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This thesis completed an application for controlling a Nao robot to imitate human 

gestures and classification using the Kinect sensor. The main goal of the task was 

to manipulate the whole body of the robot while also keeping the balance and sup-

port changes needed. A project work was only about control Nao with only four 

upper joints of the body part and therefore there was no balancing problem. The 

Nao robot can become free to use both of its legs and change the support due to 

human movement. The second section of the thesis implemented convolu-

tional neural network to build a system for training and testing human daily activi-

ties to observe the advantages of joint data collected by Kinect sensor. 

The version of a Nao robot used was the 5th generation, with a Kinect sensor One 

(version 2). The main application was built with Python in Visual Studio 2015 

providing the communication between Naoqi and Windows. The simulation runs 

on Webots software which can have a wide range of simulated figures. Using Cho-

regraphe, a free-to-use IDE by Aldebaran, offers a friendly environment to start 

working with a Nao robot. 

The thesis work converges both theoretical and practical experiments in human 

movement imitation and classification using different approaches and testing per-

formance.  

Keywords  Kinect, Nao Robot, Deep Learning 
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 INTRODUCTION 

1.1 Nao Robot 

Nao robot [1] is an autonomous programmable robot developed by a French Ro-

botics company which located in Paris. The use of Nao robot is becoming world-

wide because of its personalization and huge capability in education and research. 

The robot consists of 25 degrees of freedom, electric motors, actuators and sensors 

to show its flexibility.  

 

Figure 1. Nao Robot /1/ 

Nao robots have been used in many different types of projects since the launch of 

Project Nao Robot in 2004. On 15 August 2007, Nao replaced Sony's robot dog 

Aibo as the robot used in the RoboCup Standard Platform League (SPL), a well-

known worldwide robotics competition.  

1.2 Microsoft Kinect 

Kinect shown in Figure 2 is a motion sensing input device that is provided by Mi-

crosoft for Xbox 360. Xbox One and Microsoft Windows PCs. Today, more and 

more API support for other platforms such as Mac OS and Linux making it more 

dynamic for developers. Microsoft released the first version of Kinect sensor in 

https://en.wikipedia.org/wiki/Sony
https://en.wikipedia.org/wiki/Aibo
https://en.wikipedia.org/wiki/RoboCup
https://en.wikipedia.org/wiki/RoboCup_Standard_Platform_League
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November 2010 and until June 16, 2011 the Kinect software development kit was 

provided as the first beta. This SDK allows developers to write applications on mul-

tiple programming languages such as C++/CLI, C#, or Visual Basic .Net. 

 

 

Figure 2. Kinect for Xbox One /2/ 

 

The SDK for Kinect One (Kinect for Xbox One) using from Visual Studio 10 can 

provide multiples output using camera, IR sensors, microphone as shown in Figure 

3 and Figure 4. 

 

 

Figure 3. Infrared image shows the laser grid Kinect uses to calculate depth /2/ 

  

https://en.wikipedia.org/wiki/Infrared
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Figure 4. The depth map is visualized here using colors gradients from white 

(near) to blue (far) /2/ 

 

1.3 Overall Structure 

This thesis provides a method for implementing a Nao robot and Kinect with human 

movement. To be specific, this report will explain how to control the robot using 

the input data from Kinect to imitate human arm gestures. The main programming 

language is Python using Microsoft Visual Studio. 

Firstly, the background of this approach is introduced namely motivation and some 

information about the Nao robot and the Kinect sensor. The second topic is about 

all necessary knowledge and technologies. After that, all the solutions and the al-

gorithm will be analyzed and the results captured using pictures and videos. The 

method of getting the data from Kinect to transfer to the Nao Robot for gestures 

imitation mothed we mentioned as shown in Figure 5. 

After getting the data from the sensor, Nao robot will calculate the desired angle 

for each joint, also the support polygon and stability need to be obtained. Without 

the balancer and changing support, Nao Robot can fall down easily. 
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Figure 5. Application Structure 

In the second application, the data from the Kinect sensor is sent to a neural network 

to train and classify with test data using Tensorflow open source framework. Build-

ing network steps and testing results are analyzed in detail to observe the perfor-

mance and advantages of using deep learning as a study approach. Taking the ad-

vantage of image classification, a convolutional neural network system is created 

for a light weight application that still generates a descent result. The data collected 

by the Kinect sensor is transformed from sequence data in each frame to images for 

visualization purposes.   

Camera Computation Robot 
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 PROBLEM DEFENITION  

2.1 Requirement Knowledge 

Human movement imitation for a Nao robot is not an easy task because of the dif-

ferences between human and robot coordination. The robot needs to get each joint 

rotation in order to actuate successfully. The challenge also comes from correct 

imitation and includes support changes for the Nao Robot to stand without any dan-

gerous activity. The second challenge is to classify human movement using deep 

learning. It requires a lot of knowledge in data processing, building a neural network 

and tuning parameters to build a perfect system with no overfitting or underfitting. 

2.2 Used Technology 

2.2.1 Python 

Python is an easy-to-use script programming language but it is still very efficient in 

matrix computing. In this project lots of dot and cross product will be calculated so 

using Python will provide a clear and fast matrix and array operation using Numpy 

(a Python scientific computing package). 

 

2.2.2 Microsoft Visual Studio 2015 Commity 

Microsoft Visual Studio is an integrated development environment (IDE) from Mi-

crosoft. It is used to develop websites, web application, mobile application and nor-

mal application. Using Visual Studio makes application packages much easier to 

be controlled. 

2.2.3 NAOqi 

In this project, in order to communicate with the robot, I will use NAOqi which is 

an operating system on Nao robot allows controlling the memory and behavior of 

the robot as shown in Figure 6. NAOqi has C++ API and Python API and for this 

project, Python API is used for both the robot and the Kinect camera. 
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Figure 6. Simple “Hello world” application using NAOqi 

Motion with the Nao robot will be important in this project. When using NAOqi, it 

can be easy to control a joint angle with different angles and speed. 

 

2.2.4 Kinect SDK 

Microsoft provides Kinect for Windows SDK 2.0 as shown in Figure 7 which ena-

bles developers to write and create applications that support many features such as 

human gestures, video stream, and voice recognition on computers using Windows 

8, Windows 8.1, Windows 10 and Windows Embedded Standard 8 [3,4]. 

 

 Figure 7. Windows for Kinect SDK /3/ 
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2.2.5 WEBOTS  Simulation 

Webots is a development system environment for developing and simulating mo-

bile robots. A large amount of sensor, actuators is available to manipulate for each 

Robot. This software is widely used by over 1329 universities for research and 

study. With Webots which it is possible to have a Nao robot setup with all features 

that are required andcan communicate using Naoqi. 

In this particular thesis, it is a wise choice to use Webots since this software can 

detect the falling situation of the robot and can simulate as normal as shown in 

Figure 8. 

 

Figure 8. Webots with Nao robot /4/ 

To open and program with Nao robot on Webots, the robot environment file is lo-

cated in the following path: [Webots directory]\projects\robots\nao\worlds. The IP 

and port of the simulated robot can be used as follows: 
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IP = 127.0.0.1                    PORT = 9559 

2.2.6 Vector Operations 

Using vector operation when adding two vector A and B creates a new vector with 

both unique magnitude and direction. Cross product and dot product for 2 vectors: 

�⃗� (𝑥𝑎, 𝑦𝑎 , 𝑧𝑎) 𝑎𝑛𝑑 �⃗⃗� (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏)  

�⃗�  ×  �⃗⃗� = (𝑦𝑎𝑧𝑏 − 𝑧𝑎𝑦𝑏 , 𝑧𝑎𝑥𝑏 − 𝑥𝑎𝑧𝑏 , 𝑥𝑎𝑦𝑏 − 𝑦𝑧𝑥𝑏)         (1) 

�⃗� . �⃗⃗� = 𝑥𝑎𝑥𝑏 + 𝑦𝑎𝑦𝑏 + 𝑧𝑎𝑧𝑏                           (2) 

Angle 𝛼 between 2 vectors: �⃗� (𝑥𝑎, 𝑦𝑎 , 𝑧𝑎) 𝑎𝑛𝑑 �⃗⃗� (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏) 

𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠 
�⃗⃗� .�⃗⃗�

|�̅�|×|�̅�|
                                (3) 

Normal vector of plane 𝑃 contains 2 vectors : �⃗� (𝑥𝑎, 𝑦𝑎, 𝑧𝑎) 𝑎𝑛𝑑 �⃗⃗� (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏) 

equals to their cross product: �⃗�  ×  �⃗⃗�.So the angle 𝛽 between vector 𝑐 (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) 

and plane has an normal vector  �⃗⃗� (𝑥𝑃, 𝑦𝑃, 𝑧𝑃) : 

𝛽 = arcsin (
|𝑐 .�⃗⃗�|

|𝑐|̅×|�̅�|
)          (4) 

       

 

 

Figure 9. Angle between two vectors /5/ 



 

16 

 

 

 

2.2.7 Center of Mass and Support Polygon 

Center of mass is a position that can be defined relative to and object or and system 

of objects. It can be calculated as the average position of all part of the systems 

according to their mass. With a complex of shape, the center of mass can be under-

stood as a position where the sum of all relatively weighted position vector equals 

to zero. According to /6/, if we have a system with several particles: 𝑃𝑖 , 𝑖 =

0,1 , . . , 𝑛  with each mass 𝑚𝑖 located in position 𝑟𝑖, so the position 𝑅 of COM fol-

lows the condition: 

∑ 𝑚𝑖
𝑛
𝑖=1 (𝑟𝑖 − 𝑅) = 0        (5) 

Support polygon is a horizontal region that COM laid on to achieve static stability. 

For instance, when an object is located on a table which is a horizontal surface as 

shown in Figure 10. 

 

 

Figure 10. Relationship between COM and support polygon /6/ 
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2.2.8 Convolutional Neural Network 

Neural networks or artificial neural networks represent systems that can be inspired 

by human brains. Neural networks are created to learn and do tasks using many 

units or nodes called neurons and each neuron is related to each other to process 

data. Today, deep learning and artificial intelligence take a significant role in mod-

ern world development on many areas such as engineering, biology and chemistry, 

for example. Several kinds of neural networks are implemented in research depend-

ing on the types of input and output wanted.  

In this thesis work Convolutional Neural Network /7/ is used as the network system 

for gestures classifications. CNN neural consists of learnable weights and biases, 

they receive some inputs and execute computations with activation function such 

as TanH, Sigmoid and ReLU. Finally, a fully connected layer is applied to find the 

predictions. Convolutional neural networks have a huge advantage of image pro-

cessing and classification as the layers of ConvNet consist of three channels of 

width, height and depth as shown in Figure 11. 

 

Figure 11. Example of Convolutional Neural Network. /7/ 

As said above, a CNN network is a sequence of processing data layers. Through 

each channel, data is transferred and computed with given inputs, weights and bi-

ases. There are two main parameters that configure the behavior of its layer. The 
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way of choosing the padding and stride is a significantly important step of convo-

lutional layers. 

Stride takes the role of how many units should be shifted by the filter through the 

input at a time. Normally, the stride is used to prevent channel overlaps and get the 

smaller dimension for the output. For example, if the stride is set to 1, the output 

volume should be as shown in Figure 12. 

 

Figure 12. Stride in neural network. /8/ 

The second main parameter is the padding, as shown in Figure 13, which means 

creating the borders for the input before passing it to the channels as programmers 

do not want to have the size of the output decrease more then they want as it can 

makes the result underfitting.   
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Figure 13. Padding in neural network./8/ 

When both of the padding and the stride are set, the output size can be calculated 

with the following formula: 

𝑂𝑢𝑡𝑝𝑢𝑡 =  
(𝑊−𝐹+2𝑃)

𝑆
+ 1        (6) 

Where W is the input weight/height, F is the filter size, P is the padding and S is the 

stride. 

In convolutional neural networks, the input needs to go through several layers to 

reduce the dimensions or size. Each layer has a different purpose to scale the data 

as  required. Firstly, a ReLU layer is a non-linear activation function such as a rec-

tified linear unit to calculate the output of each element where the result is zero then 

value is less than zero. Note that this layer will not change the size of the input. 

𝑓(𝑥) =  {
𝑥 , 𝑥 ≥ 0 
0 , 𝑥 < 0  

          (7) 

After the ReLU layers, applying pooling layers is necessary for droping out the size 

of input using padding and stride to control overfitting. The most used pooling layer 

is maxpooling as shown in Figure 14. 
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Figure 14. Maxpooling layer. /7/ 

Next, using fully connected layers which connect all the input from the previous 

layer and reduce to the size after several convolutional and pooling layers. 

On the training process, the main purpose is to minimize the cost by updating pa-

rameters for features. Generally neural network systems can have several kinds of 

optimizations such as Gradient Descent, Adagrad, Adam, for example. After long 

research and investigation, Adam (Adaptive Moment Estimation) optimizer as 

shown in Figure 16 is chosen for network optimization since it works well in prac-

tice and performs fasters compared to other technique as shown in Figure 15. 
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Figure 15. Comparison between Adam and other optimizers /9/ 

 

 

Figure 16. Adam Optimizer equations. /10/ 
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On the notations, 𝛼 is the learning rate for each step, 𝛽1 is the exponential decay for 

the first moment estimates while the 𝛽2 is for the second estimates. We need to add 

𝜖 as a very small number to prevent any division be zero in this formula. All the 

parameters will be initialized and configured as default. 

 

2.2.9 Tensorflow API 

Tenssorflow /15/ is an open source library that supports high-performance compu-

tation in artificial intelligence, allows developers to deploy developments in multi-

ple platforms and from servers to mobile devices. Tensorflow was developed by 

engineers and researchers from the Google Brain team within Google’s AI organi-

zation supporting machine learning and deep learning. This open source library is 

now being implemented by a variety of technology companies such as Airbnb, 

AMD, Google and Intel. 

Tensorflow is built and tested in MacOS, Windows and Linux and also developed 

from source code. The API from Tensorflow now supports multiple programming 

languages make developers more dynamic. In the latest version 1.7, Tensorflow 

provides API for C/C++, Java, Python. Go, C# and Javascript for both software 

developments and now also with web applications. 

In this particular thesis work, Tensorflow is installed in Python language using An-

aconda Python Notebook for more dynamic practical training and testing. The in-

stallation with Anaconda can be shown as follow: 

 

 

This will install the CPU-only version of Tensorflow. When using a powerful GPU, 

the GPU version can be installed to improve the performance: 
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After the installation, the activation can be done through Anaconda environment 

and do the testing a short program inside the python shell to observe the connection: 

 

 

The system will output the following: 

 

For beginners, when building a simple neural network, programmers can use Ten-

sorflow Playground /11/ as shown in Figure 17 which is developed by Tensorflow’s 

developers and which allows you to tune parameters to see the output such as test 

loss and training loss. 

 

 

Figure 17. Tensorflow Playground /11/ 

Both classification and regression can be tested, with dynamic learning rate, acti-

vation type, etc. It is possible to add more hidden layers with more neurons. The 

performance is real-time can be visualized during each epoch. 
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For example, in Figure 18, when implementing the classification neural network 

using learning rate as 3 and Tanh activation function, because the learning rate is 

too high, the cost became unstable and could not reach the local minimum. 

 

 

 

Figure 18. Large learning rate experience. 

With the great work of Tensorflow community, training and testing from simple to 

complex networks becomes visualized and tuned.  
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 SOLUTION ANALYSIS 

3.1 Human gestures imitations with Nao robot 

By using the Kinect sensor human skeleton data is collected which consists of 25 

3D position joints according to human camera coordinate as shown in Figure 19 

and table 1. 

 

Figure 19. Joints data collected from Kinect sensor /12/ 

For this project all joints except neck, both feet and both hands are going to be used 

for human gestures imitation purpose. Since the Nao robot has fewer joints than a 

normal human only the necessary joints /13/ are included as shown in Figure 20.  

 

Figure 20. Joints data provided from Nao robot /13/ 
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Table 1. Data collected from Kinect sensor /12/ 
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    def run(self): 

        # -------- Main Program Loop ----------- 

        while not self._done: 

            # --- Main event loop 

            if self._kinect.has_new_color_frame(): 

                frame = self._kinect.get_last_color_frame() 

                frame = None 

 

            if self._kinect.has_new_body_frame():  

                self._bodies = self._kinect.get_last_body_frame() 

 

            # --- Collect Joints data to a global array 

            if self._bodies is not None:  

                for i in range(0, self._kinect.max_body_count): 

                    body = self._bodies.bodies[i] 

                    if body.is_tracked:   

                        global skeleton_data 

 

By using this joint data, seven angles for each arm of the robot can be calculated 

using the principle of cross and dot product. Each joint of the Nao robot has the 
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range from -180 degree to 180 degree but the angle calculated from the operations 

is from 0 to 180 degree, so those angles which are not in the range are considered.  

Table 2. Nao’s joint angles and ranges /13/ 

Joint name Motion Range (degrees) Range (radians) 

HeadYaw Head joint twist 

(Z) 

-119.5 to 119.5 -2.0857 to 2.0857 

HeadPitch Head joint front 

and back (Y) 

-38.5 to 29.5 

 

-0.6720 to 0.5149 

 

LShoulderPitch Left shoulder 

joint front and 

back (Y) 

 

-119.5 to 119.5 -2.0857 to 2.0857 

 

LShoulderRoll Left shoulder 

joint right and 

left (Z) 

 

-18 to 76 -0.3142 to 1.3265 

LElbowYaw Left shoulder 

joint twist (X) 

-119.5 to 119.5 -2.0857 to 2.0857 

 

LElbowRoll Left elbow joint 

(Z) 

-88.5 to -2 

 

-1.5446 to -0.0349 

 

LWristYaw Left wrist joint 

(X) 

 

-104.5 to 104.5 

 

-1.8238 to 1.8238 

 

LHand Left hand 

 

Open and Close Open and Close 

RShoulderPitch ight shoulder 

joint front and 

back (Y) 

-119.5 to 119.5 -2.0857 to 2.0857 

 

http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#lshoulderroll
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#lelbowyaw
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#lelbowroll
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#lwristyaw
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#lhand
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#rshoulderpitch
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RShoulderRoll Right shoulder 

joint right and 

left (Z) 

-76 to 18 

 

-1.3265 to 0.3142 

RElbowYaw Right shoulder 

joint twist (X) 

-119.5 to 119.5 

 

-2.0857 to 2.0857 

 

RElbowYaw Right shoulder 

joint twist (X) 

 

-119.5 to 119.5 

 

-2.0857 to 2.0857 

RElbowRoll Right elbow 

joint (Z) 

 

2 to 88.5 

 

0.0349 to 1.5446 

RWristYaw Right wrist joint 

(X) 

-104.5 to 104.5 -1.8238 to 1.8238 

 

RHand Right hand Open and Close 

 

Open and Close 

 

LHipRoll Left hip joint 

right and left (X) 

-21.74 to 45.29 

 

-0.379472 to 

0.790477 

 

LHipPitch Left hip joint 

front and back 

(Y) 

-88.00 to 27.73 -1.535889 to 

0.484090 

 

LKneePitch Left knee joint 

(Y) 

-5.29 to 121.04 -0.092346 to 

2.112528 

 

LAnklePitch Left ankle joint 

front and back 

(Y) 

 

-68.15 to 52.86 

 

-1.189516 to 

0.922747 

 

LAnkleRoll Left ankle joint 

right and left (X) 

-22.79 to 44.06 -0.397880 to 

0.769001 

RHipRoll Right hip joint 

right and left (X) 

-45.29 to 21.74 

 

-0.790477 to 

0.379472 

http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#rshoulderroll
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#relbowyaw
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#relbowyaw
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#relbowroll
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#rwristyaw
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#rhand
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#lhiproll
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#lhippitch
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#lkneepitch
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#lanklepitch
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#lankleroll
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#rhiproll
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RHipPitch Right hip joint 

front and back 

(Y) 

-88.00 to 27.73 

 

-1.535889 to 

0.484090 

 

RKneePitch Right knee joint 

(Y) 

 

-5.90 to 121.47 -0.103083 to 

2.120198 

RAnklePitch Right ankle joint 

front and back 

(Y) 

-67.97 to 53.40 -1.186448 to 

0.932056 

RAnkleRoll Right ankle joint 

right and left (X) 

-44.06 to 22.80 -0.768992 to 

0.397935 

 

 

After the calculation, the captured motion data of each frame will be sent to the 

robot using NAOqi with a 50 percent of maximum speed and 100 millisecond de-

lays. 

 

3.1.1 Upper body control 

All orientations can be captured and got using the vector operation mentioned above 

to transform from human coordinates to robot coordinates and be ranged before 

sending to the robot using a simple function: 

 

http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#rhippitch
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#rkneepitch
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#ranklepitch
http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html#rankleroll
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 The angle 𝜃1, left shoulder pitch is the supplement of the angle between vector 

𝐻𝑖𝑝 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝐿𝑒𝑓𝑡 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (shoulder left, hip left) and vector 𝐿𝑒𝑓𝑡 𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (shoulder 

left, elbow left): 

𝜃1 =
𝜋

2
−  𝑐𝑜𝑠−1  

 𝐿𝑒𝑓𝑡 𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗.𝐻𝑖𝑝 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝐿𝑒𝑓𝑡 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

‖𝐻𝑖𝑝 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝐿𝑒𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖×‖ 𝐿𝑒𝑓𝑡 𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
            (8) 

Angle 𝜃2, left shoulder roll is the angle between vector 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (shoulder left, 

shoulder right) and vector 𝐿𝑒𝑓𝑡 𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (shoulder left, elbow left):  

        𝜃2 = 𝑐𝑜𝑠−1  
 𝐿𝑒𝑓𝑡 𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗.𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

‖𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖×‖ 𝐿𝑒𝑓𝑡 𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
−

𝜋

2
                     (9) 

Left elbow roll, 𝜃3 is calculated using the angles between vector 

𝐿𝑒𝑓𝑡 𝑙𝑜𝑤𝑒𝑟 𝑎𝑟𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  (elbow left, wrist left) and vector 𝐿𝑒𝑓𝑡 𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (shoulder 

left, elbow left): 

      𝜃3 = 𝑐𝑜𝑠−1  
 𝐿𝑒𝑓𝑡 𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗.𝐿𝑒𝑓𝑡 𝐿𝑜𝑤𝑒𝑟 𝐴𝑟𝑚 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

‖𝐿𝑒𝑓𝑡 𝑙𝑜𝑤𝑒𝑟 𝐴𝑟𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖×‖ 𝐿𝑒𝑓𝑡 𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
−  𝜋      (10) 

To calculate the left elbow yaw angle, 𝜃4, is the angle between body plane and left 

lower arm to create the body plane which contains two vector 

𝐻𝑖𝑝 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝐿𝑒𝑓𝑡 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (shoulder left, hip left) and vector 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (shoulder left, 

shoulder right), the normal vector of body plane is calculated using cross product 

equation : 

                  �⃗⃗�𝑏𝑜𝑑𝑦 =  𝐻𝑖𝑝 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝐿𝑒𝑓𝑡 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        (11) 

              𝜃4 = 𝑐𝑜𝑠−1  
�⃗⃗�𝑏𝑜𝑑𝑦 .𝐿𝑒𝑡 𝐿𝑜𝑤𝑒𝑟 𝐴𝑟𝑚 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

‖𝐿𝑒𝑓𝑡 𝑙𝑜𝑤𝑒𝑟 𝐴𝑟𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖×‖ �⃗⃗�𝑏𝑜𝑑𝑦 ‖
−  𝜋       (12) 
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Finally, the left wrist angle, 𝜃5, is the supplement of the angle between body plane 

and vector 𝑊𝑟𝑖𝑠𝑡 𝐻𝑎𝑛𝑑 𝑙𝑒𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (Wrist left, Hand left): 

           𝜃4 = 𝑐𝑜𝑠−1  
�⃗⃗�𝑏𝑜𝑑𝑦 .𝑊𝑟𝑖𝑠𝑡 𝐻𝑎𝑛𝑑 𝑙𝑒𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

‖𝑊𝑟𝑖𝑠𝑡 𝐻𝑎𝑛𝑑 𝑙𝑒𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖×‖ �⃗⃗�𝑏𝑜𝑑𝑦 ‖
−  𝜋/2     (13) 

For the right hand, the same formula is implemented so that all the angles are cal-

culated.  

Left knee pitch, 𝜃5is the angle of the 𝐻𝑖𝑝 𝐾𝑛𝑒𝑒 𝐿𝑒𝑓𝑡 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(knee left, hip left) and vector 

𝐾𝑛𝑒𝑒 𝐴𝑛𝑘𝑙𝑒 𝑙𝑒𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (ankle left, knee left ).  Left hip roll, 𝜃6is the angle of the 

𝐻𝑖𝑝 𝐾𝑛𝑒𝑒 𝐿𝑒𝑓𝑡 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(knee left, hip left) and vector 𝐻𝑖𝑝 𝐿𝑒𝑓𝑡 𝑅𝑖𝑔ℎ𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (hip left, Hip Right 

) and the last angle for the left foot is left hip pitch, which is the combination of hip 

knee left vector and hip shoulder left vector. After also providing the angles to right 

foot, all the desired angles for the Nao robot are ready to actuate. The thesis is 

heading to the biggest challenge of making the robot to keep its balance and having 

the support changes for certain gestures.  

 

3.1.2 Double support with the whole body 

Using the method for upper body control, the lower part of the body needs to be 

imitated using forward kinematics of human gestures. Also, the limits and balance 

need to be checked every time providing the joints angles to the Nao Robot. 

This section of the thesis is considered to be a significantly important since the task 

is to control all the possible joints while keeping the center of mass of the robot to 

lie on the support polygon. The support change in real-time can be found in the next 

section. The stabilization of Nao while receiving noisy human gestures and some 

of the movements can be dangerous for Nao to imitate is analyzed. 

The function used to transfer the joint angles of the robot is: proxy.angleInterpola-

tionWithSpeed(names, angleLists, 0.2) which means 20% of the maximum speed 

for Nao Robot. The speed should be lower than normally to make the imitation safer 
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and have more time to calculate. Also, the feet are fixed to the plane when the robot 

is on double support mode using the following function: proxy.wbFoot-

State("Fixed", "Legs") and proxy.wbGoToBalance("Legs",0.5). 

The balance of the Nao robot needs to be constrained using inversed kinematics to 

modify the desired joint angles, the Cartesian coordinates and also providing task 

priority jobs. We need to minimize the quadratic function of the error between the 

corrected Nao Joint angle - 𝜃 and the desired Nao joint angle - 𝜃𝑑  to be as small as 

possible with the quadric formula: 

𝑚𝑖𝑛
1

2
‖𝜃 − 𝜃𝑑‖2

          (14) 

    

And this can be transformed following /14/ as below with the aspect of time: 

                    min 
1

2
(∆𝜃 − ∆𝜃𝑑)𝑇𝑊(∆𝜃 − ∆𝜃𝑑)       (15)  

With 𝑊 is the weighting matrix. 

In general, each frame got from Kinect and calculation have been achieved, 20 

joints will be the desired angles for the Nao Robot. The COM of the Nao robot is 

calculated using getCOM() provided from the API to get the center of mass of the 

Nao robot during imitation. The center of mass must lie within the support polygon 

with keeps the balance of the robot. If the COM is out of the support polygon, Nao 

is going to lose its balance. A Jacobian matrix can present the relationship between 

the center of mass and the current angles which be obtained follow /14/. In each 

support leg mode, it is fixed to the plane or even when it becomes double-support 

so the center of mass is the center of the support polygon of the robot. The Jacobian 

is shown as below with the time aspect: 

     ∆𝑃𝐶𝑂𝑀 = 𝐽 × ∆𝜃𝑑                                              (16) 

Following /14/, combining equations (1) and (2), the solution to a quadratic problem 

is solved: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
1

2
(∆𝜃 − ∆𝜃𝑑)𝑇𝑊(∆𝜃 − ∆𝜃𝑑) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∆𝑃𝐶𝑂𝑀 = 𝐽 × ∆𝜃𝑑 

As a result, the linear system in (17) is the solution to the quadratic problem ob-

tained above: 

[
𝑊 𝐽𝑇

𝐽 0
] × [

∆𝜃𝑑

𝜑
] = [

𝑊
∆𝑃𝐶𝑂𝑀

]   (17) 

Where 𝜑 is a set of Lagrange multipliers of ∆𝜃𝑑 and after solving the mathematics 

problem, the result of ∆𝜃𝑑 provides us to modify the safe gestures to the Nao robot 

that avoid falling using equation (18): 

∆𝜃𝑑 = ∆𝜃 + 𝑊−1 × 𝐽𝑇 × (𝐽 × 𝑊−1 × 𝐽𝑇)−1 × (𝐽 × ∆𝜃 − ∆𝑃𝐶𝑂𝑀)(18) 

 

3.1.3 Single support with whole body 

One of the objectives of this research thesis is to make the Nao robot be able to 

stand on one of its own feet. When the Nao robot tries to imitate the gestures with 

one foot, that foot needs to be fixed on the plane and free the other foot. Also, the 

center of mass is on support polygon to make sure there is no corruption issue. 

After defining the support leg by fixing it on the floor, the other leg of the robot is 

free to actuate and then all the other joints are set using the following conditions: 
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3.1.4 Support change method 

The problem of the support change system is that the robot cannot move directly 

from the right leg support to the left leg support so a middle move needs to be set 

between the two. In this application, when Nao want to change the single support 

from the left leg to the right and vice versa, both legs will be fixed and after that the 

unsupported leg is free for imitation. After testing and choosing the pose for each 

leg support, the initial gestures are described as follows: 



 

36 

 

 

Figure 21. Left Leg – Right Leg – Both Legs initial pose 

 

After having the one feet standing balancer, a system to make Nao robot change its 

support during imitation needs to be created. For this part, the position of each foot 

from the human skeleton was used to compare to each other, the difference is used 

to define the support for the Nao robot from the right to left leg to both. The thresh-

old is selected to be 0.05m but with the noise of the Kinect sensor, a fixed threshold 

might not be a dynamic idea however in this case, it is safe to use. In the future 

studies, a learning process to obtain a range of threshold can be used, which would 

be useful for the robot to choose depending on the location between the camera and 

human position. Support selection is described as follows: 
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The model for supporting the change method can be described in the following state 

machine. The system will check the threshold every time when Nao receives a new 

desired angle to complete. If the value stays unchanged in a fixed range, support 

mode will be kept. But when Nao needs to change the support from one leg to an-

other, a process of changing to the middle double support is executed as shown in 

Figure 22. The period for changing support takes about three seconds. 

 

Figure 22. State Machine for application. 

So finally, the combination between all the tasks can be simplified into the work-

flow of the main application to control Nao Robot with support change as shown in 

Figures 23. 

 

 

Figure 23. Application System.  
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3.2 Human movement classification 

When taking the advantage of using the Kinect sensor to collect human joint data, 

one idea is to classify human gestures using a neural network. A system is built in 

a convolutional neural network. All the data is captured, trained and tested to see if 

the use of CNN can be implemented in human movement classifications. 

 

3.2.1 Preprocessing Data 

Human actions and images have the same construction when joints consist of three 

orthogonal planes X, Y, Z, and images have three channels R, G, B. Data of joints 

can be concatenated as an array of numbers with three channels and can be calcu-

lated and produced as an image. The following equation calculates the RGB chan-

nels of the image using skeleton data: 

𝑋 = 255 ∗ |
𝑃−𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥𝑃𝑚𝑖𝑛
|         (19) 

While X is the value of corresponding red or green or blue channel, 

𝑃, 𝑃𝑚𝑎𝑥 𝑎𝑛𝑑 𝑃𝑚𝑖𝑛 are the current coordinate values, the maximum value and the 

minimum value of Cartesian coordinate respectively. After applying the transfor-

mation function, the following image shown in Figure 24 is generated: 

 

 

Figure 24. Image generated by joints data. 
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3.2.2 Network System 

All the data is preprocessed with the transformation and then be transferred into the 

network system. The workflow of this convolutional neural network consists of 

forward-propagation, computing the cost and then backpropagation using 

AdamOptimizer to minimize the cost with a fixed learning rate. 

In the forward propagation for the model, there are eight layers that data pass on 

through. They are the convolutional 2D layer, rectifier layer (can be considered as 

an activation function), Maxpool layer, Flatten layer and Fully connected layers. 

The number of neurons of the output of forward-propagation is equal to the number 

of classes, the percentage of predicted activity is classified and presented. In the 

next step, the output of forward-propagation is passed to the cost computation func-

tion to observe the difference between the corrected label and the predicted label 

because the main task is to keep the cost as minimum as possible. Finally, by using 

optimizers, all the parameters for our network should be configured to be able to 

minimize the cost of feeding to the forward propagation again /7/. 

 

  

Figure 25. Network system. 
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The following function contains the propagation layers for forwarding steps where 

input data are transformed and resized: 

 

 

After the forward propagation layer, the input data are transformed and have the 

following output size (note that the final output should have the size equal to the 

number of class in the network) as shown in table 3: 

Table 3. Output data size 

Layers Data size 

Conv2d [?, 40,  20, 3] 

Max_pool [?, 40,  20, 8] 

Conv2d [?, 5,  3, 8] 

Max_pool [?, 5,  3, 16] 

Flatten [?, 1, 32] 

Fully_connected [?, 1, 10] 
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The cost function computes the difference between the predicted value and the ac-

tual value using softmax function and returns a cost for minimization. After each 

epoch, the cost is reduced to be as small as possible 

 

There are ten actions in Figure 28 that are classified using this network with 20 

different collected joints from the Kinect sensor: swipe left, swipe right, wave, clap, 

throw, arms cross basketball shoot, draw “x” and draw a circle (clockwise and coun-

terclockwise). The test data is 10% of the training data for the best performance but 

not either overfitting nor underfitting. 
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There is a way to speed up the network without underfitting the result is to separate 

the data into small mini-batches. In the experiment result, the different batch num-

bers are applied to observe the performance of each situation. The epoch, number 

of single pass through the whole training set, is also applied to for us to be able to 

train the data by many iterations to take the best output of the classifier.  

 

Finally, all the important libraries need to be preinstalled and imported before im-

plementing the network: 
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 EXPERIMENT RESULT 

4.1 Whole body imitation with Nao robot 

The whole experiment result was collected with the virtual robot using a Webots 

simulator. After connecting to the correct IP and Port, a Nao robot can imitate the 

motion with balance and without balance to see the effects of using the balancer in 

motion transferring. In practice, it takes about 10 seconds to start the first connec-

tion and 5 seconds for the next one. The distance between the human body and the 

Kinect sensor should be at least 2 meters so that Kinect can capture all the joints 

data needed. 

When the imitation started, the Nao Robot took 5 seconds to capture the first move-

ment. The maximum speed and the stiffness are configured in the setup on top of 

the program: 
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In Figure 26, the imitation without balance support presents how the Nao robot 

behaves when the support is not set. After receiving the skeleton data and calculat-

ing the actual angles, the robot falls at the first frame. This issue may cause a sig-

nificant problem when the real robot is brought into real testing.  

As the result of virtual robot testing in Figure 27 and Figure 28 show, the gestures 

imitations are now successful with the support. When changing the support from 

the left foot to the right foot, an extra step of double support takes 5 seconds to 

complete. 

 

 

Figure 26. Nao robot’s imitation without balance support. 
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Figure 27. Nao robot’s right leg imitation. 

 

 

Figure 28. Nao robot’s left leg imitation. 
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Figure 29. Nao robot’s double support. 

Although the imitation is not smooth and in real-time, the main scope of this is to 

make the Nao robot can stay in balance with both sing and double support using 

joints data which can be covered. The maximum speed of the robot can be in-

creased despite of the fact that it is not recommended. 

4.2 Human movement classification 

In both of the network testing results, the training and testing accuracy are both 1.0 

which means that is really good for this network. The CPU system I used for run-

ning this network is AMD Ryzen 3 1300X but if GPU is used as the main processor, 

the speed can be significantly faster. The result graphs contain the cost number dur-

ing the training part and the predicted result compare to the actual result. 

Firstly, the batch size is 16 and the number of the epoch is 200, the following graph 

shown in Figure 30 is the result of the training.  
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Figure 30. The first network training and testing. 

After the first network run, the result in Figure 30 shows the number of the epoch 

can be smaller than 200 because the cost remains stable after a half of the training. 

In the next try, the hyperparameters are configurated: 100 as the epoch number and 

8 as the batch size to see if the performance can be improved. 
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Figure 31. The second network training and testing. 

In the second training in Figure 31, the network took only 3 minutes to train the 

data (less than 20% compared to the first training) and the best result for the out-

put was still maintained. In both situations, the same learning rate, 0.009, id rec-

ommended and used for the network. All of the hyperparameters (epoch, batch 

size, learning rate, etc.) are free from tuning and configuring according to the net-

work to improve the best performance.   
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 CONCLUSION 

The goal of the thesis consists of two areas: gestures imitation and classification 

using the Nao robot, the Kinect sensor and deep learning. The first target is to im-

plement and transfer human movements to the Nao robot using a Kinect sensor, and 

the second part is classifying human actions using convolutional neural networks 

with a built system.  

In the first target, using forward and inverse kinematics, the skeleton data collected 

from the Kinect sensor is transferred to the Nao robot using wireless transmission 

and a simulation software to prevent fall detection. The task faced many problems 

of changing leg support, transferring from the human angle joints to the robot angle 

joints and tracking stabilization. A lot of knowledge about mathematics and physics 

need to be archived beforehand to be able to create the solution for the task. The 

imitation simulation can be extended with supporting the Nao robot with more dy-

namics movements in the future. This approach can be used in the future for more 

developments on the Nao robot to become a personal assistant, after studying hu-

man behaviors and robot capability aspect.  

The second task details the application using neural networks with human gestures 

for classifications and predictions. By using convolutional neural networks, the 

combination between image processing and sequence data processing was success-

fully obtained. The skeletons data from the Kinect sensor was transformed into 

RGB images for visualization, then fed to the network for training and testing. The 

biggest problem was to tune the hyperparameters for smallest training time and the 

best test result. Although this target has many limitations, it is still meaningful to 

apply neural network in different data processing methods.  

After all the analysis and experiment results, all the suspects of the thesis were done 

correctly and had a good performance and the right technology and method were 

used to match the requirements. The biggest challenge in this work was to configure 

the parameters for the best result and learn the new technology widely used today. 

Although the lack of training data and testing data, the result in human movement 

classification can be improved by capturing more actions.  
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Because of the limitations of this thesis work, several improvements can be done in 

the future using the base work of human gestures imitation and classifications. For 

example, instead of using an image processing method, recurrent neural networks 

or hierarchical recurrent neural networks can be implemented for more dynamic 

performance and applications. The actions can be classified in real-time and output 

the prediction without taking certainly fixed frames. On the other hand, using more 

cameras make the networks better in classification whether machines can use mul-

tiple dimensions instead of one. With the imitations with the Nao robot implemen-

tation, programmers can consider making the robot perform actions without fixing 

at least one leg on the ground such as jumping or lying without losing its balance. 

In the conclusion, this thesis can be a huge approach not only for future study but 

also for industrial implementations with human services and productions.  

For any student who might be interested in robotics and artificial intelligence, this 

article contains the information of applying kinematics and deep learning on robots 

and carrying out for more ideas, researchs and future work.  
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