter Society, 1996.

[11] A. Ghosh and A. Schwartzbard. A study in using neural
networks for anomaly and misuse detection. In Proceedings
of the Eighth USENIX Security Symposium, 1999.

[12] P. Helman and J. Bhangoo. A stiatistically base system for
prioritizing information exploration under uncertainty. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Sys-
tems and Humans, 27(4):449–466, 1997.

[13] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion de-
tect using sequences of system calls. Journal of Computer
Security, 6:151–180, 1998.

[14] Internet Engineering Task Force. Intrusion detection ex-
change format. In http://www.ietf.org/html.charters/idwg-
charter.html, 2000.

[15] H. S. Javitz and A. Valdes. The nides statistical component:
description and justification. In Technical Report, Computer
Science Labratory, SRI International, 1993.

[16] T. Lane and C. E. Brodley. Sequence matching and learning
in anomaly detection for computer security. In Proceedings
of the AAAI-97 Workshop on AI Approaches to Fraud Detec-
tion and Risk Management, pages 43–49. Menlo Park, CA:
AAAI Press, 1997.

[17] T. Lane and C. E. Brodley. Temporal sequence learning and
data reduction for anomaly detection. In Proceedings of the
Fifth ACM Conference on Computer and Communications
Security, pages 150–158, 1998.

[18] T. Lane and C. E. Brodley. Temporal sequence learning and
data reduction for anomaly detection. ACM Transactions on
Information and System Security, 2:295–331, 1999.

[19] W. Lee. A Data Mining Framework for Constructing Fea-
tures and Models for Intrusion Detection Systems. PhD the-
sis, Columbia University, June 1999.

[20] W. Lee, R. Nimbalkar, K. Yee, S. Patil, P. Desai, T. Tran, and
S. J. Stolfo. A data mining and CIDF based approach for
detecting novel and distributed intrusions. In Proceedings
of the 3rd International Workshop on Recent Advances in
Intrusion Detection (RAID 2000), October 2000. to appear.

[21] W. Lee and S. J. Stolfo. Data mining approaches for in-
trusion detection. In In Proceedings of the 1998 USENIX
Security Symposium, 1998.

[22] W. Lee, S. J. Stolfo, and P. K. Chan. Learning patterns from
unix processes execution traces for intrusion detection. In In
AAAI Workshop on AI Approaches to Fraud Detection and
Risk Management, pages 50–56. AAAI Press, 1997.

[23] W. Lee, S. J. Stolfo, and K. Mok. Data mining in work flow
environments: Experiences in intrusion detection. In Pro-
ceedings of the 1999 Conference on Knowledge Discovery
and Data Mining (KDD-99), 1999.

[24] W. Lee, S. J. Stolfo, and K. W. Mok. Algorithms for mining
audit data. In T. Y. Lin, editor, Granular Computing and
Data Mining. Springer-Verlag, 2000. to appear.

[25] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall,
D. McClung, D. Weber, S. Webster, D. Wyschogrod,
R. Cunninghan, and M. Zissman. Evaluating intrusion de-
tection systems: The 1998 darpa off-line intrusion detection
evaluation. In Proceedings of the 2000 DARPA Information
Survivability Conference and Exposition, January 2000.

[26] H. Mannila and H. Toivonen. Discovering generalized
episodes using minimal occurrences. In Proceedings of
the 2nd International Conference on Knowledge Discovery
in Databases and Data Mining, Portland, Oregon, August
1996.

[27] L. Pornoy. Intrusion detection with unlabeled data using
clustering. In Undergraduate Thesis, Columbia University,
Department of Computer Science, 2000.

[28] M. Sobirey, B. Richter, and M. Konig. The intrusion detec-
tion system aid. architecture, and experiences in automated
audit analysis. In Proc. of the IFIP TC6 / TC11 International
Conference on Communications and Multimedia Security,
pages 278 – 290, Essen, Germany, 1996.

[29] S. Stainford-Chen. Common intrusion detection framework.
http://seclab.cs.ucdavis.edu/cidf.

[30] S. Staniford-Chen, B. Tung, and D. Schnackenberg. The
common intrusion detection framework (cidf). In Proceed-
ings of the Information Survivability Workshop, October
1998.

[31] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan.
Cost-sensitive modeling for fraud and intrusion detection:
Results from the JAM project. In Proceedings of the 2000
DARPA Information Survivability Conference and Exposi-
tion, January 2000.

[32] S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W.
Fan, and P. K. Chan. JAM: Java agents for meta-learning
over distributed databases. In Proceedings of the 3rd In-
ternational Conference on Knowledge Discovery and Data
Mining, pages 74–81, Newport Beach, CA, August 1997.
AAAI Press.

[33] H. S. Teng, K. Chen, and S. C. Lu. Adaptive real-time
anomaly detection using inductively generated sequential
patterns. In Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, pages 278–284, Oakland
CA, May 1990.

[34] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting in-
trusions using system calls: alternative data models. In In
1999 IEEE Symposium on Security and Privacy, pages 133–
145. IEEE Computer Society, 1999.

