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Abstract

Anomaly Detection (AD) sensors have become an
invaluable tool for forensic analysis and intrusion de-
tection. Unfortunately, the detection accuracy of all
learning-based ADs depends heavily on the quality of
the training data, which is often poor, severely degrad-
ing their reliability as a protection and forensic analysis
tool. In this paper, we propose extending the training
phase of an AD to include a sanitization phase that
aims to improve the quality of unlabeled training data
by making them as “attack-free” and “regular” as pos-
sible in the absence of absolute ground truth. Our pro-
posed scheme is agnostic to the underlying AD, boost-
ing its performance based solely on training-data san-
itization. Our approach is to generate multiple AD
models for content-based AD sensors trained on small
slices of the training data. These AD “micro-models”
are used to test the training data, producing alerts for
each training input. We employ voting techniques to
determine which of these training items are likely at-
tacks. Our preliminary results show that sanitization
increases 0-day attack detection while maintaining a
low false positive rate, increasing confidence to the AD
alerts. We perform an initial characterization of the
performance of our system when we deploy sanitized
versus unsanitized AD systems in combination with ex-
pensive host-based attack-detection systems. Finally,
we provide some preliminary evidence that our system
incurs only an initial modest cost, which can be amor-
tized over time during online operation.

1 Introduction

A network-based intrusion detector can be used
as an online traffic/input-filtering subsystem, or as a
forensic tool to identify likely data that created a fault
in a system after the fact. As “signature-based” net-
work intrusion detection systems (NIDS) appear to be-

come obsolete in detecting zero-day malicious traffic,
effective anomaly detection that models normal traf-
fic well remains an open problem. Ideally, an anomaly
detector should achieve 100% detection accuracy, i.e.,
true attacks are all identified, with 0% false positives.

However, the particular modeling algorithm one uses
to compute a model of “normal” data can fail for var-
ious reasons. In particular, for unsupervised AD sys-
tems, we do not have a ground truth to compare to
and verify our testing results. An attack contained in
the training data would “poison” the normal model,
rendering the AD system incapable of detecting future
instances of this or similar attacks. The danger of hav-
ing an AD system with false negatives becomes a lim-
iting factor of the size of the training set [10]. Even
in the presence of ground truth or supervised/manual
training, creating a single model of normal traffic which
includes all non-attack traffic can result in under-fitting
and over generalization. Under-fitting can lower the de-
tection capabilities of an AD sensor, thereby increasing
false negatives.

We propose a new forensic/defense strategy that in-
troduces a novel sanitization phase. Our goal is to
remove both attacks and non-regular traffic from the
training data, improving the accuracy of the training
and increasing confidence in the alerts generated by the
anomaly detector.

Our approach is two-pronged: initially, we modify
the training phase of an AD system. Instead of using a
normal model generated by a single AD sensor trained
on a single large set of data, we employ multiple AD
instances trained on smaller time-based slices of the
same data set. We call such normality models micro-
models. These micro-models are a very localized view
of the training data. Armed with the micro-models,
we can assess the quality of the training data and au-
tomatically detect and remove any attacks or anoma-
lies that should not be considered part of the normal
model. The intuition behind our approach is based on
the observation that in a training set that spans a suffi-
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ciently large time interval, an attack or other anomaly
will appear only in a few of the time slices. To identify
these anomalies, we test each packet of the training
data set against the produced AD micro-models. Us-
ing a voting scheme, we determine which of the packets
can be consider as abnormal and need to be removed
from the training set. In our analysis, we explore the
efficiency and tradeoffs of simple majority voting and
more advanced weighted voting schemes. The result of
our approach is a training set containing packets that
are closer to what we consider the “normal model” of
the application. Using this sanitized training set, we
are able to generate a single sanitized model from a sin-
gle AD instance. This model has been generated using
a sanitized data set that contains fewer attacks, and
it therefore improves detection performance when used
during the operational phase. We establish evidence for
this conjecture in Section 3. Note, however, that the
generated model might have an increased false positive
rate, since rare but legitimate events will be removed
from the data set during the sanitization phase.

To mitigate the effects of false positives, we use a
heavily instrumented host-based “shadow” server sys-
tem akin to a honeypot [1] that can determine whether
a packet is a true attack. By diverting all suspect data
to this oracle, we will be able to identify true attacks
by way of detecting malicious or abnormal actions per-
formed by the server when processing the suspicious
data. Note that such a heavily instrumented shadow
server is assumed to be (and in practice is) substan-
tially slower (usually orders of magnitude slower) than
the native application to be protected (another ap-
proach would be to correlate the alert with input from
another anomaly detector [6]).

Note that we do not claim to have solved the false
positive problem; rather, we pose a different per-
formance objective for anomaly detectors, i.e., that
within realistic operational environments, the key ob-
jective is to optimize the security and performance
throughput of the system under protection. Our tar-
get is to limit the amount of network traffic that would
be processed by the shadow server, and to identify the
normal, attack-free data that can processed by the na-
tive service or application without instrumentation.

2 Sanitization Architecture

Supervised training using labeled datasets appears
to be an ideal cleaning process [2, 5, 7]. Unfortu-
nately, the size and complexity of the training datasets
obtained from real-world network traces makes such
labeling infeasible. In addition, semi- or even un-
supervised training [8] using an automated process or

an oracle is computationally demanding and may lead
to an augmented and under-trained normality model.
Indeed, even if we assume that the un-supervised train-
ing can detect 100% of the attacks, the resulting nor-
mal model can potentially contain abnormalities that
should not be considered part of the normal model.
These abnormalities are data patterns or traffic which
are not attacks and at the same time appear infre-
quently or for a very short period of time. We seek to
amend this by introducing a new unsupervised training
approach that attempts to determine both attacks and
abnormalities and separate them from what we deem
as the actual regular (normal) model.

Towards this goal, we observe that for a training set
that spans a long period of time, attacks and abnor-
malities are a minority class of data: while the total
attack volume in any given trace may be high, the fre-
quency of specific attacks is generally low relative to
legitimate input. This may not be the case in some cir-
cumstances, e.g., during a DDoS attack or during the
propagation phase of a particularly virulent worm such
as Slammer. We can possibly identify such non-ideal
AD training conditions by analyzing the entropy of a
particular dataset (too high or too low may indicate
exceptional circumstances). We leave this analysis for
future research. Furthermore, although we cannot pre-
dict the time when an attack appears in a training set,
the attack itself usually does not persist throughout
the dataset. Common attack packets tend to cluster
together and form a sparse representation over time.
For example, once a worm outbreak starts, it appears
concentrated in a relatively short period of time, and
eventually system defenders quarantine, patch, reboot,
or filter the infected hosts. As a result, the worm’s
appearance in the dataset decreases. We expect these
assumptions to hold true over relatively long periods
of time, and this expectation requires the use of large
training datasets to properly sanitize an AD model.

On the other hand, using a large training set in-
creases the probability that an individual datum ap-
pears normal: the datum has more appearances in the
data set and, consequently, the probability to be con-
sidered “normal” increases. Moreover, increasing the
amount of training data can significantly increase the
presence of malcode in the dataset. To mitigate that,
we use micro-models in an ensemble arrangement[3]:
each model processes the training data individually
limiting potential malware poisoning of the training re-
sisting data to a small subset of the micro-models. Our
algorithm operates in two stages: the first computes
a number of micro-models over the training data, and
the second phase computes a “sanitized” model and an
“abnormal” model by running another training dataset
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through the generated micro-models.

2.1 Micro-models

Based on our observations, if we partition a large
training dataset into a number of smaller, time-
delimited training sets, we may compute a minority
set of partitions (micro-datasets) that contain attack
vectors (not known a priori).

T = {md1,md2, . . . ,mdN} (1)

where mdi is the micro-dataset starting at time (i −
1) ∗ g and, g is the granularity for each micro-dataset.
We define the model function AD:

M = AD(T ) (2)

where AD can be any chosen anomaly detection algo-
rithm, T is the training dataset, and M denotes the
model produced by AD.

In order to create the ensemble of classifiers, we use
each of the “epochs” from Equation (1) to compute a
micro-model, Mi.

Mi = AD(mdi) (3)

Given our assumptions, we expect a distinct attack
that is concentrated in (or around) time period tj to
only affect a small subset of the models: Mj may be
poisoned, having modeled the attack vector as normal
data, but model Mk computed for time period tk, k 6= j
is likely to be unaffected by the same attack. In order
to maximize this likelihood, however, we need to iden-
tify the right level of time granularity g. Naturally, the
epochs can range over the entire set of training data.
Our experiments, reported in Section 3, analyze net-
work packet traces captured over approximately 300
hours. We find that a value of g from 3 to 5 hours
was sufficient to generate well behaved micro-models.
Additional experimentation is needed to further under-
stand the impact of different values of g on the accuracy
of the AD.

2.2 Sanitized and Abnormal Models

In the second phase, we compute a new AD model
using the set of previously computed micro-models to
sanitize either the same or a second set of training data.
The choice of splitting the training dataset into two sets
represents the worst case scenario: a very large dataset
for building the micromodels is needed and there is a
storage limitation. Hence, the AD sensor is required to
generate the micro-models online using a fraction of the
necessary storage (the models are smaller than the raw

traffic). After generating the micro-models, a second
dataset is tested (online or offline) by all of the micro-
models Mi. Each test results in a new labeled data set
with every packet Pj labeled as normal or abnormal:

Lj,i = TEST (Pj ,Mi) (4)

where the label, Lj,i, has a value of 0 if the model
Mi deems the packet Pj normal, or 1 if Mi deems it
abnormal.

At this point, we observe that these labels are not
yet generalized; they remain specialized to the micro-
model used in each test. In order to generalize the
labels, we process each labeled dataset through a voting
scheme, which assigns a final score to each packet:

SCORE(Pj) =
1
W

N∑
i=1

wi · Lj,i (5)

where wi is the weight assigned to model Mi and
W =

∑N
i=1 wi. We have investigated two possible

strategies: simple voting, where all models are weighted
identically, and weighted voting, which assigns to each
micro-model Mi a weight wi equal to the number of
packets used to train it. Interesting avenues for future
research can explore other weighting strategies.

Let us consider the case where a micro-model Mi in-
cludes attack-related content. When used for testing,
it may label as normal a packet containing that partic-
ular attack vector. Our conjecture, however, holds that
only a minority of the micro-models includes the same
attack vector as Mi. Thus, we use the results of the
voting scheme to split our data into two disjoint sets:
one that contains only majority-voted normal packets,
Tsan from which we build the sanitized model Msan,
and the rest, from which we construct a model of ab-
normal data, Mabn.

Tsan =
⋃

{Pj | SCORE(Pj) ≤ V } (6)

Msan = AD(Tsan) (7)

Tabn =
⋃

{Pj | SCORE(Pj) > V } (8)

Mabn = AD(Tabn) (9)

where V is a voting threshold. In the case of sim-
ple (that is, unweighted) voting, V relates directly to
the maximum percentage of abnormal labels permitted
such that a packet is labeled normal. Consequently, it
must be the case that 1−V > Np, where Np is the max-
imum percentage of models expected to be poisoned by
any specific attack vector. We provide an analysis of
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the impact of this threshold on both voting schemes in
Section 3.

After this two-phase training process, the AD sensor
can use the sanitized model for online testing. Our
approach is agnostic to the particular AD algorithm in
use. Consequently, we believe our approach can help
generate sanitized models for a wide range of anomaly
detection systems. As a preliminary form of support
for this hypothesis, we evaluate our approach with two
AD sensors in Section 3.

3 Evaluation

In this section we provide some preliminary exper-
imental results that seek to quantify the increase in
the detection accuracy of out-of-the-box content-based
anomaly detection systems when we apply training
data sanitization. The goal of our system is to de-
tect all true attacks and at the same time maintain or
even reduce the total number of generated alerts. We
evaluate our approach using two different scenarios. In
the first scenario, we measure the detection accuracy
of the AD sensor with and without sanitization. Ad-
ditionally, we consider the case where we use the AD
as a packet classifier for incoming network traffic: we
test each packet and consider the computational costs
involved by diverting each alert to a back-end shadow
server. Both the feasibility and scalability of this sce-
nario depend mainly on the amount of alerts generated
by the AD sensor, since all “suspect-data” are delayed
significantly by the shadow server and such data come
from both real attacks and false alerts.

For our experiments, we use two content-based
anomaly detectors Anagram [12] and Payl [11]. Both
detectors, like most anomaly detection sensors, have
a training and a testing phase. Although dependent
on a clean initial model, AD sensors have quite dif-
ferent learning algorithms to determine whether they
have seen a particular datum before or not. We do not
describe the details of these detectors and their algo-
rithms, as they are not germane to the topic of this
paper. We refer the interested reader to the respective
publications.

Our experimental corpus consists of 500 hours of real
network traffic, which translates into approximately
four million packets. We split these data into three
separate sets: two used for training and one used for
testing. We use the first 300 hours of traffic to build
the micro-models and the next 100 hours to generate
the sanitized model. The remaining 100 hours of data,
consisting of approximately 775,000 packets (including
99 worm packets) were used for testing the ADs. In
addition, to validate our results, we used the last 100

hours to generate the sanitized model while testing on
the other 100-hour dataset.

3.1 Experimental Results

In our initial experiment, we measured the detection
performance for both Anagram and Payl when used
as stand-alone online anomaly detectors. We then re-
peated the same experiments using the same setup and
network traces but including the sanitization phase.
Table 1 presents our findings, which show that by us-
ing a sanitized training dataset, we boost the detection
capabilities of both AD sensors. The results summa-
rize the false positive (FP) and the true positive (TP),
and also the absolute numbers of false alerts (FA) and
true alerts (TA) rates as averaged values obtained when
using both voting techniques, a granularity of 3-hour
and for the range of values V which maximizes our per-
formance (in our case V ∈ [0.15, 0.45]). These results
show that we can maximize the detection of the real
alerts while generating very low false positives rates.
It is important to notice that without sanitization, the
normal models used by Anagram were poisoned with
attacks and thus unable to detect new attack instances
appearing in the testing data. Therefore, making the
AD sensor more sensitive, e.g., changing its internal de-
tection threshold, would only increase the false alerts
without increasing the detection rate. In this exper-
iment, the traffic contains instances of phpBB forum
attacks (mirela, cbac, nikon, criman).

Table 1. AD sensors comparison
Sensor FP (%) FA TP(%)TA
Anagram 0.07 544 0 0

Anagram with Snort 0.04 312 20.20 20

Anagram with Sanitization 0.10 776 100 99

Payl 0.84 6,558 0 0

Payl with Sanitization 6.64 70,392 76.76 76

When the worm packets are included in the normal
model, we achieve a detection rate of 0% with Ana-
gram. When using previously known malcode infor-
mation (using Snort signatures represented in a “ma-
licious model”), Anagram was able to detect a portion
of the worm packets. Of course, this detection model is
limited because it requires that a new 0-day worm will
not be sufficiently different from previous worms that
appear in the traces. Worse yet, such a detector would
fail to detect even old threats that do not have a Snort
signature. On the other hand, if we enhance Anagram’s
training phase to include sanitization, we do not have
to rely on any other signature or content-based sensor
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to detect malware. The detection capabilities of the
system rely on the accuracy of the sanitized model and
for that reason, once the sanitized and the abnormal
models are computed, n-grams that are considered ab-
normal are removed from the sanitized model.

Furthermore, the detection ability of a sensor is in-
herently dependent on the algorithm used to compute
the distance of a new worm from the normal model.
For example, although Payl is effective at capturing
attacks that display abnormal byte distributions, it is
prone to miss well-crafted attacks that resemble the
byte distribution of the target site [4]. Our traces con-
tain such attacks, which is the reason why, when we use
the sanitized version of Payl, we can only get a 76.76%
worm detection rate, instead of 100%. The sanitization
phase is a necessary requirement in detecting malcode
but not a sufficient one: the actual algorithm used by
the sensor is also very important in determining the
overall detection capabilities of the sensor.

Overall, our experiments show that the AD signal-
to-noise ratio (i.e., TP/FP) can be significantly im-
proved even in extreme conditions, when intrinsic lim-
itations of the anomaly detector prevent us from ob-
taining a 100% attack detection, as we can observe in
table 2. Higher values of the signal-to-noise ratio imply
better results.

Table 2. AD sensors comparison
Sensor TP/FP
Anagram 0

Anagram with Snort 505

Anagram with Sanitization 1000

Payl 0

Payl Sanitization 11.56

To stress our system and to validate its operation,
we also performed experiments using traffic in which we
artificially injected worms such as CodeRed, CodeRed
II, WebDAV, and a worm that exploits the nsiislog.dll
buffer overflow vulnerability (MS03-022). All instances
of the injected malcode were recognized by the anomaly
detectors when trained with sanitized data. That re-
enforced our initial observations about the sanitization
phase: we can both increase the probability of detect-
ing a zero-day attack and of previously seen malcode.

3.2 Performance Evaluation

Another aspect of an anomaly detection system that
we would like to analyze is its impact on the average
time that it takes to process a request. In addition,
we measure the overall computational requirements of

a detection system consisting of an AD sensor and a
host-based sensor (shadow server). In this configura-
tion, the AD sensor acts as a packet classifier diverting
all packets that generate alerts to the host-based sen-
sor while allowing the rest of the packets to reach the
intended service. Our goal is to create a system that
does not impose a prohibitive increase in the average
request latency and at the same time can scale to mil-
lions of service requests. Therefore, we would like the
AD to shunt only a small fraction of the total traffic to
the expensive shadow servers.

In our experimental setup, we used two well-known
instrumentation frameworks: STEM [9] and DYBOC
[1]. STEM exhibits a 4,400% overhead when an appli-
cation such as Apache is completely instrumented to
detect attacks. On the other hand, DYBOC (which
requires access to application source code for the in-
strumentation) has a lighter instrumentation, provid-
ing a faster response, but still imposes at least a 20%
overhead on the server performance.

To calculate the total overhead, we used the same
method used by Wang et al. [12]. We define the
latency of such an architecture as following: l′ =
(l∗(1−fp))+(l∗Os∗fp), where l is the standard (mea-
sured) latency of a protected service, Os is the shadow
server overhead, and fp is the AD false positive rate.

To quantify the performance loss/gain from using
the sanitization phase, we compare the average latency
of the system when using Payl and Anagram with san-
itized and non-sanitized training data. From Table 3,
we observe that for both sensors there is not a sig-
nificant increase in the alert rate after sanitizing the
training data.

Table 3. Latency of the anomaly detectors
Sensor STEM DYBOC
No-sensor 44 ∗ l 1.2 ∗ l

Anagram 1.031 ∗ l 1.0001 ∗ l

Anagram with Snort 1.0172 ∗ l 1.0000 ∗ l

Anagram with sanitization 1.0430 ∗ l 1.0002 ∗ l

Payl 1.3612 ∗ l 1.0016 ∗ l

Payl with sanitization 3.8552 ∗ l 1.0132 ∗ l

4 Future work

A weakness of the local sanitization architecture
arises in the presence of a long-lasting attack in the
initial set of training data, poisoning all the micro-
models. To counter such attacks, we propose as fu-
ture work to extend our sanitization scheme to allow
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sharing of models of malicious traffic generated by col-
laborating remote sites, and to sanitize the local train-
ing data to a greater extent. These models, which can
be privacy-preserving, capture characteristics of mali-
cious behavior (rather than normal behavior, which is
the default AD operation). This approach may not
apply to polymorphic attacks, since each propagation
attempt will display a distinct attack vector that may
be captured in different malicious models. We conjec-
ture, however, that a polymorphic attack “targeting a
single site” can still be captured by the local saniti-
zation scheme presented in this paper. However, ad-
ditional testing is needed to determine how well our
scheme (with or without the collaborative sanitization
extensions) can cope with polymorphism or long-term
training attacks.

5 Conclusions

We introduce a novel sanitization method that
boosts the performance of out-of-the-box anomaly de-
tectors, elevating them to a first-rate and dependable
forensics and alert analysis tool. Our approach is sim-
ple and general, and can be applied to a wide range
of unmodified AD sensors without incurring significant
additional computational cost other than the initial
testing phase. Preliminary experimental results indi-
cate that our system can serve as an efficient and ac-
curate online packet classifier. The alerts generated by
the “sanitized” AD model are a small fraction of the
total traffic, and the overall signal-to-noise ratio is im-
proved compared to the original unsanitized AD model.
As a result, the ability to detect attacks, both in real
time and in post-processing, is significantly improved.
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