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A Location-Query-Browse Graph for Contextual
Recommendation

Yongli Ren, Martin Tomko, Flora Salim, Jeffrey Chan, Charles L.A. Clarke, Mark Sanderson

Abstract—Traditionally, recommender systems modelled the physical and cyber contextual influence on people’s moving, querying,
and browsing behaviours in isolation. Yet, searching, querying and moving behaviours are intricately linked, especially indoors. Here,
we introduce a tripartite location-query-browse graph (LQB) for nuanced contextual recommendations. The LQB graph consists of
three kinds of nodes: locations, queries and Web domains. Directed connections only between heterogeneous nodes represent the
contextual influences, while connections of homogeneous nodes are inferred from the contextual influences of the other nodes. This
tripartite LQB graph is more reliable than any monopartite or bipartite graph in contextual location, query and Web content
recommendations. We validate this LQB graph in an indoor retail scenario with extensive dataset of three logs collected from over
120,000 anonymized, opt-in users over a 1-year period in a large inner-city mall in Sydney, Australia. We characterize the contextual
influences that correspond to the arcs in the LQB graph, and evaluate the usefulness of the LQB graph for location, query, and Web
content recommendations. The experimental results show that the LQB graph successfully captures the contextual influence and
significantly outperforms the state of the art in these applications.

Index Terms—location-query-browse graph, contextual recommendation, query log analysis, information retrieval

F

1 INTRODUCTION

S TUDYING users’ behavioural patterns captured in mobile
access logs enables the understanding of users’s intent

and the provision of personalised information and services.
Research to date, however, focused merely on analyzing
individual aspects of behaviour in isolation, e.g. Web site
browsing or querying for studying cyber behaviour, and Wi-
Fi associations for studying physical behaviour. This largely
limits the quality of modelling in terms of provided services.

In this paper, we introduce a tripartite location-query-
browse graph to address this gap and capture linked in-
fluences. We propose the location-query-browsing (LQB)
graph as a representation of the interactive knowledge about
people’s behaviour across the physical and cyber spaces.
The LQB graph contains three kinds of nodes, represent-
ing locations, queries and Web domains. The LQB graph
thus models the physical and cyber contextual influence
on people’s moving, querying, and browsing behaviours.
It contains arcs between heterogeneous nodes only, and
is used to infer connections between homogeneous nodes
from corresponding contextual influences. We evaluate this
LQB graph in an indoor retail scenario with three types of
logs: a Wi-Fi access point association log that records users’
physical movement, a Web browsing log, and a query log
containing users’ interaction with search engines. These logs
were collected from over 120,000 (anonymized, opt-in) users
for over one year in a large inner-city mall in Sydney, Aus-
tralia. We characterise the corresponding physical and cyber
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contextual influence captured in these logs and examine the
usefulness of the LQB graph in three applications: location
recommendation, Web content recommendation, and query
recommendation.

The main contributions of the paper are: (1) A formali-
sation of the LQB graph model, a concise representation of
user behavior across the physical and cyber spaces; (2) A
comprehensive analysis of the physical and cyber contex-
tual influence on people’s moving, querying, and browsing
behaviours in an indoor retail space; and (3) The application
of the LQB graph model to location, Web content and query
recommendation in this retail space.

2 RELATED WORK

2.1 Query Logs and Browsing Logs
Query logs record rich data about users’ behaviour patterns
that can be mined for information about immediate interests
and preferences. Two early Web search studies on traditional
desktop-based queries are the Excite study [1]–[5] and the
AltaVista study [6]. They summarised key characteristics
of Web search queries, including the number, type, and
distribution of terms in queries, queries per session and ses-
sion distributions, the use of advanced search features, and
interaction with retrieved results. Subsequent studies also
examined geographic queries [7]–[9], religious information
in search engines [10], and sponsored search [11].

Recent Web search analysis shifted focus to mobile query
logs. One of the earliest studies examined the queries from
Google’s two mobile search interfaces at the time [12].
They analysed the key characteristics in mobile queries,
e.g., query length and distribution, session length and click
through rates. While the average number of terms per
query was similar to desktop queries, the average number
of queries per session (around 1.6) differed significantly
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(2.02 [6], 2.3 [1] and 2.84 [5]), and nearly 70% of sessions
included only one query. Adult-related queries were popu-
lar in one Google search interface but not other; the authors
suspected the reason was different user demographics.

An early European study on mobile search compared
mobile browsing and mobile searching [13]. They found
that while browsing was still dominating the mobile in-
formation access, searching was gaining in popularity, but
mobile queries were shorter than desktop queries, with
about half (45%) of the query sessions consisting of a single
query. We note that these results come from the time when
mobile search and mobile search interfaces were still at an
early stage. A later study from the same authors [14] high-
lighted the key characteristics of mobile search, revealing
that almost 90% of searches fail to attract any user clicks
on the retrieved results, and that adult-related queries still
dominate search activity.

Like query logs, browsing logs contain rich information
about users’ browsing behaviours on the Web. We briefly
review only studies of browsing logs related to search
activities. Agichtein et. al. [15] incorporated users’ browsing
behaviour as implicit feedback to improve Web search rank-
ing, and suggested that they augment other query-relevant
factors and improve rankings. Liu et. al. [16] investigated
the transitions between pages in users’ browsing history,
and thus computed Web page importance. They suggested
that browsing-based models outperform link-based ranking.
White and Drucker studied post-query browsing trails and
found dramatic differences in variability in users-engaged
Web search activities. Later [17], they demonstrated that
these post-query trails provide users benefits in terms of
coverage, diversity, novelty, and utility over origins (landing
pages) and destinations (pages where trails end). White et.
al. [18] further suggested that people’s general browsing
behavior as recorded in a browsing log far outweigh di-
rect search engine interaction as an information-gathering
activity. Tasagkias and Blanco [19] also found that textual
features of articles browsed by users to be useful for ar-
ticle recommendations. Chiarandini et. al. [20] studied the
browsing patterns on social photo sites, and Chiarandini
et. al. [21] used browsing patterns for topic discovery and
photostream recommendations. Trevisiol et. al. [22] studied
image ranking and user browsing behaviour by exploring
both internal and external factors (e.g. links within and
outside Flickr), and quantified the impact of these factors.

2.2 Context Modelling
Studies exploring a particular aspect of mobile Web access–
contextual dependence–followed. An early study on con-
textual influence in mobile search was conducted by [23].
Consecutively, Sohn et. al. [24] conducted a two-week diary
study involving twenty participants, that found that around
72% of the participants’ mobile information needs were
prompted by contextual factors. Hinze et. al. [25] performed
another small-scale diary study, in which participants were
required to record their location, time, information needs,
and how much their needs were related to the current
location and time. Contextual factors strongly influenced
needs, e.g. location, conversion, and activity; the type of
asked questions varied across locations. To infer context,
they found the query key words were not sufficient.

Teevan et. al. [26] performed a similar study on a larger
scale and found that mobile local searches were highly
influenced by contextual parameters, such as geographic
features, temporal aspects, and searchers’ social context.
Chua et. al. [27] examined context factors finding that lo-
cation, intended activity, and social surroundings triggered
information needs while location, time, current activity,
and social surrounding influenced information needs. Song
et. al. [28] compared the differences between searches on
mobile phones and tablets in terms of search location distri-
bution and found that mobile phone users searched the Web
at a variety of different locations while tablet users mainly
searched from home. Exploiting GPS sensors in mobile
phones, Lymberopoulos et. al. [29] studied the influence of
location on local search issued by US users using a dataset of
two million queries. They analysed mobile click behaviour
across different spatial scales, e.g. city, state and country, and
introduced location-aware features to improve local search
click prediction by encoding information from the ZIP code
where the query was issued.

Yom-Tov and Diaz [30] investigated the influence of
social and physical detachment on users’ information needs
and demonstrated how to use these factors to improve
retrieval results. Chiarandini et. al. [20] described the in-
fluence of the Websites they arrived from on their usage of
social image site. Recently, Zhang et. al. [31] found that the
installed apps might indicate users preferences in sports,
business or other fields, and proposed an application-
aware approach for query auto-completion, which shows
improved accuracy on mobile devices.

There are also some research focusing on associating
locations to queries or Web content. For example, Zhuang
et. al. [32] proposed to exploit the geographical probability
distributions of user clicks to infer locality information for
queries, and found this leads to better results in terms of
query classification. Zong et. al. [33] attempted to determine
the spatial semantics to Web pages by assigning them place
names. Backstrom et. al. [34] studies the spatial variation in
search engine queries, and proposed a probabilistic model
to determine the query’s geographic center and its spatial
dispersion by utilizing geolocation techniques to find loca-
tions of IP addresses where queries are issued. However,
they are different from the focus on this paper: modelling
the contextual influence among locations, queries and Web
content for contextual recommendations.

2.3 Graph Representations of Querying, Browsing and
Physical Associations
Directed graph representations of sequential activity
(whether it is sequential querying activity, browsing activity
or movement through space) have gained prominence in
for their expressive power and mathematical grounding in
graph theory. Graph representations of the query activity,
browsing activity and physical acitivty can be built in a
large number of ways, depending on the formalisation of
the graph nodes and arcs (oriented edges).

The query graph is a compact representation of the infor-
mation about user querying behaviours extracted from the
query log. There are several kinds of query-based graphs,
depending on how the nodes of the graph and their asso-
ciations are represented. These include query-query graphs,
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and query-click graphs that have two kinds of nodes, queries
and urls (or documents), respectively. Baeza-Yates et. al.
identified five types of query-query graphs [35], including
1) word graph: connects queries having the same word(s);
2) session graph: connects queries in the same session; 3)
URL cover graph: connects queries by which users clicked
on the same url; 4) URL link graph: connects queries whose
clicked urls are linked; 5) URL terms graph: connects queries
whose clicked urls have common terms. They suggested
these graphs can be used in the following applications,
e.g. recognition of polysemic words, as well as related and
similar queries.

Zhang et. al. used a one dimensional graph to model
consecutive queries and applied a damping factor to weight
the arcs between them [36]. They defined the similarity of
two queries as the multiplication of the values of the arcs
that join them. If they are consecutive, the similarity will be
the damping factor. They finally combined this graph-based
similarity with the content-based similarity to do query
recommendations. Boldi et. al. proposed a query-flow graph,
which is a query-query graph by connecting two consecutive
queries in a session [37]. They built the query-flow graph
by mining the time, textual information of the queries, and
suggested that the query-flow graph is helpful for finding
logical sessions and query recommendations [38], and query
similarity measurement [39]. Albakour et. al. enriched the
query-flow graph model by utilizing clickthrough informa-
tion to adjust the arc weights, and found this modified graph
was more valuable than the standard query-flow graph for
query recommendations [40].

Another popular query-related graph is query-document
graph, built by using query clickthrough data. A query-
document graph is a bipartite graph with two types of
nodes: queries and documents. A link is introduced if there
is a query that is submitted and a corresponding docu-
ment is clicked by a user. Based on a query-document (urls)
graph representation, Beeferman and Berger [41] proposed
an agglomerative clustering approach to discover similar
queries and similar URLs corresponding to similar needs.
Craswell and Szummer [42] proposed a Markov random
walk model on the query-document graph to rank documents
for a given query in a image search engine, and demon-
strated that the proposed model is effective on ranking those
un-clicked documents. Mei et. al. [43] proposed a query
recommendation approach based on query rankings with
hitting times. The authors define hitting times as the first
time that a random walk is at a node in the query-document
(url) graph. They found hitting time is effective in producing
semantically consistent queries. Zhang et. al. [44] repre-
sented query logs as an entity-auxiliary bipartite graph with
additional relevant information, e.g. contextual words and
clicked URLs, and suggested a ensemble framework based
on label propagation to learn the types of both entities and
its auxiliary signals. Recently, Qi, Wu and Mamoulis [45]
proposed a location-aware query(keyword)-document graph,
which can capture the spatial distance between the resulting
documents and the user location, as well as the semantic
relevance between keyword queries. They found that the
document proximity is important and can lead to better
query recommendations.

Browse graphs are built based on users’ Web browsing

history, where the nodes are Web pages and the edges are
the transitions between them in a users’ browsing log. A
users’ web browsing behaviour was studied resulting in
the BrowseRank model [16], [46], which built a graph of
Web pages with edges representing the transitions between
pages. This model was found more reliable than link-based
graphs for inferring page importance, e.g. PageRank [47]
and TrustRank [48]. Liu et. al. [49] studied the structure,
evolution and application of the browse graph by comparing
with link-based graphs. Trevisiol et. al. [22] compared differ-
ent ranking techniques on a browse graph in the field of image
ranking by using a datset from Flickr. Browse graphs have
been used to tackle the cold-start recommender problems in
the news domain, and achieved high accuracy with sparse
data [50]. Recently, Trevisiol et. al. [51] investigated the local
ranking problem on the browse graph for news item ranking,
and showed the distance between rankings are predictable
based on the structural information of the graph.

There are other relevant research studied with data min-
ing techniques, ranging from traditional recommendation
techniques, Location-based services (LBS) to Point of Inter-
ests (POI) Web search. For example, Sun et. al. [52] sum-
marised the traditional recommendation techniques that
investigating the spatio-temporal joint influence with proba-
bilistic generative models and network embedding models.
Xie et. al. [53] tackled location-based recommendations by
modelling the relationships among POI, region, time and
word in graphs with embedding learning techniques, and
found this is effective in cold-start POIs. Zhao et. al. [54]
proposed a geo-temporal sequential embedding rank model
to capture the contextual check-in information in sequences,
and found this works well for POI recommendations. How-
ever, based on our experiments, the data across the physical
and cyber spaces are too sparse for applying these existing
methods, because very few people have long or complete
trajectories, hence a different approach is needed, looking at
aggregate likelihoods, as in this study.

Overall, there is no work in the state of the art that exam-
ines a users’ query, browsing, and movement log together
with a focus on the physical and cyber contextual influence
among them.

3 TERMINOLOGY AND DEFINITIONS

3.1 User Behaviour Logs

The conjunction between people’s physical and cyber be-
haviour is recorded in the query, browsing and physical
movement logs.

As shown in Fig. 1a, we deploy a running example to
illustrate the definitions, the terms and the construction
process of the subgraphs of the LQB graph. Specifically,
the example includes two users, and their Web brows-
ing/searching activities while they are moving in a shop-
ping mall environment. They start from different locations
in the mall, and browse and search something online, then
move towards the Apple retail store. Fig. 1b shows the
alignment of the search log, browsing log and movement
log in time for two users. Table 1 illustrates the content of
these logs corresponding to the example. To simplify the
example we show only one session per user.
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          l1  
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          l3 

User	  u	  browsed	  gumtree	  and	  apple	  	  
website,	  and	  issued	  query	  ‘iPhone’ 

User	  u’	  browsed	  apple	  website,	  	  
and	  issued	  query	  ‘iPhone’ 

User	  u	  browsed	  apple	  website,	  	  
and	  issued	  query	  ‘MacBook’ 

User	  u’ browsed	  ebay	  and	  apple	  	  
website,	  and	  issued	  query	  ‘MacBook’ 

(a)

l l
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gumtree.com apple.com
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apple.com apple.com

search

browsing
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User u
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0 5 10 15 20

tq
t l

1 2

23

(b)

Fig. 1. (a): Example of two users in a shopping mall environment. The green dots are locations with their names and types; the red dashed line and
the blue dotted line are the movement trajectories for user u and u′, respectively. (b): The illustration of the example logs by aligning the search log,
browsing log and movement log in time order for each individual user. The dot • indicates the time stamp for the query, browsed Web domain and
location, respectively. The black dotted line for movement logs indicates the duration of visiting a location. tq and tl are the time spent on query
“iPhone” and in location l2 for user u′.

TABLE 1
The corresponding logs of the illustration example in Fig. 1a.

Pl1 = [0, 1, 0] is a binary representation of vector
[Technology, Jewellery, Fashion], where 1 means l1 belongs to the

corresponding location (shop) type (jewellery).

logs records
search log 〈iPhone, u, 5:00〉
〈qi, ui, ti〉 〈MacBook, u, 14:00〉

〈MacBook, u′, 2:00〉
〈iPhone, u′, 11:00〉

browsing log 〈gumtree.com, u, 1:00〉
〈bi, ui, ti〉 〈apple.com, u, 7:00〉

〈apple.com, u, 10:00〉
〈apple.com, u, 16:00〉
〈ebay.com, u′, 0:00〉
〈apple.com, u′, 3:00〉
〈apple.com, u′, 7:00〉
〈apple.com, u′, 15:00〉

movement log 〈l1, u, 00:00, 10,Pl1 = [0, 1, 0]〉
〈li, ui, ti, di,Pli 〉 〈l2, u, 10:00, 10,Pl2 = [1, 0, 0]〉

〈l3, u′, 00:00, 5,Pl3 = [0, 0, 1]〉
〈l2, u′, 05:00, 15,Pl2 = [1, 0, 0]〉

Query Log A typical query log contains information
about users interactions with search engines, including
the queries submitted, the time stamp, the returned doc-
uments/URLs as the results of the query, and the docu-
ment/URLs clicked by the users. Here, we do not use any
information from the search engine results page (SERP),
thus we define a query log as a set of records: 〈qi, ui, ti〉,
where qi is the submitted query, ui denotes the user, and
ti denotes the time stamp when the query is submitted. A
search session Si is a series of query requests by a single user
ui within a specific time period, which is represented as:

Si = 〈〈qi1 , ui, ti1〉, . . . , 〈qik , ui, tik〉〉,

where ti1 ≤ · · · ≤ tik , and Si ∈ S that is the set of all search
sessions. Together with the Web browsing log, we note that
a search session contains all the issued queries, URL clicks
and other Web pages navigated from the SERPs.

Web Browsing Log Similarly, a Web browsing log
records information about users online access, and can be
defined as a set of the following records: 〈bi, ui, ti〉, where

bi denotes the browsed Web domain. Similarly, we define a
browsing session Bi as a series of URL requests by a single
user ui within a specific time period, which is represented
as:

Bi = 〈〈bi1 , ui, ti1〉, . . . , 〈bik , ui, tik〉〉,

where ti1 ≤ · · · ≤ tik , and Bi ∈ B that is the set of all
browsing sessions.

Physical Movement Log A physical movement log con-
tains users moving histories– symbolic trajectories, con-
sisted of a visited location, the time stamp, the stay dura-
tion, and the type of the location. We define the physical
movement log as a set of records: 〈li, ui, ti, di,Pli〉, where
li denotes the id of the visited location, di is the duration of
the visit at li, and Pli is a vector, denoting the physical
context of li in terms of location types when the log is
being recorded. The symbolic location can be expressed
at different scales, e.g. room or shop, coverage area, floor,
building, or city. We assume, however, that the locations in
a movement log are of homogeneous scale. For instance,
in our example (Fig. 1a), the location is the service area
of a WiFi access point, covering multiple types of shops,
e.g. Technology shops, Jewellery shops, and Fashion shops.
Thus, Pl2 for l2 will be a vector of three: [1, 0, 0], where 1
denotes there is a technology shop (Apple retail store) at l2,
but no jewellery or fashion shops there.

Similarly, we define a movement session Mi ∈ M as a
series of movements by a single user ui within a specific
time period, which is represented as:

Mi = 〈〈li1 , ui, ti1 , di1 ,Pli1
〉, . . . , 〈lik , ui, tik , dik ,Plik

〉〉,

where ti1 < · · · < tik , and Mi ∈ M that is the set of all
movement sessions.

Let C = {c1, . . . , ch} denote the h available location
types, and the physical context for each location l is rep-
resented by the vector Pl, which records the likelihood of
belonging to each location type. It is formally defined as:

Definition 1. For each location l, let plk denote the likelihood
of belonging to location type ck ∈ C . Then Pl is defined
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TABLE 2
Symbols

Symbol Description
u the user
l the location
q the query
b the browsed Web domain
| · | size of a set
S = {Si} set of search sessions (i = 1, . . . , |S|)
B = {Bi} set of browsing sessions (i = 1, . . . , |B|)
M = {Mi} set of movement sessions (i = 1, . . . , |M|)
qi, bi, li, ui q, b, l, u, t in the corresponding search, browsing

or movement session.
ti start time stamp of the i-th session in S,B, or

M
tq , tb, tl time stamp of issuing q, browsing b, visiting l
C the set of location types
ck the k-th type in C
h the number of location types
Pl,Pb,Pq the physical context of l, b, and q
plk likelihood of location l belonging to category

ck ∈ C
Lb, Lq set of locations where b or q is issued.
V,A,W sets of nodes, arcs and weights in a graph
Glqb the LQB tripartite graph: Glqb =

(Vlqb, Alqb,Wlqb)
Gql the query-location bipartite subgraph: Gql =

{Vql, Aql,Wql}
Gbl the browse-location bipartite subgraph: Gbl =

{Vbl, Abl,Wbl}
Gqb the query-browse bipartite subgraph: Gqb =

{Vqb, Aqb,qb }
w(·, ·) the weight on the arcs connecting two nodes
Ĝ the projection of a bipartite subgraph
fq , fb the frequency of q and b
X the transition matrix
I the unit matrix
ev the vector that only have the v-th component

equal to 1 and others equal to 0
α the damping factor
r(·) the random walk values on vertices
l(·) the ranks obtained from corresponding random

walk values
β1, β2, θ the scaling factors

as a vector of size h, with entry k storing the likelihood
plk of belonging to ck:

Pl = [pa1, . . . , plk, . . . , pah]. (1)

3.2 Definitions and symbols

Table 2 lists the main symbols used throughout this paper.
Let Glqb = (Vlqb, Alqb,Wlqb) denote the LQB graph, where:

• Vlqb = Vl∪Vq∪Vb is the union of three sets of different
kinds of nodes: the set of distinct physical locations
Vl, the set of distinct queries Vq , and the set of distinct
browsed Web domains Vb.

• Alqb denotes the set of arcs (oriented edges) among
these nodes. There are only arcs between heteroge-
neous nodes, representing the contextual influence,
as discussed in the following section.

• Wlqb : Alqb → (0, 1] denotes the weights on the arcs.

Even if a query has been issued multiple times by a user or
by multiple users, it is denoted as a single node in the LQB
graph. This also applies to location and Web domain nodes.

Fig. 2. The LQB Graph of the illustration example in Fig. 1a.

The physical contexts of browsing Web domains Pb and
the physical context of queries Pq are defined as follows:
Definition 2. Pb is defined as the average of Pl, l ∈ Lb,

where Lb denotes the set of locations where b is browsed:

Pb =

∑
l∈Lb

Pl

|Lb|
. (2)

Definition 3. Pq is defined as the average of Pl, a ∈ Lq ,
where Lq denotes the set of locations where q is issued:

Pq =

∑
l∈Lq

Pl

|Lq|
. (3)

4 TRIPARTITE LQB GRAPH

We propose the LQB graph, a tripartite graphical represen-
tation of how people behave in the conjunction of physical
and cyber spaces by focusing on the contextual influence.
Fig. 2 shows the corresponding LQB graph for the illus-
tration example in Fig. 1a. This graph includes three kinds
of nodes: location, query, and browsed Web domain. There
are only arcs between heterogeneous nodes, representing
contextual influences.

The LQB graph is constructed based on a set of search
sessions S , a set of browsing sessions B, and a set of
movement sessions M, extracted from users’ behaviour
logs as defined in Sec. 3. Note, Vlqb includes the dis-
tinct sets of queries, Web domains and locations, while
the corresponding sessions include all instances of issu-
ing/browsing/visiting these distinct queries, Web domains
and locations. We describe the tripartite LQB graph through
the three partial bipartite graphs: (1) query-location Gql; (2)
browse-location Gbl; and (3) query-browse Gqb, capturing
the contextual influence among corresponding nodes.

4.1 Query-Location Bipartite Subgraph Gql

Query activities occur in a certain physical context, and
we leverage this information into our graph formulation.
This is achieved by aligning the search sessions S and the
movement sessions M in time order for each user. Then,
we define a bipartite subgraph Gql = {Vql, Aql,Wql}, where
Vql = Vq∪Vl,Aql ⊂ Vq×Vl denotes the set of arcs connecting
queries and locations.

Given a query q ∈ Vq and a location l ∈ Vl, the arc from
l to q is introduced if there is at least one user u who issued
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Fig. 3. The construction of Gql for the example. (a) the weighted arcs from location node l2 to query nodes “iPhone” and “MacBook”, where
the weights are calculated by Eq. 5;(b) the weighted arcs from query nodes “iPhone” and “MacBook” to location node l2, where the weights are
calculated by Eq. 7; (c) the subgraph Gql of the example.

q when s/he is at l. Specifically, the arc from l to q is subject
to the following conditions:

• there exists at least one search session Si ∈ S and
one movement session Mj ∈ M from the same user,
which means ui = uj , where ui ∈ Si and uj ∈Mj ;

• Si includes the issuing of q: q = qi ∈ Si;
• Mj includes the visiting of l: l = lj ∈Mj ;
• the user u issued q while s/he is at l in Mj , which

means: tmj ≤ tsi < (tmj + dmj ), where tmj is the time
stamp while u starts visiting lj in Mj , dmj is the
duration spent at lj , and tsi is the time stamp while u
issued qi in Si.

Thus, the arcs from Vl to Vq are defined as:

A(l, q) ={(l, q)|∃Si ∈ S,∃Mj ∈M, (4)

so that ui = uj
∧
q = qi ∈ Si

∧
l = lj ∈Mj∧

tmj ≤ tsi < (tmj + dmj )}

The weightw(l, q) on arcA(l, q) is defined as the normalised
ratio of the time spent on query q over the time spent at l
where q was issued:

w(l, q) =
η(l, q)∑

q′∈Vq
η(l, q′)

,where η(l, q) =

∑
smi∈SM

tiq
til

|SM |
,

(5)
SM denotes the pairs of search sessions and movement
sessions as specified in Eq. 4, tiq denotes the time spent on
q in the corresponding search session in smi when the user
is at l, til denotes the time that the user spent at l in the
corresponding movement session in smi. Specifically, tiq is
calculated as the time gap in seconds between q and next
query, or the end of the search session if q is the last query
in the search session, or the end of the visit of the current
location l. For example, the time spent on query “iPhone”
and the time spent in location l2 by user u′ are shown as
tq and tl in Fig. 1b. Fig. 3a shows the weighted arcs from
location node l2 to query node, “iPhone” and “MacBook”,
based on the example log shown in Table 1.

On the other side, the arcs from Vq to Vl are defined
based on l’s physical context. Specifically, when q is issued
by a user u, a link is defined from q to l if

• there exists at least one search session Si ∈ S and
one movement session Mj ∈ M from the same user,
which means ui = uj , where ui ∈ Si and uj ∈Mj ;

• Si includes the issuing of q: q = qi ∈ Si;
• Mj includes the visiting of l: l = lj ∈Mj ;

location

Gql

query

where

l’arg max COS(      ,      )P qP

q
1

q
2

q
4

q
5

q
3

l
1

l
2

l
4

l
3

Fig. 4. Illustration of Gql

• lj ∈ Mj is visited by u after s/he issued qi ∈ Si,
which means tsi ≤ (tmj + dmj ), where tsi denotes
the time stamp when qi is issued in Si, tmj the time
stamp when u starts visiting lj in Mj , and dmj is the
duration spent at lj ;

• lj has the most similar physical context to q’s, which
means lj = argmaxl′∈Mj COS(Pl′ ,Pq), where
COS(·, ·) denotes the cosine similarity.

The arcs from Vq to Vl are defined as:

A(q, l) ={(q, l)|∃Si ∈ S,∃Mj ∈M, (6)

so that ui = uj
∧
q = qi ∈ Si

∧
l = lj ∈Mj∧

tsi < (tmj + dmj )
∧
lj = arg max

l′∈Mj

COS(Pl′ ,Pq)}.

Similarly, the weight w(q, l) on arc A(q, l) is defined as the
frequency of q connected to l normalised by the overall
occurrence of q:

w(q, l) =
fql
fq
, (7)

where fql denotes the frequency of q connected to l, and fq
denotes the number of occurrence of q. Fig. 3b shows the
weighted arcs from query node, “iPhone” and “MacBook”,
to location node l2, where the value 2 in 2/2 = 1.0 on
the arcs denotes the two instances of issuing “iPhone” and
“MacBook” from u and u′ on each arc accordingly. Here, it is
assumed that l2’s context is most similar to that of the query,
“iPhone” and “MacBook”. Fig. 3c shows the final subgraph
Gql of the example log. Fig. 4 shows an illustration of Gql.

4.2 Browse-Location Bipartite Subgraph Gbl

Like queries, browsing activities also occur in a certain phys-
ical context, and this is achieved by aligning the browsing
sessions B and the movement sessions M in time order
for each user. Consequently, we define a bipartite subgraph
Gbl = {Vbl, Abl,Wbl}, where Vbl = Vb ∪ Vl, Abl ⊂ Vb × Vl
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denotes the set of arcs connecting browsing Web domains
and locations.

Given a browse Web domain b ∈ Vb and a location l ∈ Vl,
the arc from l to b is introduced if there is at least one user
who browsed b when s/he is at l. As this is similar to the arc
from a location l to a query q as detailed in Section 4.1, we
do not list these conditions here to avoid repetition. Thus,
the arcs from Vl to Vb is formally defined as:

A(l, b) ={(l, b)|∃Bi ∈ B,Mj ∈M, (8)

so that ui = uj
∧
b = bi ∈ Bi

∧
l = lj ∈Mj∧

tmj ≤ tbi < (tmj + dmj )}

The corresponding weight w(l, b) on arc A(l, b) is defined
as the normalised ratio of the time spent on browsing Web
domain b over the time spent at l where b was accessed:

w(l, b) =
η(l, b)∑

b′∈Vb
η(l, b′)

,where η(l, b) =

∑
bmi∈BM

tib
til

|BM |
,

(9)
BM denotes the pairs of the browsing sessions and move-
ment sessions as specified in Eq. 8, tib denotes the time the
user spent at b in the corresponding browsing session in
bmi, and tl denotes the time that the user spent at l in the
corresponding movement session in bmi. Similarly, tib can
be calculated as the total time spent at b when s/he is at l
in browsing session sb, or the end of the browsing session if
b is the last Web domain browsed, or the end of the visit of
the current location.

Similarly, the arcs from Vb to Vl are defined based on
their contexts. When b is browsed by a user, an arc is defined
from b to l if 1) l has the most similar physical context to b’s;
2) l is visited by the user after s/he browsed b at least once.
Thus, we obtain the arcs from Vb to Vl as:

A(b, l) ={(b, l)|∃Bi ∈ B,∃Mj ∈M, (10)

so that ui = uj
∧
b = bi ∈ Bi

∧
l = lj ∈Mj∧

tbi < (tmj + dmj )
∧
lj = arg max

l′∈Mj

COS(Pl′ ,Pb)}

The weight w(b, l) on arcs A(b, l) is defined as the nor-
malised frequency of b connected to l:

w(b, l) =
fbl
fb
, (11)

where fbl denotes the frequency of b connected to l, and fb
denotes the number of occurrence of b. Fig. 5a illustrates the
Gbl of the example log.

4.3 Query-Browse Bipartite Subgraph Gqb

We leverage the influence between queries and Web do-
mains in our contextual graph model, and similarly this
is achieved by aligning the browsing sessions B and the
search sessions S in time order for each user. In the cy-
ber context, issuing queries involves two kind of nodes,
the query node and the Web domain node, which gives
the bipartite subgraph Gqb across heterogeneous nodes:
Gqb = {Vqb, Aqb,Wqb}, where Vqb = Vq ∪ Vb, Aqb ⊂ Vq × Vb
denotes the set of arcs connecting queries and Web domains.

We refer to the Web domain accessed by users just before
a query is issued as transited Web access. Thus, similar to

(a) (b)

Fig. 5. (a) The construction of Gbl and the weights are obtained with
Eq. 9 and 11. (b) The construction of Gqb and the weights are obtained
with Eq. 14.

the conditions for A(l, q) in Section 4.1, the arcs from Vb to
Vq is defined based on where q was transited:

A(b, q) ={(b, q)|∃Si ∈ S,∃Bj ∈ B, (12)

so that ui = uj
∧
q = qi ∈ Si

∧
b = bj ∈ Bj∧

tbj ≤ tsi < tbj+1},

where tbj is the time stamp while u browses bj in Bj , and tsi
is the time stamp while u issued qi in Si. Namely, the arc
from b to q is introduced if q was transited from b in any
user browsing session. The arcs from Vq to Vb are defined
based on their physical contexts. Specifically, the directed
connectivity from q to b is introduced if 1) b has the most
similar physical context to q’s; 2) b is browsed by the user
after s/he issued q:

A(q, b) ={(q, b)|∃Si ∈ S,∃Bj ∈ B, (13)

so that ui = uj
∧
q = qi ∈ Si

∧
b = bj ∈ Bj∧

tsi ≤ tbj
∧
bj = arg max

b′∈Bj

COS(Pb′ ,Pq)}

Fig. 5b illustrates the Gqb of the example log.
The corresponding weights are defined as:

w(b, q) =
fbq
fb
, and w(q, b) =

fqb
fq
, (14)

where fbq denotes the number of q transited from b, fb
denotes the number of all queries transited from b, fqb
denotes the number of q connected to b, and fq denotes the
number of occurrence of q. Namely, w(b, q) is the fraction
of q transited from b over all queries transited from b,
while w(q, b) is the fraction of b connected from q over the
occurrence of q.

4.4 Model
Given the LQB graph is a representation of users’ moving,
browsing and querying behaviours across the physical and
cyber spaces, it is appropriate to consider the recommen-
dation problem on this graph as a random walk, as shown
in [37]. Specifically, for efficiency and simplicity purposes,
we first project the heterogeneous bipartite subgraphs to
homogeneous graphs, then deploy a random walk model.
Moreover, the LQB graph can be applied to produce three
kinds of applications: location recommendation, query rec-
ommendation and Web content recommendation, which
corresponds to the three kinds of nodes. Here, we describe
the modelling of the LQB graph in the application of query
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recommendation, and the application on Web content and
location recommendation can be obtained in a straightfor-
ward manner.

There are three heterogeneous bipartite sugbraphs Gql,
Gqb andGbl, and each of them can be projected in two ways.
For example, Gql can be projected as a location graph Ĝql

l

and a query graph Ĝql
q . Here, we show how to project Gql

to a query graph Ĝql
q . Specifically, when projecting Gql to a

query graph Ĝql
q , there are some approaches that transform

a heterogeneous graph to homogeneous graph [55]. Here,
we consider three approaches:

• Binary: this is the simplest approach, which defines
the weight w(q, q′)qlq as either 1 or 0, depending
whether there is at least one path connecting q to
q′:

w(q, q′)qlq =

{
1 if ∃l ∈ Vl, w(q, l) > 0, w(l, q′) > 0

0 otherwise
(15)

• Distributional: by considering the distributional in-
formation associated with the relationship between
queries and locations, the weight w(q, q′)qlq can be
defined as the sum of the weights on all possible
paths from q to q′ via any l ∈ Vl:

w(q, q′)qlq =
∑
l∈Vl

(w(q, l)w(l, q′)) . (16)

• Macro-Aggregation: this projection approach is pro-
posed in [55] to remove the potential bias from very
active users. Specifically, it first treats each user’s
logs independently and creates the LQB graph, then
aggregates the weights across all users:

w(q, q′)qlq =
∑
u

(
wu(q, q

′)qlq

)
, (17)

where wu(q, q
′)qlq is the distributional weight from

the LQB graph for user u.

Fig. 6 illustrates the projected query graphs from Gql of the
example log with different projection approaches.

Fig. 6. Illustration of the projection approaches of Ĝql
q from Gql.

Then, a random walk with restart to a single node is
deployed the projected homogeneous subgraphs. Although
similar ideas were investigated in [37], they focused on
modelling the consequential order of queries. But, we focus
on modelling multiple contextual influence among location,
query and browsing contexts. Specifically, given a graph G,
a random surfer starts from a single node v in the graph,
then continues to surf following one of the leaving edges

from current node with a probability α, and comes back to
the original node v with a probability (1−α). Formally, this
can be defined as a Markov chain: X = αW + (1 − α)IeTv ,
where X is the transition matrix, α is the damping factor,
W is the weight matrix of the subgraph, I is the unit
matrix, and ev denotes a vector that only have the v-th
component equal to 1 and others equal to 0. After the sta-
tionary distribution is achieved, each node v′ (other than the
original node) in the graph is allocated with a random-walk
score r(v′)G, representing the relevance to v. Moreover, the
random walk could start with some historical information.
For example, if the previous node v′ is known for current
node v, the corresponding random walk model becomes:

X = αW + (1− α)IeTv′,v (18)

where ev′,v denotes a vector that only have the v′-th and
v-th component equal to 1 and others equal to 0. Note, for
other ways of allocating values to ev′,v , please refer to [37].

In the proposed LQB graph, for the query node, there
are two projections, Ĝql

q and Ĝqb
q , from Gql and Gqb, re-

spectively. After running random walks on each of them,
for each query node q′ ∈ Vq , we obtain two random-walk
scores, r(q′)Ĝql

q
and r(q′)Ĝqb

q
. To merge these two ranking

results, we deploy a simple rank-based merging function:

r(q′)Glqb
= β1

1

l(q′)Ĝql
q
+ 1

+ β2
1

l(q′)Ĝqb
q
+ 1

, (19)

where l(q′)Ĝql
q

and l(q′)Ĝqb
q

are the ranks obtained from
r(q′)Ĝql

q
and r(q′)Ĝqb

q
, respectively; β1 and β2 are scal-

ing factors that represent the importance of correspond-
ing random-walk scores, which can be obtained by cross-
validation. Note, there are other merging functions, e.g. the
value-based merging approach in [16]. However, we argue
the above rank-based function is more appropriate, because
the random-walk scores from r(q′)Ĝql

q
and r(q′)Ĝqb

q
are not

comparable. The final ranking is generated by sorting all
queries according to r(q′)Glqb

in a decreasing order. Con-
sequently, following [18], [37], we suggest the top ranked
queries to the user, and call this as query recommendations.

Location and Web content recommendations are gener-
ated in a similar way by projecting the LQB graph to homo-
geneous location graphs and domain graphs, respectively.

5 VALIDATING THE LQB GRAPH IN INDOOR RE-
TAIL ENVIRONMENT

In this section, we report on experiments validating the
LQB graph on a real-world indoor retail environment. We
first characterise the contextual influences on people’s be-
haviours in this scenario by corresponding them to the arcs
in the LQG graph and then evaluate the usefulness of the
graph in three applications: location recommendation, Web
content recommendation and query recommendation.

5.1 Data Acquisition
Data were collected from over 120,000 anonymized users
between September 2012 and October 2013 via a free, opt-
in Wi-Fi network operated by an inner city shopping mall
in Sydney, Australia. The mall is around 90,000 square
meters covered by 67 Wi-Fi access points (APs). Three kinds
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of logs were collected, including a 1-million rows of Wi-
Fi AP association log (AL) capturing physical movement
with APs corresponding to locations l and the served shop
categories to the location types C, a 18-million rows of Web
browsing log (BL), and a 100-thousand rows of query log
(QL). There are over 200 stores in the mall, belonging to 34
shop categories defined by the mall operator, e.g. Fashion,
Footwear, Travel, Jewellery, Sport, Toys and Hobbies, and
Cinemas. Note, the Wi-Fi covers common areas of the mall
(so not inside the shops). The logs capture all associations
of registered users with the WiFi network, without distin-
guishing what purpose the visit served.

5.1.1 Wi-Fi AP Association Log
The Wi-Fi AP Log (AL) captures information about user
physical behavior characterized by the following parame-
ters (1) user device’s MAC address uniquely identifying the
associated device (information was hashed to anonymize
it); (2) the users’ IP address; (3) the ID of the Wi-Fi AP (not
MAC address) associated with the user’s mobile device at a
given point in time, used as a proxy for the user’s location;
(4) the time-stamp of users’ association/disassociation with
the access point.

To obtain the type of locations l (APs), floor plans of the
mall were overlaid with AP positions and the service areas
of the APs were approximated by Voronoi regions [56], each
centered on a single AP, that encompass all the points that
are closest to that AP. The regions were manually rectified
to correspond better with the frontages of physical stores in
the mall (see [57] for details). Shop frontages are the main
determinants of context as the Wi-Fi network is meant to
cover common spaces in the mall. More details about the
overlaying of floor maps with APs can be found in [58].
Thus, the physical context of an AP (location l in LQB
graph) is defined both by the shops covered within its
signal coverage (defined in Def. 1). Moreover, as this log
data does not include the purposes of users’ visits, we treat
user movements equally. In addition, as the locations are
WiFi Access Points, which has been determined already in
the logs, we use all those available locations, and can not
distinguish whether the querying or browsing behaviour
happen inside or outside the shop locations

5.1.2 Web Browsing Log
The Browsing Log (BL) includes the users’ Web browsing
behavior, characterized by: (1) the time-stamp of the Web re-
quest; (2) the users’ IP address; (3) the Web page requested,
as defined by the URL. This contains all out-going URL
requests from the device, including app traffic.

We enriched the BL with an attribute identifying the
location of the user at the time of the request, by joining
the BL with AL records through a composite key of time-
stamp and IP address. The first appearance of a users’
device in the AL, as well as any consecutive appearance
after disconnection always precede appearance in the BL.
It is also possible for the user to only connect to the Wi-Fi
network and not access Web pages, thereby only appearing
in the AL.

We further enriched the BL with an attribute cat-
egorising the URL through the Brightcloud service
(http://www.brightcloud.com/). We also remove URLs
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Fig. 7. Location context influence on queries. (a) Jaccard similarity of
query sets vs the number of shops sharing the same category. (b)
ECDFs of the Jaccard similarity of query sets.

with auxiliary or advertising content from (1) Content De-
livery Networks URLs, incl. ads, media, files, images, and
video providers; and (2) Web Advertisements URLs, incl. ads,
media, content, and banners. We also removed Dead Sites,
which did not respond to http requests. We finally obtained
around 1.6 million URL requests. Following [13], [28], [37],
[59], we set a timeout threshold to a browsing sessions, thus
implementing a browsing session as a series of URL requests
by a single user delimited by 30 minutes of inactivity on the Web.

5.1.3 Query Log
The Query Log (QL) was extracted from the general BL (QL
⊂ BL), by following the steps in [13] to identify certain URL
requests from search engines. The final QL includes 104,063
queries from 54 search engines, belonging to three groups:
General (91.7% from 9 search engines): incl. Google, Naver,
Yahoo, Daum, Bing, Baidu, AOL, ASK, searchmobileonline;
Special (4.2 % from 15 search engines): e.g. Domain, Google
Maps, Domain, SEEK, Google Images, Wiki; E-Commerce
(4.1% from 30 search engines): incl. Gumtree (an Australian
online classifieds Ads and community Website), Taobao,
Ebay, JB Hi-Fi, Asos, Amazon, Tripadvisor, Booking, etc.
Note, as the LQB graph does not use the SERP and the
clicked URLs, we did not identify and process them.

The QL was processed as follows: (1) search queries were
treated as case insensitive; (2) a query term was defined as
an unbroken string of characters in a query separated by
whitespace, other special characters (e.g. #,% and /) were
treated as normal characters; (3) The QL was segmented
by consistently applying the similar processing of the BL.
Similar to browsing sessions, we define a search session as a
series of query requests by a single user delimited by 30 minutes
of inactivity on the Web.

5.2 Characterising the Contextual Influence
5.2.1 Querying Behaviour and Location Context
To characterise the influence of physical location on people’s
querying behaviour, we examine the overlap of the sets of
queries in different contexts in terms of Jaccard similarities.

We apply Jaccard similarity to measure the overlap be-
tween the queries issued at different APs. Because an AP
normally covers several shops, we group the AP by the
cardinality of the set intersection between shop categories at
pairs of APs: ‘0’ means that the shops covered by two APs
have no common categories; ‘1’ means there is one shop
from each of two paired APs having the same categories;
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‘1+’ means there is more than one shops from both APs
having the same categories. Note, ‘1+’ does not contain
many options as, on average, an AP covers around 3 shops.
Fig. 7a shows the Jaccard similarity, increasing with the
number of same-category shops. Fig. 7b shows the Empirical
Distribution Function (ECDF) of Jaccard similarity when
there are no same-category shops and more than one same-
category shops. The Kolmogorov-Smirnov test result (D
= 0.0942, p-value = 0.0270) shows there is a statistically
significant difference between these two distributions. These
results indicate that people within similar physical locations
issue a larger fraction of similar queries than those in
dissimilar locations.

5.2.2 Browsing Behaviour and Location Context
The physical location context also influences people’s
browsing behavior, which we investigate in terms of Web
domains by deploying the same analysis method for query-
ing behaviour detailed above. Similar trends have been
observed: APs covering shops of the same-category have
significantly higher Jaccard similarity than APs without
same-category shops, as tested by the Kolmogorov-Smirnov
test (D = 0.2075, p-value < 0.0001). The reason might be
that queries determine the users’ browsing behaviours. This
indicates that users in similar location contexts are more
likely to browse the same Web domains than users in dis-
tinct location contexts. Note, this fine-granularity analysis
at the level of Web domains are different from the coarse
analysis in [57] at the level of Web content categories (e.g.
emails, news), which is too coarse to support contextual
recommendations.

5.2.3 Querying Behaviour and Cyber Context
We study the influence of people’s current cyber context on
their querying behaviour captured through Web domains,
by investigating the Jaccard similarity between the query
sets transited from different Web domains, including two
different kinds of Web domains, e-commence (gumtree and
ebay) and social networks (facebook, twitter, and tumblr). We ob-
serve higher similarity for domains of the same kind, while
lower similarity is observed across domain. For example,
gumtree has around 50% of queries overlapped with ebay,
while it only has around 20% of queries overlapped with
facebook. This indicates that people transitioned from facebook
are issuing a small fraction of queries that are issued by
people from gumtree. What people query is thus dependent
on the cyber context of the browsing Web domains.

There are significant differences in the categories of Web
content clicked by people transitioned from different Web
domains. Table 3 shows the top popular Web categories that
are queried and clicked by people transitioned from gumtree,
ebay, facebook, twitter and tumblr. Here, we used only queries
and clicks issued to the google search engine, because it is
both the most popular and most general purpose search
engine in the QL (e.g. a search within a special e-commerce
website has a high chance of leading to another page within
that site, which means the type of the click-through is biased
to be Shopping). One difference is the order of the types of
queried Web content. Specifically, for gumtree and ebay, the
most popular type of query-click content is Shopping. This
is expected, as both of them are e-commerce Web sites, and

people might compare prices between different e-commerce
sites or check customer reviews on products. For facebook
and twitter the most popular kind of query-click content is
Business & Economy. Another important difference is that
transitions from Social Network domains, including facebook,
twitter and tumblr, shows strong interests in News & Media
and Entertainment & Arts, which is not observed in tran-
sitions from gumtree and ebay. This indicates an influence
of people’s cyber context (Web domains) on their querying
behaviour.

Overall, we observe mutual and bi-directional influences
between people’s physical location context, cyber browsing
context, and their querying context. Thus, while people
who are in the similar cyber and location contexts tend to
issue the similar queries, currently issued queries can also
reflect their cyber and location contexts. These influences are
captured by the LQB graph.

5.3 Experimental Results

We now test the ability of the LQB graph to provide users
with recommendations about future interests in locations,
queries, and Web content based solely on user’s current
location l, or current query q, or current browsing Web
domain b.

We apply 5-fold cross validation to evaluate the per-
formance of the proposed LQB graph. Specifically, we
chronologically divide the logs into 5 equal sized sets
to get reliable experimental results, which means no
search/browsing/movement sessions are split into training
and test set at the same time. Note there are three kinds of
applications: location recommendation, Web content recom-
mendation and query recommendation. For each applica-
tion, we perform the procedure illustrated on the example of
query recommendations on each of the 5 experiment sets: 1)
For each search session in the current set, randomly select a
query q as current query and leave the remaining following
queries as ground-truth. 2) Build the LQB graph on the
remaining 4 experiment sets and train the scaling factors
β1 and β2 with cross-validation; 3) Calculate the accuracy of
the query recommendations generated using the LQB graph
on the ground-truth queries. The reported results are the
average accuracy of all 5 experiment sets, with the damping
factor α set to 0.85. Following [18], to remove sampling bias
in the experiments (since some users in the logs were much
more active than others), we randomly selected at most 10
days of logs from each user, resulting in 120, 548 users,
67 Wi-Fi APs, 56, 281 Web domains, and 54, 647 distinct
queries.

5.3.1 Measurement Metrics and Baselines
We apply three standard metrics to evaluate the ranking
accuracy of contextual recommendations [18], [60]: (1) Pre-
cision in the top k (p@k) as the average fraction of the top
k true items found in the recommendation list; (2) Recall in
the top k (r@k) as the average fraction of the true items that
are successfully retrieved; and (3) Mean Reciprocal Rank
(MRR) is one over the rank of the top ranked relevant item.

To examine the effectiveness of the LQB graph, we
compare the performance of the following methods: (1)
random model: the recommendation list is generated by
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TABLE 3
Top popular Web content queried by people from different Web domains

gumtree ebay facebook twitter tumblr
Shopping Shopping Business & Economy Business & Economy Social Network
Business & Economy Auctions News & Media Shopping Entertainment & Arts
Travel Business & Economy Shopping Reference & Research Personal sites & Blogs
Society Travel Travel Travel News & Media
Reference & Research Society Reference & Research Entertainment & Arts Business & Economy

TABLE 4
Results of location, Web content and query recommendations

Recommendations Methods current location l knowing previous location l′ → l
p@5 p@10 r@5 r@10 MRR p@5 p@10 r@5 r@10 MRR

Location random 0.0371 0.0373 0.0744 0.1495 0.0869 0.0371 0.0373 0.0744 0.1495 0.0869
Recommendations topology 0.0389 0.0408 0.0787 0.1651 0.1010 0.0389 0.0408 0.0787 0.1651 0.1010

ap-flow 0.0615 0.0491 0.1263 0.2015 0.1891 0.0907 0.0624 0.1863 0.2563 0.2538
valueMerge 0.0588 0.0549 0.1212 0.2264 0.1863 0.0867 0.0676 0.1789 0.2788 0.2467
Gbinary

lqb 0.0660 0.0527 0.1346 0.2151 0.1958 0.0875 0.0696 0.1784 0.2838 0.2601
Gmacro

lqb 0.0401 0.0377 0.0802 0.1877 0.1268 0.0542 0.0438 0.1302 0.1873 0.1533
Ĝql

l 0.0625 0.0562 0.1283 0.2308 0.1953 0.0884 0.0699 0.1816 0.2873 0.2612
Ĝbl

l 0.0663 0.0571 0.1362 0.2345 0.2062 0.0998 0.0696 0.2011 0.2857 0.2718
Gdistro

lqb 0.0704 0.0577 0.1446 0.2329 0.2063 0.0999 0.0717 0.2050 0.2946 0.2719
Web Content random 0.3884 0.3351 0.2466 0.3596 0.6548 0.3884 0.3351 0.2466 0.3596 0.6548
Recommendations domain-flow 0.5906 0.5681 0.3671 0.5551 0.7965 0.5943 0.5324 0.3619 0.5398 0.8243

valueMerge 0.5473 0.4291 0.4544 0.5042 0.7065 0.5134 0.4181 0.4244 0.5340 0.6903
Gbinary

lqb 0.5243 0.4023 0.4597 0.5557 0.7319 0.4292 0.3589 0.4246 0.5407 0.7971
Gmacro

lqb 0.4203 0.3892 0.2783 0.3889 0.7001 0.4079 0.3397 0.2599 0.3678 0.6077
Ĝbl

b 0.5575 0.4758 0.3033 0.4911 0.7445 0.5410 0.5142 0.2972 0.4846 0.8001
Ĝqb

b 0.6712 0.6001 0.4766 0.5616 0.8306 0.6278 0.5561 0.4526 0.5704 0.8294
Gdistro

lqb 0.6939 0.6594 0.5054 0.6061 0.8406 0.6487 0.5593 0.4693 0.5796 0.8377
Query random 0.0003 0.0002 0.0003 0.0004 0.0008 0.0003 0.0002 0.0003 0.0004 0.0008
Recommendations query-flow 0.0337 0.0190 0.0425 0.0477 0.1328 0.0629 0.0323 0.0799 0.0821 0.1901

valueMerge 0.0216 0.0189 0.0152 0.0266 0.1069 0.0405 0.0284 0.0285 0.0398 0.1357
Gbinary

lqb 0.0340 0.0166 0.0371 0.0502 0.1303 0.0396 0.0334 0.0545 0.0693 0.1621
Gmacro

lqb 0.0150 0.0127 0.0090 0.0172 0.0787 0.0178 0.0133 0.0141 0.0237 0.1053
Ĝql

q 0.0269 0.0146 0.0339 0.0369 0.1224 0.0566 0.0292 0.0721 0.0743 0.1919
Ĝqb

q 0.0364 0.0200 0.0459 0.0504 0.1388 0.0625 0.0336 0.0795 0.0855 0.1818
Gdistro

lqb 0.0394 0.0211 0.0496 0.0530 0.1423 0.0672 0.0347 0.0855 0.0881 0.1998

random selection; (2) query-flow like model for query
recommendation as defined in [37], and for location rec-
ommendation adapted by using the consecutive visits of
Wi-Fi APs, giving an ap-flow model. Similarly, for Web
content recommendation, we build a domain-flow model;
(3) topology is a baseline for location recommendation. It
generates the recommendation list based on the topology
of the Wi-Fi network by using the rules of suggesting APs
based on their topology distances to the current location
l; (4) valueMerge: rather than using Eq. 19, following [16],
valueMerge uses a value-based merging function: r(q′)Glqb

=
θ · r(q′)Ĝql

q
+ (1 − θ) · r(q′)Ĝqb

q
, where θ is a scaling factor,

and it is obtained by cross-validation; (5)Gbinary
lqb : is the LQB

graph with binary projection approach (Eq. 15); (6) Gmacro
lqb :

is the LQB graph with macro-aggregation projection approach
(Eq. 17); (7) Ĝql

l , Ĝbl
l , Ĝ

bl
b , Ĝ

qb
b , Ĝ

ql
q , and Ĝqb

q : are methods,
which make the recommendations based on the projected
location/browsing/query graph of corresponding bipartite
graph with distributional projection approach (Eq. 16). They
are deployed to investigate the influence of physical and cy-
ber contexts; (7) Gdistro

lqb : is the LQB graph with distributional
projection approach (Eq. 16).

5.3.2 Location Recommendation

Here, we recommend in terms Wi-Fi APs, suggesting where
a user is likely to visit, based on their current location (AP).
Specifically, as we discussed in Section 4.4, we project Gql

and Gbl into Ĝql
l and Ĝbl

l , respectively. Then, the random
walk model is deployed for location recommendation. Note,
because of the continuous movement, we treat location
recommendations equivalent to location predictions here,
suggesting based on where we predict a user will go next.

The results of location recommendations based on differ-
ent methods are shown at the top of Table 4. It is observed
that the LQB graph with distributional projection Gdistro

lqb

achieves the best performance in all evaluation metrics; Ĝql
l

and Ĝbl
l also outperform the standard ap-flow model. For

example, given current location l, Gdistro
lqb outperforms ap-

flow by 14.5% in p@5, 15.6% in r@10, 9.1% in MRR. For
the three projection approaches, Gbinary

lqb performs slightly
worse than Gdistro

lqb , indicating that the linking relationship
is important in the LQB graph; Gdistro

lqb outperforms Gmacro
lqb

with a large gap, which is consistent to findings in [55]. The
reason would be that users’ behaviour data is very sparse
across the physical and cyber spaces, andGmacro

lqb treats each
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TABLE 5
Top 10 location recommendation for l = “ap28 (Jewellery)” from ap-flow, Ĝql

l , Ĝbl
l and Gdistro

lqb . The information in brackets are the categories of
the shops covered by the corresponding APs.

ap-flow Ĝql
l Ĝbl

l Gdistro
lqb

ap16 (Fashion) ap16 (Fashion) ap16 (Fashion) ap16 (Fashion)
ap46 (Cafe, Fashion, Jewellery) ap46 (Cafe, Fashion, Jewellery) ap07 (Fashion) ap46 (Cafe, Fashion, Jewellery)
ap53 (Fashion, Restaurant) ap07 (Fashion) ap35 (Fashion, Footwear) ap07 (Fashion)
ap49 (Cafe, Fashion) ap21 (Fashion, Jewellery) ap31 (Footwear, Newsagents) ap35 (Fashion, Footwear)
ap07 (Fashion) ap53 (Fashion, Restaurant) ap40 (Fashion, Footwear) ap31 (Footwear, Newsagents)
ap21 (Fashion, Jewellery) ap40 (Fashion, Footwear) ap38 (Footwear, Watches, Jewellery) ap40 (Fashion, Footwear)
ap44 (Takeaway) ap43 (Takeaway) ap60 (Takeaway) ap21 (Fashion, Jewellery)
ap63 (Footwear, Hair & Beauty) ap31 (Footwear, Newsagents) ap23 (Fashion, Jewellery, Bakeries) ap60 (Takeaway)
ap52 (Restaurant , Delicatessen) ap35 (Fashion, Footwear) ap22 (Fashion, Jewellery) ap23 (Fashion, Jewellery, Bakeries)
ap59 (Takeaway) ap23 (Fashion, Jewellery, Bakeries) ap46 (Cafe, Fashion, Jewellery) ap38 (Footwear, Watches, Jewellery)

user equally that introduces more noises. Moreover, the two-
tailed, paired t-test with a 95% confidence level shows that
Gdistro

lqb significantly outperforms all the compared methods,
which demonstrates that the contextual links in the LQB
graph are more reliable than the consecutive AP-based links
in location recommendation.

Table 5 shows the top 10 location recommendations for
AP/location ap28, which covers only Jewellery shops. Specif-
ically, ap-flow starts with focus on relevant jewellery loca-
tions, then lost in other popular categories, e.g. Takeaway,
Restaurant, and Footwear. Ĝql

l and Ĝbl
l perform better than

ap-flow, with 3 and 4 relevant jewellery locations retrieved,
respectively. However, Ĝbl

l ranked those Jewellery locations
lower than those Fashion locations, which is possibly caused
by the popularity of Fashion stores in the mall. Overall,
it is observed that Gdistro

lqb achieves the best results by
ranking those Jewellery APs/locations highly, and obtaining
4 relevant locations.

5.3.3 Web Content Recommendation

Following [18], 1) other than predicting the Web domains,
we present users’ interests as a list of BrightCloud URL
categories, which are assigned to the Web domains in users’
browsing history; 2) some categories of Web domains are
highly common, which would make the prediction of user
interest either too easy or too difficult. We also removed the
following categories of Web domains from our Web content
recommendation analysis: social networks, search engines
and portals. Note, they are removed at the recommendation
stage, not at the construction of the LQB graph.

The results of Web content recommendation are shown
in the middle of Table 4. We observe that Gdistro

lqb achieves
the highest accuracy in all measurement metrics, and it
substantially outperforms all baseline models. For example,
given current Web domain b, in terms of r@5, Gdistro

lqb

outperforms random model by 105%, domain-flow by 38%,
and valueMerge by 11%. Gdistro

lqb also outperforms Gbinary
lqb

and Gmacro
lqb , which is consistent to the results of location

recommendations. We also note that Ĝqb
b outperforms Ĝbl

b ,
and the reason might be that queries determines users
browsing behaviours. This indicates that for Web content
recommendation, the cyber contexts are more important
than the physical contexts. In addition, we also observe
that Ĝbl

b does not perform as high as domain-flow, but the
final integrated results with Ĝqb

b is higher than both Ĝqb
b

and domain-flow. This confirms that the physical contexts
from Ĝbl

b complements the cyber contexts from Ĝqb
b , which is

consistent from the results on location recommendation. The
paired t-test results show Gdistro

lqb significantly outperforms
all the compared methods for Web content recommendation.

5.3.4 Query Recommendation

The results of query recommendation are shown at the bot-
tom of Table 4. Together with a paired-t-test, it is observed
that the LQB graph (Gdistro

lqb ) also achieves statistically sig-
nificantly better performance than all the compared models.
Specifically, when only currently query is available, Gdistro

lqb

outperforms query-flow by 16.91% in terms of p@5, 16.95%
in terms of r@5, and 7.19% in terms of MRR. Among
Gbinary

lqb , Gmacro
lqb and Gdistro

lqb , Gmacro
lqb perform badly on

query recommendations, and the reason is not many people
issue queries in the mall environment [57], which makes the
data extremely sparse here. Moreover, similarly like that in
Web content recommendation, the cyber contexts appears to
be more important than the physical contexts here, as Ĝqb

q

outperforms Ĝql
q . However, the integration of them Gdistro

lqb

achieves better results than either of them.

Take the query recommendations for a real query as an
example. Table 6 shows the top 10 suggested queries for
query “virgin blue” (an Australian budget airline). query-
flow initially suggests “ebookers”, an online flight booking
website, which is relevant. Subsequent recommendations
soon lead to a lost of focus, suggesting frequent flight des-
tinations (e.g. “New Zealand”, “cheap cairns to melbourne
flights”) and other unrelated queries (e.g. “male halloween
costume”). In contrast, Ĝql

q and Ĝqb
q , lead to query recom-

mendations nuanced by the physical and cyber contexts,
respectively. Using Ĝql

q leads to recommendations of queries
related to physical locations and physically close stores;
while Ĝqb

q suggested relevant queries targeting competing
airlines (e.g. jal (Japanese Airline), qantas, tiger, singapore
airlines), as well as a number of irrelevant queries (e.g.
yahoo, la senza triple gel bikini). However, the combination
of the three influences in Gdistro

lqb leads to a set of query
recommendations that are all topic relevant. Specifically,
airline related queries are ranked higher than “peter pan”,
which is searched for the travel website peterpans.com.
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TABLE 6
Top 10 query recommendation for q = “virgin blue” from query-flow, Ĝql

q , Ĝqb
q and Gdistro

lqb .

query-flow Ĝql
q Ĝqb

q Gdistro
lqb

virgin blue virgin blue virgin blue virgin blue
ebookers sydney- australie jal jal
new zealand cashier qantas flights qantas flights
cheap oz flights hilton sydney quantus ebookers
flights australia mantra on kent virgin australia cheap oz flights
worth seeing new zealand city westfield virgin virgin australia
cheap cairns to melbourne flights wedding dresses sydney tiger airways quantus
peter pan fitness first yahoo flights australia
peter pan adventures peter pan singapore airlines tiger airways
male halloween costume princess polly la senza triple gel bikini peter pan

6 DISCUSSION AND CONCLUSIONS

We have proposed a heterogeneous LQB graph as a rep-
resentation of the interactive knowledge about people’s be-
haviour across the physical and cyber spaces. We have high-
lighted the utility of the LQB graph method in an indoor re-
tail scenario, based on the analysis of a large dataset captur-
ing the indoor physical and Web activity of registered WiFi
users. Following an analysis on the contextual influence on
people’s information and physical behaviour, we confirm
the strong inter-dependencies between people’s querying,
browsing and spatial behaviours, as previously suggested
[20], [26], [30]. In contrast to previous literature, we explored
these interdependencies in a constrained and controlled
physical environment (a shopping mall) and across all three
contextual influences. To do this, we populated the locations
subgraph of the LQB graph with Wi-Fi AP associations, the
query subgraph with queries, and the browse graph with
URL domains. We have then shown that the tripartite LQB
graph successfully models the physical and Web content as-
pects of context and outperforms the state-of-the-art models
in location, query and Web content recommendation. The
proposed LQB graph model significantly outperforms even
the baselines achieved using the partial graphs as well as
the more naive models.

We have also quantified the relative impact of query,
browsing and location activity on each other. Simply put,
the capture of multifaceted contextual information improves
recommendations, but not equally. The physical location
recommendation depends more strongly on browsing be-
haviour, while both browsing and query behaviour influ-
ence each other more than the physical location where
querying and browsing occurs. This may mean that imme-
diate information needs in a physical location are satisfied
by browsing or navigating to a known URL, while more
exploratory information behaviours, even if triggered at a
certain location (e.g., is this the best price for this item)
are satisfied at a different, deffered time and location (e.g.,
querying for alternatives and specifications in the food
court). While previous work also hinted at the importance
of social contextual factors [26], [30], this aspect could not
be sufficiently tested with the dataset at hand and remains
subject to future research.

The proposed model so far contains no elements of
personalization, yet it is able to produce significantly better
recommendations from a heterogeneous pool of suggested
items (locations, queries and browsing content), outper-

forming existing baselines. This is important for numerous
scenarios, such as recommendations in retail environments
where a large number only visit once (> 70% in our dataset).
The cold start problem is a significant hurdle for better
recommendations for physical retail environment opera-
tors, struggling to remain competitive against their online
competition. Another advantage is the LQB graph can be
constructed incrementally as logs capture more queries,
Web domain or as the space is remodelled and location
added. This is because the LQB graph is built by sequential
processing of the logs. However, it is necessary to update
the corresponding graph projections for ranking-based rec-
ommendations. In future work, we plan to enrich our model
to improve recommendations for frequent visitors where
personalization and the capture of the social ties may be
possible.
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