

Progressive web app

with Angular 2 and ASP.NET

Juraj Kubala

Bachelor’s thesis
December 2017
School of Technology, Communication and Transport
Degree Programme in Information and Communications Technology

Description

Author(s)

Juraj Kubala
Type of publication

Bachelor’s thesis
Date

December 2017

Language of publication:
English

Number of pages

61
Permission for web publi-

cation: yes

Title of publication

Progressive web app with Angular 2 and ASP.NET

Degree programme

Information and Communications Technology

Supervisor(s)

Salmikangas, Esa

Assigned by

Inmics Oy

Abstract

This paper explained the process of designing and implementation of an application using

the Angular framework and the ASP.NET framework. The application was developed in In-

mics Oy and the main purpose of the application is to manage building inspections and

generate reports. The application consists of two main parts; REST API service on the

server side and an Angular application on the client side.

The first part of the thesis described a concept of Progressive Web Application (PWA), the

tools used to create it and main principles that must be followed to consider the applica-

tion as PWA. The crucial feature of all PWA features was offline support when an internet

connection is not available.

Both part of the application, backend and frontend, were developed simultaneously. They

communicate via the HTTP protocol using RESTful architectural style. The server provides a

secure environment where authentication and authorization are done, and the data can be

stored in MS SQL database. Frontend application provides a user-friendly user interface

that allows the user to create, edit or delete content in the application.

The assigned application was created successfully following the best practices for Angular

and ASP.NET development, and the system provides the desired functionality for creating

inspections, managing objects such as buildings and their room structure.

Keywords/tags
Angular, Typescript, .NET, C#, REST, Service, Progressive Web Application, Service worker

Miscellaneous

1

Contents

1 Introduction ... 7

2 Progressive web application ... 8

2.1 Introduction to progressive web application ... 8

2.2 Caching possibilities of PWA .. 9

2.3 Web Application Manifest.. 12

2.4 Service Worker ... 13

2.5 Service Worker Precache ... 14

2.6 Benefits and disadvantages of PWA .. 15

2.7 Lighthouse .. 15

3 Angular .. 16

3.1 Introduction to Angular .. 16

3.2 Architecture .. 17

3.2.1 Dependency injection... 17

3.2.2 Module ... 19

3.2.3 Directive and component ... 20

3.2.4 Service .. 22

3.2.5 Lifecycle hooks ... 23

3.3 Typescript ... 24

4 Web API Service ... 26

4.1 Overview .. 26

4.2 Representational State Transfer API .. 27

4.3 ASP.NET introduction ... 29

4.4 ASP.NET Web API ... 30

4.4.1 Introduction to ASP.NET Web API .. 30

4.4.2 Routing ... 31

4.4.3 Controller ... 33

4.4.4 Data access layer .. 34

2

5 Implementation .. 36

5.1 Introduction .. 36

5.2 Backend application ... 37

5.2.1 Solution structure ... 37

5.2.2 Installing and configuring Entity Framework ... 38

5.2.3 Model ... 40

5.2.4 Presentation layer .. 42

5.2.5 Data Access Layer ... 44

5.3 Angular application .. 45

5.3.1 Setting up the development environment... 45

5.3.2 Create a new Angular project .. 46

5.3.3 Service for authenticated REST API calls .. 50

5.3.4 Inspection module .. 51

5.3.5 SW Precache ... 54

6 Conclusion .. 56

 References ... 58

3

Figures

Figure 1 - Implementation of the 'Cache than network' caching strategy 11

Figure 2 - Configuration file to set an additional info about a web page 12

Figure 3 - Importing a web application manifest in the head of the web page 12

Figure 4 - Support table for a service worker (Can I use: Service Workers 2017) 13

Figure 5 - Using a service worker as a network middleware (Semenov 2017) 14

Figure 6 - Architecture of Angular framework (Architecture Overview 2017) 17

Figure 7 - Injecting of a service to the component .. 18

Figure 8 - Configuration of root module .. 19

Figure 9 - Component class and connected template ... 21

Figure 10 - Data binding syntax and direction of a data flow (Data binding 2017) 21

Figure 11 - Implementation of a ConnectivityService .. 23

Figure 12 - Component/directive life cycle (data adapted from Lifecycle Hooks 2017)

 .. 24

Figure 13 - Relationship between Typescript and ECMAScript.................................... 25

Figure 14 - Client-server model .. 27

Figure 15 - RESTful communication between service provider and consumer 29

Figure 16 - ASP.NET framework architecture (adapted from Hanselman 2012) 30

Figure 17 - Web API application architecture .. 31

Figure 18 - Usage of attribute to define routes ... 32

Figure 19 – Building controller ... 33

Figure 20 - Application overview .. 36

Figure 21 - Creating a REST API project .. 38

Figure 22 - Adding ADO.NET Entity Data Model to the application............................. 39

Figure 23 - Selecting database objects which will be in included in the model 39

Figure 24 - Business and EF model conversion .. 40

Figure 25 - Extending EF model class ... 41

Figure 26 - Enabling attribute-based routing ... 42

Figure 27 - Adding new controller .. 43

Figure 28 - User API controller ... 43

4

Figure 29 - Encapsulating DB related code with using statement 44

Figure 30 - User data access class .. 45

Figure 31 - Project structure generated by Angular CLI ... 47

Figure 32 - Definition of an AppModule .. 48

Figure 33 - Definition of CoreModule .. 49

Figure 34 - Implementation of AuthHttp service ... 50

Figure 35 - Mockups for an inspection views ... 52

Figure 36 - Structure of inspection module ... 53

Figure 37 - Inspection detail and space inspection view ... 54

Figure 38 - Configuration for an sw-precache module .. 55

5

Tables

Table 1 - HTTP method names and related operations ... 28

Table 2 - Project files and its explanations ... 47

6

Acronyms

API Application Programming Interface

CLI Command-line Interface

CSS Cascading Style Sheets

DAL Data Access Layer

DI Dependency Injection

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

MVC Model – View - Controller

NPM Node.js Package Manager

PWA Progressive Web Application

REST Representational State Transfer

SEO Search Engine Optimization

SPA Single Page Application

UI User Interface

URL Uniform Resource Locator

XML Extensible Markup Language

7

1 Introduction

The web has changed in recent years and modern technologies are extensively used

in these days. Companies like Google or Facebook have invested a great amount of

resources to create JavaScript frameworks allowing developers to create a more

interactive, faster, and more user-friendly application running in the browser.

Nevertheless, the server is still very important to provide such operations that the

browser cannot.

The primary goal of this thesis was to design and implement an application using

modern technologies. The main purpose of the application is to help to inspect the

buildings and generate inspection reports.

The application should work without an internet connection, and the mobile-friendly

user interface is critical because it is mainly used on mobile devices. Therefore, in the

second chapter, a study is carried out about progressive web applications and their

benefits.

The third chapter explains the Angular framework chosen for the frontend

application. The major building blocks such as components or services are described

here, and several best practices are discussed.

Because this application could not work without a server application, the Web API

Services are described in chapter four. ASP.NET is used to build a RESTful service that

communicates with the frontend application.

In fifth chapter, all theoretical knowledge is put together and the process of

implementation is explained.

The application that was the subject of the thesis was developed in Inmics Oy. Inmics

Oy is a Finnish family company founded by Jukka Autere and since 1989, the company

delivers IT solutions to the customers (The family guarantees sustainable growth

2017).

8

2 Progressive web application

2.1 Introduction to progressive web application

Progressive Web Apps (PWA) are experiences that combine the best of the web and

the best of mobile apps. They are useful to users from the very first visit in a browser

tab, and no install is required. As the user progressively builds a relationship with the

app over time, it becomes more and more powerful. It loads quickly, even on flaky

networks, sends relevant push notifications, has an icon on the home screen, and

loads as full-screen experience (LePage 2017).

PWA brings features we expect from native apps to the mobile browser experience

in a way that uses standards-based technologies and run in a secure container

accessible to anyone on the web (Lynch 2016).

Google introduced PWA in 2015, and it is not a programming language or framework.

It is a set of requirements web application must meet. To consider web application as

a PWA, it must fulfil following characteristic:

• Progressive - Works for every user, regardless of browser choice because it is

built with progressive enhancement as a core tenet.

• Responsive - Fits any form factor: desktop, mobile, tablet, or whatever is

next.

• Connectivity independent - Enhanced with service workers to work offline or

on low-quality networks.

• App-like - Feels like an app, because the app shell model separates the

application functionality from application content.

• Fresh - Always up-to-date thanks to the service worker update process.

• Safe - Served via HTTPS to prevent snooping and to ensure content has not

been tampered with.

• Discoverable – Application is identifiable as an application thanks to manifest

file and service worker registration scope, allowing search engines to find it.

9

• Re-engageable - Makes re-engagement easy through features like push

notifications.

• Installable - Allows users to add apps they find most useful to their home

screen without the hassle of an app store.

• Linkable - Easily share the application via URL, does not require complicated

installation (LePage 2017).

PWA can be delivered and shown in the end user device in various ways. The web

page can be rendered on the server side, which brings an advantage of

discoverability by search boots. A page rendered in the server-side is also shown

faster in the end user device because browser just shows up a data received from a

server and there is no need to process and render them. On the other hand, client-

side rendering reduces power requirements to a server because a big part of the

processing is moved to clients. Last way how to show application is to combine both

previous variants and leverage the best of them. All data needed for proper SEO

proceeds in server side and other parts of the application is rendered on the client

side.

2.2 Caching possibilities of PWA

One of the most influential features of well written PWA is the capability to cache

HTTP responses. When the app is in an online mode, it tries to fetch a fresh data

from the internet, and in the case of success, the response is cached. Next time when

the user attempts to retrieve same information, data are immediately delivered from

a cache while in the background HTTP request is fired and data are refreshed after

the successful response. A good example of using this functionality is a list of news in

the mobile app. When the user opens news app the second time, the cached news is

immediately loaded and displayed, and when fresh data arrives, list of news is

updated according to new data. In case the app is in offline mode, the user can still

read the cached news.

10

There are many different ways and strategies how to handle and implement caching.

It is up to a developer to choose right strategy, which is best for given problem.

These are the main and most common ones:

• Cache and network race – The primary goal of this approach is to look for

response simultaneously in the cache while firing HTTP request and the first

response is used. With some combinations of older hard drives, virus

scanners, and faster internet connections, getting resources from the

network can be quicker than going to disk. However, going to the network

when the user has the content on their device can be a waste of data, so bear

that in mind (Archibald 2014).

• Network falling back to cache – User always get fresh online content in a

case user is online while the offline user can still get an older cached data. If

HTTP request is successful, in most cases cache is updated with a new set of

content. The most significant weakness of this approach will occur in the case

of a slow connection when a user must wait for the network fail before

cached version is served.

• Cache then network – This is a right approach for resources that update

frequently. It will get content on screen as fast as possible, but still display up-

to-date content once it arrives. This requires the page to make two requests:

one to the cache, and one to the network. The idea is to show the cached

data first, then update the page when/if the network data arrives (Archibald

2014).

In Figure 1 can be seen the implementation of the Cache then network caching

strategy using streams. When the stream is subscribed, both cache and network

request is fired. The cache request is in the most cases fulfilled before the network

request and provides cached data to the user, even if the data is not up to date. After

successful network request, the cache is updated, and the fresh data is served to the

user. The data is delivered to the user fast and up to date.

11

Figure 1 - Implementation of the 'Cache than network' caching strategy

There are different storage which can be used as a storage for caching purpose:

• local and session storage – store data in key-value pairs

• Cache API – not supported by Internet Explorer and Safari

• IndexedDB API – indexable and quarriable, supported by most popular

browsers

// file: user.api.js

const dataUrl = 'api/user/12';
const dataSource$ = Rx.Observable.create(observer => {

 // try to get data from cache
 caches.match(dataUrl).then(response => {

 if (response) {

 // observer is notified with retrieved data
 observer.next(response.json());

 // if app is offline,
 // no other successful network response is expected
 if (!navigator.onLine) {
 observer.complete();
 }
 } else if (!navigator.onLine) {

 // there is no stored data in cache and app is offline
 observer.error('No data');
 }
 });

 // try to get data from network
 if (navigator.onLine) {

 fetch(dataUrl).then(response => {

 // a successful network request
 observer.next(response.json());
 observer.complete();
 }).catch(error => {

 // network request failed
 observer.error(error)
 });
 }
});

// received data from the cache or/and from the network
dataSource$.subscribe(data => console.log(data));

12

A general guideline for data storage is that URL addressable resources should be

stored with the Cache interface, and other data should be stored with IndexedDB.

For example, HTML, CSS, and JS files should be stored in the cache, while JSON data

should be stored in IndexedDB (Live Data in the Service Worker 2017).

2.3 Web Application Manifest

Web application manifest is a JSON text file, which contains information about an

application such as name, author, description, and icons for different device

resolutions, theme settings and others. The purpose of the manifest is to install web

applications to the home screen of a device, providing users with quicker access and

a richer experience (Web App Manifest 2017).

Figure 2 - Configuration file to set an additional info about a web page

To allow the browsers to recognise web application manifest, it must be linked in an

index.html of the page as can been in Figure 3.

Figure 3 - Importing a web application manifest in the head of the web page

{
 "name": "Inspection App",
 "short_name": "Inspection",
 "start_url": ".",
 "display": "standalone",
 "background_color": "#FFFFFFF",
 "icons": [
 {
 "src": "assets/img/android-icon-36x36.png",
 "sizes": "36x36",
 "type": "image/png",
 "density": "0.75"
 },
 // other icons for 48x48, 72x72, 96x96, 144x144, ...
]
}

<!-- file: index.html -->

<head>
 <!-- Meta tags, linking all scripts and styles, etc. -->

 <link rel="manifest" href="/manifest.json">
</head>

13

If the user uses an app regularly, he will be asked to install a web application on the

device. The application will be installed, and an icon will be shown on the home

screen right between the native apps. The user can quickly open the application

similarly just like he would open a native mobile app.

2.4 Service Worker

At a high level, a Service Worker is a worker script that works behind the scenes,

independent of the main app, and runs in response to events like network requests,

push notifications, connectivity changes, and more (Lynch 2016).

Service worker runs in a separate process, which means it is independent of the

application it is associated with, and it will not be terminated when a browser tab is

closed. This feature is crucial to keep the app up to date and to receive push

notifications. Running in a separate thread has several consequences:

• Service worker cannot directly access the DOM. To communicate with the

page, the service worker uses the postMessage() method and event listener

attached to “message” event.

• Synchronous XHR and localStorage is unavailable in a service worker because

service worker is designed to be asynchronous.

As can be seen in Figure 4, a service worker is supported only by Firefox, Opera,

Chrome, Android browser and Chrome for Android. According to Can I use, support

for Edge and Safari is in a development process (Can I use: Service Workers 2017).

Figure 4 - Support table for a service worker (Can I use: Service Workers 2017)

14

In Figure 5 can be seen a usage of a service worker as a network cache middleware.

In the beginning, service worker must be registered in the main JavaScript file. After

successful installation, all static files are stored in the cache, and they are served as

fast as possible during next visit. Service worker starts to listen to specific events

such as fetch. It is not specified in a service worker specification, how should a

service worker handle events, and it is entirely up to the developer to choose the

caching strategy and implement it.

Figure 5 - Using a service worker as a network middleware (Semenov 2017)

2.5 Service Worker Precache

Many developers have been exposed to solve identical or very similar situations with

service worker, and a few patterns were repeated. Therefore, developers from the

Google Chrome team created a module that generates a service worker that

precaches static resources. The module is integrated with a build process. After the

successful build, the precache module detects all static resources and generates

service worker which contains logic to serve these files from cache.

Serving the local static resources cache-first means that the user can get all the

crucial scaffolding for the web app on the screen without having to wait for any

network responses (Service Worker Precache 2017).

15

2.6 Benefits and disadvantages of PWA

PWAs are web pages which differ in many ways from old-school pages. Unlike the old

school pages, the PWAs are fast and load instantly, regardless of network state,

which makes them network independent. They also bring new features such as push

notification, an icon on a home screen, background synchronisation, caching

possibilities and other.

PWA is web page what predestines it to work and perform the same across latest

browsers, platforms and operating systems. One of the most significant advantages is

that developers do not have to adapt the app to the specific operating system such

as iOS or Android. At the same time, this is the biggest disadvantage too, because

developers lose access to low-level API specific for a particular platform and the

benefits of programming languages such as Java for Android or Objective-C for iOS.

For some businesses, for which is an aspect of performance crucial, PWAs are not

suitable. PWAs can use many device features except a few features such as access to

a Bluetooth or NFC.

On the other hand, developing a native mobile application for many platforms makes

development longer, more expensive and there is a need for different specialists for

each platform. It is difficult to maintain separate codebases for each platform, and

the process of updating the app in the store is more laborious because of the strict

store publication policy.

2.7 Lighthouse

Lighthouse is an open-source, automated tool for improving the quality of web

pages. It can be run against any web page, public or requiring authentication. It has

audits for performance, accessibility, progressive web apps, and more. It runs a

series of audits against the page, and then it generates a report on how well the page

did. From there, the failing audits can be used as indicators on how to improve the

page. Each audit has a reference doc explaining why the audit is important, as well as

how to fix it (Lighthouse 2017).

16

3 Angular

3.1 Introduction to Angular

Angular is a JavaScript open-source client-side framework created and maintained by

Google and a community of developers on GitHub. It is written entirely in Typescript,

but there is a chance to use vanilla JavaScript version.

The release of Angular 2 as the successor of Angular 1 (AngularJS) was announced in

2014 by Google and was released in the fall of 2016. Angular 2 differs from the

previous version in many ways. The entire codebase is written in the Typescript,

which gives the developer a richer experience by providing a code completion and a

static type control. The entire development process is more focused on object-

oriented programing and uses the benefits of ES2016, such as classes or decorators1.

The angular team announced a time-based release cycle. In general, a patch release

can be expected every week, about three minor updates and one major release

should be released every six months. Contributors around Angular decided to name

it just Angular because many major versions (Angular 2, Angular 3, and Angular 4)

could cause a mess in naming (Golden 2017).

The primary goal of Angular is to simplify the building of client applications in HTML

and either JavaScript or in a language such as TypeScript that compiles to JavaScript.

The framework consists of several libraries, some of them are core and some

optional. The developer writes an Angular application by composing

HTML templates with an Angularized mark-up, writing component classes to manage

these templates, adding application logic to services, and boxing components and

services in modules (Architecture Overview 2017).

1 Decorators are functions that modify JavaScript classes. Angular has many decorators that attach
metadata to classes so that it knows what those classes mean and how they should work (Modules
2017).

17

In Figure 6 can be seen all the major building blocks of the Angular framework. This

method of separating HTML templates, component classes that manage the

templates, services that contain business logic and other components, leads to

logical architectural design, higher component reusability and better testability of

separate blocks. This design principle of separation program into distinct parts is well

known in computer science as a separation of concerns.

Figure 6 - Architecture of Angular framework (Architecture Overview 2017)

3.2 Architecture

3.2.1 Dependency injection

Dependency injection (DI) is a way to supply a new instance of a class with the fully-

formed dependencies it requires. Most dependencies are services. Angular can tell

which services a component or a service needs by looking at the types of its

constructor parameters (Dependency injection 2017). Figure 7 shows an injecting a

NotificationService to the NotificationListComponent class.

18

Figure 7 - Injecting of a service to the component

The DI in Angular framework consists of two key parts:

• Injector – is a dependency management service that takes care of the

registration of dependencies and figures out how to create them

• Dependencies – services managed by injector, they are created and provided

to other services or components

When Angular creates a component, it first asks an injector for the services that the

component requires. An injector maintains a container of service instances that it has

previously created. If a requested service instance is not in the container, the injector

makes one and adds it to the container before returning the service to Angular.

When all requested services have been resolved and returned, Angular can call the

component's constructor with those services as arguments (Dependency injection

2017).

Before the service is used, it must previously register a provider of a service with the

injector. Provides can be registered in modules or components. An important fact

about injected dependencies is that all services are singletons, which means that

there is only one instance of the service for given injector. Difference between

registering providers in module and component is when the provider is registered in

a module, provided service is a singleton in the entire application. On the other hand,

provider registered in a component is available for that component scope and its

children.

@Component({

 selector: 'notification-list',

 templateUrl: './notification.component.html',

 styleUrls: ['./notification.component.css']

})

export class NotificationListComponent {

 constructor(private service: NotificationService) { }

 // other methods

}

19

3.2.2 Module

Angular apps are modular and Angular has its own modularity system

called NgModules. A NgModule, whether a root or feature, is a class with

an @NgModule decorator and is a fundamental feature of Angular (Modules 2017).

A NgModule class describes how the application parts fit together. Every application

has at least one NgModule, the root module that is bootstrapped to launch the

application. The conventional name is AppModule (Bootstrapping 2017).

Figure 8 shows the use of NgModule decorator and the way the module is

configured. NgModule decorator takes a single metadata object whose properties

describe the module.

Figure 8 - Configuration of root module

The most important properties in the module configuration are:

• Declarations - the view classes that belong to this module. Angular has three

kinds of view classes: components, directives, and pipes.

• Imports - other modules whose exported classes are needed by component

templates declared in this module.

• Providers - creators of services that this module contributes to the global

collection of services (they become accessible in all parts of the app).

• Bootstrap - the main application view, called the root component, that hosts

all other app views. Only the root module should set this bootstrap property

(Modules 2017).

@NgModule({

 declarations: [AppComponent],

 imports: [BrowserModule, FeatureModule],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

20

3.2.3 Directive and component

The Angular team has created its template system to simplify creating views. It

includes features such as directives, custom elements, interpolation and more.

Angular templates have HTML syntax enriched with a few new elements. Templates

are dynamic, and when Angular renders them, it transforms the DOM according to

the instructions given by directives (Directives 2017).

It is very common that a developer needs to display or hide an element conditionally

on a property value, or to display a list of elements of an unknown length. For this

purpose and many others, the Angular team added an essential feature called

directives to the template system.

The directive is a class with a @Directive decorator. They look like ordinary HTML

attributes, hence the name. There are two types of directives: the structural and the

attribute directives. Structural directives alter layout by adding, removing, and

replacing elements in the DOM, while attribute directives alter the appearance or

behaviour of an existing element (Directives 2017).

A specific type of directive is a component. The component is a directive with a

@Component decorator where a component template is defined. Components are

the main blocks used to create a user interface and are arranged to the component

tree. Within the component class, there is defined application logic that determines

what it does to support the view (Components 2017).

Figure 9 shows a class of Angular component with a related template. The

component class is decorated with a @Component decorator, and required

parameters are defined. At the top of the figure is a template for the component

where can be seen all kinds of directives. It looks like a general HTML syntax, but it is

enhanced with Angular directives. There are structural directives such as *ngIf,

*ngFor, attribute directive [comment] and comment component selector. All public

attributes and method defined in the component class are available in the template.

21

Figure 9 - Component class and connected template

While writing the component template, there is need to push data values into the

HTML and define methods to handle various user actions. To make it simple, Angular

offers for this purpose a feature called data binding. Data binding is a process of

synchronisation between a template and its component and is also used for

communication between parent and child component and vice versa. Data binding is

defined by a mark-up in the template HTML.

Figure 10 - Data binding syntax and direction of a data flow (Data binding 2017)

As can be seen in Figure 10, there are four different types of data binding in the

Angular framework. The figure also demonstrates a direction of data flow for each:

// comments.component.html

<div *ngIf="comments.length > 0">

 <comment *ngFor="let comment of comments" [comment]="comment">

 Total comments: {{comments.length}}

</div>

No comments found

// comments.component.ts

@Component({

 selector: 'comments',

 templateUrl: './comments.component.html'

})

export class CommentListComponent {

 public comments: IComment = [];

}

22

• Interpolation – Interpolation is the way how to display property value. It is

identified by double curly brackets, e.g. {{propertyValue}}

• Property binding – Property binding syntax consists of an element property

name within square braces and a quoted value, e.g.

• Two-way binding – The fourth type is a combination of property binding and

event binding. As the name suggests, data flows in both direction from

component to template and vice versa,

e.g. <input [(ngModel)]="inputValue"/> (Template Syntax 2017).

3.2.4 Service

Components are responsible for preparing data for a view and for defining methods

as the handlers for user actions. A component should not contain a complex business

logic, and it is recommended to keep components as lean as possible. A service is a

place, where all nontrivial business logic is located. It is a class annotated with the

@Injectable() decorator and with a well-defined purpose of doing one specific thing.

The @Injectable() decorator tells Angular the service itself might have dependencies

defined in a constructor of service and is not necessary if a service does not have any

dependencies, but Angular team recommend always to use it to make code unified.

A good example of services is:

• Logging service

• Data service

• Configuration service

• Local storage service

23

Figure 11 - Implementation of a ConnectivityService

The figure above shows an example of a service whose main purpose is to find out

whether the browser is online or offline and listen to the connectivity changes. The

attentive reader will not miss the fact that using the method directly on the navigator

object is simpler than injecting the service. The benefits of wrapping this simple

functionality are appreciated, for example, when testing other services that depend

on the browser connection. It is easier to create a fake service that simulates the

original service behaviour, compared to the bending of the navigator object.

3.2.5 Lifecycle hooks

Every component and directive have their lifecycle defined by Angular. They are

created, rendered, updated after changing the data-bound properties, and finally

destroyed just before removal from the DOM structure. This entire process is

managed by the framework, and the framework itself gives developers the

opportunity to tap into key moments in that lifecycle process by implementing one

or more of the lifecycle hook interfaces (Lifecycle Hooks 2017). Developers can

leverage this feature to perform a particular action or set data at the right moment in

the life cycle of components or directives. The life cycle is started right after a

constructor is called and has a strict order as can be seen in Figure 12.

@Injectable()
export class ConnectivityService {

 get isOnline() { return navigator.onLine; }

 onStatusChange: EventEmitter<boolean> = new EventEmitter();

 constructor() {
 // listen to online changes
 window.addEventListener('online', () =>
 this.onStatusChange.emit(true)
);
 window.addEventListener('offline', () =>
 this.onStatusChange.emit(false)
);
 }
}

24

Figure 12 - Component/directive life cycle (data adapted from Lifecycle Hooks 2017)

3.3 Typescript

TypeScript is described as a strict superset of JavaScript, which adds optional static

typing and class-based object-oriented programming aligned with ECMAScript 6

standard proposal. It is compiled down to an idiomatic JavaScript and does not

require any runtime library to support it (What is TypeScript? Pros and Cons 2014).

The Angular team strongly recommend using of Typescript in the project of any scale.

Typescript brings to the world of JavaScript the benefits of statically typed languages

such as:

• Object-oriented paradigm – Typescript brings the classes and interfaces to

JavaScript what gives developers ability to write more object-oriented

applications.

25

• Type system – Type checking can enhance workflow and enables tons of IDE

features, such as a listing of members, parameter info or viewing quick

documentation. Type checking is very useful while refactoring and it can

catch mismatches in types or structure problems before an application runs in

the browser.

Typescript is a superset of JavaScript what is illustrated in Figure 13. This fact means

that every valid JavaScript program is also valid in a Typescript world. It is important

because developers can still use the third-party libraries which are often written in

JavaScript and applications very often depend on them. The fact that Typescript is a

superset of JavaScript also has downsides. It does not eliminate weaknesses of

JavaScript. It just offers the better way how to solve the same problem. The

developer still can decide to write old-fashion code with all vulnerabilities and do not

use all features of TypeScript.

Figure 13 - Relationship between Typescript and ECMAScript

26

4 Web API Service

4.1 Overview

One reason traditional websites are slow is that popular MVC server frameworks are

focused on serving page after page of static content to an essentially dumb client.

When we click a link in a traditional website slideshow, for example, the screen

flashes white, and everything reloads over several seconds (Mikowski, & Powell

2017).

In the beginning, there was a decision to build a single page application (SPA) in the

Angular framework to create a faster and more user-friendly application. The SPA

moves much of the presentation and business logic to the browser, but the server is

still very important. It becomes lean, but there are still areas where the server must

be involved to achieve desired security level or data consistency.

Each application works with the data it creates, modifies or transforms, and it is

often needed to persist these data for later use. In addition, not all operations are

meant to be executed in a browser, and therefore there is a need for a server that

can handle those operations that the frontend application cannot accomplish. These

are the following areas:

• Data persistence

• Authentication and authorisation

• Sharing data between devices

• Operations requiring high computing power

The entire application is based on a client-server architectural model. The client-

server model describes how a server provides resources and services to one or more

clients. Examples of servers include web servers, mail servers, and file servers. Each

of these servers provides resources to client devices, such as desktop computers or

smartphones. Most servers have a one-to-many relationship with clients, meaning a

single server can provide resources to multiple clients at one time (Christensson,

Client-Server Model Definition 2016). Figure 14 illustrates a client-server model.

27

Figure 14 - Client-server model

SPA runs on client devices to provide a user interface, and the ASP.NET application

runs on the server to serve resources and services. The communication between

client and server is performed using Hypertext Transfer Protocol (HTTP), and the

Representational State Transfer (REST) architecture is implemented to follow best

practices. The ASP.NET framework and REST architecture will be described in the

following chapters.

4.2 Representational State Transfer API

Representational State Transfer (REST) is a style of architecture based on a set of

principles that describe how networked resources are defined and addressed. These

principles were described in 2000 by Roy Fielding as part of his doctoral dissertation.

REST is an alternative to Simple Object Access Protocol (SOAP) (Barry 2017).

While we are talking about REST APIs, words such as resource, collection or URL are

often used:

• The resource is a set of attributes that represents a particular object. The

resource is uniquely addressable by a URL and the operations such as

retrieve, create, update, or delete can be performed on that resource. E.g.

user or building.

• Uniform Resource Locator (URL) is a unique resource location identifier. All

resources can be located by URL, and it should be clear from the URL which

resource is addressed. E.g. http://api.site.com/v1/users

• The collection is a set of resources. E.g. users, buildings, projects

28

Applications based on the REST architecture are often referred to as RESTful. The

main purpose of the REST API application is to access and manipulate data in a

uniform way. Operations such as get, create, update or delete are often performed,

and the name of the HTTP method defines the type of the desired operation. The

Table 1 below shows the relationship between the name of the HTTP method and

the operation to be performed.

Table 1 - HTTP method names and related operations

HTTP METHOD OPERATION TO BE PERFORMED

GET Retrieve resource data

POST Create a new resource

PUT Update resource

DELETE Delete resource

In RESTful application, the service consumer uses the HTTP method to define the

operation that should be performed. The service provider handles and processes the

request and sends the response to the consumer to inform him of the outcome of

the request. In the RESTful application, response status codes are used for this

purpose. There are many different codes, but the following ones are the most

commonly used:

• 200 Ok – The standard HTTP response is representing success.

• 201 Created – This status code should be returned whenever the new

instance is created. It should be the result of the POST request.

• 400 Bad Request – indicates that the request by the client was not processed,

as the server could not understand what the client is asking for.

• 401 Unauthorized – indicates that the client is not allowed to access

resources and should re-request with the required credentials.

• 403 Forbidden – indicates that the request is valid, and the client is

authenticated, but the client is not allowed access the resource. E.g. user

does not have right to read the resource.

• 404 Not Found – indicates that the requested resource is not available now.

29

• 500 Internal Server Error – indicates that the request is valid, but there was

an unexpected error while processing the request (Haldar 2017).

Figure 15 - RESTful communication between service provider and consumer

Figure 15 shows the communication between a service consumer (client) and a

service provider (server). The client requests a user with id 2 by firing an HTTP

request with a resource URL and specified HTTP method. The server handles the

request and returns the response with status code 200 and user data.

4.3 ASP.NET introduction

ASP.NET is a free web framework for building websites and web applications using

HTML, CSS, and JavaScript. ASP.NET offers frameworks for creating web applications

(ASP.NET overview 2010):

• ASP.NET Web Forms is suitable for building dynamic websites using a familiar

drag-and-drop, event-driven model. A design surface and hundreds of

controls and components let developer rapidly build powerful UI-driven sites.

• ASP.NET MVC gives the developer a powerful, patterns-based way to build

dynamic websites that enables a clean separation of concerns and that gives

full control over mark-up for enjoyable, agile development.

• ASP.NET Web Pages and the Razor syntax provide a fast, approachable, and

lightweight way to combine server code with HTML to create dynamic web

30

content. Connect to databases, add video, link to social networking sites, and

include many more features which help to create beautiful sites that conform

to the latest web standards.

• ASP.NET Web API is a framework that makes it easy to build HTTP

services that reach a broad range of clients, including browsers and

mobile devices. It is an ideal platform for building RESTful applications

(ASP.NET overview 2010).

Figure 16 - ASP.NET framework architecture (adapted from Hanselman 2012)

4.4 ASP.NET Web API

4.4.1 Introduction to ASP.NET Web API

According to Christensson, API stands for an application programming interface and

is a set of commands, functions, protocols, and objects that programmers can use to

create software or interact with an external system. It provides developers with

standard commands for performing common operations, so they do not have to

write the code from scratch (Christensson, API Definition 2016). Web API as a name

suggests is an API over the web and is accessible via HTTP protocol.

The ASP.NET Web API is an extensible framework for building HTTP based services

that can be accessed in different applications on different platforms such as web,

windows, mobile and so forth. It works more or less the same way as ASP.NET MVC

web application except that it sends data as a response instead of HTML view. It is

31

like a web service or WCF service, but the exception is that it only supports HTTP

protocol (What is Web API? 2017).

Figure 17 - Web API application architecture

The ASP.NET Web API application consists of several major building blocks, such as

route definitions, controller classes, model objects and data access layer. In Figure 17

can be seen how all parts of the application work together. This high-level

architecture is not strict and can vary from application to application.

4.4.2 Routing

When the Web API framework receives an HTTP request, it tries to match the URI

against one of the route templates in the routing table to determine a controller and

an action to handle the request. If no route matches, the client receives a 404 error

(Wasson 2012).

Web API supports two types of routing:

• Convention-based Routing

• Attribute Routing

32

The first release of Web API used convention-based routing. In that type of routing, a

developer defines one or more route templates, which are basically parameterized

strings. When the framework receives a request, it matches the URI against the route

template. Route templates are defined in a single place, and the routing rules are

applied consistently across all controllers (Wasson 2012).

As the name implies, attribute routing uses attributes to define routes. Attribute

routing gives developer more control over the URIs in Web API application.

Convention-based routing makes it hard to support specific URI patterns that are

common in RESTful APIs. For example, resources that contain child resources:

Customers have projects (Wasson 2012).

Both, convention-based and attribute based routing can be combined in the same

project. The attribute routing is not enabled by default. To enable this feature, the

WebApiConfig.cs file must contain the calling of the MapHttpAttributeRoutes

method.

Figure 18 - Usage of attribute to define routes

Attribute routing uses attributes such as [Route()], [RoutePrefix] and

[HttpGet/Post/Delete/Put] to define routes. Figure 18 shows the usage of all these

attributes.

// file: CustomersController.cs

[RoutePrefix("api/v1/customers")]

public class CustomersController : ApiController

{

 // GET api/v1/customers

 [HttpGet, Route("")]

 public IEnumerable<Customer> GetAllCustomers() { ... }

 // GET api/v1/customers/3

 [HttpGet, Route("{id:int}")]

 public Customer GetOne(int id) { ... }

 // POST api/v1/customers

 [HttpPost, Route("")]

 public HttpResponseMessage Create(Customer customer) { ... }

}

33

4.4.3 Controller

When the Web API framework receives a request, it routes the request to the

particular controller and action. A controller is an object that handles incoming HTTP

requests and sends a response back to the caller. Web API controller can be created

under the Controllers folder or any other folder under the project's root folder. The

name of a controller class must end with "Controller", and it must be derived from

System.Web.Http.ApiController class. All the public methods of the controller are

called action methods (Wasson 2012).

To inform the client about the result of the request, a proper response should be

returned. ASP.NET Web API framework offers a bunch of built-in action results which

help to follow REST architecture style. These action results are part of the

System.Web.Http.Results and the usage is shown in Figure 19 below.

Figure 19 – Building controller

[RoutePrefix("api/v1/building")]

public class BuildingController : ApiController

{

 [HttpGet, Route("{id:long}", Name = "GetById")]

 public IHttpActionResult GetBuilding(long id)

 {

 Building result = BuildingDataAccess.GetSingle(id);

 if(!result){

 return NotFound();

 }

 return Ok(result);

 }

 [HttpPost, Route("")]

 public IHttpActionResult Create([FromBody]Building building)

 {

 Building result = BuildingDataAccess.Create(building);

 return CreatedAtRoute("GetById", new {id = result.ID},result);

 }

}

34

4.4.4 Data access layer

Controllers serve data to the client and represent a presentation layer of an

application. These controllers need to obtain data from a database or other kind of

storage. It is recommended to separate storage specific operations to the separate

classes, which form the collection of classes with the same motivation on storage

access, also known as data access layer (DAL). The purpose of DAL is to abstract the

rest of the application from the storage-specific API. DAL should never expose or

require information that is tied to a specific storage system. (The Data Access Layer

Explained 2012). If DAL is used correctly, it is easy to change storage type in the

future, e.g. from SQL database to cloud-based object-oriented database.

A business layer is another layer of the application that is situated between the

presentation and the data access layer. Layers need to communicate and send data

in a shape that understand both of layer. This shape of data is defined by model

classes.

A model is an object that represents the data in the application. ASP.NET Web API

can automatically serialise the model to JSON, XML, or some other format, and then

write the serialised data into the body of the HTTP response message. A client can

indicate which format it wants by setting the Accept header in the HTTP request

message (Wasson 2015).

ADO.NET is a set of classes exposing data access services for .NET Framework

programmers. ADO.NET provides a rich set of components for creating distributed,

data-sharing applications. It is an integral part of the .NET Framework (ADO.NET

2017).

The Entity Framework is a set of technologies in ADO.NET that support the

development of data-oriented software applications. The Entity Framework allows

developers to query entities and relationships in the domain model while relying on

the Entity Framework to translate those operations into data source–specific

commands. This frees applications from hard-coded dependencies on a particular

data source (Entity Framework Overview 2017).

35

Entity Framework supports three approaches how to use it in an application:

• Code-first approach – In this approach developer defines entity classes

with properties and Entity Framework will create entire database and

tables based on entity classes’ definition.

• Model-first approach – A database model is designed and edited in the

Entity Framework Designer and is stored in an EDMX file. After the model

is created, Entity Framework creates both database tables and related

classes.

• Database-first approach – This approach is used when database already

exists or wants to be designed and managed separately or by another

team. The framework creates Plain Old CLR Objects (POCOs) for each

table in a database. After the database is modified, Entity Framework

updates POCOs according to changes.

36

5 Implementation

5.1 Introduction

The developed application consists of two separate sub-applications: frontend and

backend application. Both applications are independent of the used technologies and

the running environment. The glue between these two applications is a common

REST API that used for the communication between the frontend and the backend.

The backend application uses C# as the programing language and the ASP.NET

framework to create backend services. It is developed in MS Visual Studio 2015,

which offers a lot of tools that help during coding or code refactoring. As a database

storage, MS SQL server was chosen, and Entity Framework is used to communicate

with the database.

The frontend application is written entirely in TypeScript, and it uses Angular to

create a user-friendly frontend application. In order to make development easier and

consistent in design throughout the application, Bootstrap 3 was used to build a user

interface. MS Visual Studio Code was used to develop the frontend application. It is a

fast and lightweight code editor with many optional plugins and great support for

TypeScript. Figure 20 illustrates the entire system and division for two independent

applications, including used technology.

Figure 20 - Application overview

Git is used for tracking file changes and coordinating the work on those files with

other people in a team. In the following chapter, the detailed implementation of

both backend and frontend application will be explained.

37

5.2 Backend application

5.2.1 Solution structure

Visual Studio enables to write code accurately and efficiently without losing the

current file context. The developer can easily zoom into details such as call structure,

related functions, check-ins, and test status. The developer can also leverage the

functionality to refactor, identify, and fix the code issues (Visual Studio IDE 2017).

A project is contained, in a logical sense and in the file system, within a solution,

which may contain one or more projects, along with build information, Visual Studio

window settings, and any miscellaneous files that are not associated with any

project. A solution has an associated *.suo file that stores settings, preferences and

configuration information for each user that has worked on the project (Solutions

and Projects in Visual Studio 2015).

The solution is created when the first project is created. The solution name is set to

Inmics.TPASuite in order to follow naming conventions. Each other project has the

name Inmics.TPASuite.ProjectName. The solution includes three main projects:

• Inmics.TPASuite.Business

• Inmics.TPASuite.Data

• Inmics.TPASuite.REST

The solution with several projects was chosen in order to follow the principle of

separation of concerns. The Inmics.TPASuite.Business project contains, for example,

model classes, authentication logic, and authorisation. The data layer is represented

by the Inmics.TPASuite.Data project with the main purpose to provide

communication with the database. The Inmics.TPASuite.REST project contains

controllers that handle REST communication and define public API endpoints.

Projects are added to the solution by right-clicking the solution name in the solution

explorer and selecting Add -> New project. Inmics.TPASuite.Business and

Inmics.TPASuite.Data are created as empty projects. Inmics.TPASuite.REST is created

as an empty ASP.NET Web Application that is a template situated in the Web

38

category. The folders and core references for Web API are added by marking Web

API checkbox as can be seen in Figure 21 as follows.

Figure 21 - Creating a REST API project

5.2.2 Installing and configuring Entity Framework

Before the implementation can start, the Entity Framework needs to be installed.

This can easily be done through the NuGet package manager. The NuGet package

manager can be opened by right-clicking on the project in solution explorer and

selecting Manage NuGet packages. The Entity Framework can be found in the

opened dialog under online packages and can be installed by clicking Install and

accepting the license.

The next step is to add the Entity Data Model to the application. This is done by right-

clicking on the Inmics.TPASuite.Data project where the Entity Data Model will be

situated and selecting Add -> Add new item from the context menu. The ADO.NET

Entity Data Model item is under the Visual C# -> Data category as can be seen in

Figure 22.

39

Figure 22 - Adding ADO.NET Entity Data Model to the application

After successful addition of the Entity Data Model, a configuration wizard is opened.

In the first step, the EF Designer from the database is selected because of the existing

database. The selected mode creates a model based on an existing database. A

connection to the database is configured in the next step. In the last step, as can be

seen in Figure 23: there are selected database objects such as tables or views that

will be included in the model. After completing the wizard, all needed classes are

generated by the Entity Framework.

Figure 23 - Selecting database objects which will be in included in the model

40

5.2.3 Model

Entity Framework generated a whole set of POCO objects that are created for each

table in the database, and their attributes correspond the table columns. A

developer should not modify these objects because they are automatically

generated, and the changes are overwritten when the model is regenerated.

A common model is needed, however, the model generated by the Entity Framework

(EF model) should not be used because a tight connection will arise between the

database and the application. Instead, there is another model defined in the

Inmics.TPASuite.Business project under the Entities folder.

Next follows the question how to convert EF model into a business model, which can

be done in several ways: one is to define a static factory method in a business model

class where an object of EF model can be passed, and the method returns a new

business model object. The implementation can be seen in Figure 24.

Figure 24 - Business and EF model conversion

41

This implementation has several downsides; the main one being that the business

model depends on the EF model situated in another project. The Entity Framework

generates model classes with a partial modifier keyword. Partial classes give the

developer an ability to define a single class in multiple files, which provides a hint to

use the partial classes to extend the EF model without modifying actual classes.

Implementation with extension classes can be seen in Figure 25 below.

Figure 25 - Extending EF model class

42

5.2.4 Presentation layer

The presentation layer is responsible for providing data to the user, in the case of

developing application it is done by exposing the REST API endpoints. When the

server receives an HTTP request, it routes it to a particular controller and action. In

order to achieve the desired routing functionality, conventional-based or attribute-

based routing can be used. The attribute-based routing gives us more freedom in

how the URL looks. That is why the attribute-based routing is used over the

conventional-based routing. If all features of attribute-based routing need to be

leveraged, it needs to be enabled in the config file, which is easily done by calling

MapHttpAttributeRoutes method in the WebApiConfig as can be seen in Figure 26

below.

Figure 26 - Enabling attribute-based routing

All controllers of the application are located under the v1/Controllers folder, where

“v1” defines the API version. This approach gives the user the ability to create a new

version of the APIs in the future and groups all controllers in one place.

To add a new controller to the project, right click on v1/Controllers folder and then

select Add -> Controller. In the Add Scaffold dialog, the Web API 2 Controller – Empty

template is selected as can be seen in Figure 27. This adds an empty class that

extends the ApiController.

public static class WebApiConfig

{

 public static void Register(HttpConfiguration config)

 {

 // Web API routes

 config.MapHttpAttributeRoutes();

 }

}

43

Figure 27 - Adding new controller

In the developed application, most controllers call static methods directly on the

data access classes because there is no complicated business logic as can be seen in

Figure 28 below. Other controllers are created in a similar way for each resource

such as building, customer, project, inspection.

Figure 28 - User API controller

[RoutePrefix ("api/v1/users")]

public class UsersController : ApiController {

 [HttpGet, Route("{id:long}", Name = "GetById")]

 public IHttpActionResult GetUser(long id) {

 User result = UserDataAccess.GetSingle(id);

 return result ? Ok(result) : NotFound();

 }

 [HttpPost, Route("")]

 public IHttpActionResult Create([FromBody] User user) {

 User result = UserDataAccess.Create(user);

 return CreatedAtRoute("GetById", new{id = result.ID}, result);

 }

 [HttpPut, Route ("{id:long}")]

 public IHttpActionResult Save([FromBody] User user, long id) {

 User result = UserDataAccess.Update(id, user);

 return Ok(result);

 }

 // other methods

}

44

5.2.5 Data Access Layer

The primary goal of the controller is to process the request, obtain the data and

provide it to the client. It is not very reasonable to place data access logic to the

controller because it becomes a very complicated class with many interests.

Therefore, it is better to leave the controller leaner, and move the complex data

access logic to a separate layer, so-called data access layer that is described in this

chapter.

All data access classes are situated in the Inmics.TPASuite.Data project in the

DataAccess folder. This project hosts the model classes generated by the Entity

Framework and all the extension classes extending the functionality of the generated

model without modifying the generated classes.

A data access class is a simple class that exposes methods in order to provide data. It

encapsulates the entire database related code. The Entity Framework is used to

simplify the communication with the database.

DBContext is an important part of the Entity Framework. It is a bridge between a

domain model and a database. DBContext is the primary class that is responsible for

interacting with data as objects (DBContext 2017). DBContext is used within a using

statement in order to ensure the correct call of Dispose after the end of the block.

This ensures that the database connection is closed when it is no longer needed.

Figure 29 shows the use of DBContext within the using statement.

Figure 29 - Encapsulating DB related code with using statement

Figure 30 illustrates the implementation of the UserDataAccess class. For brevity, not

all methods are shown. Each method should have clear intention to return a single

object or a collection of objects with common characteristics. A good example can be

using (TPASuiteEntities context = new TPASuiteEntities())
{
 // DB context related code
}

45

a method that returns all the buildings belonging to given customer, or all the

inspections for given building.

Figure 30 - User data access class

5.3 Angular application

5.3.1 Setting up the development environment

Angular framework needs for its compiling building and serving Node.js and Node

Package Manager (NPM) in order to install all necessary dependencies. Node.js is a

46

JavaScript runtime built on Chrome's V8 JavaScript engine using an event-driven,

non-blocking I/O model that makes it lightweight and efficient (Node.js 2017). The

Node.js installer can be simply downloaded from the page

https://nodejs.org/en/download/ and installed. The NPM is included in the NodeJS

installer, so no explicit installation is required.

Visual Studio Code, a lightweight and powerful code editor, is used to write the

Angular application. Plugins such as Angular Language Service and Angular2-inline

are installed for better Angular support and developing experience.

To start with, an Angular project must be created. There are two ways how to create

and initialise Angular project: firstly, by using a command line tool called Angular CLI

and secondly, by creating the entire project structure, build configuration files and

manually installing necessary dependencies. The first method was chosen to set up

the application. The Angular CLI makes application development quicker and easier

to maintain than if you did everything by hand (QuickStart 2017).

First, the Angular CLI package must be installed via NPM:

 $ npm install -g @angular/cli

5.3.2 Create a new Angular project

When the Angular CLI is installed, a new project is created by running the following

command:

 $ ng new tpa-suite

The previous command generates the Angular application with the folder structure

shown in Figure 31 below. The src folder contains the Angular application and all files

such as components, styles, HTML templates and configuration files. Files outside of

the src folder are meant to support building of the application (QuickStart 2017).

https://nodejs.org/en/download/

47

Figure 31 - Project structure generated by Angular CLI

The most significant files are described in Table 2.

Table 2 - Project files and its explanations

main.ts
The main entry point of the application that bootstraps the

application’s root module to run in the browser.

tsconfig.ts A configuration file for TypeScript compiler.

48

index.html

Index.html is a file that is loaded at first when someone

visits the site. The CLI adds all assets files when building the

app.

package.json
NPM configuration listing the third party packages project

uses.

.angular-cli.json

A configuration file for Angular CLI. In this file, there can be

set several defaults and also configure what files are

included when your project is built.

All components, services, modules and everything that the developer creates is

located in the /src/app folder. It is important to choose the right structure strategy

for this folder to make it organised and easy to refactor. According to Angular Docs, a

more complex application should contain four kinds of modules: AppModule,

SharedModule, CoreModule and FeatureModules (NgModules: What kinds of

NgModules should I have and how should I use them? 2017).

AppModule should stay as lean as possible. It contains the top component in a

component hierarchy and should render the components such as navigation bar or

sidebar. It also provides the high-level routing and imports the modules that are

necessary for the entire application. Figure 32 shows an AppModule.

Figure 32 - Definition of an AppModule

CoreModule contains all services that must be a singleton. CoreModule is imported

only in AppModule and is never imported in any other module. To make sure

CoreModule is imported just once, a simple check can be done in the constructor as

can be seen in the figure below. CoreModule provides services such as AuthHttp,

@NgModule({

 declarations: [AppComponent],

 imports: [BrowserModule, AppRoutingModule, CoreModule],

 bootstrap: [AppComponent]

})

export class AppModule { }

49

UserService, NotificationService and all services responsible for making REST API

requests.

Figure 33 - Definition of CoreModule

SharedModule, similarly to CoreModule, contains code that is used across the entire

application. The biggest difference is that SharedModule is imported by feature-

modules and not in AppModule or CoreModule. All dumb components, directives

and pipes belong to SharedModule. It may include and re-export other modules,

mainly modules from UI libraries and should not have specified providers

(NgModules: What kinds of NgModules should I have and how should I use them?

2017).

Architecturally, a feature module is an NgModule class dedicated to an application

feature or workflow. Technically, it is another class adorned by the @NgModule

decorator. A feature module delivers a cohesive set of functionalities focused on an

application business domain, user workflow, facility (forms, HTTP, routing), or

collection of related utilities. Feature modules help you partition the app into areas

of specific interest and purpose (NgModules 2017).

A good example of feature module is a building module whose main purpose is to

show and edit building information or an inspection module that provides an

interface for doing an inspection.

@NgModule({

 providers: [

 AuthHttp, AuthenticationService, UserService,

 /* ...REST API services */

]

})

export class CoreModule {

 /* make sure CoreModule is imported only by AppModule */

 constructor(@Optional() @SkipSelf() coreModule: CoreModule) {

 if (coreModule)

 throw new Error('Import CoreModule only in AppModule');

 }

}

50

5.3.3 Service for authenticated REST API calls

A major part of the application discusses the communication with a server via HTTP.

All the API endpoints, except one for login, require authenticated HTTP call. In order

to authenticate an HTTP request, token authentication was chosen. An Authorization

header must be attached to each HTTP request, so it is reasonable to create a service

that provides this desired functionality. The new service is called AuthHttp, and its

main purpose is to attach all the required headers to an HTTP request automatically.

It provides public methods for GET, POST, PUT and DELETE requests. The service

implementation can be seen in the figure below.

Figure 34 - Implementation of AuthHttp service

51

In order to authenticate HTTP call, an authentication token is needed. This token is

retrieved after successful login and is saved in the browser local storage. Token

handling is packaged in AuthenticationService.

5.3.4 Inspection module

One of the main features of the application is an inspection module that helps

inspectors to inspect buildings easily. The user interface must be mobile-friendly

because inspectors use mobile devices during the inspection. The mobile-friendly

user interface is crucial in order to make a collecting an inspection values easier and

spotlessly.

The workflow of the inspection is following:

- Inspector creates an inspection and must define in which building the

inspection is doing. He or she can select set of spaces2 that should be

inspected or the entire building.

- Inspector enters the first space and should be able to find the space in the

application.

- If the space does not exist in the application yet (could be a new space), the

inspector can add a new one.

- If there is any fault in the space, the inspector marks the fault in the

application and can write a comment or take a photo of the fault.

- When the space is inspected, the inspector inspects another one until the

required amount of inspected spaces is fulfilled.

In the beginning, a component scheme was created for the mobile version. The user

interface consists of two main views: inspection detail and space inspection detail.

The scheme can be shown below in Figure 35.

2 Inspector generally do inspection against a room, but there could be exceptions, so the word space is
used instead of room.

52

Figure 35 - Mockups for an inspection views

An inspection detail view contains information about the inspection, a list of all

already inspected spaces and notes that can be added to the inspection. A space

inspection detail view helps to easily mark a fault in the inspected space and add a

comment or a photo of the fault.

When the mock-ups were created and the basic functionality was defined, the

implementation process could start. At first, the inspection module and two view

components were generated via Angular CLI:

 $ ng generate module inspection –routing

 $ mkdir inspection/views && cd inspection/views

 $ ng generate component inspection-detail

 $ ng generate component space-inspection-detail

To each view component its own service was dedicated, in order to keep the

component lean and move the complex functionality to the service where it belongs.

53

Component class acts just as a mediator between the template and the service. The

name of the service includes a name of the component to which it belongs;

inspection-detail.service and space-inspection-detail.service. The services were

created by the following commands:

 $ ng generate service inspection-detail

 $ ng generate service space-inspection-detail

In the inspection module, several types of objects were recognised; inspection,

inspection comment, space inspection, space inspection comment and space. Each of

these objects can be retrieved from the server, created, updated or deleted. All this

functionality is wrapped in so-called data services. The service was created for each

object type and is named by object type. The structure of the entire inspection

module can be clearly seen in Figure 36.

Figure 36 - Structure of inspection module

To avoid increasing the size of the template and component classes, many smaller

components were created for each block seen in Figure 35, e.g. a list of inspected

spaces, a comment list or inspection details. Each of these components is in a

54

separate folder that contains at least HTML template file, stylus file for styling and a

file with a component class.

Figure 37 shows the result of composing smaller components to one comprehensive

user interface. The mobile view was chosen because it is more important than

desktop view.

Figure 37 - Inspection detail and space inspection view

5.3.5 SW Precache

In order to enable an ability to load application without an internet connection, the

sw-precache module was used. After the application is built, the sw-precache

module detects all static resources and generates a service worker that contains logic

to serve these files from cache.

55

The module is installed by running the following script

 $ npm install --save-dev sw-precache

and a service worker is generated by running the following script

 $ sw-precache --verbose --config=sw-precache-config.js

The basic configuration can be done using CLI parameters, however, when a more

complicated configuration is needed, the best way is to create a separate config file

and link it with the --config parameter. The config file for the developed

application can be seen in Figure 38. It tells where the files from the build process are

located, which static files should be precached, and it is specified that the external

dependence on the jQuery library should be cached too.

Figure 38 - Configuration for an sw-precache module

In the end, calling a precache script was added to build script in package.json:

"scripts": {

 "build": "ng build -aot -prod && sw-precache --config=sw-precache.js",

 ...

}

// file: sw-precache-config.js

module.exports = {

 navigateFallback: '/index.html',

 root: './dist',

 staticFileGlobs: [

 '/index.html',

 '/**.js',

 '/**.css',

 '/**.png',

 '/assets/**/*',

 '/glyphicons-halflings*'

],

 runtimeCaching: [{

 urlPattern: /^https:\/\/code\.jquery\.com\//,

 handler: 'cacheFirst'

 }]

};

56

6 Conclusion

The main goal of this thesis was to develop an application consisting of two separate

projects and two different technologies. The purpose of the application was to help

with the building inspections by providing functionality to log the faults in the

building and documenting them. Several sub-modules for managing users and their

rights, buildings or building structures were needed in addition. Last but not least,

the users had to be able to use the core functionality for doing inspections without

internet connection or in the areas with weak connection.

At the beginning, I was challenged by the new technologies such as Angular

framework and ASP.NET framework. While exploring and gathering new knowledge

about these technologies, very well written official documentations was the pillar for

me that I could repose on. Both teams, Google and Microsoft have done great work

with detailed API documentation and plenty of tutorials. In addition to official

documentation, many articles can be found about these popular frameworks.

After the first weeks of delving into new technologies, I started to design and

implement the application. At the beginning, I was the only developer working on

this project, so I made some architectural decisions that turned out to be not very

successful. Over time, I have come up with new architectural solutions and ideas, and

I discovered the importance of the code refactoring.

I gained the knowledge about RESTful design and client-server architecture. The

client-server architecture allows to use server-hosted services with various

applications running on different devices or platforms. While developing the backed

service, Visual Studio 2015 gave me a great support with a lot of templates to

generate various classes, objects or models what speeded up the development

process.

The ability to work offline was secured by implementing PWA requirements that

includes the Service Worker that serves static content when there is no connection,

or precaching all static files in the build process. The cached static files are served

57

immediately, so the end user can see the application much faster. The Service

Worker can be easily generated without complicated configuration by sw-precache

module. The main limitation for PWA and especially for the Service Worker is weak

support for iOS devices.

The result of several months of work is an application meeting all the set objectives.

However, the development of the application has not yet been finished, and new

modules will be added in the future in order to meet the new requirements that

have arisen during the development process.

The reader can use this thesis as a demonstration of how to combine technologies

such as ASP.NET and Angular together and use this technology stack to build fast and

reliable application with dynamic content. The Angular framework is as a robust

platform and a good choice for both smaller and larger frontend applications or for

mobile application with PWA characteristics. From my point of view, I found a new

passion in the technologies like ASP.NET and Angular, which were completely

unknown platforms for me.

58

References

ADO.NET. Microsoft Docs. Accessed on 18 November 2017. Retrieved from

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/

Archibald, J. 2014. The offline cookbook. Accessed on 9 October 2017. Retrieved from

https://jakearchibald.com/2014/offline-cookbook/

Architecture Overview. Angular Docs. Accessed on 1 November 2017. Retrieved from

https://angular.io/guide/architecture

ASP.NET overview. Microsoft Docs. Accessed on 15 November 2017. Retrieved from

https://docs.microsoft.com/en-us/aspnet/overview

Barry, D. K. n.d. Representational State Transfer (REST). Accessed on 13 November

2017. Retrieved from https://techterms.com/definition/client-server_model

Bootstrapping. Angular Docs. Accessed on 3 November 2017. Retrieved from

https://angular.io/guide/bootstrapping#bootstrapping

Can I use: Service Workers. Can I use. Accessed on 18 October 2017. Retrieved from

https://caniuse.com/#feat=serviceworkers

Components. Angular Docs. Accessed on 5 November 2017. Retrieved from

https://angular.io/guide/architecture#components

Entity Framework Overview. Microsoft Docs. Accessed on 19 November 2017.

Retrieved from https://docs.microsoft.com/en-

us/dotnet/framework/data/adonet/ef/overview

Data binding. Angular Docs. Accessed on 6 November 2017. Retrieved from

https://angular.io/guide/architecture#data-binding

DBContext. EntityFrameworkTutorial.net. Accessed on 22 November 2017. Retrieved

from http://www.entityframeworktutorial.net/EntityFramework4.3/dbcontext-vs-

objectcontext.aspx

Dependency injection. Angular Docs. Accessed on 3 November 2017. Retrieved from

https://angular.io/guide/architecture#dependency-injection

Directives. Angular Docs. Accessed on 5 November 2017. Retrieved from

https://angular.io/guide/architecture#directives

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/
https://jakearchibald.com/2014/offline-cookbook/
https://angular.io/guide/architecture
https://docs.microsoft.com/en-us/aspnet/overview
https://techterms.com/definition/client-server_model
https://angular.io/guide/bootstrapping#bootstrapping
https://caniuse.com/#feat=serviceworkers
https://angular.io/guide/architecture#components
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/overview
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/overview
https://angular.io/guide/architecture#data-binding
http://www.entityframeworktutorial.net/EntityFramework4.3/dbcontext-vs-objectcontext.aspx
http://www.entityframeworktutorial.net/EntityFramework4.3/dbcontext-vs-objectcontext.aspx
https://angular.io/guide/architecture#dependency-injection
https://angular.io/guide/architecture#directives

59

Golden, M. 2017. Why it is going to be called just Angular instead of Angular v4.0 and

so on. Accessed on 25 October 2017. Retrieved from https://cali-style.com/blog/just-

call-it-angular-already

Haldar, M. 2017. RESTful API Designing guidelines — The best practices. Accessed on

13 November 2017. Retrieved from https://hackernoon.com/restful-api-designing-

guidelines-the-best-practices-60e1d954e7c9

Hanselman, S. 2012. ASP.NET Web API. ASP.NET Site Videos. Accessed on 12

November 2017. Retrieved from https://channel9.msdn.com/Blogs/ASP-NET-Site-

Videos/aspnet-web-api

Christensson, P. 2016. API Definition. Accessed on 12 November 2017. Retrieved

from https://techterms.com/definition/api

Christensson, P. 2016. Client-Server Model Definition. Accessed on 12 November

2017. Retrieved from https://techterms.com/definition/client-server_model

LePage, P. 2017. Your First Progressive Web App. Accessed on 9 October 2017.

Retrieved from https://developers.google.com/web/fundamentals/codelabs/your-

first-pwapp/

Lifecycle Hooks. Angular Docs. Accessed on 8 November 2017. Retrieved from

https://angular.io/guide/lifecycle-hooks

Lighthouse. Google Developers. Accessed on 18 October 2017. Retrieved from

https://developers.google.com/web/tools/lighthouse/

Live Data in the Service Worker. Progressive Web Apps Training. Accessed on 12

October 2017. Retrieved from https://developers.google.com/web/ilt/pwa/live-data-

in-the-service-worker

Lynch, M. 2016. What are Progressive Web Apps? Accessed on 9 October 2017.

Retrieved from http://blog.ionic.io/what-is-a-progressive-web-app/

Mikowski, M. S., & Powell, J. C. 2014. Single Page Web Applications. Manning

Publications Co.

Modules. Angular Docs. Accessed on 5 November 2017. Retrieved from

https://angular.io/guide/architecture#modules

NgModules. Angular Docs. Accessed on 29 November 2017. Retrieved from

https://angular.io/guide/ngmodule

https://cali-style.com/blog/just-call-it-angular-already
https://cali-style.com/blog/just-call-it-angular-already
https://hackernoon.com/restful-api-designing-guidelines-the-best-practices-60e1d954e7c9
https://hackernoon.com/restful-api-designing-guidelines-the-best-practices-60e1d954e7c9
https://techterms.com/definition/api
https://techterms.com/definition/client-server_model
https://developers.google.com/web/fundamentals/codelabs/your-first-pwapp/
https://developers.google.com/web/fundamentals/codelabs/your-first-pwapp/
https://angular.io/guide/lifecycle-hooks
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/ilt/pwa/live-data-in-the-service-worker
https://developers.google.com/web/ilt/pwa/live-data-in-the-service-worker
http://blog.ionic.io/what-is-a-progressive-web-app/
https://angular.io/guide/architecture#modules
https://angular.io/guide/ngmodule

60

NgModules: What kinds of NgModules should I have and how should I use them?

Angular Docs. Accessed on 29 November 2017. Retrieved from

https://angular.io/guide/ngmodule-faq#what-kinds-of-ngmodules-should-i-have-

and-how-should-i-use-them

Node.js. Node.js. Accessed on 30 November 2017. Retrieved from

https://nodejs.org/en/

QuickStart. Angular Docs. Accessed on 30 November 2017. Retrieved from

https://angular.io/guide/quickstart

Semenov, A. 2017. How Progressive Web Apps make the Web great again. Accessed

on 18 October 2017. Retrieved from https://webagility.com/posts/how-progressive-

web-apps-make-the-web-great-again

Service Worker Precache. GitHub. Accessed on 18 October 2017. Retrieved from

https://github.com/GoogleChromeLabs/sw-precache

Solutions and Projects in Visual Studio. Microsoft Docs. Accessed on 21 November

2017. Retrieved from https://msdn.microsoft.com/en-us/library/b142f8e7.aspx

Template Syntax. Angular Docs. Accessed on 29 November 2017. Retrieved from

https://angular.io/guide/template-syntax

The Data Access Layer Explained. Sapiens Works. Accessed on 18 November 2017.

Retrieved from http://blog.sapiensworks.com/post/2012/11/18/The-Data-Access-

Layer-(DAL)-Explained.aspx

The family guarantees sustainable growth. Inmics Oy. Accessed on 6 December 2017.

Retrieved from https://www.inmics.fi/yritys/perhe-takaa-kestavan-kasvun/

Visual Studio IDE. Microsoft. Accessed on 21 November 2017. Retrieved from

https://www.visualstudio.com/vs/

Wasson, M. 2012. Routing in ASP.NET Web API. Microsoft Docs. Accessed on 15

November 2017. Retrieved from https://docs.microsoft.com/en-us/aspnet/web-

api/overview/web-api-routing-and-actions/routing-in-aspnet-web-api

Wasson, M. 2015. Getting Started with ASP.NET Web API 2. Microsoft Docs. Accessed

on 15 November 2017. Retrieved from https://docs.microsoft.com/sk-

sk/aspnet/web-api/overview/getting-started-with-aspnet-web-api/tutorial-your-

first-web-api

Web App Manifest. Web technology for developers. Accessed on 15 October 2017.

Retrieved from https://developer.mozilla.org/en-US/docs/Web/Manifest

https://angular.io/guide/ngmodule-faq#what-kinds-of-ngmodules-should-i-have-and-how-should-i-use-them
https://angular.io/guide/ngmodule-faq#what-kinds-of-ngmodules-should-i-have-and-how-should-i-use-them
https://nodejs.org/en/
https://angular.io/guide/quickstart
https://webagility.com/posts/how-progressive-web-apps-make-the-web-great-again
https://webagility.com/posts/how-progressive-web-apps-make-the-web-great-again
https://github.com/GoogleChromeLabs/sw-precache
https://msdn.microsoft.com/en-us/library/b142f8e7.aspx
https://angular.io/guide/template-syntax
http://blog.sapiensworks.com/post/2012/11/18/The-Data-Access-Layer-(DAL)-Explained.aspx
http://blog.sapiensworks.com/post/2012/11/18/The-Data-Access-Layer-(DAL)-Explained.aspx
https://www.inmics.fi/yritys/perhe-takaa-kestavan-kasvun/
https://www.visualstudio.com/vs/
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/routing-in-aspnet-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/routing-in-aspnet-web-api
https://docs.microsoft.com/sk-sk/aspnet/web-api/overview/getting-started-with-aspnet-web-api/tutorial-your-first-web-api
https://docs.microsoft.com/sk-sk/aspnet/web-api/overview/getting-started-with-aspnet-web-api/tutorial-your-first-web-api
https://docs.microsoft.com/sk-sk/aspnet/web-api/overview/getting-started-with-aspnet-web-api/tutorial-your-first-web-api
https://developer.mozilla.org/en-US/docs/Web/Manifest

61

What is TypeScript? Pros and Cons. Designmodo. Accessed on 10 November 2017.

Retrieved from https://designmodo.com/typescript/

What is Web API? TutorialsTeacher.com. Accessed on 15 November 2017. Retrieved

from http://www.tutorialsteacher.com/webapi/what-is-web-api

https://designmodo.com/typescript/
http://www.tutorialsteacher.com/webapi/what-is-web-api

