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Abstract 

Background:  Adipokines are involved in the pathogenesis of metabolic disorders including obesity and type 2 
diabetes mellitus (T2DM). This study investigates the levels of leptin, resistin, visfatin, secreted frizzled-related protein 5 
(SFRP5), monocyte chemoattractant protein-1 (MCP-1) and retinol-binding protein 4 (RBP4) and their correlations with 
clinical parameters of overweight and T2DM.

Methods:  We recruited overweight 50 patients with T2DM, 88 non-overweight patients with T2DM, 29 overweight 
and 100 non-overweight individuals devoid of T2DM for this study. The levels of studied adipokines were measured 
by enzyme-linked immunosorbent assay and correlated with clinical parameters.

Results:  The levels of MCP-1 and SFRP5 were decreased while visfatin and RBP4 levels were increased in patients with 
T2DM compared to those in the control individuals (P < 0.01). Among patients with T2DM, leptin and resistin levels 
were higher while RBP4 levels were lower in patients with overweight T2DM compared to those in patients with non-
overweight T2DM (P < 0.0001, 0.019 and 0.05, respectively). Leptin and MCP-1 levels were correlated with HOMA-IR, 
QUICKI and HOMA-β. Leptin/MCP-1 ratio was correlated with insulin levels, HOMA-IR and HOMA-β indexes. Resistin/
RBP4, visfatin/MCP-1 and MCP-1/RBP4 ratios were strongly correlated with the levels of fasting glucose, HbA1c and 
HOMA-β. In addition, ROC curve analyses indicated a diagnostic potential of resistin/RBP4 and MCP-1/RBP4 indexes 
for T2DM (AUC = 0.81 and 0.83, respectively) and β-cell function (AUC = 0.76 and 0.74, respectively).

Conclusions:  Adipokines (leptin, resistin, visfatin, SFRP5, MCP-1, and RBP4) are associated with overweight and T2DM 
and may serve as a potential prognostic marker and therapeutic intervention for overweight-related T2DM.
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Background
Type 2 diabetes mellitus (T2DM) is a chronic metabolic 
disorder and is exponentially increasing in developing 
countries including Vietnam due to an increased con-
sumption of energy-rich food, sedentary lifestyle, and 
urbanization [1]. According to the International Diabetes 
Federation (IDF), there were 382 million diabetic cases in 
2013 and the number of diabetic cases is predicted to be 
592 million by the year 2035 [2, 3]. Approximately 80% 
of diabetic cases are in developing countries and there 
are 5.1 million deaths worldwide annually due to this dis-
ease [2, 3]. The prevalence of T2DM is 1.2% in developed 
countries while there is four times higher in developing 
countries [3]. In Vietnam, the prevalence of T2DM is 
increasing rapidly and approximately 3.3 million diabetic 
cases were reported in 2014. The prevalence of diabetes 
in the age group of 30–69 years is estimated to be 5.7% 
across the country and 7% in the urban areas [4, 5]. How-
ever, a recent study conducted with a large sample size in 
the Red River Delta of Vietnam showed that the general 
population aged 40–64 years had a low level of diabetes 
knowledge, especially in the rural areas [6]. This might be 
one of the challenges for public health to control the dis-
ease in Vietnam.

T2DM constitutes up to 90% of all diabetes and it 
is characterized by chronic hyperglycaemia resulting 
from defects in insulin secretion and/or insulin action 
and metabolic disorders of protein and lipids [7, 8]. The 
main pathogenesis of T2DM includes insulin resistance 
and insufficient insulin production of pancreatic β cells, 
which lead to the disability to control glucose level in the 
circulation [9]. Additionally, the increased production of 
pro-inflammatory cytokines due to obesity contributes to 
the increased risk of T2DM development [7, 10]. Insulin 
resistance is significantly related to obesity and develops 
years before the clinical manifestations of T2DM [11]. 
Adipose tissue is considered as an endocrine organ that 
produces and metabolites numerous proteins, hormones, 
cytokines, and sex steroids, namely adipocytokine (or 
adipokines) [12, 13]. Adipocytes are also involved in 
various biological processes such as energy metabolism, 
neuroendocrine function and immune response through 
the activities of their receptors for hormones of the endo-
crine and central nervous system [13]. The increased adi-
pose tissue is associated with insulin resistance, elevated 
blood glucose levels, lipid metabolic disorders, hyperten-
sion and inflammation [14].

Adipose tissue-derived proteins with hormone activi-
ties regulate metabolic functionalities and inflam-
mation [14]. The adipose tissue-derived adipokines 
such as adiponectin, leptin, visfatin, resistin and adip-
sin are associated with obesity and obesity-related 
metabolic disorders including T2DM [15]. Other 

adipose tissue-derived proteins also play important roles 
in metabolism, immune response, and metabolic dis-
orders. Particularly, secreted frizzled-related protein 5 
(SFRP5) is a member of the Sfrp family that is involved in 
the modulation of the Wnt signaling [16]. SFRP5 is highly 
expressed in adipose tissue and has been associated with 
β-cell function, glucose metabolism, obesity and T2DM 
[17–20]. Monocyte chemoattractant protein-1 (MCP-
1), known as chemokine (C–C motif ) ligand 2 (CCL2), 
is a chemoattractant protein for several immune cells 
including monocytes/macrophages, T cells and natural 
killer (NK) cells, and this protein has been implicated in 
adipose tissue inflammation [21]. In addition, retinol-
binding protein 4 (RBP4) is an adipose tissue-derived 
cytokine that transports retinol from the liver to various 
tissues and it is related to insulin resistance, visceral fat 
distribution, and dyslipidemia [22, 23].

Our previous study showed that the levels of adiponec-
tin and pro-inflammatory cytokines including tumor 
necrosis factor (TNF)-α, IL-1β and IL-10 are modulated 
and correlated with clinical parameters of overweight 
and T2DM in Vietnamese patients with T2DM and in 
overweight individuals [24]. The present study aims to 
investigate the levels of leptin, resistin, visfatin, SFRP5, 
MCP-1/CCL2, and RBP4 as well as their correlations 
with insulin resistance and clinical parameters of over-
weight and T2DM in a Vietnamese study group.

Methods
Study population
The study was designed as a case-controlled study com-
bined with clinical observations and experimental analy-
ses. One hundred and thirty-eight (n = 138) Vietnamese 
patients with T2DM and one hundred and twenty-nine 
(n = 129) control individuals were recruited during 2013 
and 2014 for this study (Table 1).

Patients with T2DM were diagnosed based on the 
standard criteria reported by the World Health Organi-
zation (WHO) and by the International Diabetes Federa-
tion (IDF) [25, 26]. The inclusion and exclusion criteria 
for the patient group as well as the selection criteria for 
the control groups were described in our previous study 
[24]. At the time of sampling, most of the recruited 
patients with T2DM were newly diagnosed and had not 
been treated with any anti-diabetic drug. A small num-
ber of patients were immediately treated with the dia-
betes drug Diamicron MR and/or a low dose of insulin 
injection. Clinical examinations and biochemical tests 
for the function of the heart, lung, liver and kidney were 
performed as the routine. History of diabetes-associated 
symptoms, personal and family history of diabetes, fam-
ily history of premature cardiovascular diseases, smok-
ing, alcohol consumption, and lifestyle were obtained 
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from all participants using the standard study question-
naires (Table 1). The anthropometric data such as height, 
weight, waist and hip circumferences were measured 
using standard procedures for all study participants. 
Body mass index (BMI) and waist-hip ratio (WHR) were 
calculated based on their anthropometric measurements. 
Based on their BMI and T2DM status, the patient group 
was divided into two subgroups: overweight (BMI ≥ 25) 
with T2DM (n = 50) and non-overweight (BMI < 25) with 
T2DM (n = 88). Similarly, the control group was also 
divided into two subgroups including overweight control 

individuals (BMI ≥ 25; n = 29) and non-overweight con-
trol individuals (BMI ranging from 16 to 25) without 
T2DM (n = 100) (Table 1).

Measurement of biochemical parameters
The levels of lipid components including cholesterol 
(CT), triglycerides (TG), high-density lipoprotein-cho-
lesterol (HDL-C), low-density lipoprotein-cholesterol 
(LDL-C), fasting glucose, insulin and blood fasting gly-
cosylated hemoglobin (HbA1c) were routinely meas-
ured as described previously [24]. Based on the levels of 

Table 1  Characteristics of patients with type 2 diabetes mellitus and controls

T2DM type 2 diabetes mellitus, BMI body mass index, WHR waist-to-hip ratio, GOT Glutamic-Oxaloacetic Transaminase (AST), GPT Glutamic-Pyruvic Transaminase 
(ALT), HDL-C high-density lipoprotein-cholesterol, LDL-C low-density lipoprotein-cholesterol, HOMA-IR Homeostasis Model Assessment-Insulin Resistance, QUICKI 
Quantitative Insulin Sensitivity Check Index, HOMA-β homeostatic model assessment-β-cell function, NA not applicable

Values given are medians and range

(*) Comparison between patients with type 2 diabetes mellitus and control individuals. P values were calculated by Chi square, Fisher’s exact tests or multi-factor 
ANOVA, where appropriate

Characteristics Type 2 diabetes mellitus Without type 2 diabetes mellitus P value (*)

Overweight T2DM 
(n = 50)

Non-
overweight 
T2DM (n = 88)

P value Overweight 
individuals 
(n = 29)

Non-overweight 
individuals 
(n = 100)

P value

Demographics

 Age (years) 58 [40–84] 59 [40–69] NS 59 [35–80] 57 [37–70] NS NS

 Gender (M/F) 29/21 50/38 NS 13/16 30/70 NS 0.0001

 Smoking (yes/no) 5/45 14/74 NS 2/27 4/96 NS 0.011

 Alcohol usage (yes/no) 15/35 26/62 NS 6/23 6/94 0.027 < 0.0001

 Physical exercise (yes/no) 35/15 73/15 NS 16/13 82/18 0.006 NS

 Family history of T2DM 
(yes/no)

3/47 11/77 NS 2/27 1/99 NS 0.009

Anthropometrics

 WHR 0.94 [0.86–1.07] 0.92 [0.83–1.18] < 0.0001 0.93 [0.82–1.1] 0.88 [0.72–1.3] 0.001 < 0.0001

 BMI 26.7 [25–36.3] 22.4 [17.7–24.9] < 0.0001 26.2 [25.1–29.6] 22.3 [16–24.9] < 0.0001 0.008

Biochemical and clinical characteristics

 GOT (AST) (U/l) 22 [10–60] 19 [10–65] 0.025 27 [19–46] 24 [4–105] 0.043 0.006

 GPT (ALT) (U/l) 28 [11–109] 19.5 [8–86] 0.001 29 [19–68] 21 [7–177] 0.001 NS

 Total bilirubin (µmol/l) 9.4 [4.3–21.2] 7.5 [3.4–21.6] 0.047 9.4 [4.4–18.7] 9.8 [2.7–30] NS 0.001

 Blood urea (mmol/l) 5.2 [3.2–9] 5.4 [2.1–11.8] NS 5.5 [3.6–8.7] 5.65 [2.7–9.2] NS NS

 Blood creatinine (µmol/l) 69.5 [38–123] 68 [38–121] NS 67 [48–128] 64 [45–96] NS 0.015

 Fasting glucose (mmol/l) 8.6 [7–28.9] 7.65 [7–21.6] 0.002 5.3 [4.3–5.6] 5.3 [4–5.6] NA < 0.0001

 Urine glucose (pos/neg) 10/40 12/76 NS 0/29 6/94 NA 0.0026

 Triglycerides (mmol/l) 2.5 [0.4–9.1] 1.8 [0.34–19.6] 0.014 1.97 [0.5–6.0] 1.43 [0.3–16.8] NS 0.023

 Total cholesterol (mmol/l) 5.0 [2.9–9.2] 5.0 [3.8–8.5] NS 4.6 [3.3–7.3] 5.2 [3.0–7.8] 0.012 NS

 HDL-C (mmol/l) 1.1 [0.6–1.85] 1.2 [0.7–4.6] 0.042 1.26 [0.9–2.1] 1.35 [0.7–2.7] 0.019 0.002

 LDL-C (mmol/l) 2.7 [0.8–4.1] 3.0 [1.0–4.5] NS 2.7 [0.8–4.8] 3.0 [1.1–5.9] 0.037 NS

 Glycosylated hemoglobin 
(HbA1c) (%)

7 [5.4–14.4] 6.8 [5.2–10.9] NS 5.9 [4–6.4] 5.6 [4.2–8.5] 0.004 < 0.0001

 Insulin (mIU/l) 8.96 [2.7–54.5] 6.5 [1.3–23.2] 0.002 7.8 [3.5–10.2] 6.4 [0.08–17.5] NS 0.004

 HOMA-IR 3.6 [1.3–48.9] 2.3 [0.4–9.7] < 0.0001 1.8 [0.8–2.5] 1.5 [0.01–4.2] NS < 0.0001

 QUICKI 0.8 [0.5–0.9] 0.86 [0.7–1.07] < 0.0001 0.9 [0.8–1.4] 0.9 [0.7–1.6] NS <  0.0001

 HOMA-β 33.6 [3.5–279.2] 27.4 [4.6–111.5] NS 89.9 [38.5–222.1] 74.1 [3.0–370.8] NS < 0.0001
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insulin and glucose, the homeostasis model assessment 
insulin resistance (HOMA-IR) index were calculated 
using formulas HOMA-IR = glucose × insulin/22.5; the 
quantitative insulin sensitivity check index (QUICKI) 
[QUICKI = 1/(log(fasting insulin) + log(fasting glucose))] 
and the homeostatic model assessment-beta (HOMA-β) 
[HOMA-IR = (20 × insulin)/(glucose-3.5)]. These indexes 
were calculated to evaluate the levels of insulin resist-
ance/sensitivity and β-cell function [27, 28].

Measurement of leptin, resistin, visfatin, SFRP5, MCP‑1, 
and RBP4 levels
The levels of leptin, resistin, visfatin, SFRP5, MCP-1 and 
RBP4 were measured in the respective serum samples of 
the study participants by using commercially available 
ELISA kits following the manufacturer’s instruction. The 
ELISA kits for leptin (Cat. No.: DEE007), resistin (Cat. 
No.: DEE050), and for visfatin (Cat. No.: DERAG004R) 
were purchased from Demeditec Diagnostics GmbH, 
Kiel, Germany. The ELISA kits for MCP-1 (Cat. No.: 
EH2MCP1) was purchased from Thermo Scientific, PO 
Box  117 Rockford, IL61105, United States. The ELISA 
kits for SFRP5 (Cat. No.: DY6266-05) was purchased 
from R&D System, 614 McKinley Place NE, Minneapo-
lis, MN 55413, United States. The EIA kit for RBP4 (Cat. 
No.: RAB0414-1KT) was purchased from Sigma-Aldrich, 
Missouri, the United States. The detection limit of the 
ELISA kits is 0.2 ng/ml for leptin, 0.012 ng/ml for resis-
tin, 0.125 ng/ml for visfatin, 15.6 pg/ml for SFRP5, 0 pg/
ml for MCP-1, and 0.1 pg/ml for RBP4.

Statistical analysis
Clinical and demographic data were presented in median 
values with range for continuous variables. Chi square 
or Fisher’s exact tests were used to compare categorical 
variables. Multi-factor ANOVA was performed for com-
paring means between groups and to adjust for the con-
founding effect of age and sex on the clinical parameters 
and investigated adipokines. Kruskal–Wallis, Mann–
Whitney U test was used to analyze the serum levels 
of leptin, resistin, visfatin, SFRP5, MCP-1, and RBP4 in 
patients with T2DM and in controls wherever appropri-
ate. Spearman’s rank correlation coefficient was used to 
analyze the correlation between two studied variables. 
The diagnostic potential of investigated adipose tissue-
derived cytokines and their relative ratios in T2DM, 
insulin resistance/sensitivity and β-cell function was eval-
uated by receiver operating characteristic (ROC) analysis 
and the area under the curve (AUC) was also calculated. 
All statistical analyses were performed using IBM Statis-
tics SPSS v.19 (IBM Corp, Armonk, NY. the USA). P val-
ues of less than 0.05 were considered significant.

Results
Demographic, anthropometric, biochemical and clinical 
characteristics of the study subjects
The demographic, anthropometric, biochemical and 
clinical characteristics of the patients with T2DM and 
control individuals are summarized in Table  1. No sta-
tistical differences between the mean age of study group 
(with T2DM, 58.6 ± 7.2  years) and control group (with-
out T2DM; 56.8 ± 8.2 years), between patients with over-
weight T2DM and those with non-overweight T2DM, 
as well as between control individuals with and without 
overweight (P > 0.05) were observed. Regarding gender, 
there was a higher number of male participants in the 
group with T2DM compared to that in control group 
(P = 0.0001). The proportions of smokers and alcohol 
users in the patient group were also higher compared 
to that in control group (P = 0.001 and < 0.0001, respec-
tively). In addition, the proportion of patients with 
T2DM whose at least one of their direct relatives (par-
ents, siblings, children) had T2DM was higher compared 
to that of the control group (P = 0.009). These results 
demonstrate that the smoking, alcohol usage and family 
history of T2DM are associated with the prevalence of 
T2DM (Table 1).

The levels of fasting glucose, triglycerides and glyco-
sylated hemoglobin (HbA1c) were higher in patients 
with T2DM compared to those in control individuals 
(P < 0.0001, 0.023, and < 0.0001, respectively). Glucose 
was detected more frequently in urine samples of patients 
with T2DM compared to that in the control group 
(P = 0.0026). The levels of high-density lipoprotein-
cholesterol (HDL-C) were lower in patients with T2DM 
compared to those in control individuals (P = 0.002). 
However, no significant difference in the levels of low-
density lipoprotein-cholesterol (LDL-C), insulin and 
total cholesterol between the two groups was observed 
(P > 0.05). HOMA-IR and HOMA-β indexes were higher 
while QUICKI index was lower in patients with T2DM 
compared to those in the control group (P < 0.0001) 
(Table 1).

Within the group of patients with T2DM, the levels 
of fasting glucose and triglycerides were higher while 
HDL-C levels were decreased in the patients with over-
weight T2DM compared to those with non-overweight 
T2DM (P = 0.002, 0.014, 0.042, respectively). Insulin 
levels and HOMA-IR index were higher while QUICKI 
index was lower in patients with overweight T2DM com-
pared to those with non-overweight T2DM (P = 0.04, 
0.028 and 0.016, respectively). However, within the con-
trol individuals, insulin levels, HOMA-IR, HOMA-β 
and QUICKI indexes were not significantly different 
between control individuals with and without overweight 
(P > 0.05). In addition, no difference in the levels of fasting 
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glucose and triglycerides was observed between the two 
control subgroups (P > 0.05) (Table 1).

Levels of leptin, resistin, visfatin, SFRP5, MCP‑1, and RBP4
The levels of MCP-1 and SFRP5 were significantly 
decreased (P < 0.0001 and P = 0.003, respectively), 
while the levels of visfatin and RBP4 were significantly 
increased in patients with T2DM compared to those in 
control individuals (P = 0.005 and P = 0.021, respec-
tively). However, no difference in the levels of leptin and 
resistin between the two groups was observed (P > 0.05) 
(Fig.  1). Among the patients with T2DM, the levels of 
leptin and resistin were higher while the RBP4 levels 
were lower in patients with overweight T2DM com-
pared to those in patients with non-overweight T2DM 
(P = 0.0001, P = 0.019, and P = 0.05, respectively). Among 
the control group, the levels of visfatin, MCP-1 and RBP4 
were higher in overweight individuals compared to those 
in non-overweight controls (P = 0.022, 0.048 and 0.05, 
respectively). We also observed a similar trend for lep-
tin, resistin, and SFRP5 between overweight and non-
overweight control subgroups, but the difference did not 
reach the statistical significance. In addition, we observed 
a difference of MCP-1, SFRP5 and RBP4 levels between 
overweight with T2DM and overweight control groups 
as well as between non-overweight with T2DM and non-
overweight control groups (P < 0.05) (Fig. 1).

Correlation between studied adipokines
We analyzed the correlations between pairs of the stud-
ied adipokine levels. We observed that MCP-1 levels 
were positively correlated with the levels of resistin and 
visfatin (Spearman’s rho = 0.22, P = 0.001 and rho = 0.29, 
P < 0.0001, respectively). Visfatin levels were correlated 
with SFRP5 levels (Spearman’s rho = 0.24, P = 0.015). 
RBP4 levels were negatively correlated with resistin and 
MCP-1 levels (Spearman’s rho = − .22 P = 0.001 for both 
resistin and MCP-1). In addition, we observed weak 
correlations between leptin and resistin (Spearman’s 
rho = 0.18, P = 0.009), leptin and SFRP5 (Spearman’s 
rho = 0.17, P = 0.037), resistin and SFRP5 (Spearman’s 
rho = 0.17, P = 0.038), as well as between MCP-1 and 
SFRP5 (Spearman’s rho = 0.18, P = 0.025) (Table 2).

Correlation of leptin, resistin, visfatin, SFRP5, MCP‑1, 
and RBP4 levels with metabolic parameters
We analyzed a correlation of the levels of the stud-
ied adipokines with the metabolic parameters of over-
weight and T2DM. We observed that the leptin levels 
were positively correlated with insulin levels (Spear-
man’s rho = 0.43, P < 0.0001), HOMA-IR (Spearman’s 
rho = 0.31, P < 0.0001), HOMA-β (Spearman’s rho = 0.3, 
P < 0.0001) and negatively correlated with QUICKI 

indexes (Spearman’s rho = − 0.29, P < 0.0001). Resis-
tin levels were positively correlated with HOMA-β 
(Spearman’s rho = 0.33, P < 0.0001) and negatively cor-
related with the levels of fasting glucose and HbA1c 
(Spearman’s rho = − 0.32, P < 0.0001, and rho = − 0.29, 
P < 0.0001, respectively). Visfatin levels were weakly 
and negatively correlated with fasting glucose levels 
(Spearman’s rho = − 0.22, P = 0.006). MCP-1 levels were 
positively correlated with the QUICKI (Spearman’s 
rho = 0.26, P < 0.0001) and HOMA-β (Spearman’s 
rho = 0.33, P < 0.0001) indexes, and negatively correlated 
with the fasting glucose levels (Spearman’s rho = − 0.42, 
P < 0.0001), HbA1c (Spearman’s rho = − 0.35, P < 0.0001) 
and HOMA-IR (Spearman’s rho = − 0.25, P < 0.0001). 
SFRP5 levels were positively correlated with the levels 
of LDL-C levels (Spearman’s rho = 0.28, P < 0.0001) and 
HOMA-β index (Spearman’s rho = 0.21, P = 0.007), and 
negatively correlated with fasting glucose levels (Spear-
man’s rho = − 0.25, P = 0.001). In addition, RBP4 lev-
els were positively correlated with the levels of fasting 
glucose (Spearman’s rho = 0.4, P < 0.0001) and HbA1c 
(Spearman’s rho = 0.41, P < 0.0001), and negatively cor-
related with HOMA-β index (Spearman’s rho = − 0.37, 
P < 0.0001) (Table 3).

Correlation of studied adipokines ratios with metabolic 
parameters
An index based on the relative proportion of adiponec-
tin-to-resistin has been proposed to have diagnostic 
potential for insulin resistance [29]. Due to the correla-
tion between the levels of resistin and MCP-1, resistin 
and RBP4, visfatin and MCP-1, visfatin and SFRP5, as 
well as between the levels of MCP-1 and RBP4, the rela-
tive proportion of these studied adipokines may have a 
potential for the diagnosis of T2DM. We calculated the 
relative ratios of resistin/MCP-1, resistin/RBP4, visfatin/
MCP-1, visfatin/SFRP5 and MCP-1/RBP4 and analyzed 
their correlations with metabolic parameters (Table  4). 
The results showed that resistin/RBP4 relative ratio were 
negatively correlated with fasting glucose levels (Spear-
man’s rho = − 0.47, P < 0.0001) and positively correlated 
with HbA1c (Spearman’s rho = 0.43, P < 0.0001) and 
HOMA-β index (Spearman’s rho = 0.45, P < 0.0001). Vis-
fatin/MCP-1 relative ratio were positively correlated with 
fasting glucose levels (Spearman’s rho = 0.35, P < 0.0001) 
and HbA1c (Spearman’s rho = 0.23, P = 0.004) and neg-
atively correlated with HOMA-β index (Spearman’s 
rho = − 0.25, P = 0.002). MCP-1/RBP4 relative ratio were 
positively correlated with fasting glucose levels (Spear-
man’s rho = 0.51, P < 0.0001) and HbA1c (Spearman’s 
rho = 0.44, P < 0.0001) and negatively correlated with 
QUICKI index (Spearman’s rho = − 0.21, P = 0.002) and 
HOMA-β index (Spearman’s rho = − 0.46, P < 0.0001) 
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Fig. 1  The levels of studied adipokines in patients with type 2 diabetes mellitus and in control individuals. The levels of leptin (a), resistin (b), visfatin 
(c), monocyte chemoattractant protein-1 (MCP-1) (d), secreted frizzled-related protein 5 (SFRP5) (e), and retinol binding protein 4 (RBP4) (f) were 
measured in the serum samples from patients with overweight and non-overweight T2DM, as well as in overweight and non-overweight control 
individuals. P values were calculated by using Mann–Whitney U test; *P < 0.05; **P < 0.005; ***P < 0.0005
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(Table 4). Although leptin levels were not correlated with 
the levels of other adipokines, leptin and MCP-1 levels 
were strongly correlated with the insulin resistance/sen-
sitivity indexes. Therefore, we calculated the relative ratio 
of leptin/MCP-1 and correlated with insulin resistance/
sensitivity indexes as well as with other metabolic param-
eters. We observed that leptin/MCP-1 relative ratios 
were positively correlated with the levels of fasting glu-
cose, insulin and HOMA-IR index (Spearman’s rho = 0.2, 
0.31 and 0.35; P = 0.001, < 0.0001 and < 0.0001, respec-
tively) and negatively correlated with QUICKI index 
(Spearman’s rho = − 0.35, P < 0.0001) (Table 4).

Diagnostic potential of adipose tissue‑derived cytokines 
and their relative ratios
We examined the diagnostic potential of resistin/MCP-1, 
resistin/RBP4, visfatin/MCP-1, visfatin/SFRP5, MCP-1/
RBP4 and leptin/MCP-1 indexes in T2DM by analyzing 
the ROC curves of these indexes. We have found that 
resistin, RBP4 and MCP-1 levels appeared to be poten-
tial indicators for T2DM (AUC = 0.75, 0.78 and 0.79; 
P < 0.0001, respectively) (Fig.  2). Interestingly, resistin/
RBP4 relative ratio had a better diagnostic performance 
of T2DM compared to resistin and RBP4 levels alone 
(AUC = 0.81 vs. 0.75 and 0.78, respectively) (Fig.  2a). 
Similarly, the diagnostic performance of MCP-1/RBP4 
relative ratio was better compared to that of MCP-1 
and RBP4 levels alone (AUC = 0.83 vs. 0.78 and 0.79, 
respectively) (Fig.  2b). Although visfatin/MCP-1 and 
leptin/MCP-1 indexes were correlated with several clini-
cal parameters of T2DM, the diagnostic performance 
of these indexes were not better when compared with 
MCP-1 levels (AUC = 0.71 and 0.64 vs. 0.79, respectively) 
(Fig.  2c, d). In addition, we also examined the diagnos-
tic potential of resistin/MCP-1, resistin/RBP4, visfatin/
MCP-1, visfatin/SFRP5 and MCP-1/RBP4 indexes in 
insulin resistance/sensitivity and β-cell function. We 
have found that resistin/RBP4 and MCP-1/RBP4 indexes 
appeared to be potential indicators for β-cell function 

when compared to HOMA-β (AUC = 0.76 and 0.74, 
respectively) (Fig.  3a, b). Similarly, leptin/MCP-1 index 
could be an additional indicator for insulin resistance/
sensitivity when compared to HOMA-IR (AUC = 0.72) 
and QUICK (AUC = 0.73) (Fig.  3c, d). These results 
indicate that the relative ratios of adipokines, especially 
resistin/RBP4 and MCP-1/RBP4 indexes, may also be 
considered as potential indicators for T2DM, insulin 
resistance/sensitivity and β-cell function.

Discussion
Adipose tissue-derived cytokines play a significant role 
in the pathogenesis of inflammation and metabolic dis-
orders such as obesity and T2DM [21, 30, 31]. Our previ-
ous study has shown that the levels of adiponectin and 
several pro-inflammatory cytokines were modulated in 
patients with T2DM compared to individuals without 
T2DM [24]. Similarly, we show in the present study that 
the levels of RBP4 and visfatin are increased while the 
MCP-1 and SFRP5 levels are decreased in patients with 
T2DM compared to control group. Although not all the 
comparisons reached the statistical significance, the lev-
els of studied adipokines are modulated in individuals 
with overweight compared to those without. Our results 
revealed that the levels of studied adipokines including 
leptin, resistin, visfatin, SFRP5, MCP-1, and RBP4 are 
correlated with clinical parameters of overweight and 
T2DM. In addition, the relative ratios of studied adi-
pokines are correlated with fasting glucose and HbA1c 
levels as well as with insulin resistance/sensitivity indexes 
such as HOMA-IR, QUICKI and β-cell function index 
(HOMA-β). These results indicate that adipose-derived 
cytokines are involved in the pathogenesis of obesity and 
T2DM and are associated with clinical outcomes of over-
weight and T2DM, and thus may be used as indicators of 
insulin resistance and β-cell function.

Leptin has been shown to play an important role in the 
pathogenesis of atherosclerosis, cardiovascular disease, 
inflammation, obesity and T2DM [32]. The biological 

Table 2  Correlation between pair of studied adipokines

The correlations between pair of studied adipokines were calculated by using the Spearman’s rank correlation coefficient. Spearman’s rho (ρ) and P values are 
presented

Adipokines Leptin (ng/ml) Resistin (ng/ml) Visfatin (ng/ml) MCP-1 (pg/ml) SFRP5 (ng/ml) RBP4 (ng/ml)

ρ (rho) P value ρ (rho) P value ρ (rho) P value ρ (rho) P value ρ (rho) P value ρ (rho) P value

Leptin (ng/ml) 0.18 0.009 − 0.004 0.96 0.09 0.15 0.17 0.037 − 0.03 0.63

Resistin (ng/ml) 0.18 0.009 − 0.02 0.77 0.22 0.001 0.17 0.038 − 0.22 0.001

Visfatin (ng/ml) − 0.004 0.96 − 0.02 0.77 0.29 < 0.0001 0.24 0.015 − 0.12 0.18

MCP-1 (pg/ml) 0.09 0.15 0.22 0.001 0.29 < 0.0001 0.18 0.025 − 0.22 0.001

SFRP5 (ng/ml) 0.17 0.037 0.17 0.038 0.24 0.015 0.18 0.025 0.05 0.56

RBP4 (ng/ml) − 0.03 0.63 − 0.22 0.001 − 0.12 0.18 − 0.22 0.001 0.05 0.56
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role of leptin is to regulate appetite, hunger, body temper-
ature and expenditure of energy through the hypothala-
mus [30, 31]. A recent study showed that lower leptin is 
associated with T2DM in obese adolescents [33]. How-
ever, leptin levels are not significantly different between 
elderly patients with T2DM and age-matched individuals 
without T2DM as shown in this study. This contradictory 
result might be due to the higher age of study subjects in 
our study. In addition, although leptin levels are not sig-
nificantly correlated with metabolic parameters of obe-
sity and T2DM, strong correlations of leptin levels with 
insulin levels and with indexes of insulin resistance/sensi-
tivity and β cell function. These results suggest that leptin 
can be a promising indicator of insulin production and its 
resistance.

In line with a previous finding that resistin serum lev-
els were significantly correlated with the inflammatory 
chemokines such as MCP-1 and RBP4, which are major 

players in the pathogenesis of metabolic syndromes [34]. 
A decreased resistin concentration by knocking out the 
resistin encoding gene or blocking resistin by antibody 
could protect against obesity-associated hyperglyce-
mia, which is mainly due to recovering the response of 
the liver to insulin [35]. However, visfatin levels are not 
affected by the treatment of T2DM with basal insulin 
[36]. Although the difference is not significant between 
patients with and without T2DM in our study, resistin 
levels are increased in patients with overweight T2DM 
compared to those with non-overweight. These results 
are similar to other studies indicating that resistin levels 
are higher in patients with overweight T2DM compared 
to controls [37, 38]. Similarly, our results of visfatin lev-
els in individuals with and without T2DM are consistent 
with several previous studies showing that visfatin levels 
are increased in individuals with overweight and T2DM 
compared to controls [39, 40]. Visfatin serum levels are 

Fig. 2  Diagnostic performance of adipose tissue-derived cytokines and their relative ratios in T2DM. ROC curves of adipose tissue-derived 
cytokines and their relative ratios based on the T2DM status. a HOMA-β versus Resistin/RBP4, Resistin and RBP4; b HOMA-IR versus MCP-1/RBP4, 
MCP-1 and RBP4; c HOMA-β versus Leptin/MCP-1, Leptin, and MCP-1; d QUICKI versus Leptin/MCP-1, Leptin, and MCP-1
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significantly correlated with the accumulation of white 
adipose tissue (WAT), and visfatin expression was 
increased during the differentiation of adipocytes and 
according to the destruction of β cells [41, 42]. The nega-
tive correlation between the levels of visfatin and glucose 
indicates that visfatin is an important indicator for the 
development of obesity and related T2DM.

Similar to leptin, MCP-1 is significantly involved in 
the pathogenesis of several metabolic disorders includ-
ing inflammation, obesity and diabetes [43]. MCP-1 also 
has chemotaxis activity that can promote leukocytes to 
leave the circulation and form the foam cells that subse-
quently lead to arterial plaque. Therefore, elevated level 
of MCP-1 production is a risk factor for the development 

of cardiovascular disease in patients with obesity-related 
T2DM [44]. Our study showed that the MCP-1 levels are 
decreased in patients with T2DM compared to healthy 
individuals, but increased in overweight healthy individ-
uals compared to those with non-overweight. The strong 
correlations of MCP-1 levels with the levels of fasting 
glucose and HbA1c support the fact that MCP-1 con-
tributes to increasing obesity-induced insulin resistance, 
the effect of macrophage infiltration into adipose tissue 
and elevated hepatic triacylglycerol [44]. These results 
suggested that increased MCP-1 production in adipose 
tissue caused by macrophage infiltration into adipose tis-
sue leads to an increase of insulin resistance and conse-
quently leads to T2DM [43]. Additionally, MCP-1 levels 

Fig. 3  Diagnostic performance of adipose tissue-derived cytokines and their relative ratios in insulin resistance/sensitivity and β-cell function. ROC 
curves of adipose tissue-derived cytokines and their relative ratios based on insulin resistance/sensitivity and β-cell function. HOMA-IR, QUICKI, and 
HOMA-β were used as the predictor variables and the cut-off values were defined as 25% percentile, median and 75% percentile of the control 
group. Different cut-off values were used to analyze and the best diagnostic performance was presented. a diagnostic performances of resistin/
RBP4 ratio, resistin and RBP4 in β-cell function with HOMA-β of 65.6 (25% percentile) as cut-off value. b diagnostic performances of MCP-1/RBP4 
ratio, MCP-1 and RBP4 in β-cell function with HOMA-β of 65.6 (25% percentile) as cut-off value. Diagnostic performances of Leptin/MCP-1, Leptin 
and MCP-1 in insulin resistance/sensitivity with HOMA-IR of 1.99 (median) as cut-off value (c) and QUICKI of 0.93 (median) as cut-off value (d)



Page 12 of 14Toan et al. Diabetol Metab Syndr  (2018) 10:41 

may be considered as a promising indicator for β-cell 
function and insulin sensitivity.

SFRP5 serum levels are correlated with markers of 
obesity (e.g. BMI, waist-hip ratio, percentage of body 
fat), and T2DM (e.g. insulin resistance and disorders 
of lipid metabolism) [45]. Our study showed that the 
SFRP5 levels are significantly increased in control group 
with overweight compared to those without overweight 
and are correlated with levels of fasting glucose, LDL-C 
and HOMA-β. This observation supports a recent study 
showing the association between Sfrp5 gene expression 
and fat deposition in healthy adipose tissue [18]. Lower 
SFRP5 levels observed in patients with T2DM compared 
to controls in the current study is in accordance with a 
previous study showing the SFRP5 levels in Chinese 
patients [46]. However, these results are contradictory to 
a previous study showing that SFRP5 levels are elevated 
in Spanish patients with T2DM compared to predia-
betic subjects and controls [19]. The association between 
SFRP5 levels and HOMA-β index clearly indicates the 
association of SFRP5 with β-cell function [17]. In addi-
tion, SFRP5 is sensitive to nutritional therapy suggesting 
the use of bioactive molecule as a biomarker for anti-
inflammatory effects of diet [47].

Corroborating with previous studies [48, 49], our 
results also indicate that the RBP4 levels are significantly 
increased in patients with T2DM compared to controls. 
RBP4 has been shown to be associated with insulin resist-
ance, visceral fat distribution, dyslipidemia and diabetes 
[22, 50]. The strong correlations of RBP4 levels with the 
levels of fasting glucose and HbA1c and HOMA-β index 
as well as the correlation of relative ratios based on RBP4 
levels with QUICKI and HOMA-β indexes suggest that 
RBP4 plays an important role in β-cell dysfunction and 
has a potential diagnostic value for T2DM. RBP4 serum 
levels have a potential to be an indicator of insulin resist-
ance and decreasing the RBP4 serum levels may be con-
sidered as one of the strategies for anti-diabetic therapies 
of overweight-related T2DM.

In addition, a previous study has proposed a novel 
index based on the relative proportion of adiponectin-
to-resistin to predict insulin resistance [29]. The relative 
ratios of adiponectin/TNF-α, adiponectin/IL-1β, adi-
ponectin/IL-10, TNF-α/IL-10 and IL-1β/IL-10 have been 
shown to be strongly correlated with the insulin resist-
ance/sensitivity indexes (HOMA-IR and QUICKI) [24]. 
In this study, only the relative ratios of leptin/MCP-1 
and MCP-1/RBP4 are correlated with resistance/sensi-
tivity indexes. Nevertheless, the relative ratios of resis-
tin/RBP4, visfatin/MCP-1 and MCP-1/RBP4 could be 
used as indicators for T2DM as these relative ratios are 
strongly correlated with the levels of fasting glucose, 
HbA1c and HOMA-β index. Furthermore, ROC curve 

analyses demonstrate the diagnostic potential of resistin/
RBP4 and MCP-1/RBP4 indexes for T2DM and β-cell 
function while leptin/MCP-1 index is an additional indi-
cator for insulin resistance/sensitivity. However, a panel 
comprised of adipose tissue-derived cytokines should be 
systematically developed and optimized before using as 
a diagnostic indicator for screening and predicting the 
development of T2DM.

Although our data indicate a significant association of 
adipokine levels with overweight and T2DM, the study 
remains several limitations. It was designed as a cross-
sectional study, which cannot determine causal relation-
ships between adipokine levels and the development of 
overweight and T2DM. Another limitation could be the 
limited number of data points of visfatin, SFRP5 and 
RBP4 levels in overweight controls. This may lead to an 
unsuccessful detection of the modulation of these adi-
pokines in individuals with overweight and may weaken 
the findings that adipose tissue-derived cytokines play a 
vital role during the development of obesity and T2DM 
as well as reduce their diagnostic value for insulin resist-
ance/sensitivity and β-cell function.

Conclusions
Our study showed that the levels of leptin, resistin, vis-
fatin, SFRP5, MCP-1, and RBP4 are significantly modu-
lated during the development of overweight and T2DM 
and are correlated with clinical parameters of overweight 
and T2DM. The relative ratios of studied adipokines (e.g. 
resistin/RBP4, leptin/MCP-1 and MCP-1/RBP4) are cor-
related with fasting glucose and HbA1c levels as well as 
with insulin resistance/sensitivity and β-cell function 
indexes. Adipose-derived cytokines play important roles 
in the pathogenesis of obesity and T2DM and may serve 
as a prognostic marker to predict overweight-related 
T2DM.
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