

Developing a frontend application
using ReactJS and Redux

Khuat, Tung

2018 Leppävaara

Laurea University of Applied Sciences

Developing a frontend application using ReactJS and ReduxDevel-
oping a frontend application using ReactJS and Redux

 Tung KhuatKhuat, Tung

 Degree Programme in Business
Information Technology

 Bachelor’s Thesis

 June, 2018 Leppävaara

Laurea University of Applied Sciences
LeppävaaraInformation Technology
Business Information Technology

Abstract

Khuat, TungTung Khuat

Developing a frontend application using ReactJS and ReduxDeveloping a frontend
application using ReactJS and Redux

Year 2018Leppävaara Pages 61

Following the rapid growth of social networking applications, Content Management Systems
were developed to manage vast amounts of data. This thesis details the development process
of building an application that serves as one of these systems. The application is based on Re-
actJS with Redux as the framework. All concepts and technologies used in the project are ex-
plained in their corresponding sections. This includes the relevant theoretical background
such as client-server model, Content Management System, and Document Object Model.

The thesis project was commissioned by a mobile application development company called
Buddify Oy. The result of this project was a web-based application that the company can use
as a Content Management System. The system acts as a centralized control panel and enables
the user to manage company product’s data.

The main method of development applied in this project was Agile methodology as it is suita-
ble for the changing requirements of the project and for the nature of a start-up company.
The Agile is an incremental model, consisting of many iterations. However, this thesis struc-
ture follows the traditional Software Development Life Cycle stages to provide an overview of
the entire development process.

Keywords: Web application development, ReactJS, Redux

Table of Contents

1 Introduction ... 7

1.1 Company background... 7

1.2 Buddify Content Management System ... 7

1.3 CMS Users ... 8

2 Knowledge base ... 8

2.1 Content Management System ... 8

2.2 Client-server model .. 9

2.3 Document Object Model ... 10

3 Methodology ... 10

3.1 Software Development Life Cycle .. 10

3.2 Agile Development Model ... 12

4 Project objectives .. 13

5 Requirements ... 14

6 CMS architecture design ... 15

6.1 System design .. 15

6.2 Modular design .. 16

6.3 Authentication ... 17

7 Development .. 20

7.1 ReactJS ... 20

7.1.1 JSX ... 20

7.1.2 Stateful components ... 21

7.1.3 Virtual Document Object Model .. 21

7.2 Redux ... 22

7.3 Other technologies ... 24

7.3.1 HTML and CSS .. 24

7.3.2 Sass with Compass .. 24

7.3.3 JavaScript .. 25

7.3.4 Webpack .. 26

7.4 Development tools .. 27

7.4.1 Atom ... 27

7.4.2 Git and Gitflow .. 27

7.4.3 Jira Software ... 29

7.5 Development process ... 29

7.5.1 Communication .. 29

7.5.2 Agile Iterations .. 30

8 Testing ... 31

9 Project Assessment .. 32

9.1 Functionalities ... 32

9.1.1 Authentication ... 32

9.1.2 User section .. 33

9.1.3 Posts and comments section .. 34

9.2 Qualities .. 34

10 Conclusion ... 35

Terms and abbreviations

 API Application Programming Interface

 App Application

 CMS Content Management System

 CSS Cascading Style Sheets

 DOM Document Object Model

 ES6 ECMA-262 6th edition

 HTML Hyper Text Markup Language

 JS JavaScript

 JSON JavaScript Object Notation

 UI User interface

 UX User experience

 XML Extensible Markup Language

1 Introduction

Following the growth of social networking applications during the last few decades, the de-

mand for solutions to manage vast amounts of data is increasing rapidly. Data management is

becoming a key element for many operations in the media industry. Companies have increas-

ingly implemented Content Management Systems (CMS) as a tool to manage various processes

of content creation and distribution. These systems can range from simple file management

applications to sophisticated systems handling all types of data and integration with a wide

range of platforms.

This thesis covers the process of developing one such system. Commissioned by Buddify Oy,

Buddify Content Management System was developed for internal use. The system acts as a

centralized control panel and enables the user to manage company product’s data. This will

help their app meet requirements from app stores, maintain users thus increase marketing

and revenue.

1.1 Company background

Buddify Oy is a technology start-up company located in Helsinki, Finland. It primarily operates

in mobile application development area, particularly in social networking applications. Bud-

dify currently has 3 apps in development with plans to continuously expand.

1.2 Buddify Content Management System

The method used to manage data prior to the CMS was to access the database tables for mod-

ifications. As each user tables contain many attributes with long URL links make it difficult to

find the correct person. This has proven to be highly inefficient and have the great potential

for human error. Furthermore, Buddify intends to hire third party employees for the manage-

ment tasks. With full admin access to the database, there is a high risk of security as that

user can have access to confidential information. The users also have the ability to shut down

the entire database or other disruptions. Therefore, Buddify required a better solution to

manage data and thus, the Content Management System was made.

Buddify Content Management System is the name given by the company for this project. The

system is a web application, used as platform for the company employees to manage data

that is related to various company products.

The following features are required for the CMS:

 Centralized ad network tracking panel: A panel that keeps track of all advertisement

network payments within a selected time frame.

 8

 User management system: A system used to search for users within the selected ap-

plication. Those users can then be deleted or banned.

 Post and comment management system: A system where posts and comments can be

found on different feeds or within the user’s profile. They can then be selected and

deleted.

 Centralized notifications: A record of all notifications. This includes system errors

within backend/frontend applications, database traffic, and usage.

 Messaging application: An instant messaging application

CMS features can be added or changed according to the company needs. However, this pro-

ject will only cover the user, post and comment management systems.

1.3 CMS Users

There are three different tiers of users, each with different access privilege. In descending

order, they are administrators, moderators, and members.

The user with the highest privilege is the system administrator given to the founders of the

company. Administrators have access to data from all three mobile applications. In addition

to moderator’s powers, administrators have authority to assign moderators to the correspond-

ing app and to promote or demote CMS users to any role.

The moderator role is given to employees to manage the data within the assigned environ-

ment. They have access to delete functions and can remove application users or any of their

posts and comments. Moderators are also permitted to ban users for a certain time duration.

Members are only allowed to view the data within the application they are signed up in. Mem-

bers cannot modify or delete any data shown on the CMS.

2 Knowledge base

This section provides clarification for all unexplained concepts and theories used in the pro-

ject.

2.1 Content Management System

The term content refers to any type of audio-visual, visual, sound, or textual information.

This can be represented by pictures, sounds, text, video, etc. Content can also be metadata.

Metadata can be classified as data giving a description of the subject at matter, data describ-

 9

ing formats, parameters and other specific information, or data describing location and condi-

tion of the carrier. Data such as title, subtitle, keywords, category, owner rights are some ex-

amples of metadata content. (Mauthe 2005)

A system that manages the mentioned content is called a Content Management System. CMS

provides a frontend UI that allow users to read, add, modify or delete content without di-

rectly interacting with the database.

2.2 Client-server model

Client-server model is an application structure that divides tasks and workload between a ser-

vice provider and the service requester. The former is called Server, or backend, while the

latter is called the Client, or frontend. Clients and servers communicate through a computer

network by exchanging request, response packages.

Figure 1: Client-server model

With this model, the client side does not have to be concerned with sharing any data or inter-

act with the database. All resources can be focused on optimizing the user interface and user

experience. The server side will handle calculations, business logic and database interactions.

They are dedicated to handle many requests from one or many different clients.

However, as demands for applications with adaptive interfaces and complex user interactions

rises, application logic is moving more towards the client. This is because it typically results

in a better experience for the user by avoiding full page reloads with every interaction. (Lind-

ley 2014)

 10

2.3 Document Object Model

The Document Object Model is a programming interface for HTML and XML document. It con-

nects web pages to scripts or programming languages. The DOM can be considered as a repre-

sentation of the page for programs to modify the document structure, style and content. The

document is presented in a logical tree with each branch of the tree ends in a node, and each

node contains objects. Nodes can have event handlers attached to them. Once an event is

triggered the event handlers get executed. (MDN web docs)

Figure 2: The HTML DOM tree of objects (W3schools)

3 Methodology

Agile Development Model was used as the framework for the development of the CMS. How-

ever, the structure of this thesis is based on Software Development Life Cycle (SDLC) to pro-

vide an overview of the project.

3.1 Software Development Life Cycle

Software Development Life Cycle, or SDLC, widely used in the software industry as a frame-

work to define tasks performed in each step of the development process. The goal of SDLC is

to provide the best product with the resources given.

 11

Figure 3: Software Development Life Cycle

A typical Software Development Life Cycle consists of the following stages:

 Planning and requirement analysis: Based on the objective of the product, a project

plan will be conducted. The product feasibility will be assessed according to eco-

nomic resources and the technical requirements. The quality assurance requirements

for the product will then be set. Risk assessment is also done in this stage to ensure

the project proceeds with minimum risks.

 Defining requirements: Product requirements are to be defined and documented

clearly in this stage. This is done through a Software Requirement Specification (SRS)

document.

 Designing the product architecture: Base on the SRS document, a Design Document

Specification (DDS) document is formed. It contains design proposals for the product

architecture including the flow of data with external, and third-party modules if such

modules are used. The document will then be reviewed by important stakeholders to

decide on the best approach.

 Developing the product: This is the stage where the product is built. The program-

ming code is generated according to the DDS document. The programming language is

chosen depending on which type of software is being developed. Coding guidelines

are defined by the developer’s organization.

 Testing the product: In this stage, the software is tested for defects. Product defects

are reported, tracked and fixed. The testing phase is repeated until the product

reaches the standards defined in the SRS.

 12

 Deployment and Maintenance: After the product is carefully tested, it is ready to be

deployed. The product is deployed according to the strategy of the organization.

Maintenance is done after the product is released when new errors are discovered or

when enhancements are needed.

(Tutorials point)

3.2 Agile Development Model

Figure 4: Agile Methodology (Ivanecky 2016)

Agile Development Model is one of the two most popular SDLC models, with the other being

the Waterfall Development Model. In opposition to the Waterfall method, the agile method

focusses on process adaptability and customer satisfaction by rapid delivery of working soft-

ware product.

The Agile model is an incremental process model with multiple iterations. Each iteration con-

sists of the fundamental SDLC phases with minor modifications. These phases are planning,

designing, building, testing, reviewing and launching the product. A typical iteration can last

from one to three weeks. Every iteration involves cross-functional teams working simultane-

ously in their own areas. (Tutorials Point)

Agile uses an adaptive approach where there is no detailed planning. It only clarifies on what

feature need to be developed next and what task is required to complete that feature. Devel-

opment teams can adapt to a product with dynamic requirements. The product is tested, re-

viewed by peers and customers, thus greatly reduce the risks of any major failures. (Tutorials

Point)

The rationale for selecting Agile as the development methodology is due to its flexible na-

ture. The Buddify CMS project has a dynamic requirement as new functions can be added at

 13

any time. The company can also shift feature prioritization causing the development team to

change tasks.

Another reason for using the Agile model is that Buddify is a start-up company which means

that everything must be done in haste. The company cannot afford to follow a detailed plan

with clear definition of each stages as many of the other methodologies require. This can con-

tain high amounts of risk and uncertainty. Instead, they need to push a product out fast to

gather feedback then develop further accordingly. Buddify CMS is not published for public use

but it is heavily dependent on the backend. If the backend developers are occupied with a

different task, the CMS development progressing is halted.

Additionally, Buddify development teams work in close proximity and regularly exchange

ideas and discussions. This allows progress to be done without much documentation. Revision

and group meetings are also easily arranged.

4 Project objectives

This section details the planning stage of the Software Development Life Cycle.

The objective of the project is to develop a web-based content management system for Bud-

dify Oy’s employees to manage their mobile application content. The application must

achieve the predefined requirements in terms of quality and functionalities. Additional func-

tions can be added at any given time if necessary.

The core functionalities of the system include:

 Authentication: Users are required to have an account to be issued an access token

and a refresh token. Access tokens are used as a Bearer credential and transferred

through an HTTP Authorization header. Excluding login and sign up, access tokens are

mandatory for every backend API endpoint requests. Refresh tokens are used to re-

new access tokens when it expires. In addition, sign up functions are available within

the CMS and all tokens are stored within the client’s browser for convenience.

 App user exploration and flagged users: Users can be found on the CMS in the same

way as on the mobile application with additional filter options. Flagged users are also

displayed on a separate section. CMS moderators and administrators can then choose

to delete the user or ban them. Ban durations are chosen by selecting from a few pre-

set options. In addition, IP ban can also be set but should only be used with careful

consideration.

 User posts and comments: User posts and comments are displayed using the same UI

and filters as on the mobile application. Posts can be found on the main discovery

 14

feed, and on user’s profile section. With each post and comment, a delete option is

provided. All deletion need to be confirmed and are permanent.

 User information: User profile is also provided in the CMS. All information category is

displayed according to each app. Report count is also shown here.

The quality requirements of the system are:

 The system must have an uncluttered, simple user interface with readable font and

font-size.

 It must be responsive on both the web browser and the mobile browsers.

 Loading indicators are added for asynchronous items.

 There must not be any shuttering while scrolling and the loading speed of each view

are reduced to a minimum.

 The system must not cause any crash or freezes to the browser.

5 Requirements

The following section defines the requirements for the CMS. This is the Defining stage of the

SDLC.

Buddify CMS is designed to manage content from multiple apps. Each app can contain similar

features or entirely different ones. The CMS is therefore required to be flexible and adapt to

functionality changes depending on which application the system is managing. Additionally,

new features are continuously built as further demands for the CMS and the amount of Bud-

dify mobile application rises. To account for the future growth, extensibility and reusability

will be the focus of this project.

Extensibility is a design principle that takes future growth into consideration with each imple-

mentation. In software engineering, not everything can be designed in advance. Embracing

this, extensibility design emphasizes properties that minimize the effort required to modify or

extend the system. The three most important properties of extensibility are modifiability,

scalability, and maintainability.

Modifiability is the ease with which a software system can be modified. Modifiability can be

determined by how each functionality is separated and architecturally organized, and by how

coding techniques are applied. A system has high modifiability when changes to the system

require as few changes in each related component as possible. (Bass et al. 2003).

 15

Maintainability is the effort required to locate and fix an error in an operational software.

Maintainability is similar to Modifiability in definition. The essential difference between them

is that maintainability is also takes the correction of bugs into consideration whereas modifi-

cation is not.

Scalability as defined by Bondi is “the ability of a system to expand in a chosen dimension

without major modifications to its architecture” (Bondi 2000). Scalability can be measured by

how the system can add new functionalities or new components with minimal effort, and

without having to undertake a major redesign.

6 CMS architecture design

This section details the Designing step in SDLC. CMS architecture is constructed based on the

requirements defined previously. Fundamentally, it follows the role of a client-side applica-

tion and uses React-redux as a framework of development.

6.1 System design

System design for this project is based on the conventional client-server model. Buddify Con-

tent Management System sends requests with the same method and headers as the mobile ap-

plication.

Figure 5: Buddify CMS system model

 16

The backend API handles requests from both the CMS and all mobile applications. It sends

back response in identical format with some exceptions where the endpoint is CMS or mobile

app exclusive. Calculations, business logic and database interactions are handled by the

backend. Frontend applications do contain calculations and structured ways to store data.

However, it mainly focusses on providing the best UI with optimal performance and user ex-

perience.

6.2 Modular design

Modular design is a design approach that subdivides a system into various independent mod-

ules. A modular system provides low coupling, high cohesion components, thus increase flexi-

bility, modifiability, scalability and reusability. From different flow path analysis, it is possi-

ble to identify critical components in functionality and performance. By optimizing those

components, or replacing them with higher performing ones, it is possible to improve effi-

ciency and performance. (Bejan 2006)

To partition the system into discrete modules, the first step is to describe the different func-

tions the system possesses to separate main components based on functionality. Use case dia-

grams were used to analyze different flow paths and identify these critical components. Use

case analysis is an important and valuable requirement analysis technique that has been

widely used in modern software engineering. With its inherent iterative, incremental and evo-

lutionary nature, use case also fits well for agile development.

 17

Figure 6: Top level use cases for Buddify Content Management System

The figure above describes the most basic interactions between the CMS user and the

backend API. From this diagram, Buddify Content Management System module components

are sorted base on the service it provides. They are separated into authentication, user, user

uploads, ban and delete services.

6.3 Authentication

Buddify API authentication is based on OAuth 2.0, one of the industry-standard protocol for

authorization. OAuth 2.0 focuses on client developer simplicity while providing specific au-

thorization flow for web applications. (OAuth 2018) This section will not cover the rationale

for selecting this authentication method nor how it is implemented, as it is backend’s respon-

sibility. However, a description of how the CMS handles OAuth tokens, and the authentication

design for the frontend system will be provided.

CMS users are issued an access token and a refresh token after a valid username and password

have been submitted. Access tokens are like the user’s credentials and are sent like an API

 18

key. It allows the application to access a user’s data and always come with an expiration

time. Refresh tokens are used to retrieve a new access token if the current one has expired.

Excluding the login and sign up requests, access tokens are mandatory for every HTTP request

sent to the backend API. The token is placed in the authorization header with the syntax: Au-

thorization: Bearer [access_token]. The following diagram shows the process of sending a typ-

ical API request in Buddify CMS.

 19

Figure 7: Process of sending a typical API request through the web service module

A request with an invalid token will be caught as an error and the request renew token han-

dler function is executed. In most cases, the entire process completes within milliseconds.

However, users can attempt to send additional requests in abnormal cases like slow connec-

tion or application suspension. With this in consideration, the handler function first stop all

 20

requests that are executed and then store them in order. At the same time, it validates the

refresh token. If the refresh token was expired or otherwise invalid, the failure handler func-

tion is executed and end the process. If the validation returns valid, the refresh token will be

used to generate a new access token. With the new access token, the current request and all

awaiting requests queued in this process is then executed.

7 Development

7.1 ReactJS

ReactJS, also known as React or React.js, is an open-source JavaScript library for building

user interfaces. It is used for handling view layer in single page applications and mobile appli-

cations development. It is maintained by Facebook, Instagram and a community of developers

and corporations.

React strives to provide speed, simplicity and scalability. Some of its most notable features

are JSX, Stateful components, Virtual Document Object Model.

7.1.1 JSX

JavaScript XML (JSX) is an extension to the ECMAScript syntax without any defined semantics.

(JSX 2014) React embraces the fact that rendering logic is inherently coupled with another UI

logic. Instead of separating technologies, React uses loosely coupled units called components

that contain both. JSX is optional and not required to use React. However, JSX is a good vis-

ual aid when working with UI inside JavaScript. It also allows React to show more useful error

and warning messages. (React)

Figure 8: An example of JSX (React)

 21

7.1.2 Stateful components

React allows users to split the UI into independent, reusable pieces called React Components.

React components implement a render method that takes input data and returns what to dis-

play. Each component has several lifecycle methods that can be overridden to execute code

at particular times during the process. Methods can be called using Reacts API. (React)

State is a plain JavaScript object that is used to record and react to user events. Each class

based component defined has its own state object. Whenever a component state is changed,

the component, and all of its child components, immediately re-renders. States hold values

throughout the component and can be passed down to child components as props.

7.1.3 Virtual Document Object Model

The HTML DOM was originally intended for static pages and thus was not optimized for creat-

ing dynamic UI. When the DOM updates, it has to update every node and re-paint the page

with the corresponding CSS and layout. It is common for a single page application to contain

thousands of dynamically generated nodes that have event listeners attached to them. In dy-

namic pages, the HTML DOM must check for changes in every node data at a regular interval.

This is considerably reduces application performance. The Virtual DOM was invented as a so-

lution to this inefficiency. (Willmott 2017)

The Virtual DOM is an abstraction of the HTML DOM. It is lightweight and detached from the

browser. It can be updated without affecting the actual DOM. React has Virtual DOM built in a

module called ReactDOM. When updates are supplied, React uses a process called reconcilia-

tion, using an algorithm that compares and contrasts changes to know what elements needs

updating. React then only change those elements, leaving the others unaffected.

 22

Figure 9: Comparison between Virtual DOM and Browser DOM in different stages of state

change

7.2 Redux

Redux is a predictable state container for JavaScript applications. State management is one

of the most difficult aspects of software development. State mismanagement is the source of

the most errors. Redux is a simplified implementation of Facebook’s Flux architecture which

is a Model-View-Controller framework. It lessens the complexity by using reducers. Redux re-

ducers are functions without side effects that compute application state. (Geary 2016)

Redux is founded on three principles:

 Application state is stored in a single object. Redux stores state in a single JavaScript

object to make it easier to map out and pass data throughout the entire application.

Centralizing state in a single object also make the process of testing and debugging

faster.

 Application state is immutable. In redux, states cannot be modified. The only way to

change the state is to provide an action. Actions are immutable JavaScript objects

that describes the state changes. Actions are executed in an order to prevent race

conditions.

 Reducers specify how the action transform the state. Reducers are JavaScript func-

tions that create a new state with the given current state and action. They centralize

 23

data mutations and can act on all or part of the state. Reducers can also be combined

and reused.

This architecture greatly increases scalability for large and complex apps. It also enables very

powerful developer tools because it is possible to trace every mutation to the action that

caused it. With a state and action, the next application state can be predicted with absolute

certainty. (Redux)

The following figure shows the data flow of Buddify CMS with Redux.

Figure 10: State change process of Buddify CMS with Redux (Terpil 2016)

When a user interacts with a HTML element, the corresponding action calls to dispatch an ac-

tion. The dispatcher then checks if the action requires a HTTP request to backend API by us-

ing middlewares. If such interactions are needed, the dispatcher returns the action and waits

for the response from backend as it is asynchronous. Once the request is finished, the action

is then passed back. The dispatcher then sends the action and the current state to the re-

ducer. The reducer creates the new state and replace the old one. The redux store with the

updated state notifies any view components which the state has change. The component is

then re-rendered accordingly.

 24

7.3 Other technologies

7.3.1 HTML and CSS

HTML, or Hyper Text Markup Language, the standard language for describing the structure of

web pages. HTML elements are the building blocks of web pages and are represented by tags.

These tags label pieces of content. For example, the tag <p> labels the opening of a para-

graph with the closing tag </p>. Web browsers do not display HTML tags, they instead only

use them to render the content of the page. (W3C 2017)

CSS, or Cascading Style Sheets, is a stylesheet language used to describe the presentation of a

document written in HTML or XML. CSS describes how elements should be displayed on the

web UI. According to the W3C specification, CSS is one of the core languages of the open web

and is standardized across browsers. (W3C 2016)

7.3.2 Sass with Compass

Sass is a CCS extension language, providing an alternate way of writing CSS. Sass scripts are

written on its’ own file under the .scss or .sass extension, depending on which style was used.

Sass allows users to write more maintainable code faster. With plain CSS, elements must be

individually target for stylings. The problem with that if the same properties are used for

multiple elements, the styles will have to be defined repeatedly. Modification to styles also

need to be done in multiple different locations. Sass solves this problem by providing varia-

bles, functions and many other tools that allow reusability and increase modifiability.

Compass is an open-source framework built on Sass, designed to make styling with Sass more

efficient. It has a large collection of mixins and functions. Compass also provides a compiler.

After saving a Sass file, the Compass compiler automatically edit a targeted CSS file, or gen-

erate one if no file exists. Configurations such as the name and directory of the file, the root

file and the output style can be edited in the compiler config file.

 25

Figure 11: Example of Compass folder structure

7.3.3 JavaScript

JavaScript is an interpreted programming language with object-oriented capabilities. Along

with HTML and CSS, JavaScript is one of the three core technologies in web development with

HTML describing the content, CSS describing how the content is displayed, and JavaScript de-

scribing the behaviour of the content. As such, JavaScript is able to run on all modern brows-

ers without any additional plugins or compilers and is used in the majority of modern web-

sites. (Flanagan 2011)

JavaScript provides many good features such as functions, loose typing, dynamic objects, and

an expressive object literal notation.

 JavaScript’s functions are first class objects with lexical scoping. It has more com-

monality with Lisp and Scheme than with Java. This makes JavaScript a remarkably

powerful language.

 Loose typing objects liberate developers from having to form complex class hierar-

chies and reduce concerns about the type system.

 JavaScript has an expressive and powerful object literal notation. Objects can be cre-

ated simply by listing their components. This notation was the inspiration for JSON,

the popular data format.

In conclusion, “JavaScript is a full-featured programming language, as complex as any and

more complex than some”. (Crockford 2008)

 26

7.3.4 Webpack

Webpack is a module bundler that converts dynamic modules with dependencies into static

assets. In application development, it is common to have various modules from either custom

files or modules installed by Node Package Manager. These modules can contain one or multi-

ple layers of dependencies. Webpack can bundle everything through a dependency graph, into

a JavaScript file. Webpack also allow developers to export and import modules, code, and

other assets between JavaScript files. Plugins and Loaders can be installed to extend

Webpacks functionality.

Figure 12: Functionality of Webpack module bundler (GitHub 2017)

Webpack offers the following features:

 Dead asset elimination removes assets that are not used to reduce file size.

 Code splitting enables chunks of code to be broken down and used on demand.

 Loaders transform other resources to JavaScript. JSX, Babel loaders are the most im-

portant loaders for this project as they are required for React. Babel loaders allow

React developers to use ES6 syntax as it will be compiled down to ES5 for full browser

compatibility.

 Clever parsing allows Webpack to parse most third-party libraries.

 27

Additionally, Webpack has built in development servers with live reloading. Webpack Dev

Server is a small NodeJS Express application that uses Webpack middleware to serve up a

bundle for local development.

7.4 Development tools

7.4.1 Atom

Atom is the text and source code editor of choice in this project. The benefits of using atom

are that it is a free open source editor with cross platform editing, a built-in package man-

ager and a file system browser with multiple panels. (Atom 2018)

Figure 13: Atom user interface

In addition, jsLinter can be installed using atom’s package manager. It has high customizable

options but as default, jsLinter looks for syntax errors and correct them when the file is

saved. It also arranges the code in a standardized coding style such as ESLint, Airbnb, or

standard JS. This is greatly increases modifiability and maintainability of the source code.

7.4.2 Git and Gitflow

Git is the most widely used modern version control system by a large margin. It is a powerful

tool for a development team to collaborate in a project. With high performance, security and

flexibility, Git provides the most optimized service for developers to manage their source

code. (Atlassian)

A Git workflow is essential to accomplish work in a consistent and productive manner. It en-

courages users to leverage Git effectively. Gitflow is a git workflow design that defines a

 28

strict branching model based on project release. This provides a robust framework for manag-

ing larger projects. (Atlassian)

Figure 14: Representation of Gitflow Workflow branches (Atlassian)

All Buddify projects follow the Gitflow Workflow, including the Buddify CMS project. Instead

of a single master branch, this workflow uses two branches to record the history of the pro-

ject. The master branch is the official release history while the develop branch serves as an

integration for features. Each new feature should reside in its own branch. When a feature is

finished, it is merged back into develop. Features do not interact with the master branch.

Once develop has acquired enough features determined by the user or a release date, it will

be duplicated to use as the master branch. The develop branch must never be behind the

master branch. Hotfix branches are bases directly off master and merged into both master

and develop branch after completion. (Atlassian)

Buddify also use the develop branch to testing products within the company team before re-

lease. The develop branch is connected to a dedicated server called the Dev server. Buddify

developers can test the feature or application on this server without any restrictions as it

does not affect the production server. Buddify CMS manages the content from the Dev

server’s database. Additionally, all feature branches require a code review from one or many

 29

assigned reviewers before merging into the develop branch. This code review process is called

a pull request.

7.4.3 Jira Software

Jira Software is the most popular software development tool used in Agile development. It

provides issue tracking and project management functions. Jira Software’s rich planning fea-

tures, such as Scrum, Kanban, and Mixed methodology, enable flexibility in planning. Jira can

be used to keep track of the developing process with accurate estimations that helps the de-

velopment team become more accurate and efficient. The order of stories, issues and bugs in

product backlog can be arranged in prioritization levels. Jira also have extensive reporting

functionality that provides critical insight into the agile development process. (Atlassian)

Figure 15: Jira Software issue tracker (Atlassian)

7.5 Development process

This section describes how the Agile development methodology was used in the project. Col-

laboration tools are also explained briefly in this section.

7.5.1 Communication

Buddify currently has different teams responsible for frontend, backend, Android, and iOS de-

velopment. Most communications between each member are done through team meetings and

through Slack.

 30

Slack is a cloud-based application software designed to help people involved in a common

task to achieve their goals. Slack provides a messaging application with collaboration features

such as public and private channels. Unlike lengthy email chains, team members can join and

leave channels, or set different notification settings as needed. Everything that has been

posted in a channel or in direct messages is archived and can be searched even when users

have left the channel. Slack also enables file sharing and integrates with a large number of

third-party services.

Figure 16: Slack user interface on desktop and mobile platforms (Slack)

Team meetings are an important part of agile development. These meetings are held once

per week and lasts between one to two hours. The purpose of the of the meeting is to plan

agile the next agile iteration and review the current one. Each team will also show case their

work and the problems they face.

7.5.2 Agile Iterations

Following the Agile Development Model, the project consists of many iterations of planning,

designing, building, testing and reviewing. These iterations are also known as sprints. This

section will briefly describe the process of a typical iteration.

 31

Each Sprint normally last for one to two weeks. The planning phase is done during the weekly

team meetings. The project leader starts with a prioritized product backlog prepared before-

hand and discuss each item with the development team. The team will then collectively esti-

mate the effort needed to carry out the task and plan an outline of its completion. Using the

Jira Software, a to-do list for the week is then created for each development team.

One or many features can be developed during a sprint. If the feature is complex, feature de-

signs are made and reviewed by other team members. Magic Whiteboards, a whiteboard on a

roll that sticks with static to any flat surface, are used to pitch ideas. See Appendix 5: Bud-

dify design plans.

After the design is decided, the development phase commences. To keep everyone informed

on the sprint progress across the teams, a daily report is written on a dedicated slack chan-

nel. These reports are informal and brief, taking no more than 15 minutes. The contents of

the report include what was completed yesterday, a plan of what is done today and a notice

if progress is blocked by other teams.

When a feature is finished, all git commits are pushed on to the GitHub repository. Before a

merging to the main branch, a pull request is formed and approved by the assigned reviewers.

Reviewers are parties that are involved with the feature currently being developed, or some

one with knowledge on the same subject. Once a pull request is sent, all reviewers will re-

ceive a notification and can then review the set of changes and discuss potential modifica-

tions if necessary. If such modification is needed, it must be done before another pull request

is created. A feature branch is only permitted to merge when all reviewers approve the re-

quest. Agile promotes rapid feedback to make the product and development culture better.

Continuous improvement is what sustains and drives development within an agile team.

Once all reviews are approved, the feature is ready for launch and the next iteration begins.

8 Testing

Testing is the process of verifying that the program is working as intended. In this stage, each

feature is checked for defects. Product defects are reported, tracked using Jira and fixed by

the person responsible for the tested feature. The testing phase is repeated until the product

reaches the standards defined in previous stages.

In this project, Testing is done in two stages: Unit testing during development and after de-

ployed to the Dev server.

During the development process on local server, developers of a feature is required to ensure

that the same feature passes all testing scenarios. Testing scenarios are defined during dis-

 32

cussions among the development team members. The most common scenarios are slow inter-

net connection, abnormal user inputs and rapid intakes of user input. The tester follows each

scenario to check if the feature is producing the expected outcome. Currently, the test done

on this stage is performed manually for Buddify CMS. However, unit testing will be automated

for new features after the core functionalities have been completed.

After the feature passes tests that are conducted on the client-side, it will be tested on the

Dev server. Testers include every member in a development team can test this feature live on

the development server. As the server has its own dedicated database, modification to the

content here does not affect the mobile application’s content. Therefore, testers are permit-

ted to test any feature, including ban and delete features. If any errors or performance issues

occur, it will be reported using Jira Issue tracker. This testing phase typically lasts for one

week.

9 Project Assessment

This section provides an assessment on the result of the project based on the defined require-

ments mentioned in the project objectives.

9.1 Functionalities

9.1.1 Authentication

The authentication section has achieved all the requirements mentioned. In addition, authen-

tication was partitioned into a service module in the Actions section. Every request must go

through this action.

Additional requirements achieved include:

 Users are required to have an account to be issued an access token and a refresh to-

ken. Invalid accounts will show the response message error description. Username in-

puts remove capitalize letters and spaces when the request is sent.

 Authentication tokens are saved using cookies.

 Signup forms must have the following fields: Username, Password, Email, Full name,

Date of birth, Gender, Profile picture, Country, Location. The location section must

have a search with auto completion.

Reference Appendix 1: Authentication service

 33

9.1.2 User section

The user section has achieved the predefined requirements with the exception of additional

filter options. This includes the application user exploration, flagged user list, and user infor-

mation. The CMS currently only provide the same options as the ones in the mobile applica-

tion. Reference Appendix 2: User section

Flagged users are displayed on a separate section using the navigation bar. The template for

the flagged users section is identical to the user exploration section.

Figure 17: Buddify CMS navigation bar

Users that have previously been banned or deleted will still show in this section as backend

was required to keep a history of flagged users. As such, UI reference will not be shown for

this section as it contains nudity and other inappropriate content, instead the request status

will be displayed.

Figure 18: Successful request for flagged users

In addition, the ban and delete panels is provided with a confirmation popup. This is made to

reduce the risk of accidental deletion of users.

Figure 19: Confirmation popup windows for users

 34

9.1.3 Posts and comments section

User posts and comments are also successfully implemented. User posts and comments are

displayed using the same UI and filters as on the mobile application. Posts can be found on

the main discovery feed, and on user’s profile section. With each post and comment, a delete

option is provided. All deletion need to be confirmed and are permanent.

Figure 20: Confirmation popup windows for posts and comments

Reference Appendix 3: Posts and Comments section

9.2 Qualities

The quality requirements of the systems have been achieved. Quality check is done by the

project leader with each new implementation.

Buddify CMS has achieved the following quality requirement:

 The system must have an uncluttered, simple user interface with readable font and

font-size. UI related requirements are reviewed by testers and changes are proposed

through a ticket using the issue tracker.

 It must be responsive on both the web browser and the mobile browsers. A dedicated

Sass file was created for mobile view and three different viewports. In smaller view

ports, the navigation bar is collapsed, items are displayed in one column, font sizes

and button sizes are increased accordingly.

 Loading indicators are added for asynchronous items. Asynchronous items are at-

tached with the isFetchingData() method which only resolves when the request is

completed. Loading indicators are attached to each of these items.

 There must not be any shuttering while scrolling and the loading speed of each view

are reduced to a minimum. The system must not cause any crash or freezes to the

browser. React greatly reduces the loading time for each section as it only loads the

parts that have been modified. Webpack also bundles modules into a minified file

 35

which improves performance. In addition, all unused event handlers are cleared pre-

venting memory leaks that can cause browser freezes or crashes.

Reference Appendix 4: Quality requirements

10 Conclusion

In conclusion, the Buddify Content Management System project was a success. The CMS

achieved all the predefined functions and quality requirements. With each implementation,

there was considerable effort to enhance extensibility. As a result, the product had high

maintainability, modifiability, and scalability. Deployment and maintenance will be done in

the upcoming future and is outside of the scope of this paper.

The company can use the system in the future to manage content for all their social network

mobile application. The designs for Buddify CMS were made to be reusable and easily inte-

grated with other application APIs and versions.

While the company is satisfied with the final project result, there were still many aspects

that can be optimized. In my opinion, there are always potential for improvements in code

structure, functional logic, user experience design and application performance. I will con-

tinue to do code refactoring to improve readability, maintainability and reduce complexity.

 36

References

Printed sources

Bass, L., Clements, P. & Kazman, R. 2003. Software Architecture in Practice. 2nd ed. Boston:

Addison Wesley.

Crockford, D. 2008. JavaScript: The Good Parts. 1st ed. O’Reilly Media: O’Reilly.

Flanagan, D. 2011. JavaScript: The Definitive Guide. 6th ed. Fonenix: O'Reilly.

Mauthe, A. & Thomas, P. 2005. Professional Content Management Systems: Handling Digital

Media Assets. 2nd ed. John Wiley

Electronic sources

Atlassian. No date. Accessed 2018. https://www.atlassian.com/software/jira

Atlassian. No date. Accessed 2018. https://www.atlassian.com/git/tutorials/comparing-work-
flows/gitflow-workflow

Atlassian. No date. What is Git. Accessed 2018. https://www.atlassian.com/git/tutori-
als/what-is-git/

Atom. 2018. Accessed 2018. https://atom.io/

Bejan, A. & Lorente, S. 2006. Constructal theory of generation of configuration in nature and

engineering. Journal of Applied Physics. Accessed 2018. https://aip.scita-

tion.org/doi/10.1063/1.2221896

Geary D. 2016. Manage state with Redux-Part 1 Introducing Redux. IBM developerWorks. Ac-
cessed 2018. https://www.ibm.com/developerworks/library/wa-manage-state-with-redux-
p1-david-geary/index.html

GitHub. 2017. Usage. Webpack. Accessed 2018. https://github.com/webpack/docs/wiki/us-
age

Ivanecky, N. 2016. Crash Article in Agile Development. Medium. Accessed 2018. https://me-
dium.com/open-product-management/crash-article-in-agile-development-da960861259e

JSX. 2014. JSX Specification. Accessed 2018. https://facebook.github.io/jsx/

Lindley, C. 2014. Front-end Driven Applications- A New Approach to Applications. Telerik. Ac-
cessed 2018. https://developer.telerik.com/featured/front-end-driven-applications-new-ap-
proach-applications/

MDN web docs. No date. Introduction to the DOM. Accessed 2018. https://devel-
oper.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

OAuth. 2018. OAuth 2.0. Accessed 2018. https://oauth.net/2/

https://www.atlassian.com/software/jira
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/what-is-git/
https://www.atlassian.com/git/tutorials/what-is-git/
https://atom.io/
https://www.ibm.com/developerworks/library/wa-manage-state-with-redux-p1-david-geary/index.html
https://www.ibm.com/developerworks/library/wa-manage-state-with-redux-p1-david-geary/index.html
https://www.ibm.com/developerworks/library/wa-manage-state-with-redux-p1-david-geary/index.html
https://github.com/webpack/docs/wiki/usage
https://github.com/webpack/docs/wiki/usage
https://medium.com/open-product-management/crash-article-in-agile-development-da960861259e
https://medium.com/open-product-management/crash-article-in-agile-development-da960861259e
https://facebook.github.io/jsx/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://oauth.net/2/

 37

React. No date. Accessed 2018. https://reactjs.org/

React. No date. Introducing JSX. Accessed 2018. https://reactjs.org/docs/introducing-
jsx.html

React. No date. React-Component. Accessed 2018. https://reactjs.org/docs/react-compo-
nent.html

Redux. No date. Accessed 2018. https://redux.js.org/

Slack. No date. Accessed 2018. https://slack.com/

Terpil, J. 2016. Redux-From twitter hype to production. Accessed 2018.
http://slides.com/jenyaterpil/redux-from-twitter-hype-to-production#/

Tutorials point. No date. SDLC-Agile Model. Accessed 2018. https://www.tutori-
alspoint.com/sdlc/sdlc_agile_model.htm

Tutorials point. No date. SDLC-Overview. Accessed 2018. https://www.tutori-
alspoint.com/sdlc/sdlc_overview.htm

Wilmott, D. 2017. Understanding React’s Virtual DOM vs. the real DOM. Medium. Accessed
2018. https://medium.com/@hidace/understanding-reacts-virtual-dom-vs-the-real-dom-
68ae29039951

W3C. 2016. Cascading Style Sheets. Accessed 2018. https://www.w3.org/Style/CSS/

W3C. 2017. HTML 5.2. Accessed 2018. https://www.w3.org/TR/html52/

W3chools. No date. JavaScript HTML DOM. Accessed 2018.
https://www.w3schools.com/js/js_htmldom.asp

https://reactjs.org/
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://redux.js.org/
http://slides.com/jenyaterpil/redux-from-twitter-hype-to-production%23/
http://slides.com/jenyaterpil/redux-from-twitter-hype-to-production%23/
https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm
file:///C:/Users/Benny%20Li/Pictures/Thesis/Tutorials%20point.%20No%20date.%20SDLC-Overview.%20Accessed%202018.%20https:/www.tutorialspoint.com/sdlc/sdlc_overview.htm
file:///C:/Users/Benny%20Li/Pictures/Thesis/Tutorials%20point.%20No%20date.%20SDLC-Overview.%20Accessed%202018.%20https:/www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://medium.com/@hidace/understanding-reacts-virtual-dom-vs-the-real-dom-68ae29039951
https://medium.com/@hidace/understanding-reacts-virtual-dom-vs-the-real-dom-68ae29039951
https://medium.com/@hidace/understanding-reacts-virtual-dom-vs-the-real-dom-68ae29039951
file:///C:/Users/Benny%20Li/Downloads/W3C.%202016.%20Cascading%20Style%20Sheets.%20Accessed%202018.%20https:/www.w3.org/Style/CSS/
https://www.w3.org/TR/html52/
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp

 38

Figures

Figure 1: Client-server model.. 9

Figure 2: The HTML DOM tree of objects (W3schools) .. 10

Figure 3: Software Development Life Cycle ... 11

Figure 4: Agile Methodology (Ivanecky 2016) ... 12

Figure 5: Buddify CMS system model ... 15

Figure 6: Top level use cases for Buddify Content Management System 17

Figure 7: Process of sending a typical API request through the web service module 19

Figure 8: An example of JSX (React) ... 20

Figure 9: Comparison between Virtual DOM and Browser DOM in different stages of state
change ... 22

Figure 10: State change process of Buddify CMS with Redux (Terpil 2016) 23

Figure 11: Example of Compass folder structure ... 25

Figure 12: Functionality of Webpack module bundler (GitHub 2017) 26

Figure 13: Atom user interface .. 27

Figure 14: Representation of Gitflow Workflow branches (Atlassian) 28

Figure 15: Jira Software issue tracker (Atlassian) ... 29

Figure 16: Slack user interface on desktop and mobile platforms (Slack) 30

Figure 17: Buddify CMS navigation bar ... 33

Figure 18: Successful request for flagged users .. 33

Figure 19: Confirmation popup windows for users ... 33

Figure 20: Confirmation popup windows for posts and comments 34

 39

Appendix 1: Authentication service

Invalid Username password display

Landing page on successful login.

 40

Sign up page.

 41

Required Signup fields.

 42

Country drop-down options.

Location auto complete feature.

 43

Access token and refresh token are provided on successful login.

Tokens are stored on client side.

 44

Appendix 2: User section

User exploration based on last seen online order.

 45

Filters for users.

 46

User information page.

All information category is displayed according to the Buddify app.

 47

User delete and ban functions.

Ban functions are hidden within the button.

 48

Delete feature is functional and behaving as intended. Once a user is delete, the user profile
can no longer be retrieved.

Ban feature is functional and behaving as intended.

Popup when a user is successfully banned.

 49

Appendix 3: Posts and Comments section

Post section UI.

 50

Three different feeds provided.

 51

Posts inside the User profile section.

 52

Delete feature is functional and behaving as intended.

 53

Appendix 4: Quality requirements

Loading indicators

 54

Responsive UI on website

 55

Login and signup section on mobile view.

User profile on mobile view.

 56

User Page on mobile view.

 57

Landing page on mobile view.

 58

Posts section on mobile view

Popups on mobile view.

 59

Appendix 5: Buddify design plans

Authentication service design.

 60

Buddify initial project plans.

 61

Buddify backend architecture designs.

	1 Introduction
	1.1 Company background
	1.2 Buddify Content Management System
	1.3 CMS Users

	2 Knowledge base
	2.1 Content Management System
	2.2 Client-server model
	2.3 Document Object Model

	3 Methodology
	3.1 Software Development Life Cycle
	3.2 Agile Development Model

	4 Project objectives
	5 Requirements
	6 CMS architecture design
	6.1 System design
	6.2 Modular design
	6.3 Authentication

	7 Development
	7.1 ReactJS
	7.1.1 JSX
	7.1.2 Stateful components
	7.1.3 Virtual Document Object Model

	7.2 Redux
	7.3 Other technologies
	7.3.1 HTML and CSS
	7.3.2 Sass with Compass
	7.3.3 JavaScript
	7.3.4 Webpack

	7.4 Development tools
	7.4.1 Atom
	7.4.2 Git and Gitflow
	7.4.3 Jira Software

	7.5 Development process
	7.5.1 Communication
	7.5.2 Agile Iterations

	8 Testing
	9 Project Assessment
	9.1 Functionalities
	9.1.1 Authentication
	9.1.2 User section
	9.1.3 Posts and comments section

	9.2 Qualities

	10 Conclusion

