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Abstract: In this paper, the current technologies of the regenerative shock absorber systems have
been categorized and evaluated. Three drive modes of the regenerative shock absorber systems,
namely the direct drive mode, the indirect drive mode and hybrid drive mode are reviewed for their
readiness to be implemented. The damping performances of the three different modes are listed
and compared. Electrical circuit and control algorithms have also been evaluated to maximize the
power output and to deliver the premium ride comfort and handling performance. Different types of
parameterized road excitations have been applied to vehicle suspension systems to investigate the
performance of the regenerative shock absorbers. The potential of incorporating nonlinearity into
the regenerative shock absorber design analysis is discussed. The research gaps for the comparison
of the different drive modes and the nonlinearity analysis of the regenerative shock absorbers are
identified and, the corresponding research questions have been proposed for future work.

Keywords: regenerative; shock absorber; drive mode; vehicle dynamics; output power; nonlinearity

1. Introduction

Due to the growing number of vehicles over recent decades and the increase of clean energy
demand, the energy dissipation of a vehicle on different parts has been investigated. Recently,
regenerative shock absorber systems caught the attention of many researchers because of the capability
to harvest dissipated energy, due to its feasibility and accessibility. The fuel energy consumption of a
car was analysed by Lafarge, Cagin [1] who stated that the fuel energy dissipated to drive the wheels
accounts for up to 22.5% of the total fuel energy consumed, which ranks it the second following engine
heat losses of 75.2%. In reality, the percentage of the dissipated fuel energy on driving the wheels is
expected to increase as a result of the uneven or rough road surfaces.

Unlike the conventional shock absorber which reduces the vibration through viscous damping
and converts the kinetic energy into heat energy dissipated, the regenerative shock absorber converts
the kinetic energy mainly into electrical energy. This harvested electrical energy can be stored in the
battery for later use. According to Zuo, Scully [2], automobiles contribute 70% of the carbon monoxide,
45% of the nitrogen oxide and 34% of the hydrocarbon pollution throughout the United States. One of
the benefits brought by the regenerative shock absorber is that it can extend the mileage of the vehicle
by saving petroleum fuel or electrical energy to achieve a reduction in the greenhouse gas emission.

In addition, the regenerative shock absorber can operate as a part of the active suspension system
in order to improve the ride and comfort performance [3–7]. Proportional–integral–derivative control
is commonly used in these applications for obtaining stable output power or reducing vibrations [8,9].
Based on the conservation of energy principle, better ride and comfort performance resulting from less
kinetic energy or less vibration energy of the suspension system yields less amount of harvested energy.
This contradiction can be overcome by adopting the control system which can make a compromise for
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both the energy harvesting and ride and comfort performances. One good concept proposed by Elliott
and Zilletti [10] was to utilize the electromagnetic transducer as either a shunt damper or an energy
harvester. Therefore, the system can be switched between the different functionalities for desired
performance output. It was also shown in their results that the coupling coefficient increased with
the size of the electromagnetic transducer, meaning that the mechanism combining the shunt damper
and energy harvester can operate well especially in the large-scale transducer such as a regenerative
shock absorber.

The future trends of the regenerative shock absorber would be:

1. High power to weight ratio
2. Better mechanical-electrical energy conversion efficiency
3. High compatibility with the vehicle.

Among the methods in which the kinetic energy was converted into electrical energy, as shown in
Figure 1, the use of the piezoelectric material and electromagnetic generator were frequently discussed
because of their outstanding compatibilities and high efficiencies. Xiao, Wang [11] discussed the
feasibility of having the piezoelectric (PZT) generator in 2 degrees of freedom (2DOF) quarter vehicle
suspension system as an additional energy harvesting element, as shown in Figure 2. It was found
that the improvement of the resonant power output of the 2DOF piezoelectric system only and largely
depends on the cabin mass to tyre mass ratio and suspension stiffness to tyre stiffness ratio.
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Figure 1. Piezoelectric energy generating (top) and electromagnetic energy generating (bottom).

Lee, Jang [12] combined the piezoelectric transducers with a shock absorber to generate electricity
from the fluid pressure change induced by the piston displacement. Xie and Wang [13] discussed the
effect of the dimension of the piezoelectric plate, input velocity and road roughness. Piezoelectric
transduction was better than electromagnetic and electrostatic transduction for relatively high power
density [14]. It also had the advantages of the compact size and easy implementation [15]. However,
for the applications where larger displacement was most involved, the advantages of the piezoelectric
transduction were compromised.
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Xu, Shan [16] proposed a hybrid energy harvester that combines both the piezoelectric and
electromagnetic transducers, as shown in Figure 3:
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Figure 3. Hybrid energy harvester system combining piezoelectric and electromagnetic transducers [16].

The results show that this combined mechanism was able to broaden the bandwidth and increase
the output power, thus it was superior to any of the single mechanisms. It was proven that it
inherited the advantage of high power density from the piezoelectric transduction and simultaneously
it operated well under the low frequency excitation like an electromagnetic transducer.
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Poulin, Sarraute [17] constructed the equivalent impedance models to compare between two
electromechanical systems. It was also concluded in the study that the piezoelectric system has
higher power density than the electromagnetic system and thus is more suitable to microsystems.
The comparison results are listed in Table 1 below.

Table 1. Comparison between the piezoelectric system and electromagnetic system [17].

Comparison Elements between the Two Systems Electromagnetic System Piezoelectric System

Strain Low High
Displacement High Low

Voltage Variable High
Current Variable Low

Resonant frequency Variable High
Output impedance Resistive Capacitive

Adapted load Variable High

A typical shock absorber on a commercial vehicle needs to be reliable and able to operate in
the frequency range of 1–30 Hz and with a maximum shock displacement of 0.1 m. It can be seen
from Table 1 that in a regenerative shock absorber the electromagnetic transducer can outperform the
piezoelectric transducer due to lower strain, low resonant frequency and higher displacement.

Mitcheson, Reilly [18] compared different transducer technologies and it was found that when the
generator size increases, piezoelectric transducer gradually loses its advantage over electromagnetic
transducer in the high frequency range. Similar conclusion was drawn by Elliott and Zilletti [10],
the increased size of the transducer does not improve the performance of the piezoelectric transducer,
however it can improve the performance of the electromagnetic transducer. Therefore, more studies
have been focused on the electromagnetic system as it is more feasible considering the modal
resonant frequency of the vehicle, displacement of the shock absorber and its packaging size.
In addition, compared with piezoelectric transduction, electromagnetic transduction is more reliable
and cost friendly.

The power output of the electromagnetic energy harvesting system depends on total resistance
and voltage output which, according to Faraday’s law of induction, can be expressed by:

U = Bl · v (1)

where B is the magnetic field intensity, l is the total coil length and v is the coil speed with respect
to magnets.

Therefore, the increase of the system power output can be realized through the improvement of
the coil and magnet arrangement and configuration or the amplification of the coil speed with respect
to magnets. These are two main focuses of the recent development innovations for the electromagnetic
regenerative shock absorbers.

The direct drive system has the magnets and coils directly attached to the vehicle body and
wheel assembly, respectively. When subjected to the reciprocating movement due to the road
unevenness, the relative motion between the magnets and coil generates electricity as a result of
the direct attachment to the oscillators. Therefore, the coil speed with respect to the magnets strictly
depends on the relative speed between the vehicle cabin and wheel. The relative speed depends on the
driving speeds of the vehicle and road profiles. As a result, only the electromagnetic constant Bl can be
designed, changed and optimized to increase the power output.

Instead of increasing the electromagnetic constant Bl of the direct drive system, an indirect drive
system relies on the speed amplifying mechanism which can increase the coil speed with respect to
the magnets. Most regenerative shock absorber can be categorized into these two drive modes for
adaption with the requirements of energy harvesting and vibration control.
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For the direct drive system, the efforts were most focused on finding the optimum magnet
arrangement with a higher flux gradient per unit mass [19–21], as well as the optimum coil profile [22]
and the optimum mass distribution of the transducer [23]. However, their feasibility for application as
the shock absorber is still undetermined. Whereas for the indirect drive system, questions have been
raised on maintaining the ride comfort and road handling ability since it is the main function of the
shock absorber, therefore the compatibility of the indirect drive regenerative shock absorber onto the
vehicle would also be focused in the future.

Many innovative designs including different types of the transducers had been proposed, such
as piezoelectric and electromagnetic transducers which includes magnetorheological, hydraulic and
pneumatic drive systems [24–28]. Each of these types had its own advantages and disadvantages
and was only applicable in certain applications. Due to the packaging size and mass restrictions of
the shock absorber, the transducers are hard to be fairly compared to determine which type is most
suitable for the application of the shock absorbers.

In order to maximize the energy harvesting efficiency, further investigations have been conducted
on the electrical circuits and control algorithms. Because of the variation of the transducers utilized in
the harvester, different electrical circuits and control algorithms may not work equally well.

This paper reviews the recent technologies of the regenerative shock absorber. The highlight of
this paper is to categorize the regenerative shock absorbers based on their drive modes and study the
associated damping performance, energy harvesting efficiency, electrical circuit and control algorithm.
Each of these aspects will be summarized in the tables. The excitation input of the regenerative shock
absorber will be applied as sinusoidal, step and random inputs. The possibility and potential of the
nonlinear regenerative shock absorber will be discussed. Lastly, the future research direction of the
regenerative shock absorber design will be discussed based on the research gaps. This paper aims to
review the up to date techniques involved in the regenerative shock absorber design and closing the
research gaps identified to pave the way for the future study.

2. Direct Drive Regenerative Shock Absorber Systems and Technologies

A direct drive system has attracted substantial amount of interests due to its compact design and
simple manufacturing. Zuo, Scully [2] proposed a 1:2 scale linear regenerative shock absorber system
with longitudinal magnet arrangement patterns. Also, an aluminum center rod and steel outer shell
was added to increase the magnetic field intensity. This prototype was able to produce 2–8 W power
and it was found that more power can be harvested at the modal resonant frequencies.

2.1. Magnet Arrangement Pattern Design

In order to further increase the magnetic field intensity for high output power, different magnet
patterns were proposed. One of the easiest ways is to double the number of the magnets, resulting in
more magnetic flux lines that can be trapped in between two layers of magnets where the coils are
wired, thus increasing the output voltage. Many researchers have adopted this way in their designs as
it is efficient and simple to build [29–31].

It is also shown in Figure 4 that in a magnet stack, the magnets are not placed right next to each
other, instead they are separated by spacers. The same layout was adopted by Cheung [32] who
proposed a magnet sliding tube designed for harvesting wave energy where the net flux density in
the spacer area between two opposing polarity magnets is zero due to the complete flux cancellation
as shown in Figure 5 where Case A represents the separation, in this case, flux cancellation did not
take place due to the short ranged magnetic potential, the behavior was just the sum of two isolated
single magnets. Cases B and C represent the separation decreased, in these cases, the flux cancellation
effect became more prominent and the amount of captured energy increased accordingly to reach a
maximum at a gap of about 1/3 of the magnet length. The captured energy in this case increased
by 60%. However, the two side peaks remained nearly unchanged because of the end effect. As the
thickness of the spacer gradually decreases (from A to C), the effect of the flux cancellation decreases
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and the captured energy reaches the maximum when the spacer had the same thickness of a magnet.
As a result, the captured energy can be increased by 60%. The same result was obtained by Ebrahimi,
Bolandhemmat [30] who concluded that magnet stack can yield the highest output power with spacers
of equal thickness.Energies 2018, 11, x FOR PEER REVIEW  6 of 43 
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Figure 5. Captured energy versus the dimension of a spacer between two magnets [32].

The main limit involved in using two layers of magnets or spaced magnets is the problem of the
extra weight. The excessive weight will result in more fuel consumption, which is contradictory to the
original purpose of the regenerative shock absorber.

The magnetic arrangement pattern of the Halbach array was studied by many researchers for its
high weighted magnetic flux density compared with other magnet arrangement patterns. As shown
in the Figure 6, by turning the polarity orientation of the magnets 90 degree each time to form a
Halbach array, the magnetic flux lines can be accumulated on one side of the Halbach array that
is close to the coils, leaving nearly zero magnetic field intensity on the other side of the Halbach
array. How Halbach array can actually affect the energy harvesting performance of a regenerative
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shock absorber system was investigated by Zhang [33]. He discovered that the Halbach array has
the highest magnetic flex density compared to the conventional longitudinal and transverse magnet
polarity orientation layouts with or without the spacer shown in Figure 7, because the radial magnets
in Halbach array arrangement perform better than the other magnet arrangement in achieving the
high magnetic flux density.Energies 2018, 11, x FOR PEER REVIEW  7 of 43 
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Zhu, Beeby [35] designed a vibrational energy harvester using the magnet arrangement pattern of
the Halbach array and compare the Halbach array with 4 other different magnet arrangement patterns
shown in Figure 8. It was found that the magnetic field strength in the Halbach array is highest among
all the magnet arrangement patterns. However, the voltage output of the Halbach array pattern with
spacers is greater than that of layout (a) and (b) but almost 10 times smaller than layout (c) and (d).
This is because although the Halbach array has a stronger magnetic field, its magnetic flux gradient
is lower than that in (c) and (d). Therefore, it should be realized that the Halbach array may not be
the solution for all the problems in question and reducing the thickness of magnets can lead to better
results. But in the research, longitudinally arranged polarity orientation of the magnets was not taken
into consideration, thus the most efficient magnetic arrangement was still unclear.
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The use of the Halbach array magnet arrangement pattern can also be helpful in obtaining the
enhanced dynamics. Long, He [36] designed a suspension system utilizing the magnets arranged
in Halbach array to obtain a good damping performance. It has been experimentally validated that
the Halbach array with a controller can improve the system stability. Some researchers combined
the two above-mentioned methods and proposed the double layers of the Halbach array magnet
arrangement [31,35,37–40].
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2.2. Coil Design

Regardless of which magnetic pattern is being used in the regenerative shock absorber, some
studies suggested designing the coil based on the magnet arrangement. Tang, Lin [31] proposed to
use a four-phase coil in one magnetic cycle, as shown in the Figure 9. The reason for that is shown
in Figure 10 where higher normalized power can be obtained with higher coil phase number. More
electromotive potential would be cancelled out if less coil phases are adopted.
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The coil profile was investigated by Elvin and Elvin [41] on the effect of the number of coil layers,
coil resistance and gauge numbers. The results showed that with more number of layers more energy
can be generated until it reaches its limit where too much energy begins to be dissipated due to the
resistance of the extensive coil. Also, the use of a coil with less gauge number will not yield higher
voltage but it has the commercial benefits and takes up less space. Different coil phase designs can
also affect the system resonant frequency and the quality factor, resulting in the difference in system
damping. This phenomenon can be found in the research conducted by Zuo, Scully [2] where 90 degree
phase coil presents higher quality factor than 0 degree phase coil set, thus the electromagnetically
induced damping on 90 degree phase coil set is lower. Quality factor can be important in evaluating
the effect of the magnet coil combination on the energy harvesting efficiency since its influence on the
system damping and power output cannot be ignored.

Different regenerative shock absorbers with the direct drive systems have been summarized
below in Table 2.
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Table 2. Summary of the direct drive regenerative shock absorber.

Presenter Mechanism Voltage Output (V) Power Output (W)
Vehicle Speed (km/h) or

Road Excitation Amplitude
and Frequency (Hz)

Energy
Harvesting
Efficiency

System Resonant
Frequency

Damping
Ratio/Harvesting

Bandwidth

Zuo, Scully [2] Electromagnetic system 10 V 8 W 4 Hz N/A
18.5 Hz for 0 phase
coil set and 8 Hz for

90 phase coil set
21 Hz

Goldner, Zerigian [42] Electromagnetic system 1.3 V N/A 2 mm at 20 Hz N/A N/A N/A

Gupta, Jendrzejczyk [29] Electromagnetic system
with two layers of magnets 2.52 V 54 W N/A N/A N/A N/A

Xie and Wang [13] Piezoelectric material N/A 738 W 126 Km/h on class D road N/A N/A N/A

Sapiński, Rosół [43] Electromagnetic system 10 V N/A 4.5 mm at 10 Hz N/A 4 Hz 1 Hz

Tang, Lin [31] Electromagnetic system N/A 2.8 W 5 mm at 10 Hz N/A N/A N/A

Wang, Ding [44] Electromagnetic system N/A 24.78 W N/A 20.1% 1.5 Hz and 12 Hz 0.5 Hz

Asadi, Ribeiro [45] Electromagnetic system N/A N/A 4.03 mm at 10 Hz N/A N/A N/A

Chen and Liao [24] Combination of MR damper
and electromagnetic system 1.9 V N/A 3 mm at 1 Hz N/A N/A N/A

Sapiński, Rosół [46] Combination of MR damper
and electromagnetic system 2 V 0.4 W 4.5 mm at 4 Hz N/A 4.5 Hz 1 Hz
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3. In-Direct Drive Regenerative Shock Absorber Systems and Its Technologies

Due to the weight limit of the magnets and coils, many attempts have been made to increase the
coil speed with respect to the magnets.

The in-direct drive regenerative shock absorber system does not transfer the road excitation
directly into the linear motion between the translator and the stator. Instead, it amplifies the input
excitation through a variety of mechanisms and converts the linear motion mostly into a rotational
motion. Many types of mechanisms that have been proposed include: the ball screw mechanism,
rack and pinion mechanism, hydraulic mechanism, pneumatic mechanism and their variants. Among
these mechanisms, the ball screw, rack and pinion and their variants can be regarded as mechanical
motion rectifier due to the mechanical mechanism related working principle. The devices that utilize
the hydraulic system or pneumatic system to deliver motion conversion and velocity amplification can
be regarded as a fluid motion rectifier.

3.1. Mechanical Motion Rectifier

Li, Zuo [47] proposed an innovative motion rectifier system, which can convert the up and
down movement of the shock absorber into unidirectional rotation of the generator, shown in the
Figure 11. The rack and pinion mechanism helps to convert and amplify the excitation displacement.
The bidirectional linear motion to unidirectional rotation rectification is accomplished with the bevel
gear and clutch. The experiments and simulations were carried out by the researchers and it showed
that the prototype achieved over a high efficiency of 60% and 15 W power output was obtained when
the vehicle is driven at a speed of 15 mph. Further investigation was conducted by Li and Zuo [48]
to evaluate the performance of the prototype. A quarter car suspension model was constructed to
simulate the situation where vehicle was driven on the ISO Class C road. It was found that the motion
rectifier can achieve the road comfort and the road handling on a conventional vehicle. 60–84 W can
be harvested from a quarter car regenerative suspension with the motion rectifier when travelling
at 67.5 mph, which is more than that from the quarter car regenerative suspension without the
motion rectifier.
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Zhang, Zhang [49] and Guo, Liu [50] optimized the mechanical motion rectifier by proposing the
dual overrunning clutch system. Two sets of racks and pinions and the 2 overrunning clutches attached
allow the excitation amplification and motion rectification to occur simultaneously with limited space
provided. The shaft rotates in one direction and drives the DC generator for power generation. The
working principle is shown in Figure 12. The generated power was stored in the capacitor for other
application. The fabricated prototype generated 4.302 W at 2.5 Hz with the excitation displacement
amplitude of 7.5 mm. Additionally, the damping performance can be changed by adjusting the external
load electric resistance.
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Figure 12. Dual overrunning clutch transmission system [49].

Another interesting design was proposed by Xie, Li [51]. Unlike other rack pinion system where
the electrical generator provides the damping force, this design utilizes the traditional viscous damper
in parallel with the secondary rack and pinions at the bottom, to provide damping and harvest energy.
Considering the packaging size, however, this layout may not be feasible in a real application.

Ball screw mechanism was introduced as an alternative by many researchers [52–56], the schematic
is shown in Figure 13. Similar to the rack and pinion system, it also converts the up and down motion
into a rotational motion through a ball screw spinning along the thread. Due to the up and down
movement of the shock absorber, the converted rotational motion is bidirectional and needs rectification
as well. Zhang, Huang [57] incorporated the ball-screw mechanism and DC brushless motor into a
regenerative shock absorber system. The experiment result showed that the maximum voltage of 17.5 V
can be generated under the sine wave road input. Because of the low voltage, a condenser is needed to
charge the battery. It was also pointed out by the author that the ride and comfort performance cannot
be guaranteed under a high frequency road excitation.
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Another combined innovation on regenerative shock absorber was proposed by Liu, Xu [59] where
a ball screw was installed for the conversion from the linear to rotary motion and two overrunning
clutches were used for the rectification from the bidirectional to unidirectional motion, as shown in
Figure 14. The input velocity amplification factor can be adjusted through a ball screw mechanism
and kinetic energy can be harvested throughout the whole reciprocating motion of the shock body.
The experimental results indicate that an average power output of 24.7 W can be harvested over an 8 s
period, and the adjustable damping coefficient can be maintained close to the damping coefficient of
the passenger vehicle shock absorbers.Energies 2018, 11, x FOR PEER REVIEW  13 of 43 
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Figure 14. The design of a mechanical motion rectifier based the energy-harvesting shock absorber
using a ball-screw mechanism [59].

3.2. Fluid Motion Rectifier

Instead of converting the linear motion into rotational motion mechanically, the hydraulic/pneumatic
systems were introduced in many energy harvester designs for smoother operation and less mechanical
friction energy dissipation [27,60–66]. Like the other indirect drive regenerative shock absorber
systems where the stroke velocity is amplified mechanically, the smoother operation and the motion
rectification can be delivered simultaneously in the hydraulic system. Among all these innovations,
Fang, Guo [67] developed an actively controlled hydraulic suspension system by using an oil pump to
generate hydraulic pressure in the shock absorbers, as shown in Figure 15. The system had one-way
check valves to control the direction of fluid flow, accelerometers in all four corners, and actuators
and accumulators, to reduce the response time in the system and ensure that sufficient pressure is
maintained in the system. Wang, Gu [68] proposed the similar hydraulic system with four check valves
for flow rectification and found that the accumulators can be optimized to increase the power efficiency
up to 40%.

The drawback of the hydraulic/pneumatic energy harvesting system is that the response time
is delayed due to the flow rate and fluid compressibility, also, the rapture may lead to potential
failure, resulting in an unreliable system that can cause accidents. To simplify the system, Galluzzi,
Tonoli [69] developed a hydraulic regeneration system where check valves are placed inside the
hydraulic piston to reduce the mechanical difficulty while amplifying the stroke velocity, as shown in
Figure 16. The results show a 12% increase in harvested power over the regenerative shock absorber
system without the proposed mechanical motion rectifier.
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Figure 16. Working principle of the hydraulic regenerative shock absorber system without a mechanical
motion rectifier [69].

Pneumatic suspension system was adopted by many vehicles especially in off road
applications [70] due to its high energy density which meets the space limitation [71], and its comfort
and changeable damping performance [72]. It can be converted into a regenerative system with
the additional energy converting elements [73]. Shaiju and Mitra [74] proposed the idea where
the oscillating motion energy of the vehicle sprung mass could be captured and stored in the form
of compressed air energy. The theoretical results also showed that the vehicle dynamics could be
improved by the pneumatic suspension system through being integrated with the braking system.
The pneumatic system operates in a similar way as the hydraulic system due to the similar flow
property, many authors regarded them as the same system [30,75]. Due to the compressible nature of
air, however to some extent, the pneumatic system performs differently from the hydraulic system.
Therefore, evaluation of the energy harvesting performance of the pneumatic regenerative shock
absorber is identified as a research gap because few people have worked on it. Different indirect drive
regenerative shock absorber systems have been summarized below in Table 3.
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Table 3. Summary of the indirect drive regenerative shock absorbers.

Presenter Mechanism Voltage Output (V) Power Output (W) Vehicle (km/h) or Excitation
Frequency (Hz)

Energy Harvesting
Efficiency

Li and Zuo [48] Rack and pinion N/A 60–8 4W 108 km/h on class C road N/A
Gupta, Jendrzejczyk [29] Rack and pinion 1.1 V 88.8 W N/A 21%

Nakano [76] Ball-screw N/A 55.39 W N/A 36%
Fang, Guo [67] Hydraulic system with 4 check valves for rectification N/A 6.2 W 0.48 Hz 16.6%

Choi, Seong [77] Rack and pinion 15 V 40 W 20 mm at 3 Hz N/A
Zhang, Zhang [49] Rack and pinion, two overrunning clutches 3 V 4.302 W 7.5 mm at 2.5 Hz 54.98%
Zhang, Huang [57] Ball screw 15 V 11.73 W 5 mm at 15 Hz N/A

Chu, Zou [78] Rod and helical slot 3.31 V 11.3 W 0.94 mm at 11 Hz 77%
Wang, Gu [68] Hydraulic system 20 V 260 W 25 mm at 1 Hz 40%

Sabzehgar, Maravandi [79] Algebraic screw N/A 0.54 W 3.05 mm at 5.6 Hz 56%
Liu, Xu [59] Ball screw with two one way clutches N/A 24.7 W 2 mm at 4 Hz 51.9%

Kawamoto, Suda [55] Ball screw N/A 44 W 80 km/h on class C road N/A
Zhang, Zhang [80] DC generator connected to the hydraulic actuator N/A 33.4 W 50 mm at 1.67 Hz N/A

Shaiju and Mitra [74] Pump powered by the compressed air N/A N/A N/A N/A
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4. Comparison between the Direct Drive System and Indirect Drive System

The regenerative shock absorber system can be divided into two main categories based on the
drive mode. If the energy can be regenerated directly as a result of the linear movement between the two
oscillators, namely the wheel assembly and the vehicle body, it can be categorized as the direct-drive
regenerative shock absorber system. The other type, which is the indirect drive regenerative shock
absorber system, relies on a certain mechanism to achieve the conversion between the linear motion of
the shock absorber and the rotary motion of the generator. During this process the input speed can be
amplified by the mechanism. The 2DOF lumped mass spring systems can be applied to represent the
quarter car suspension systems with these two categories of the regenerative shock absorber systems,
as shown in Figure 17.
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Compared with the direct drive system, the indirect drive system has the following advantages:

1. The frequency, displacement and velocity amplitudes of the input excitation can be changed
through the installed mechanism to achieve better energy harvesting and vehicle dynamics

2. The increase of the input excitation speed through the speed amplifying mechanism can eliminate
the need for a strong magnetic field, therefore the number of magnets can be reduced and
undesired additional weight can be minimized.

3. The layout of the system is more flexible as the mechanism of the indirect drive does not have to
be inside the shock absorber.

In Figure 17, another noticeable difference between these two drive modes is that the direct drive
system has the AC output and the indirect drive has the DC output. As a result, the voltage output of
the direct drive system needs rectification before charging the battery whereas in the indirect drive
system, the unidirectional rotation of the DC motor have a constant DC output thus the rectification
process is not required. Regulation or dc-dc inverter is needed for both systems to maintain a steady
constant voltage for effectively charging a battery.

To compare the energy harvesting performance of the regenerative shock absorbers with different
drive modes, Gupta, Jendrzejczyk [29] have both direct drive and indirect drive regenerative shock
absorbers installed on an all-terrain vehicle (ATV) passing a wooden beam, shown in Figure 18. Mark 1
shock absorber is a direct drive linear electromagnetic generator with two layers of magnets and
mark 2 is an indirect drive system with a lever arm that can convert the linear motion into rotary
motion where the input speed is amplified 6 times. The results showed that when running over the
wooden beam, direct drive system can generate 7.4 W while the indirect drive system can generate
88.8 W.
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Even though the results indicated a considerable difference between the amounts of the harvested
power, it cannot be concluded that the indirect drive system is more efficient than the direct drive
system. In most of the papers that compare the drive modes, the generator configurations differ as the
direct drive system has a linear generator and the indirect drive system has a rotary generator, hence
the difference of the generator configurations results in the difference of the energy output. In addition,
the damping coefficients of the regenerative shock absorbers and their effects on the vehicle dynamics
should also be evaluated.

For the indirect drive system with the fluid motion rectifier, Ebrahimi, Bolandhemmat [30]
believed that the fluid motion rectifier is heavy, expensive, and consumes too much energy. More
disadvantages were addressed by Crolla [73] who pointed out that not only will the fluid leakages and
raptures decrease the reliability, but also will they degrade the suspension performance which is limited
by the narrow excitation frequency bandwidth of the hydraulic/pneumatic system. Additionally, more
energy is dissipated with the increased temperature of the fluid.

Ultimately, considering the difference of the transducers of the different drive modes, it is
suggested in future studies to use the same generator constant or electromechanical coupling constant
so that the energy generating ability and the motor resistance force can be compared.

5. Hybrid System and Its Technologies

In addition to the direct drive system and indirect drive system, many innovations have been
proposed to combine the multiple drive modes together for improving both the reliability and
damping performance.

As shown in Figure 19, Singh and Satpute [81,82] proposed a dual cylinder system where the
main cylinder works as a shock absorber dampening the vibration through the vehicle suspension and
also providing the drive to the secondary cylinder for the velocity amplification. When the secondary
cylinder fails, the main cylinder will continue to operate as a passive damper. Considerable amount of
energy can be generated without compromising the ride comfort and the road handling performance.
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Figure 19. Hybrid dual cylinder regenerative suspension system and its prototype [82].

A more complex design was proposed by Xie, Li [51] shown in Figure 20. The secondary piston
driven by the main viscous piston has the rack and pinion mechanism. The DC generator is attached
at the bottom of the secondary piston to harvest energy. This layout improves the system reliability
with the fail-safe mode.
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Figure 20. The conceptual design of a hybrid regenerative shock absorber [51].

To further reduce the amount of dissipated energy due to the viscosity of the piston liquid, as
shown in Figure 21, Demetgul and Guney [83] developed a hydraulic regenerative shock absorber
that scavenges energy from both hydraulic fluid motion and shock body motion. Both the power
generated from the hydraulic piston generator and the linear generator can be used to charge the
energy storing devices.
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Figure 21. The cross-section of the hybrid regenerative shock absorber and its experimental setup [83].

Although most of the hybrid systems have the failsafe mode, the main drawback of the hybrid
systems is the low reliability brought by the complexity of the design that can potentially increase
the chance of failure. A large number of components can also dissipate additional amount of energy,
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resulting in lower power output in comparison with the direct drive system and indirect drive
system. In addition, the space constraint of the shock absorber makes the hybrid system less plausible.
The hybrid systems are summarized in Table 4 below.

Table 4. Summary of the hybrid system.

Presenter Mechanism Voltage
Output (V) Power Output(W) Vehicle (km/h) or

Excitation Frequency (Hz) Efficiency

Singh and
Satpute [81]

Hydraulic piston with linear
electromagnetic generator N/A 15 W 35 km/h on class C road 13%

Xie, Li [51]
Secondary piston with rack
and pinion to drive the
rotary generator

N/A 130 W (simulated) 120 km/h on class C road N/A

Demetgul and
Guney [83]

Combined linear
electromagnetic generator
and hydraulic rotary
generator

6 V
0.003 W for electromagnetic

generator, 0.56 W for
hydraulic generator

15 mm at 0.005 m/s N/A

6. Damping and Vehicle Dynamic Performance

Traditional shock absorbers utilize the viscosity of the fluid inside the cylinder to dampen the
vehicle suspension vibration, and the damping coefficient of the shock absorber can be changed by
tuning the size of the orifice. Whereas in the regenerative shock absorber where the kinetic energy is
converted into electrical energy, the damping effect is entirely or partially contributed by the energy
harvesting devices such as a generator.

6.1. Damping Performance of the Direct Drive System

The damping coefficient of a passenger vehicle quarter suspension is approximately 1500 Ns/m [84] and
8000–10,000 Ns/m for heavy duty vehicles [85]. According to Yan and Sun [86], equivalent damping
coefficient of the electromagnetic generator in the regenerative shock absorber can be expressed by
Equation (2) if the damping performance is entirely provided by the electromagnetic generator.

ceq =
k2

i
R

(2)

where ki is the product of the magnetic field intensity and coil length; R is the total electrical resistance.
Therefore, for a regenerative shock absorber with a damping coefficient of 1500 Ns/m on a passenger
vehicle suspension and a 10 Ω electrical resistance, the electromagnetic coupling coefficient is calculated
by Equation (2) and given by ki = 122.5 Tm which is a large value, meaning that it can only be realized
using multiple strong magnet arrays and a coil that has sufficient length. The packaging space of a
shock absorber is limited, thus making it difficult to provide enough damping performance with only
a direct drive system.

In order to meet the damping requirement of the shock absorber for vehicle dynamics, many
innovations have been proposed with an additional damper in parallel with the direct drive energy
harvester. Asadi, Ribeiro [45] proposed to have a viscous damper and a direct drive linear motor fused
together, shown in Figure 22. This design enables the regenerative shock absorber to have additional
damping performance provided by a hydraulic piston. Experimental results showed that a damping
coefficient of 1302–1520 Ns/m can be obtained for the regenerative shock absorber.

To further improve the damping performance of the shock absorber, Magnetorheological (MR)
fluids are applied to achieve variable damping control. Chen and Liao [24] developed a parallel
damper consisting of MR damper and electromagnetic generator, shown in Figure 23. The generated
power can then be utilized as the power supply for the MR current driver and sensors. A damping
force of 700 N can be achieved under 11mm excitation at 1Hz and simultaneously a maximum of 2 V
can be harvested. Damping force control algorithm can also be integrated in the MR energy harvesting
damper for optimum vibration control [43,46].
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Figure 23. The cross section of the Magneto-rheological regenerative damper and its damping force
against the displacement for applied currents.

6.2. Damping Performance of the Indirect Drive Systems

For the indirect drive systems, because of the presence of the speed amplifying mechanism,
the back electromagnetic force of the generator can be amplified to obtain larger damping. However,
one common problem exists in most of the indirect drive systems incorporated with a motion rectifier.
During half the time of the conversion from the bidirectional motion of shock body to the unidirectional
rotation of the generator, the mechanism becomes disengaged and the generator continues to rotate
due to inertia, resulting in the absence of the damping force in half of the motion cycle. The indirect
drive systems equipped with one overrunning clutch or one-way bearing tend to present such problem,
as shown in [55,57,76,79].
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To obtain the stable damping force throughout the entire motion cycle, the designs are upgraded
with two clutch systems [47,49,59]. These two clutches are installed facing each other on the drive shaft
and both connected with same output shaft. Therefore, when the drive shaft rotates in two directions,
one of the clutches will always remain engaged, as shown in Figure 24.Energies 2018, 11, x FOR PEER REVIEW  22 of 43 
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Figure 24. Continuous damping provided by the dual clutches system [49].

According to Zhang, Zhang [49], the damping force measured experimentally is shown in
Figure 25, it can be seen that the damping force applies for both compression and recoil phase
of the shock absorber with higher frequencies yielding higher damping force.
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Figure 25. Damping force versus shock absorber displacement for different excitation frequencies.

In the hydraulic indirect drive systems, the damping force can also apply throughout the whole
motion cycle shown in Figure 26, as a result of having flow resistance in both directions. Comparing
the direct drive with the indirect drive system, the latter has a larger damping coefficient than the
former as long as the damping is presented throughout the entire motion cycle. This damping effect
is caused by the friction loss of the speed amplifying mechanism and energy loss of the complex
mechanism operation. Therefore, a trade-off between the vibration control and energy harvesting
need to be reached through a control algorithm. The damping coefficient and force results of the
regenerative shock absorbers are compared and listed in Table 5 below.
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Table 5. The summary of the damping performance of the regenerative shock absorbers.

Presenter Mechanism Damping Coefficient Maximum Damping Force

Direct drive system

Sapiński, Rosół [43] Electromagnetic system N/A 520 N

Tang, Lin [31] Electromagnetic system 940 Ns/m N/A

Wang, Ding [44] Electromagnetic system 1320 Nm/s N/A

Asadi, Ribeiro [45] Electromagnetic system 1302–1540 Ns/m N/A

Chen and Liao [24] Combination of MR damper
and electromagnetic system N/A 700 N

Sapiński, Rosół [43] Combination of MR damper
and electromagnetic system N/A 520 N

Indirect drive system

Li and Zuo [48] Rack and pinion 1425 Ns/m N/A

Gupta, Jendrzejczyk [29] Rack and pinion 38.5 Ns/m N/A

Nakano [76] Ball-screw 7200 Ns/m N/A

Fang, Guo [67] Hydraulic system with 4 check
valves for rectification N/A 7343 N

Choi, Seong [77] Rack and pinion N/A 700 N

Zhang, Zhang [49] Rack and pinion, two
overrunning clutches 1637.2 Ns/m N/A

Chu, Zou [78] Rod and helical slot N/A 600 N

Wang, Gu [68] Hydraulic system N/A 10,000 N

Sabzehgar, Maravandi [79] Algebraic screw 237 Ns/m N/A

Liu, Xu [59] Ball screw with two one way
clutches 15,420 Ns/m N/A

Zhang, Zhang [80] DC generator connected to the
hydraulic actuator N/A 1450 N

Hybrid system

Singh and Satpute [81] Hydraulic piston with linear
electromagnetic generator 1898 Ns/m N/A
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7. Circuit and Control Algorithms for Enhancing Power Output and Vehicle Dynamics

The regenerative shock absorber system can generate power for electrical applications. Due to the
difference in the power requirement between the power generating element and the power receiving
element, the regulation and rectification are essential for the electrical circuits of energy harvesting and
storage. In addition, the control parameters may influence the dynamic performance of the vehicle
suspension system and energy dissipation performance [87]. Therefore control algorithms need to
be incorporated to improve vehicle dynamics and/or the energy harvesting ability by adjusting the
parameters according to the input excitation levels [88].

7.1. Power Maximization

Because the direct drive system has AC output and the indirect drive system has DC output,
to obtain the steady DC current for charging battery, many direct drive systems incorporated the
rectification bridges [2,44,89], as shown in Figure 27.
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Figure 27. Single bridge rectifier with Proportional-Integral controller (PI) (top) [44]; two bridge
rectifiers in series (bottom) [2].

A drawback of this layout is that a full wave rectified output is a pulsed DC and it is advisable to
add a reservoir capacitor for smoothing out the variations. An excessive number of diodes would also
consume electrical energy. Arroyo, Badel [90] proposed the Synchronous Magnetic Flux Extraction
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(SMFE) circuits with only two diodes, shown in Figure 28 Top. The SMFE circuit is suitable for
electromagnetic vibrational energy harvesting.Energies 2018, 11, x FOR PEER REVIEW  25 of 43 
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Figure 28. The Synchronous Magnetic Flux Extraction (SMFE) circuit (top) [90] and energy extraction
for different circuits (bottom) [91].

Based on the research conducted by Sanchez, Jodka [91] shown in Figure 28 Bottom, with the same
generator resistance, the SMFE method can extract higher amount of energy than that with a voltage
doubler circuit or full bridge rectifier. Another advantage brought by using the SMFE other than simply
using shunt resistance is that it also incorporates the rectification and amplification of the voltage, thus
increasing the efficiency of the electromagnetic energy harvester [92]. For the similar purpose, Dwari
and Parsa [93] proposed an alternating current to direct current (AC-DC) step-up converter that can be
applied on regenerative shock absorber to charge the battery, as shown in Figure 29. It consists of a
boost and buck boost converter connected in parallel and achieves an efficiency of 61% which is better
than that by using a conventional bridge rectifier.
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For the indirect drive system, due to the motion rectifier, the bidirectional to unidirectional
conversion of output voltage is no longer necessary. In many designs [80,83,94], the DC generator
is characterized by an internal inductance and a resistance, and is connected to a single external
resistance over which the power can be extracted, as shown in Figure 30. However, under the random
road excitations, in order to charge the energy storing devices, a regulator needs to be included in the
circuit as the generator voltage output needs to be regulated to steadily stay at a certain voltage level.
Therefore, many efficient DC-DC converters are proposed in accordance with the targeted output
ranges [95–97].Energies 2018, 11, x FOR PEER REVIEW  26 of 43 
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Figure 30. Electrical circuit of a hydraulic indirect drive regenerative shock absorber [80].

7.2. Vehicle Dynamic Control

In addition to energy harvesting, most regenerative shock absorber systems operate inversely
as a part of the active suspension system or semi-active suspension system when the external
power is applied [98]. Many studies have been done on how to improve vehicle dynamics with
the electromagnetic shock absorber [3,6–9,99–102].

Fukumori, Hayashi [52,103] conducted the experiments using coupled electromagnetic dampers
dampers that can tune the bouncing and rolling modal frequencies of the vehicle independently
through a variable external resistor, the schematic of which is shown in Figure 31. However, the voice
coil motor was used in the experiment instead of the originally proposed ball-screw regenerative shock
absorber system, therefore the energy harvesting performance was not able to be evaluated under the
condition where the ride comfort was optimized.
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Skyhook control strategy assumes that there is a dashpot of damping Csky on the top of the
sprung mass to dampen the vehicle body vibration from the road unevenness excitation [104]. Choi,
Seong [77] designed a suspension system based on the electrorheological fluid damper with skyhook
controller, the model of which is simulated to compare its simulation results with the experimental
results in terms of attenuating vibration. It was found that the skyhook controller powered by
the regenerative shock absorber system can significantly reduce the vibration. Ding, Wang [89]
implemented Skyhook controller in the active control mode for vibration isolation. Hsieh, Huang [105]
proposed the concept where a switched-mode rectifier (SMR) was used to provide positive or negative
damping by implementing a skyhook control strategy, as shown in Figure 32. The results showed
that the SMR can provide electrical damping based on the skyhook response outcome to achieve the
balance between the passive control and the active control. His later research also indicated that the
SMR can improve the harvesting efficiency for up to 14% [106].Energies 2018, 11, x FOR PEER REVIEW  27 of 43 
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Figure 32. Regenerative suspension dynamic model and configuration of switched-mode rectifier
(SMR).

7.3. Balance between the Energy Harvesting and Vehicle Dynamic Performance

Due to the contradiction between the energy harvesting and ride comfort, compromises have
been made for the balance of the ride comfort, road holding and power generation. Ataei, Asadi [107]
provide all the possible solutions as Pareto front by prioritizing one of the three objectives. It is shown
that the optimized system can deliver better comfort and handling than the non-optimized system.
Similar method was adopted by Clemen, Anubi [108] for obtaining the best trade-off between the
objectives. For the same purpose of finding the best trade-off between vehicle dynamic performance
and energy harvesting, Casavola, Di Iorio [109] proposed the maximum induced power control (MIPC)
algorithm that can improve the energy harvesting ability without sacrificing the other objectives.
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The concept of mode switching was also introduced to harvest the energy without compromising
the ride and comfort performance. Zheng, Yu [53] proposed a system featuring the mode switching
operation, namely, the electric motor mode and regenerative braking mode. In the electric motor mode,
the optimal ride and comfort performance can be achieved through the active control by tuning the
external circuit; in regenerative braking mode, the system can harvest energy while improving the ride
and comfort performance. This operation can be achieved through the H bridge switching between the
regeneration/actuation mode, one example of the operation is shown in Figure 33 [110]. Nakano [76]
and Nakano, Suda [111] proposed another mode switching system featuring regeneration mode, drive
mode and brake mode, allowing the system to respond instantly to the stroke velocity, as shown in
Figure 34. The possibility of powering the actuator in the motor mode utilizing the power generated
in the regenerative mode was also discussed and it was concluded that this self-power operation
is somewhat achievable even though the actuation force is slightly insufficient. This combination
of vibration control and energy harvesting is called regenerative vibration control, which can be
used in regenerative building vibration controls [112–116] and vehicle regenerative shock absorber
systems [117,118]. The control algorithms are summarized in Table 6 below.Energies 2018, 11, x FOR PEER REVIEW  28 of 43 
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Table 6. The summary of the control algorithms of the regenerative shock absorbers.

Presenter Drive Mode Electrical Circuit and Control Algorithm Results

Fukumori, Hayashi [52] Indirect drive Independent damping control circuit Reduced pitch angle

Yu, Huo [119] Indirect drive PI controller
Reduced suspension acceleration,
pitch angle, normal force and
increased power output

Nakano [76] Indirect drive Regeneration mode and drive mode Active control and self-power

Choi, Seong [77] Indirect drive Skyhook controller Reduced suspension travel and
settling time

Zheng, Yu [53] Indirect drive Electrical motor mode and regenerative
braking mode controlled by PWM Optimum ride comfort

Kawamoto, Suda [54] Indirect drive PI controller Reduced sprung mass acceleration
and tire deflection

Wang, Ding [44] Direct drive active comfort mode, active safety mode and
regeneration mode, PI controller

Reduced cabin acceleration and
dynamic tire load in active mode

Singh and Satpute [81] Hybrid Harvesting mode and shunt mode controlled
by two switches and a resistance

Energy can be either harvested or
dissipated as heat

Huang, Hsieh [120] Indirect drive Switch-mode rectifier Tuneable damping coefficient

Zhang, Li [104] Indirect drive Skyhook controller
Reduced sprung mass acceleration,
suspension deflection and tire
dynamic

Sapiński, Rosół [43] Direct drive On-off algorithm or skyhook controller
Less force and less transmissibility
obtained with skyhook controller
than with on-off algorithm

Liu, Li [98] Direct drive Fuzzy control
Reduced amplitude of suspension
dynamic flexibility, tire dynamic
displacement

Ding, Wang [89] Direct drive Passive generation mode, active control mode
with skyhook controller

Better vibration isolation in the
active control mode

Sabzehgar, Maravandi [79] Indirect drive PWM control Conversion of three phase power
output for charging the battery

8. Road Excitation Input

In order to evaluate the regenerative shock absorber, a certain road excitation input needs
to be applied so that the output response of the system can be analyzed. Sinusoidal signal, step
signal and random signal have been utilized by many researchers to simulate the road displacement
excitation input.

8.1. Sinusoidal Displacement Excitation Input

Sinusoidal displacement excitation input has been widely applied to simulate the excitation input
because it presents a certain excitation frequency. For a linear regenerative suspension system, its
natural resonant frequencies can be targeted to maximize power output and the harvesting efficiency.
According to Wang, Liang [121], given the input excitation frequency, the power input and output
can be calculated to give system energy harvesting efficiency. With the sinusoidal road displacement
excitation input, the voltage output appears to be sinusoidal, which can be rectified into DC voltage.

8.2. Step Input

The use of a step signal as the road displacement excitation input can evaluate the regenerative
shock absorber’s vibration response time and attenuation ability, thus giving the idea of how the vehicle
responses to a single road bump. In their paper, Li and Zuo [122] compared the vehicle responses to a
10 mm step road displacement excitation for the vehicle suspension fitted with three regenerative shock
absorbers in terms of weighted acceleration, dynamic/static tire force ratio, suspension deflection,
harvested power and damping force.
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8.3. Road Displacement Profile

In addition to the sinusoidal and step input, the road class model has also been applied to the
regenerative shock absorber based on its roughness classification since the road roughness has a
significant impact on the power dissipated in the shock absorber [123]. Goldner, Zerigian [42] included
the road profile in the experiment by using a rotating wheel with a bump. However, this setup cannot
fully resemble the real road condition which has a more random displacement profile. In order to
evaluate the performance of the regenerative shock absorber on different road conditions, the road
model and its classification were introduced to conduct the simulation accurately. According to
ISO-8608, A to H are used to classify the roads [124]. Many authors have incorporated road models
with the classifications in the simulation as the input excitation [50,120,125,126].

The power spectral density (PSD) functions of the road displacement input are given by: Gd(n) = Gd(n0) ·
(

n
n0

)−2

Gd(Ω) = Gd(Ω0) ·
(

Ω
Ω0

)−2 (3)

where Gd(n) and Gd(Ω) are the PSD functions of the vertical displacements which are functions of
spatial frequency n and of angular spatial frequency Ω. Gd(n0) and Gd(Ω0) are given in Table 7 below
corresponding to the road classifications.

Table 7. ISO 8608 values of Gd(n0) and Gd(Ω0) [125].

Road Class Gd(n0) (10−6 m3) Gd(Ω0) (10−6 m3)

Lower Limit Upper Limit Lower Limit Upper Limit

A — 32 — 2
B 32 128 2 8
C 128 512 8 32
D 512 2048 32 128
E 2048 8192 128 512
F 8192 32,768 512 2048
G 32,768 131,072 2048 8192
H 131,072 — 8192 —

n0 = 0.1 cycles/m Ω0 = 1 rad/m

Kawamoto, Suda [54] developed the PSD of the road elevation profile shown in Figure 35.
The road profile equivalent to level C was generated with random roughness and used in the simulation
as an input source. The PSD functions of the bounce and pitch road displacement input profiles were
developed by Nakano [76], taking into consideration of the time delay between the wheels due to the
vehicle travelling, as shown below: P0b( ft) =

vR
ft2 cos2

(
ft
v π
(

l f + lr
))

P0p( ft) =
4vR

(l f +lr)
2

ft2
sin2

(
ft
v π
(

l f + lr
)) (4)

Xie, Li [51] compared the output power of the regenerative shock absorber under the different
road classes, shown in the Figure 36. The result showed that the more pronounced the road roughness
is, the more the power output at certain vehicle velocities.
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8.4. Road Test

Road test is the most straightforward and simplest way to demonstrate the performance of the
shock absorber in the real world. The accelerometers were mounted on the sprung mass and unsprung
to pick up the acceleration signals and data acquisition device was placed in the vehicle cabin to record
the test data. A double clutch ball screw based regenerative shock absorber designed by Liu, Xu [59]
was tested on a Ford F250 in place of the traditional oil damper, as shown in Figure 37. The vehicle
was driven at 64 km/h on the paved road, it is shown that with a 10 Ω external resistance, the total
power output was in phase with the voltage output and an average of 13.3 W could be harvested over
8 s. As shown in Figure 38, a similar test was conducted by Li, Zuo [127] to assess the feasibility of
the proposed regenerative shock absorber, an average of 15.4 W could be harvested over 8 s with a
20 Ω external resistance, when the vehicle was driven at 24 km/h on a circled campus road. It is also
indicated that the power output was out of phase with the road displacement, which means that in
addition to the excitation displacement amplitude, the excitation displacement phase could also affect
the power output.

In order to evaluate the results in the frequency domain, Liu, Li [98] proposed to have the
regenerative shock absorber installed on a self-made electric vehicle driven at 20 km/h on a Class
B road, as shown in Figure 39. In the road test, the comfort levels of the passive damper and the
proposed regenerative damper with the Variable Universe Fuzzy (VUF) control were compared and
the results are shown in the frequency domain. It can be seen that the VUF control lowered the vehicle
body acceleration and such reduction was more obvious at the resonant frequencies.
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Figure 39. Road test set up of an active energy-regenerative suspension (AERS) and its body
acceleration in the frequency domain at 20 km/h on Class B road.

9. Nonlinearity

Due to the nature of the linear regenerative vehicle suspension, more energy can be harvested
at the resonant natural frequencies. Figure 40 is an example of the frequency spectrum of the power
generation in a quarter vehicle regenerative suspension system [128]. One of the drawbacks of the
linear regenerative vehicle suspension is that the resonant peak frequency bandwidth is really narrow,
resulting in very little energy that can be regenerated [129]. The use of nonlinear spring can broaden
the energy harvesting bandwidth or shift the modal resonant frequency to achieve higher power, which
is especially suited for energy harvesting from random vibration [130]. For these purposes, many
researchers have studied nonlinear system model that can be adopted for the regenerative vehicle
suspension system [131–135].
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Figure 40. Frequency spectrum of the power generation in a quarter vehicle regenerative
suspension system.

A magnetic levitation energy harvesting device was proposed by Mann and Sims [136] and
shown in Figure 41. The mathematical model could be obtained using the Duffing equation and it
was found that the nonlinearity was applicable to larger excitation displacement amplitude, resulting
in a broader harvesting frequency bandwidth. The peak power could be obtained away from the
equivalent resonant frequencies. Gao, Wang [137] proposed the similar magnetic levitation system
for harvesting energy from rail and bogie as shown in Figure 42. Another interesting innovation was
brought by Barton, Burrow [129] who further increased the bandwidth by changing the load resistance.



Energies 2018, 11, 1167 34 of 43

It was also discovered that the nonlinearity presents super-harmonic resonances well above the natural
frequencies of the equivalent linear system, allowing the system to respond at a frequency higher
than the excitation frequency. This up-frequency conversion could be useful for the low frequency
operation such as a vehicle suspension system.
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Figure 41. Nonlinear magnetic levitation energy harvesting system and its frequency spectrum of
oscillator velocity.
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There have been a number of suspension system designs that incorporate the nonlinearity model
due to its advantages in prediction of vehicle dynamics. Özcan, Sönmez [138] evaluated the nonlinear
spring and nonlinear damper in the half car system to optimize the comfort and the handling of the
light vehicle. Similar dynamic study was conducted by Cui, Kurfess [139] on the shock absorber in a
Mazda CX-7, the test result clearly showed that the nonlinearity was involved in the operation shown
in Figure 43. The stability and comfort of the vehicle could be improved by this nonlinearity.
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Although the concept of the nonlinearity model has been largely applied on the vehicles to predict
vehicle vibration response due to the road profile excitation, there have not been many investigations
undertaken for the nonlinear model of the vehicle suspension system built with the regenerative shock
absorber in terms of harvesting energy, which can be identified as a research gap and should draw
more attention considering the potentials of the regenerative shock absorber and its readiness to be
implemented. The potential advantages of the nonlinear regenerative shock absorbers are:

1. Widening the frequency bandwidth for harvesting more energy on the random road surface.
2. Shifting the harvesting frequency away from the vehicle equivalent resonant frequency for

better reliability.
3. Converting the low road excitation frequency into high energy harvesting frequency.
4. Better ride comfort and road handling.

10. Future Direction for Regenerative Shock Absorbers

The rapid developments of the new technologies have improved the feasibility of the regenerative
shock absorber. In order to be implemented onto the vehicle, a regenerative shock absorber needs
to meet the requirements for the power output, energy harvesting efficiency and vehicle dynamic
control. The current regenerative shock absorbers pose some disadvantages, which many authors have
attempted to address both mechanically and electrically. Each step forward in the research area would
bring them closer to the implementation reality and their sustainability.

The current limitation of the direct-drive regenerative shock absorbers is the constraint of the
packaging space. Because the coil speed with respect to the magnets cannot be amplified, the magnets
and coils have to be large enough to obtain large electromechanical coupling constant. The main
limitation of the indirect-drive regenerative shock absorber is that the complexity of the motion
conversion mechanism can affect the vehicle dynamics, resulting in poor handling or discomfort.
Therefore, it is suggested that the future design of the regenerative shock absorber should incorporate
more efficient magnets, and the coil setup is preferably outside the magnets, and the damping should
be presented in both compression phase and the recoil phase of the shock absorber motion. It is also
expected that the mechanism needs to be less complicated to reduce the friction energy loss. For the
regenerative shock absorber containing hydraulic/pneumatic system, the response time needs to be
reduced to obtain the instant control of the vehicle.

Many researches have been done focusing on improving the performance of the regenerative
shock absorbers, however, the integration with the vehicle has not been addressed enough yet. In the
future research, it is recommended that dynamic model of the full vehicle needs to be considered
as the platform for the regenerative shock absorbers, since the evaluation based on the full vehicle
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suspension system is more accurate and closer to the reality. Based on the full vehicle suspension
system model, a nonlinear suspension can also be studied for its advantages in broadening the energy
harvesting bandwidth.

Active control is another area to be researched. Due to the contradiction between the energy
harvesting and vehicle dynamic control performances, a control algorithm is needed to make a
compromise between both the performances in accordance with the condition of the road surface and
driver’s demand. A power generating element can be used reversely as an actuation element when
the active control becomes the priority and vice versa. Ideally, a balance point can be identified by
the control system. As a result, the self-powering can be achieved intellectually where the energy
harvested at the regeneration mode of the transducer is enough to power the actuation mode. Hence,
future research should concentrate more on the active control algorithm and its incorporation with the
energy harvesting.

11. Our Contributions

Our group has started the research work of the electromagnetic vibration energy harvesters
since 2014 [140]. The time domain and frequency analysis approaches have been applied to solve the
system equations[121,140,141]. The performance of electromagnetic vibration energy harvesters have
been analyzed and optimized in dimensionless forms and compared with that of the piezoelectric
vibration energy harvesters for different interface circuits [140,142–144]. Coupling loss factor of
linear vibration energy harvesting systems in a framework of statistical energy analysis has been
defined [140,144,145], the frequency ranges to enable statistical energy analysis of the electromagnetic
vibration energy harvesters have been identified [140,145]. The relationships of coupling loss factor,
dimensionless force factor, critical coupling strength, coupling quotient, electro-mechanical coupling
factor, damping loss factor and modal densities have been established. The relationship of vibration
energy harvester performance with dimensionless force factor has been disclosed. Numerical
ranges of the dimensionless force factor have been defined for cases of weak, moderate and strong
coupling [140,144]. The 2DOF vehicle quarter suspensions with piezoelectric and electromagnetic
vibration energy harvesters have been studied where a dimensionless analysis method was proposed
to predict the output voltage and harvested power for a 2DOF vibration energy harvesting system.
This method allows us to compare the harvesting power and efficiency of the 2DOF vibration energy
harvesting system and to evaluate the harvesting system performance regardless of the sizes or
scales [11,141]. The quarter vehicle suspension system with linear regenerative electromagnetic shock
absorber was simulated using Matlab® and Simulink®. The prototyped regenerative shock absorbers
have been built and tested. The simulation model was established and validated via experiments.
The validated simulation model was then used for the analysis of the system parameter sensitivity.
The sensitivity analysis then led to the design optimization which allowed to maximize the vibrational
energy harvesting [141].

12. Conclusions

The potential in converting vibration energy into electrical energy through the shock absorber
is promising and rewarding and can make the vehicle more sustainable by consuming less amount
of fuel.

In this paper, the recent technologies involved in regenerative shock absorber systems have been
reviewed and categorized mainly into three types based on the conversion mechanisms: direct drive,
indirect drive and hybrid. Their comparisons have been presented to understand the advantages
and disadvantages in terms of conversion efficiency and compatibility. Damping performance of the
regenerative shock absorber has been evaluated based on the drive modes as it is the original and
basic function of the shock absorber.

In addition to the mechanical mechanism, electrical circuit and control algorithm are also the key
components of the regenerative shock absorber system and can largely affect the overall performance.
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With the proper control system, a balance state can be reached between the energy harvesting and
vehicle dynamic control to obtain a better overall performance. A comprehensive review has also
been conducted on each type of the road profile excitation inputs. This paper also presents the current
technologies of the nonlinear models that are applicable onto the shock absorber system. It can thus
be suggested that the efficiency evaluation of the drive modes and the nonlinear analysis of the
regenerative shock absorber should be the focus of the research in the near to medium future. Finally,
the recent works of our group have also been outlined to demonstrate the original contributions in
this field.

Author Contributions: Resources and writing: Ran Zhang; Supervision: Xu Wang; Review & Editing: Xu Wang
& Sabu John.

Acknowledgments: Authors would like to thank Australian Research Council Linkage Project grant LP160100132
for funding support.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

B magnetic field intensity
L total coil length of the electromagnetic generator
Bl the product of B and l or electromechanical coupling
U voltage harvested over the external resistance
V coil speed with respect to the magnets
Ceq equivalent damping coefficient
Ki motor constant or electromechanical coupling
R external resistance
N special frequency
Ω angular spatial frequency
Gd(n) the vertical displacement with respect to the spatial frequency n
Gd(Ω) the vertical displacement with respect to the angular spatial frequency Ω
Gd(n0) the vertical displacement when n0 = 0.1 cycle/m
Gd(Ω0) the vertical displacement when Ω0 = 1 rad/m
Pob Power spectral density of bounce
Pop Power spectral density of pitch
fs spatial frequency
lf distance between centre of gravity of the vehicle and the front bumper
lr distance between centre of gravity of the vehicle and the rear bumper
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