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a b s t r a c t 

Image segmentation is an important stage for object recognition. Many methods have been proposed in 

the last few years for grayscale and color images. In this paper, we present a deep review of the state 

of the art on color image segmentation methods; through this paper, we explain the techniques based 

on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. 

Because color spaces play a key role in the methods reviewed, we also explain in detail the most com- 

monly color spaces to represent and process colors. In addition, we present some important applications 

that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evalu- 

ate quantitatively the segmented images is shown. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Image segmentation is one of the most important object recog-

ition stages for artificial vision systems. Image segmentation is

efined as the union of sets that contains the pixels coordinates

ith an specific feature; in other words, let I s = ∪ 

n 
i =1 

R i be the seg-

ented image, such that ∩ 

n 
i =1 

R i = ∅ , where n is the number of

egments and R k = 

{
(i, j) ∈ N 

2 | I(i, j) = δk 

}
, being I ( i, j ) the value

f the pixel located in ( i, j ) of the input image I and δk is the kth

hreshold value [25] . That is, the segmentation consists on group-

ng the pixels according to specific features of the object to recog-

ize; such as texture, shape, color, among others [173] . Segmen-

ation of images by color features has been addressed or stud-

ed recently. The algorithms for color image segmentation have

een developed because color features may provide relevant data

bout the objects within the image. These algorithms have been

pplied in different areas such as medicine [9,55,127,160,193] and

ood analysis [47,108,111] , among others [7,14,33,74,137,169,174] . 

Many of the techniques developed for image segmenta-

ion in gray scale have been extended for color images

34,95,114,147,158,172,197] ; however, such techniques cannot be al-

ays successfully applied, because they are designed to process
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ainly the intensity of the colors without considering the chro-

aticity. Therefore, the algorithms for color image segmentation

ust be developed taking into account the characteristics of color.

or color processing, it is important to select an adequate mathe-

atical representation of color, such that all the features of color

an be processed independently; basically, the most important fea-

ures of color are intensity and chromaticity [49] . There are differ-

nt color spaces to represent color; selecting a color space depends

n its characteristics, the way the color is contemplated to be pro-

essed and the nature of the method employed for color process-

ng. For instance, the RGB color space is adequate for image dis-

laying, but not for color processing, because the intensity is not

ecoupled from the chromaticity. Thus, in this paper we present

he color spaces more often used in related works, the character-

stics of these color spaces are described and we compare their

dvantages and disadvantages. An important part of the segmen-

ation stage is the quantitative evaluation of the segmented image.

o far, there have not been defined standard metrics for quanti-

ative evaluation of color image segmentation. Therefore, in this

urvey we present a set of metrics for quantitative evaluation of

olor image segmentation; these metrics are often employed to

valuate quantitatively the segmentation of color images The rest

f this paper is divided as follows: in Section 2 the most common

olor spaces employed for image segmentation are presented; in

ddition their characteristics, advantages and disadvantages are de-

cribed. In Section 3 the segmentation techniques for color images

f previous works are introduced and reviewed. In Section 4 a set
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Fig. 1. RGB space represented as a unit cube. 

Table 1 

Color spaces employed for color image segmentation in different works. 

Color space References 

RGB [8,22,30,51,68,72,94,106,108,119,136,142,146,157,165,170] 

HSV [30,67,69,100,105,118,137,150,189] 

HSI [30,67,69,100,105,118,137,150,189] 

L ∗a ∗b ∗ [22,30,66,81,94,139,185] 

L ∗u ∗v ∗ [30,125,155,160,165,191,193] 

YUV [23,26,27,80,181,186] 

YCbCr [44,80,105,109,143,145] 

Table 2 

Usual colors and their corresponding red, green and blue values. 

Color R G B 

Black 0 0 0 

Red 1 0 0 

Yellow 1 1 0 

Green 0 1 0 

Cyan 0 1 1 

Blue 0 0 1 

Magenta 1 0 1 

White 1 1 1 

Gray 1 
2 

1 
2 

1 
2 

Table 3 

Usual colors and their corresponding hue, saturation and value parameters. 

Color H S V 

Black Undefined 0 0 

Red 0 1 255 

Yellow 

π
3 

1 255 

Green 2 
3 
π 1 255 

Cyan π 1 255 

Blue 4 
3 
π 1 255 

Magenta 5 
3 
π 1 255 

White Undefined 0 255 

Gray Undefined 0 127 

Table 4 

Usual colors and their corresponding hue, saturation and intensity parameters. 

Color H S V 

Black Undefined 0 0 

Red 0 1 255 

Yellow 

π
3 

1 255 

Green 2 
3 
π 1 255 

Cyan π 1 255 

Blue 4 
3 
π 1 255 

Magenta 5 
3 
π 1 255 

White Undefined 0 255 

Gray Undefined 0 127 
of metrics widely used for quantitative evaluation of color image

segmentation are presented. Section 5 shows some applications of

color image segmentation. Finally, Section 6 closes the paper with

conclusions. 

2. Color spaces 

The goal of a color space is to ease the specification of colors

within a tridimensional coordinated system, or form a subspace of

the system where every color is represented by a unique point.

Most of the color spaces employed are oriented to hardware de-

vices, such as monitors, printers, or applications for color manip-

ulations, like creation of graphics for animation. The usual mod-

els oriented to hardware are RGB (red, green, blue) for monitors

and video cameras; CMY (cyan, magenta, yellow) for printers, and

YIQ (where Y is brightness and I and Q are chromatic components)

which is the standard for television [49] . 

In the literature, the color spaces for color image processing are

the following: RGB, HSV (hue, saturation, value), HSI (hue, satura-

tion, intensity), L ∗a ∗b ∗, L ∗u 

∗v ∗, YUV and YCbCr. Table 9 shows the

color spaces employed in different previous works to represent and

process colors. 

The RGB space is adequate for color displaying, for instance, it

is widely employed for television systems and image acquisition;

although this is space is often employed for color recognition, the

RGB space is not suitable for segmentation or color processing, be-

cause of the high correlation between the components R, G and

B. There are other spaces that do not have this problem, but they

have their respective disadvantages. Next we present the features

of the RGB, HSV, HSI, L ∗a ∗b ∗, L ∗u 

∗v ∗, YUV and YCbCr color spaces;

as well as, the equations to map colors between the RGB space and

the color spaces mentioned. 

2.1. RGB space 

In this space every color is represented with the spectral com-

ponents of red, green and blue. The origin of this model can be

found in television technology, and it can be considered as the

fundamental representation of color for computers, digital cameras

and scanners; but also, for image storage. Most of the software de-

veloped for image processing and graphics employ this model. In

the RGB model the combination of colors is based on the addition

of the individual components considering as base the black color.

The process can be considered as the combination of three rays

of color red, green and blue. The intensity of the different compo-

nents of color determines both the hue and the brightness of the

resulting color [49] . The shape of the RGB space is a cube, whose

coordinates correspond to the three basic colors: red (r), green (g)

and blue (b). The values of each component are in the range [0,

255] ⊂ � , where every possible color corresponds to a point within

the cube; but, usually the range of values of each color compo-

nent are normalized to the range [0, 1]; hence, space color is rep-

resented as the unit cube shown in Fig. 1 . 

The colors red, green and blue constitute the coordinate axis;

different colors are obtained by combining the values of the coor-

dinate axis. Table 2 shows the combination values of the axis for

usual colors. 

The RGB space is a simple model, in several studies it is em-

ployed for color processing or when it is necessary to transform

colors to a different color space. 

2.2. HSV space 

In the HSV space, the color is represented with the components

hue (h), saturation (s) and value (v). Hue is the chromatic feature

that describes a pure color; for instance, yellow, orange, red, etc.
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Table 5 

Usual colors and their corresponding L ∗ , a ∗ and b ∗ parameters. 

Color L ∗ a ∗ b ∗

Black 0 0 0 

Red 100 128 128 

Yellow 100 0 128 

Green 100 −127 128 

Cyan 100 −127 0 

Blue 100 −127 −127 

Magenta 100 128 0 

White 100 0 0 

Gray 50 0 0 

Fig. 2. HSV color space. 
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Fig. 3. HSI color space. 
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aturation is a measure of how the hue is diluted in white light;

alue is the intensity or brightness of the color. The HSV space has

wo important features [49,69] : 

1. The intensity component, value, is decoupled from the hue

data; 

2. The hue and saturation components emulate the human per-

ception of color. With these features the HSV space becomes

a useful tool to develop image processing algorithms based on

some properties of the human color perception. 

The hue is in the range [0, 2 π ] ⊂� ; saturation is in the real

ange [0, 1], while value is often in the range [0, 255] ⊂ � . The HSV

pace is cone shaped, as shown in Fig. 2 . Geometrically, the radius

nd the height of the cone represent the saturation and value com-

onents, respectively. 

Note that for colors black, white and gray, the hue parameter

s undefined, due to these colors are considered as singularities

ithin this color space; because they do not have a specific chro-

aticity. 

.3. HSI space 

The HSI space, represented with the components hue (h), sat-

ration (s) and intensity (i), is very similar to the HSV space. De-

pite the similarity, computing their components, hue, saturation

nd the intensity, is different with respect to how same compo-

ents are obtained in the HSV space. The ranges of the components

re the same than the ranges of the components of the HSV space.

hat is, the hue is in the range [0, 2 π ] ⊂� ; saturation is in the

eal range [0, 1], while intensity is in the range [0, 255] ⊂ � . The
SI space is double cone shaped, as shown in Fig. 3 . Geometrically,

he radius and the height of the cone represent the saturation and

ntensity components, respectively [49] . 

For both spaces HSV and HSI, the same hue and saturation pa-

ameters are employed to represent colors, except for brightness,

here in each space the parameters are different. 

.4. CIE XYZ space 

The standard model XYZ, developed by the Comisin Interna-

ionale dclairage, is the base of most of the calibrated color models

mployed nowadays. The calibrated color models are employed to

eproduce the colors independently of the display devices. Several

roblems happen because there is a strong dependence between

he device and the reproduction of images. All the color spaces

escribed before are related to the physic measures of the output

evices employed to display images; for instance, the configurable

arameters of a laser printer. The color model is developed by sev-

ral measures performed under strict conditions. The model con-

ists of three basic colors X, Y and Z; they are selected such that,

hrough positive components all the colors and combinations can

e described. This space is perceived as no linear by humans. That

s, in some parts of the space, huge color changes are produced

efore little position variations; while in other parts of the space

appens the opposite, little color changes are experimented for

arge position changes [49] . Thus, variations of the CIE model have

een developed for different kinds of applications, or to repre-

ent the colors such that it mimics the human perception of color.

xamples of CIE variations are the spaces YUV, YCbCr, L ∗u 

∗v ∗and

 

∗a ∗b ∗; in this study we address the spaces L ∗u 

∗v ∗, L ∗a ∗b ∗, YUV

nd YCbCr because they are often employed for color image pro-

essing. 

.4.1. CIE L ∗a ∗b ∗ space 

This color space is developed considering linearizing the tonal-

ty changes, where the colors are defined by three variables: L ∗ is

he intensity, a ∗ and b ∗ are the tonality components [49,66] . The

alue of a ∗ defines the distance through red-green axis, while the

alue of b ∗ defines the distance through the blue-yellow axis. Usu-

lly a ∗ and b ∗ are in the ranges [ −127 , 128] ⊂ � and L ∗ in the range

0, 100] ⊂� . 

The shape of this space is similar to the RGB space, but the

ocation of colors is different, see Fig. 4 . 

Note that in this space, similarly to the HSV and HSI spaces, the

ntensity is decoupled from the chromaticity, mimicking the way
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Fig. 4. L ∗a ∗b ∗ color space. 

Table 6 

Usual colors and their corresponding L ∗ , u ∗ and v ∗ parameters. 

Color L ∗ u ∗ v ∗

Black 0 0 0 

Red 53 175 37 

Yellow 94 7 106 

Green 84 −83 107 

Cyan 88 −70 −15 

Blue 29 −9 −130 

Magenta 57 80 −108 

White 100 0 0 

Gray 50 0 0 

Table 7 

Usual colors and their corresponding Y, U and V parameters. 

Color Y U V 

Black 0 0 0 

Red 0.299 −0.147 0.615 

Yellow 0.886 −0.436 0.1 

Green 0.587 −0.289 −0.515 

Cyan 0.701 0.147 −0.615 

Blue 0.114 0.436 −0.1 

Magenta 0.413 0.289 0.515 

White 1 0 0 

Gray 0.5 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Usual colors and their corresponding Y, Cb and Cr parameters. 

Color Y Cb Cr 

Black 0 0 0 

Red 0.299 −0.169 0.5 

Yellow 0.886 −0.5 0.081 

Green 0.587 −0.331 −0.419 

Cyan 0.701 −0.831 −0.5 

Blue 0.114 −0.5 −0.081 

Magenta 0.413 −0.669 0.419 

White 1 −1 0 

Gray 0.5 −0.5 0 
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b  
the humans perceive the colors [69] . But also, because of the tonal-

ity changes are linear, the chromaticity differences can be com-

puted using the Euclidean distance. 

2.4.2. CIE L ∗u ∗v ∗ space 

This space is similar to the CIE L ∗a ∗b ∗ space, where the colors

are represented by the intensity component L ∗ and the chromatic

components u ∗ and v ∗ [49] . Usually u ∗ and v ∗ are in the ranges

[ −175 , 175] ⊂ � and L ∗ in the range [0, 100] ⊂ � . Table 6 shows the

parameters for luminance, and chromaticity for usual colors. 

2.4.3. YUV and YCbCr color spaces 

The YUV and YCbCr color spaces are employed to standardize

the images for television. The YUV space is the base for color cod-

ing for NTSC system; while the YCbCr is the standard for digi-

tal television. In these models the components that define them

feature three planes: the luminance (Y) and the other two called

chrominance components, (UV and CbCr for spaces YUV and YCbCr,

respectively) [49] . Table 7 shows the luminance and chrominance

parameters for usual colors for the YUV space. 

Due to humans are not able to distinguish sharpness with high

precision in colors, and also humans are more sensitive to bright-

ness, the bandwidth can be reduced considerably for the definition

of the color components. This feature is employed by the color
ompression algorithms; for instance, as a part of the compres-

ion algorithm for the JPEG format, the RGB colors are mapped

o the YCbCr space. However, the YCbCr space is widely employed

or image processing, mainly for compression applications, the YUV

odel is less used. Table 8 shows the luminance and chrominance

aramaters for usual colors for the YCbCr space. 

.5. Transformations between color spaces 

As mentioned before, the hardware devices employed for image

cquisition and display, employ the RGB space to represent colors.

herefore, it is necessary to map the colors to the color spaces pre-

ented above, in order to process the colors under the features of

uch color spaces; and then, to map the resulting colors to the RGB

pace so as to display the result of processing. In this section, we

resent the equations to map the RGB colors to the color spaces

entioned before, as well as the inverse mapping [25,49] . 

.5.1. Mapping between RGB and HSV spaces 

Mapping a RGB color to the HSV space involves the following

perations. Let ϕ = [ r, g, b] be the RGB color vector, and φ = [ h, s, v ]
he resulting vector by mapping ϕ to the HSV space. The hue, sat-

ration and value are computed with: 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

und e f ined , r = g = b 

cos −1 

( 
( r − g ) + ( r − b ) 

2 

√ 

( r − g ) 
2 + ( r − b ) ( g − b ) 

) 
, otherwise 

(1)

 = 

{
θ, b ≤ g 
2 π − θ, b > g 

(2)

 = 

{ 
0 , max (r, g, b) = 0 

1 − min (r, g, b) 

max (r, g, b) 
, otherwise 

(3)

 = max (r, g, b) (4)

The inverse operation, in other words, mapping HSV color vec-

or φ = [ h, s, v ] to the RGB space involves the following operations.

If h = und e f ined then r = v , g = v and b = v ; otherwise: 

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

q, k = 1 

p, 2 ≤ k ≤ 3 

t, k = 4 

v , otherwise 

(5)

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

t, k = 0 

v , 1 ≤ k ≤ 2 

q, k = 3 

p, otherwise 

(6)

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

p, 0 ≤ k ≤ 1 

t, k = 2 

v , 3 ≤ k ≤ 4 

q, otherwise 

(7)
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here 

 = 

⌊ 
3 

π
h 

⌋ 
(8) 

f = 

3 

π
h − k (9) 

p = v × (1 − s ) (10)

 = v × ( 1 − (s × f ) ) (11) 

 = v × ( 1 − (s × (1 − f )) ) (12) 

.5.2. Mapping between RGB and HSI spaces 

Mapping a RGB color to the HSI space involves the following

perations. Let ϕ = [ r, g, b] be the RGB color vector, and ψ = [ h, s, i ]

he resulting vector by mapping ϕ to the HSI space. The hue is

omputed with Eqs. (1) and (2), while saturation and intensity are

omputed with: 

 = 1 − min (r, g, b) 

i 
(13) 

 = 

r + g + b 

3 

(14) 

The inverse operation, in other words, mapping HSI color vector

 = [ h, s, i ] to the RGB space involves the following operations. If

 = und e f ined then r = i, g = i and b = i else: If 0 ≤ h < 

2 π
3 then 

 = i (1 − s ) (15)

 = i 

⎡ 
⎣ 1 + 

s cos h 

cos ( 
π

3 

− h ) 

⎤ 
⎦ (16) 

 = 3 i (1 − r − b) (17)

If 2 π
3 ≤ h < 

4 π
3 then 

 = i (1 − s ) (18)

 = i 

⎡ 
⎢ ⎣ 1 + 

s cos 

(
h − 2 

3 

π
)

cos (π − h ) 

⎤ 
⎥ ⎦ (19) 

 = 3 i ( 1 − r − g ) (20) 

If 4 
3 π ≤ h < 2 π then 

 = i (1 − s ) (21)

 = i 

⎡ 
⎢ ⎣ 1 + 

s cos 

(
h − 4 

3 

π
)

cos 

(
5 

3 

π − h 

)
⎤ 
⎥ ⎦ (22) 
 = 3 i ( 1 − g − b ) (23) v
.5.3. Mapping between RGB and L ∗a ∗b ∗ spaces 

Mapping a RGB color to the L ∗a ∗b ∗ is performed with the fol-

owing equations. Let ϕ = [ r, g, b] be a color represented in the RGB

pace: 

 

∗ = 116 f 

(
Y 

Y re f 

)
− 16 (24)

 

∗ = 500 

[
f 

(
X 

X re f 

)
− f 

(
Y 

Y re f 

)]
(25) 

 

∗ = 200 

[
f 

(
Y 

Y re f 

)
− f 

(
Z 

Z re f 

)]
(26) 

 

X 

Y 
Z 

] 
= 

[ 
0 . 4124 0 . 3575 0 . 1804 

0 . 2126 0 . 7151 0 . 0721 

0 . 0193 0 . 1191 0 . 9502 

] [ 
r 
g 
b 

] 
(27) 

here δ = 

6 
29 and 

f (t) = 

{ 
3 
√ 

t , t > δ3 

t 

3 δ2 
+ 

4 

29 

, t ≤ δ3 
(28) 

The inverse operation is performed with the following opera-

ions: 

 = X re f h 

(
L ∗ + 16 

116 

+ 

a ∗

500 

)
(29) 

 = Y re f h 

(
L ∗ + 16 

116 

)
(30) 

 = Z re f h 

(
L ∗ + 16 

116 

− b ∗

200 

)
(31) 

here 

 (t) = 

{ 
t 3 , t > δ

3 δ2 

(
t − 4 

29 

)
, t ≤ δ

(32) 

 

r 
g 
b 

] 
= 

[ 
0 . 4124 0 . 3575 0 . 1804 

0 . 2126 0 . 7151 0 . 0721 

0 . 0193 0 . 1191 0 . 9502 

] −1 [ 
X 

Y 
Z 

] 
(33) 

The values X ref , Y ref and Z ref are obtained by substituting the

ristimulus values for the reference white. 

.5.4. Mapping between RGB and L ∗u ∗v spaces 

Mapping a RGB color to the L ∗u 

∗v ∗ is obtained with the follow-

ng equations. Let Ï,g,b] be a color represented in the RGB space:

 

∗ = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

(
29 

3 

)3 
(

Y 

Y re f 

)
, 

(
Y 

Y re f 

)
≤ δ3 

116 

(
Y 

Y re f 

)1 

3 − 16 , 

(
Y 

Y re f 

)
> δ3 

(34) 

 

∗ = 13 L ∗
(
u 

′ − u 

′ 
re f 

)
(35) 

 

∗ = 13 L ∗
(
v ′ − v ′ re f 

)
(36) 

 

′ = 

4 X 

X + 15 Y + 3 Z 
(37) 

 

′ = 

9 Y 

X + 15 Y + 3 Z 
(38) 
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Fig. 5. Images with the same chromaticity, Green; image (a) darker than image (b). 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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where δ = 

6 
29 , the quantities Y ref , u 

re f ′ and v re f ′ are obtained by

substituting the tristimulus values for the reference white. The val-

ues of X, Y and Z are computed employing Eq. (27) . 

The inverse operation is performed with the following opera-

tions: 

X = Y 
9 u 

′ 
4 v ′ (39)

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

Y re f L 
∗
(

3 

29 

)3 

, L ∗ ≤ 8 

Y re f 

(
L ∗ + 16 

116 

)3 

, L ∗ > 8 

(40)

Z = Y 
12 − 3 u 

′ − 20 v ′ 
4 v ′ (41)

where 

u 

′ = 

u 

∗

13 L ∗
+ u 

′ 
re f (42)

v ′ = 

v ∗

13 L ∗
+ v ′ re f (43)

The r, g and b values are obtained using Eq. (33) . 

2.5.5. Mapping between RGB and YUV spaces 

The luminance Y is defined by the RGB components, where it

is considered the RGB values have been already corrected by the

gamma factor. The U and V components are linear factors between

the luminance and the red and blue planes of the RGB model.

Mapping a RGB color to the YUV space is computed with the fol-

lowing equation: [ 
y 
u 

v 

] 
= 

[ 
0 . 299 0 . 587 0 . 114 

−0 . 147 −0 . 289 0 . 436 

0 . 615 −0 . 515 −0 . 1 

] [ 
r 
g 
b 

] 
(44)

The inverse operation, mapping a YUV color to the RGB space

can be obtained with: [ 
r 
g 
b 

] 
= 

[ 
1 0 1 . 14 

1 −0 . 395 −0 . 581 

1 2 . 032 0 

] [ 
y 
u 

v 

] 
(45)

2.5.6. Mapping between RGB and YCbCr spaces 

Mapping a RGB color to the YCbCr space is computed with the

following equation: [ 
y 
c b 
c r 

] 
= 

[ 
0 . 299 0 . 587 0 . 114 

−0 . 169 −0 . 331 0 . 5 

0 . 5 −0 . 419 −0 . 081 

] [ 
y 
u 

v 

] 
(46)

The inverse operation, mapping a YCbCr color to the RGB space

can be obtained with: [ 
r 
g 
b 

] 
= 

[ 
1 0 1 . 403 

1 −0 . 344 −0 . 714 

1 1 . 773 0 

] [ 
y 
c b 
c r 

] 
(47)

2.6. Discussion 

The quality of image segmentation by color features depends,

to some extent, on the color space employed to represent colors.

One of the most employed color spaces to represent colors is the

RGB space, because it is widely used for color displaying devices;

for instance, monitors and video cameras. The RGB images are ob-

tained by combining three independent images, planes, each one

with a basic color. Although several previous works use the RGB

space to represent and process the colors, such space is not suit-

able to process colors because: 1. The Euclidean distance cannot be

employed to compute differences between colors [125] ; that is, the
olor changes within the RGB space are not linear. 2. It is sensitive

o illumination due to the high correlation between the compo-

ents [49] ; in other words, two colors with the same chromaticity

an be recognized as different if their intensities are not the same.

or example, Fig. 5 shows two squares with the same chromatic-

ty, green, but with different intensity. In the RGB space, despite

he intensity difference between the squares (a) and (b) of Fig. 5 is

mall, both colors are identified as different. 

Usually, the color images that employ the RGB space are pro-

essed by applying the processing technique to each color chan-

el, because many of the methods developed for color image pro-

essing are extended versions of techniques for gray scale images.

hus, with such methods the colors are processed by the inten-

ity and the chromaticity is not processed adequately. For instance,

he histogram equalization is an adequate technique for the con-

rast improvement of an image. Because of the independence of

he three images and that the histogram equalization just employs

he intensity values, the obvious approach is to apply such tech-

ique to each plane independently; the resulting image is an image

here the chromatic features are altered, due to the correlation

etween the components. On the other hand, an important fea-

ure of the HSV, HSI, L ∗a ∗b ∗, L ∗u 

∗v ∗, YUV and YCbCr spaces is that

he intensity is decoupled from the chromaticity. Under these color

paces, the contrast improvement of an image is obtained by ap-

lying the histogram equalization technique to the intensity chan-

el of the image. Fig. 6 shows the resulting images by processing

he original images with the histogram equalization technique for

he spaces RGB, HSV, HSI, L ∗a ∗b ∗, L ∗u 

∗v ∗, YUV and YCbCr. 

It is easy to appreciate from the Fig. 6 that the chromaticity of

everal colors of the RGB images is modified; while for the images

btained using the other spaces, the chromaticity is not modified,

ust the brightness. The resulting images using the HSI and YCbCr

paces are brighter than the obtained using the HSV, L ∗a ∗b ∗, L ∗u 

∗v ∗

nd YUV spaces, but none of them the chromaticity is modified. 

In order to process the RGB images without separating the color

hannels, the colors of the pixels are represented as vectors, color

ectors, as explained in Section 2.1 . The magnitude and orienta-

ion of the color vector characterizes the intensity and the chro-

aticity, respectively. As stated before, the RGB space is sensible

o illumination; the negative effects of non-uniform illumination

re reduced by normalizing the color vectors, however, the nega-

ive effects are not eliminated totally. 

For instance, reference [42] presents a recognition method for

exican banknotes, where the discriminative colors of the ban-

notes are selected so as to characterize each denomination more

recise. The experiments are performed using the RGB and HSV

paces in order to compare which space is more suitable. Accord-

ng to the results reported, the highest recognition rates are ob-

ained using the HSV space. 

Fig. 8 shows two denomination examples, where the selection

f discriminative colors, introduced in [42] , is applied. The row
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Fig. 6. Histogram equalization using different color spaces. 

Fig. 7. Histogram equalization using different color spaces (Cont.). 
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Fig. 8. Comparison between RGB and HSV color spaces for discriminative color selection applied for Mexican banknote recognition. 
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RGB stands for images processed using the RGB color vectors, the

row RGB 

∗ stands for normalized RGB color vectors so as to re-

duce the intensity effects and to process only the chromaticity;

HSV stands for images using the HSV space for color representa-

tion. The pixels in black are the ones that are selected as not dis-

criminative. 

The 20 pesos banknote can be recognized by the dominant

color blue; hence, the pixels in blue must be selected. It is easy to

appreciate that in the 20 pesos banknote image, of the row RGB,

there are many pixels in black; that is, the colors of those pixels

do not provide important data about the denomination, including

pixels in blue, but also, there are other colors different than blue

that are selected as discriminative. In the row RGB 

∗, the resulting

image is improved because the image is cleaner, the pixels are not

scattered and other colors, different than blue, are selected as no

discriminative; however, the effects of the intensity of the colors

is not avoided because some parts in blue are selected as no dis-

criminative. For example, the hair part of the banknote character is

blue, because of the intensity difference with respect to the rest of

the banknote; it is selected as different color. 

In contrast, for the resulting image using the HSV space, more

parts in blue are kept than in the RGB images, despite the different

blue intensities. Also, Fig. 8 shows the resulting images after ap-

plying the same color processing for the 50 pesos banknote; note

the similar appearances of the images with respect to the ones ob-

tained with the 20 pesos banknote. The HSV, HSI, L ∗a ∗b ∗, L ∗u 

∗v ∗,

YUV and YCbCr spaces are more suitable for color processing be-

cause: They are robust before non-uniform illumination due to the

chromaticity is decoupled from the intensity. The color changes

within such spaces is linear, thus, the color differences can be com-

puted with the Euclidean distance. However, in the HSV and HSI

spaces, it is not possible to compute the chromaticity differences

t  
ith the Euclidean distance for the tonalities whose values are al-

ost 0 or 2 π . In other words, the tonalities whose values are h ≈ 0

r h ≈ 2 π , chromatically are very similar but numerically they are

ery different; therefore, if the comparison is performed using just

he scalar value, the tonalities are defined as different while it is

he opposite. 

This problem is overcome by modelling the chromaticity as a

wo-element unit vector, where its orientation defines the chro-

aticity, as proposed in [39–41,43,44] . That is, let φ = [ h, s, v ] be a

SV color, the chromaticity is modeled as ψ = [ cosh, sinh ] , thus,

he problem mentioned before is solved. An drawback with the

SV and HSI spaces is that white, black and gray do not have a

pecific chromaticity; thus, these colors are considered as singular-

ties [25,49] ; therefore, it is difficult to recognize these three colors.

Table 9 resumes the advantages and disadvantages of the RGB,

SV, HSI, L ∗a ∗b ∗, L ∗u 

∗v ∗, YUV and YCbCr color spaces. 

The color space must be selected depending on the purpose of

he color image segmentation, as we have stated before, the RGB

pace is not suitable for color image processing. While in the HSV,

SI, L ∗a ∗b ∗, L ∗u 

∗v ∗, YUV and YCbCr spaces, the color processing is

ore precise, but it is important to consider their respective dis-

dvantages, as presented in Table 9 . 

. Segmentation techniques for color images 

Image segmentation remains one of the major challenges in

omputer vision. It is a critical and essential step in a pattern

ecognition system that aims to make high-level image analysis

nd understanding. Image segmentation determines the quality of

he pattern recognition system. Moreover, in many cases a good

mage preprocessing allows to improve the quality of the segmen-

ation. Advanced preprocessing techniques have been used in many
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Table 9 

Advantages and disadvantages of color spaces. 

Color space Advantages Disadvantages 

RGB Convenient for image acquisition and Non-uniform illumination sensitive; 

displaying; Differences between colors is not linear 

HSV, HSI Based on human color perception; Non removable singularities 

Robust before non-uniform illumination; 

The chromaticity is decoupled from 

the intensity 

L ∗a ∗b ∗ , L ∗u ∗v ∗ Efficient in measuring small color Singularity problem as other 

difference; 

The chromaticity is decoupled from nonlinear transformations 

the intensity; 

YUV, YCbCr Efficient coding color information for Due to the linear transformation, 

TV signal. correlation between the component 

channels exists, although not as 

high as the RGB space 

Table 10 

Usual colors and their corresponding L ∗ , u ∗ and v ∗ parameters. 

Image segmentation Color image segmentation 

Segmentation accuracy Color segmentation 

Automatic segmentation Fuzzy c-means and image segmentation 

Clustering and image segmentation Fuzzy clustering 

Color Image segmentation algorithm 

Color features and image segmentation Image matching 

Color histogram and image segmentation Over segmentation 

Color image processing and image segmentation Pixels image segmentation 

Color images Segmentation algorithms 

Color images and image segmentation Segmentation methods 

Color matching and image segmentation Segmentation results 

Segmentation techniques 
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pplications [147,148,158,198] . The image segmentation is based

n measurements taken from the image such as brightness, color,

epth, pixel value in gray scale, texture. There are many papers and

everal surveys on monochrome image segmentation techniques.

owever, over the last several years the power of personal com-

uters (PCs) in enhancing the effectiveness to solve problems in

eal time has allowed the use of more complex algorithms. Color

mage segmentation is a very important in vision systems mainly

ecause color images can provide more information than gray level

mages and the power of personal computers is increasing rapidly

nd PCs can be used to process color images now [25] . 

Many image color segmentation techniques have been pro-

osed; they can be categorized as the following methods: edge

etection, threshold, histogram-thresholding, region, feature clus- 

ering and neural network based methods. We present works that

mploy the methods mentioned; but also, we present related

orks that use other techniques. 

.1. Edge detection 

Edges detectors have been used to found brightness disconti-

uities in images. An edge is a boundary between two pixels with

ignificantly different brightness values. This variation usually oc-

urs because an edge usually represents a physical boundary be-

ween two objects having different intensities. A successful edge-

ased segmentation is due to three key steps: Detecting edges,

liminate irrelevant edges and connecting or grouping. The general

rocedure is as follows: 

1. The image is first smoothed using a Gaussian low-pass filter.

This preliminary step is taken to reduce the image noise. Large

values of Ïill suppress much of the noise at the expense of

weakening potentially relevant edges. 

2. The local gradient (intensity and direction) is computed for

each point in the smoothed image. 

G (x, y ) = | G x (x, y ) | + | G y (x, y ) | (48)
θ = tan 

−1 G y (x, y ) 

G x (x, y ) 
(49) 

3. The algorithm obtains only wide ridges, leaving only the pixels

at the top of each ridge, in a process known as no maximal

suppression 

4. The ridge pixels are then thresholded using two thresholds T low 

and T high : ridge pixels with values greater than T high are consid-

ered strong edge pixels; ridge pixels with values between T low 

and T high are said to be weak pixels. This process is known as

hysteresis thresholding. 

The principal disadvantages of edge-based segmentation are

hat the technique is more sensitive to noise than other techniques

nd the performance of these techniques is not appropriate for im-

ges in which the edges are ill defined or there are many edges. In

86] and [121] the authors proposed novel procedures of detecting

eaningful discontinuities in color images. Kibria et al. [84] pro-

osed a new measure for defining homogeneous regions that is

tated in terms of visible color difference. The authors incorporate

dge information by using Canny detector splitting this region for

roper segmentation. In [58] the authors computed the Sobel op-

rator on each of the three RGB planes and then sum the results to

btain the resultant edges. This is an adequate technique for edge

etection when colors and objects are well defined. However, this

pproach would probably be inadequate for more complex color

mages. Carron et. al. [20] applied the Sobel operator to each com-

onent of the HSI space and the individual results were combined

sing a trade-off parameter between hue and intensity. An inter-

sting feature of this trade-off parameter was its dependence on

he level saturation. Other color segmentation edge-based tech-

iques can be found in [37,50,89,176] . In [108] a system for quality

ontrol in citrus fruits was presented. In citrus manufacturing in-

ustries, caliper and color are successfully used for the automatic

lassification of fruits using artificial vision. The detection of flaws
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in the citrus surface is carried out by means of human inspection.

The proposal consists on using a computer vision system capable

of detecting defects in the citrus peel and also classifying the type

of flaw. The segmentation of faulty zones is performed by applying

the Sobel gradient to the image. Color and texture features of the

flaw are extracted considering different color spaces, some of them

related to high order statistics. 

3.2. Threshold 

Most of the image segmentation techniques found in the liter-

ature are for binary or gray image; however, there are very few

segmentation threshold techniques on color images. In this sub-

section we show the basic threshold techniques: Global threshold,

adaptive threshold, Otsu method and the most important research

in this field. 

3.2.1. Global threshold 

The intensity thresholding is the most basic idea in segmenta-

tion; this technique can be thought of as an extreme form of gray

level quantization. Thresholding creates a binary image b ( x, y ) from

an image I ( x, y ) according to a simple criterion. 

b(x, y ) = 

{
1 , I(x, y ) > δ
0 , otherwise 

(50)

where δ is the threshold. This technique is defined as global

threshold. Global threshold is a fast segmentation technique with

low computational cost. In the case of color segmentation, the

thresholding rule becomes: 

b(x, y ) = 

{
1 , d(x, y ) ≥ d max 

0 , d(x, y ) < d max 
(51)

where 

d(x, y ) = 

√ 

[ I R (x, y ) − δR ] 
2 + [ I G (x, y ) − δG ] 

2 + [ I B (x, y ) − δB ] 
2 

(52)

3.2.2. Adaptive threshold 

A major concern in global threshold technique is setting the

threshold level appropriately. Usually these levels are chosen man-

ually by trial and error. However, many image processing tasks re-

quire full automation, and there is often a need for some criterion

for selecting a threshold automatically. 

Sonka [153] give details of an adaptive method for automatic

threshold that is summarized in Algorithm 1 . To begin, an initial

guess of the threshold is made, typically by computing the mean

grey level of the whole image. Then, the threshold is refined ac-

cording to the Algorithm 1 . 

Algorithm 1 Adaptive threshold algorithm. 

Input: Image I 

Output: Threshold T 

1: Compute μ1 , the mean gray level of the corner pixels 

2: T old = 0 

3: T new 

= (μ1 + μ2 ) / 2 

4: while T old 
 = T old 

5: μ1 = mean gray level of pixels for which I(x, y ) < T new 

6: μ2 = mean gray level of pixels for which I(x, y ) ≥ T new 

7: T old = T old 

8: T new 

(μ1 + μ2 ) / 2 

9: end while 

The process continues iteratively until the threshold value stops

changing. At that point, the threshold has reached a best guess

value. The algorithm can be used on grayscale images. 
.2.3. Otsu method 

Otsus thresholding chooses the threshold to minimize the in-

raclass variance of the thresholded black and white pixels. Otsu

ethod can be widespread in [92,126] . The Otsu method can be

xtended to multilevel thresholding as 

2 
b = 

m ∑ 

i =1 

σi (53)

The sigma terms σ i of each class are obtained as follows 

i = 

m ∑ 

i =1 

w i ( μi − μT ) 
2 (54)

here μT represents the mean intensity of the input image 

0 = 

δ1 −1 ∑ 

i =0 

iP h i 

w i 

(55)

1 = 

δ2 −1 ∑ 

i = δ1 

iP h i 

w i 

(56)

j = 

δ j+1 −1 ∑ 

i = δ j 

iP h i 

w i 

(57)

m 

= 

L −1 ∑ 

i = δm 

iP h i 

w i 

(58)

And the summation of the probability of system is given by 

 0 = 

δ1 −1 ∑ 

i =0 

P h i (59)

 1 = 

δ2 −1 ∑ 

i = δ1 

P h i (60)

 j = 

δ j+1 −1 ∑ 

i = δ j 

P h i (61)

 m 

= 

L −1 ∑ 

i = δm 

P h i (62)

The optimal threshold values for color image segmentation can

e achieved by 

rg max σ 2 
b (63)

Generally, the Otsu method [126] , Kapur method [78] , Tsallis

ntropy [13] and minimum cross entropy [96] are the best meth-

ds in thresholding based on optimizing the objective function.

he goal of these methods is to find the optimal threshold in im-

ges by maximizing the between-class variance (Otsu method), by

sing the entropy of the histogram, Kapur and Tsallis methods,

nd minimizing the cross entropy between the original image and

ts segmented image (minimum croos entropy). These techniques

an be extended to multilevel thresholding segmentation. How-

ver; the computational complexity is severely increased when ex-

end to multilevel thresholding. 

Many algorithms based on Otsu method, Kapur entropy, Tsal-

is entropy and minimum cross entropy are used for multilevel

hresholding problems [10,36,96,128,141,178] . 

In 2015, Sarkar et al. [141] proposed a novel multi-level thresh-

lding method for unsupervised segmentation from a natural color
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mage using the concept of the minimum cross entropy and dif-

erential evolution. The evolutive algorithm is used in order to im-

rove the computation time and robustness. 

In [36] the authors proposed a novel automatic segmentation

ethod using saliency combined with Otsu threshold. The saliency

heory is used to enhance lesion objects and then the Otsu thresh-

ld method is improved to correctly segment the images obtaining

obust segmentation results and removing the spots and holes in

he image. 

Pare et al. [128] used three well known objective functions, Ka-

urs entropy, between-class variance, and Tsallis entropy, with dif-

erent parameter analysis for solving the color image multilevel

hresholding problem. In their experiments, the authors consider

patial contextual information of the image. 

In [88] Kurban et al. presented a hybrid algorithm to solve the

ultilevel color image thresholding problem. The authors use sev-

ral swarm based and evolutionary computational techniques in

heir exhaustive experiments. Kapurs entropy is used as the fitness

unction to be maximized. The authors argue that swarm based al-

orithms are much more precise for multilevel thresholding prob-

ems. 

Bhandari et al. [13] presented a study of multilevel threshold-

ng for colored satellite image segmentation. Hybrid algorithms are

sed in their experiments and Tsallis entropy is the fitness function

o be maximized. 

In [120] was proposed a new multi-thresholding algorithm for

election of optimum thresholds for segmentation of color images.

he authors proposed an algorithm in five steps using the con-

ept of A-IFS histon obtained from Atanassovs Intuitionistic Fuzzy

et (A-IFS) representation of the image. In a rough set theoretic

ense, A-IFS histon and the histogram can be correlated to upper

nd lower approximations. The proposed algorithm based on rough

ets detects the optimum threshold values as it exploits the hesi-

ancy in determining the pixel intensities near the border and also

akes into account the spatial correlation and correlation among

he pixels in all of the three color components. In [19] the au-

hors proposed an unsupervised algorithm to segmentation based

n graph theory. The image is mapped into a weighted undirected

raph, the pixels are considered to be as nodes, the best thresh-

lding is obtained by objective function of maximum weighted

ntropy to realize unsupervised segmentation. Harrabi and Braiek

55] combined different data sources associated to the same color 

mage to increase the information quality and to get a more reli-

ble and accurate segmentation effect. The projected segmentation

pproach is conceptually different and explores a novel strategy. In

act, instead of considering only one image for every application,

he method consists in combining many realizations of the identi-

al image, together, in categorize to increase the information qual-

ty and to get a best segmented image. The segmentation method

roposed in [77] is based on that in general human has attention

n 3 or 4 major color objects in the image at first. In order to de-

ermine the objects, three intensity distributions are constructed

y sampling them randomly and sufficiently from three R, G and

 channel images. Three means are computed from the intensity

istributions. This procedure is repeated to obtain three mean dis-

ribution sets. Each of these distributions comes to show normal

hape based on the central limit theorem. For object segmentation,

ach of the normal distribution is divided into 4 sections accord-

ng to the standard deviation. The sections with similar representa-

ive values are merged based on the threshold. The threshold is not

hosen as constant but varies based on the difference of represen-

ative values of each section to reflect various features for different
mages. 
d

.3. Histogram-thresholding based methods 

According to He and Huang [57] , thresholding is simple and

ost widely used method for image segmentation. Thresholding

echniques can be classified into two different types: bi-level and

ultilevel thresholding. If the objects are clearly distinguished

rom the background of an image by a single threshold value, it

s termed as bi-level thresholding; while dividing an image into

everal different segments by multiple threshold values is known

s multilevel thresholding. Over the years numerous thresholding

echniques have been reported in the literature [31] . Kapur et al.

78] used the entropy of the histogram to find optimal thresh-

lds called Kapur entropy method and the technique has been

idely used for image thresholding segmentation problem. Mini-

um cross entropy method is used to minimizing the cross en-

ropy between the original image and its segmented image to find

ptimal thresholding [96] . These techniques can be easily extended

o multilevel thresholding segmentation. However, the computa-

ional time will quickly increase when extend to multilevel thresh-

lding since they exhaustively search the optimal threshold values

o optimize the objective functions. 

The exploitation of meta-heuristic computing algorithms has

een very successful throughout the last few years. To achieve

ptimum multilevel threshold, many heuristic optimization tech-

iques have been applied for solving the multilevel image segmen-

ation tasks. Over the years, in literature, numerous works, based

n swarm based systems, such as firefly algorithm [57,134] , cuckoo

earch algorithm [12] , differential evolution (DE), wind driven op-

imization (WDO), particle swam optimization (PSO) have been re-

orted to tackle many multilevel image segmentation problems for

etermination of optimum threshold [12] . He and Huang [57] pro-

osed a modified firefly algorithm to find the optimal multilevel

hreshold values for color images. Kapurs entropy, minimum cross

ntropy and between-class variance method are used as the ob-

ective functions. Rajinikanth and Couceiro [134] considered RGB

istogram of the color image to solve the multi-level threshold-

ng problem. The maximization of Otsu’s between-class variance

unction is chosen as the objective function. The proposed seg-

entation procedure employs heuristic methods, such as Brown-

an search based Firefly Algorithm, Lvy Flight based Firefly Algo-

ithm and conventional Firefly Algorithm. The proposed method

as implemented and validated on standard color images. A novel

pproach for colored satellite image segmentation using cuckoo

earch and other optimization algorithms (DE, PSO and WDO)

ased on multilevel thresholding process was presented in [12] .

he method is based on segmentation of subsets of bands using

ultilevel thresholding, followed by the fusion of resulting seg-

entation channels. For color images, the band subsets are cho-

en as RGB pairs, whose two-dimensional histograms are processed

ia a peak-picking algorithm to affect multilevel thresholding. In

85] multi-dimensional histograms were employed for segmenta-

ion of images of chronic wounds. In this reference was shown

hat color histograms of higher dimensions provide a better cue

or robust separation of classes in the feature space. An important

ondition for the segmentation is an efficient sampling of multi-

imensional histograms. A multi-dimensional histogram sampling

echnique is proposed for generation of input featured vectors for

he support vector machine classifier. Aghbari and Al-Haj [5] pro-

osed an approach called hill-manipulation algorithm. It starts by

egmenting the 3D color histogram into hills according to the

umber of local maxima found, and then each hill is checked

gainst defined criteria for possible splitting into more homoge-

eous smaller hills. Details of an image are distinguished and the

etails are captured in the segmentation. 
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3.4. Region based methods 

In these methods the pixels are grouped into larger regions

based on their similarity according to predefined similarity criteria

and considering the adjacency spatial relationships between pixels.

Simple examples of similarity criteria might be [152] : 

1. The absolute intensity difference between a candidate pixel

and the seed pixel must lie within a specified range; 

2. The absolute intensity difference between a candidate pixel

and the running average intensity of the growing region

must lie within a specified range; 

3. The difference between the standard deviation in intensity

over a specified local neighborhood of the candidate pixel

and that over a local neighborhood of the candidate pixel

must (or must not) exceed a certain threshold this is a basic

roughness/smoothness criterion. 

Segmentation can also be based on spatial coherence. This pro-

cess normally includes two steps: Dividing or merging existing re-

gions from the image and growing regions from seed points. For

simple images, the segmentation process is clear and effective due

to small pixels variations. For complex images, the utility for sub-

sequent processing becomes very tough process. Formally, region-

based segmentation method scan be described as n regions ( R 1 , R 2 ,

R n ) in an image I , such that satisfies the following properties [49] :

1. ∪ 

n 
i =1 

R i = I

2. R i is a connected region, i = 1 , 2 , . . . , n. 

3. ∩ 

n 
i =1 

R i = ∅ 

4. P (R i ) = T rue for i = 1 , 2 , . . . , n 

5. P (R i ∪ R j ) = F alse for any adjacent regions R i and R j . 

Where P ( R i ) is the logical predicate defined over the points in

set R i and ∅ is the empty set. Nock and Nielsen [123] presented

an approach for image segmentation by region merging following

a particular order in the choice of regions. The blend of algorithmic

and statistics limits the segmentation error from both the qualita-

tive and quantitative standpoints. The approach is approximated in

linear time and space, leading to fast segmentation. 

Mignotte [116] estimated a segmentation map into regions from

a boundary representation. The author defined a non-stationary

Markov random field (MRF) model with long-range pairwise in-

teractions whose potentials are estimated from the probability of

the presence of an edge at each pair of pixels. That paper shows

that an efficient and interesting strategy to complex region-based

segmentation models consists in averaging soft contour maps and

using the MRF reconstruction model to achieve an accurate seg-

mentation map into regions. An algorithm based on the theory of

gravity called stochastic feature based gravitational image segmen-

tation was presented in [136] . The proposed algorithm employs

color, texture and spatial data to partition the image. The algo-

rithm is equipped with an operator called escape that is inspired

by the concept of escape velocity in physics. A stochastic charac-

teristic is incorporated to the algorithm that gives it the ability to

search the image for finding the fittest pixels that are suitable for

merging. Salah et al. [140] proposed a multi-region graph cut im-

age partitioning via kernel mapping of the image data. The data of

the image is transformed by the kernel function, so that the piece-

wise constant model of the graph cut becomes applicable; an ob-

jective function contains an original data term to evaluate the de-

viation of the transformed data, within each segmentation region,

from the piecewise constant model. A common kernel function

is employed; the energy minimization consists on iterating image

partitioning by graph cut iterations. In [24] the authors proposed

a color image segmentation by a simplified pulse-coupled neural

network (NN). In this research, the segmentation is obtained trans-

forming a color image into channels with low intensity by integrat-
ng normalized RGB color space with opponent color space Lu et al.

110] developed a region-based color modelling method to perform

he joint crop and maize tassel segmentation that mainly con-

ists of two stages. That is, region proposals generation and color

odel prediction. Concretely, the efficient graph-based segmenta-

ion algorithm [38] and simple linear iterative clustering [1] are

rst employed to generate region proposals, which have the ef-

ect of region-smoothing and edge preserving. Next, each region

roposal is passed to the neural network based ensemble models

alled neural network intensity color model, in order to attach se-

antic meaning of the crop, tassel or background to these regions.

he objective of [60] is to propose an improved principal compo-

ent analysis (PCA)-based multichannel selection Chan-Vese model

o segment wheat leaf lesions using color features. In the proposed

cheme, three channels are adaptively selected by PCA. Then, a k-

eans initial segmentation is used to obtain the initial curve and

abel the lesions as the object region and the rest of the leaf as a

ackground region. Lee et al. [93] presented a method that can find

he lip area using its shape feature, regardless of the influences

rom the light and background with over 94% accuracy and over

8% precision. The method finds the face area from an input image,

ivides the face image in half, and applies sliding window detec-

ion to the bottom half of the image. Then, it obtains the histogram

f oriented gradient (HOG) feature vector from the image that cor-

esponds to the window, and uses it as the input to a pre-trained

upport vector machines (SVM). HOG and SVM are used for coarse

etection. If SVM determines that the image is not the lip, sliding

indow detection is reapplied. Otherwise, the image is used as in-

ut to convolutional neural network (CNN), which is employed for

ne detection and to determine whether the image is the lip. If

NN determines that the image is the lip, canny edge detection

s applied to the image to obtain the mouth contour. Liver seg-

entation on non-contrast images has been achieved by using a

onditional statistical shape model. However, this method still en-

ounters difficulties when the morphology of the liver is abnormal

164] . Yamaguchi et al. [184] presented a 3D regional segmenta-

ion method for use with non-contrast abdominal CT (Computed

omography) images based on a correlation map of locoregional

istogram and probabilistic atlas to address this problem. 

.5. Feature clustering based 

Clustering methods are one of the most used algorithms in im-

ge segmentation. Fuzzy c-means (FCM) algorithm is one of the

ost widely used fuzzy clustering algorithms in image segmen-

ation. Conventional FCM algorithm works well on most images

171,179] . However, it fails to segment images corrupted by noise,

utliers and other imaging artifacts. The K-means algorithm con-

ists of the following iteration [46] : 

Fuzzy c-means algorithm [11] is an important tool for image

rocessing in segmentation of color image. It is an iterative cluster-

ng algorithm in which a pixel can belong to more than one cluster

nd with each pixel a set of membership level is associated. The

rocedure of FCM algorithm is given as follows: 

Two improved FCM clustering algorithms with spatial con-

trains for color image segmentation were presented in [119] . The

ank M- type and L-estimators were used in order to obtain spa-

ial data of the pixels. With these estimators the local data of every

olor component in the RGB model is incorporated; the proposed

pproach is applied in the chromatic subspace in the IJK color

pace in order to overcome some limitations related to RGB model.

uch estimators are involved into the FCM algorithm to provide ro-

ustness for the proposed segmentation techniques. In [66] was

ntroduced a clustering algorithm that maintains coherence of

ata in feature space, the algorithm works under the paradigm

f clustering-then-labeling. Applied on the L ∗a ∗b ∗ color space, the
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mage is segmented by setting each pixel with its corresponding

luster. The algorithm is based on the theory of minimum descrip-

ion length, which is an effective approach to select automatically

he parameters for the proposed segmentation method. Tan and

sa [161] presented an approach based on histogram threshold-

ng; this approach can be applied in pattern recognition, particu-

arly for color image segmentation. The approach employs the his-

ogram thresholding technique to obtain all possible uniform re-

ions in the color image. The compactness of the clusters form-

ng the uniform regions is improved with FCM. Guo and Sengur

51] applied neutrosophic set which studies the origin, nature and

cope of neutralities. A directional -mean operation is proposed to

educe the set indeterminacy; the FCM algorithm is improved by

ntegrating with neutrosophic set and employed to segment the

olor image. The membership computation and the clustering ter-

ination are redefined accordingly. In [185] the segmentation of

olor images was addressed as a problem of clustering texture fea-

ures as multivariate mixed data. The distribution of the texture

eatures is modeled using a mixture of Gaussian distribution. The

ixture distribution is segmented with an agglomerative cluster-

ng algorithm derived from a lossy data compression approach; the

lgorithm employs either 2D texture filter banks or simple fixed-

ize windows to obtain texture features. In [170] the multi-level

ow-rank approximation-based spectral clustering method is pro-

osed to segment high resolution images. The proposed method is

 graph-theoretic approach, which finds natural groups in a given

ata set. It approximates the multi-level low-rank matrix, the ap-

roximations to the affinity matrix and its subspace, as well as

hose for the Laplacian matrix and the Laplacian subspace, gains

omputational spatial efficiency. An algorithm where bilateral fil-

ering is employed as a kernel function to form a pixonal image

as proposed in [122] . The bilateral filtering is a preprocessing

tep that eliminates unnecessary details of the image and results

n a few numbers of pixons. Later, the computed pixonal image is

egmented using FCM. Most of the reviewed works employ cluster-

ased methods; as mentioned before, the drawback with these

ethods is that the number of clusters must be defined a pri-

ri. Mignotte [115] introduced a segmentation approach based on a

arkov random field fusion model that combines several segmen-

ation results associated with simple clustering methods. The fu-

ion model is based on the probabilistic rand measure for compar-

ng one segmentation result to one or more manual segmentations

f the same image. This non-parametric measure lets to derive an

ppealing fusion model of label fields expressed as a Gibbs distri-

ution. This Gibbs energy model encodes the binary constraints set

iven by the segmentation results to be fused. In many cases, the

evelopment of clustering based segmentation methods are lim-

ted by the initially chosen cluster centers, and also on the cardi-

ality of chosen cluster centers. This problem is solved by using

volutionary computing. These approaches avoid the less desirable

olutions. Initialization has a significant effect on the final parti-

ions obtained by the iterative c-means clustering approaches. The

enetically guided clustering attempts to achieve both avoidance

f local extrema and minimal sensitivity to initialization. Garcia-

amont et al. [44] presented an approach to compute automatically

he number of clusters so as to segment the images using FCM. A

ompetitive neural network and a self-organizing map are trained

ith chromaticity samples of different colors; the neural networks

rocess each pixel of the image to segment, where the activation

ccurrences of each neuron are collected in a histogram. The num-

er of clusters is set by computing the number of the most acti-

ated neurons. The number of clusters is adjusted by comparing

he similitude of colors. In [139] was introduced a multiobjetive

ptimization algorithm; the segmentation is addressed as a clus-

ering problem by grouping the image features, where the mul-

iobjetive optimization algorithm is combined with seeded region
rowing. The main features of an image are color, texture and gra-

ient magnitudes, which are measured by using the local homo-

eneity, Gabor filter and color spaces. The seeded region growing

mploys the extracted feature vector to classify the pixels spatially.

he optimization algorithm determines the coordinates of the seed

oints and similarity difference of each region by optimizing a set

f cluster validity indices so as to improve the quality of segmen-

ation. The segmentation is completed by merging small and simi-

ar regions. In reference [81] the segmentation of color images was

ddressed as a clustering problem and a fixed length genetic al-

orithm. An objective function was proposed to evaluate the qual-

ty of the segmentation and the fitness of a chromosome. A self-

rganizing map was used to determine the number of segments

n order to set the length of a chromosome automatically. The ini-

ialization of the population was performed with and opposition

ased strategy. 

Khan et al. [83] apply a spatial fuzzy genetic algorithm for

egmentation of color images; the performance of the algorithm

s influenced by the number of clusters and the initialization of

he cluster centers. Rajaby et al. [133] include hue and intensity

omponents in the objective function of FCM for color image seg-

entation. Each one of these components is weighted such as if

hey were approximately constant or if they have a high variation

aused by noise, their weight is low. This method is faster than

WFCM_rgb [190] , FGFCM_rgb [18] and HTFCM [161] ; however, it

eeds as a parameter the number of segments to discover. Instead

f analyzing one pixel each time, Ji et al. [71] replace each pixel

ith its corresponding image patch and assigned a weight to each

ixel in the image patch. The algorithm introduced in [71] is faster

han other ones; however, it suffers from the problem of requiring

ntroducing the number of clusters as an input parameter. Domi-

ant sets clustering based methods have been effective for image

egmentation. An advantage of this is that the number of clusters

an be discovered automatically. However, dominant sets algorithm

s very sensitive to the similarity matrix. How et al. [59] proposed

o reduce the sensitiveness to similarity measures in similarity ma-

rix by applying histogram equalization. Because the similarity ma-

rix occupies a large space of memory, the method proposed in

59] is applicable to small images, 120 × 80 pixels. 

.6. Neural networks based segmentation 

Neural networks (NN) are a computational approach, based on a

arge collection of neural units also known as artificial neurons, to

reely model the way a biological brain solves problems with large

roups of neurons connected by axons [61,62] . Neural networks of-

er important advantages in machine learning tasks [32–34,44,63–

5,196,197] , its high degree of parallelism allows very fast compu-

ational times and makes them suitable for real time applications,

nd good robustness to disturbances. Another important advantage

n the case of image segmentation is that, neural networks per-

it accounting for spatial information. However, in most cases the

nal number of segments within an image must be known before-

and and run a preliminary learning phase to train the network

o recognize patterns. Several algorithms have been proposed for

egmenting color images by means of neural networks. Ong et al.

125] presented for color image segmentation a two-stage hierar-

hical NN based on self-organizing maps (SOMs). The first stage

f the network uses a two-dimensional feature map that captures

he dominant colors of an image. The second stage employs a one-

imensional feature map to control the number of color clusters

hat is used for segmentation. 

These factors are overcome using a progressive technique based

n self-organizing maps to find the optimal number of clusters au-

omatically. The clusters centers are set with the weights of the

eurons represented in the histogram peaks. Other works used
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unsupervised NN, but the NN employed are trained every time

a novel image is given. That is, a NN trained with the colors of

a given image cannot always recognize all the colors of a differ-

ent image; hence, the NN must be trained with the colors of the

new image. To overcome this drawback, in references [44] and

[43] SOMs and a three-layered SOM were trained, respectively,

with chromaticity samples of different colors represented in the

HSV space. The NNs are trained just once and they can segment a

given image without training them again. Aghajari et. al. [3] pro-

posed a self-organizing map based extended FCM, a method that

uses discrete wavelet transform (DWT), SOM and FCM. DWT is

used to decompose an image into various frequencies. Feature pro-

totypes are formed with gradient, pixel value and statistical pa-

rameters, standard deviation, mean and energy. A random selec-

tion of pixels throughout images is used as input for the SOM,

to obtain codebooks. These are clustered with FCM. The clustered

codebooks vector centers are used for image segmentation based

on minimum distance criterion. In [56] Hassanat et al. proposed a

method for segmentation of human skin color in images for de-

tection of libs, faces, fingers and hands. The method uses color

information combining HSV, YCbCr and YIQ models. Neighbors of

10 pixels chosen from the images are used to train a neural net-

work. A problem with this approach is that the pixels need to be

chosen manually during training phase. A technique for segmen-

tation or color images based on geometrical properties of lattice

auto-associative memories is described in [166] ; the lattice asso-

ciative memories are a class of neural networks that store a finite

set n-dimensional vectors and are able to recall them when a noisy

or incomplete input vector is presented. The canonical lattice auto-

associative memories include the min and max memories, defined

as square matrixes. The column vectors of these matrixes are used

to determine a set of extreme points whose convex hull encloses

the finite set of n-dimensional vectors. Due to the color images

form subsets of a finite geometrical space, the scaled column vec-

tors of each memory correspond to saturated color pixels. Zhang

et al. [192] presented an approach to separate the foreign fiber ob-

jects in a captured color image from the background accurately.

The captured RGB color images are separated to R, G and B color

channels, and the color information for each channel is computed.

The R saliency for each pixel in the R channel, the G saliency for

each pixel in the G channel, and the B saliency for each pixel in the

B channel are computed respectively. The comprehensive saliency

map is obtained by the weighted R, G and B saliency. The weights

for the R, G, and B saliency are determined by the correspond-

ing color information of each color channel. The foreign fiber tar-

gets are separated from the comprehensive saliency map using a

threshold method. 

In [183] was presented a color map segmentation method, sim-

ilar to color image segmentation based on the self-organizing neu-

ral network. A SOM with two layers is employed, the input layer

simulates the retina apperceiving external information, and the

output layer simulates the cerebral cortex of the brain. Each node

in the input layer assembles external data to each nerve cell in

the output layer by weight vectors. The format of the input layer

is the same as a back propagation neural network, the number of

the node equals the dimension of the sample. The output layer is

the competition layer; the relationship of the input layer and the

output layer is entire inter- connected, each node of the output

layer is connected lateral inhibitory. Stephanakis et al. [155] pro-

posed a window-based self-organizing map, which is used a mul-

tidimensional input color vectors defined upon spatial windows

in order to capture the correlation between color vectors in ad-

jacent pixels. The window is used for capturing color components

in the L ∗u 

∗v ∗ color space. The neuron featuring the smallest dis-

tance is activated during training. Neighboring nodes of the neural

network are clustered according to their statistical similarity. The
uthors of [72] proposed an image segmentation method based

n ensemble of self-organizing maps, which clusters the pixels in

n image according to color and spatial features with many self-

rganizing maps. The feature vectors are five-dimensional feature

ector whose elements are the x and y coordinates, and the R, G

nd B values of the corresponding pixel. These feature vectors are

ed to a self-organizing map. After the training is accomplished, in-

ut vectors that are topologically close are mapped to the same

lass, which means the input space is divided into k classes. In

118] was presented a proposal using a fuzzy inference system in

ptimized color space. The system, which is designed by neuro-

daptive learning technique, applies a sample image as an input

nd can reveal the likelihood of being a special color for each pixel

hrough the image. The intensity of each pixel shows this like-

ihood in the gray level output image. After choosing threshold

alue, a binary image is obtained, which can be used as a mask

o segment desired color input image. Khan et al. [82] presented a

odified version of the fuzzy c-means algorithm that incorporates

patial information into the membership function for clustering

f color images. A progressive technique based on self-organizing

aps is used to automatically find the number of optimal clus-

ers. In [156] was proposed a two stage color image segmentation

ethod. As a first stage, clustering hierarchical or hybrid schemes

n order to achieve color reduction and enhance robustness against

oise is performed; 2D self-organizing map defined upon 3D color

pace are usually employed to render the distribution of colors of

n image without taking into consideration the spatial correlation

f color vectors throughout various regions of the image. Cluster-

ng color vectors pertaining to segments of an image is carried out

n a consequent stage via unsupervised or supervised learning. A

econd stage of density-based clustering of the nodes of the self-

rganizing map is employed in order to facilitate the segmentation

f the color image. 

Ilea and Whelan [68] presented the development of an un-

upervised image segmentation framework that is based on the

daptive inclusion of color and texture in the process of data par-

ition. Also, a new formulation for the extraction of color features

hat evaluates the input image in a multispace color representa-

ion is given. This is achieved using the opponent characteristics

f the RGB and YIQ color spaces are used, where the key compo-

ent was the inclusion of the self-organizing map network in the

omputation of the dominant colors and the estimation of the op-

imal number of clusters in the image. In reference [165] was pre-

ented a method that divides color space into clusters. Competitive

earning is used as a tool for clustering color space based on the

east sum of squares criterion. The method is applied to various

olor scenes; the proposal is efficient as a color image segmen-

ation method. Cengiz and Kse [22] determined which eye color

s more perceived and adopted by which eye color using artificial

eural network for 6 and 17 ages. By considering these determi-

ations, it was studied with graphical and statistical illustrations

ow different eye color groups prefer colors, how much they are

ble to recognize primary and secondary colors, and to what ex-

ent various colors are able to perceive RGB and CMY colors cor-

ectly. In [8] was introduced a self-organizing map with variable

opology. The network, is a fast convergent network capable of per-

orming color image segmentation. The neural network reaches a

igh color palette variance and a better 3D RGB color space dis-

ribution of learned data from the training images than the other

odels. Halder et al. [54] proposed to segment a color image by

emi-supervised clustering method based on modal analysis and

utational agglomeration algorithm in combination with the self-

rganizing map. The modal analysis and mutational agglomeration

lgorithm is used for initial segmentation of the images. The sam-

led image pixels of the segmented image are used to train the

eural network. 
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.7. Other techniques for color image segmentation 

.7.1. Multi-feature fusion 

Xia et al. [177] developed a method for automatic image anno-

ation with multi-feature fusion including rotation-invariant uni-

orm local binary patterns (LBP) histogram distribution, weighted

istogram integral areas and statistics of connected regions based

n multi-label learning k-nearest neighbor algorithm. Free version

f part of Corel5K image data set was used for the experiments

n such study. Comparisons among different dimensional features

ombinations were made to show that the proposed method out-

erformed that of traditional one with only basic color moments

nd texture distribution. Liu et al. [102] presented an additional

olor feature, namely Color Information Feature (CIF), which is in-

orporated with the LBP-based feature for the image classification

nd retrieval. The CIF compensates the difficulty of the LBP-based

perator on describing color distributions. 

Wang et al. [168] proposed to combine the polarization images,

esulted from polarization state of each pixel, with the color im-

ges to improve the accuracy of image semantic segmentation. The

ombination method, more specifically, is through the HOG feature

29] and LBP [124] features that are extracted on both the polar-

zation image and the color images independently. These features

re concatenated and feed into a join boosting classifier, a fea-

ure selection base classifier known for its facility to integrate new

ources of features. In the training process, the classifier randomly

elects different polarization-based semantic segmentation results.

n comparison, authors repeat the same algorithm, which extracts

he HOG and LBP features on, however, only color images. After

raining another join boosting classifier, the color-based semantic

egmentation results were given. The comparisons showed that the

ccuracy of the semantic segmentation is improved thanks to the

ncluded polarization features. Suryanto et al. [159] introduced an

lgorithm for object tracking in video sequences. In order to repre-

ent the object to be tracked, a new spatial color histogram model

as proposed, which encodes both the color distribution and spa-

ial distribution. Experiment results showed successful tracking of

he object even when the object being tracked changes in size and

hares similar color with the background. In [7] was introduced

n interactive, semiautomatic segmentation method that processes

he color information of each pixel as a unit, avoiding color infor-

ation scattering. The process has two steps: (1) the manual se-

ection of few sample pixels of the color to be segmented; (2) the

utomatic generation of the color similarity image, which is a gray

evel image with all the tonalities of the selected color. The color

ata of every pixel is integrated by a similarity function for direct

olor comparisons. 

.7.2. Fuzzy approaches 

Fuzzy set theory provides a method to transform image his-

ogram into corresponding membership functions and carry out

he image segmentation. However, traditional fuzzy sets do not

onsider the uncertainty of membership function and membership

egree, and type-2 fuzzy sets only consider the fuzziness of mem-

ership. Thus, Qin et al. [130] proposed a kind of image segmen-

ation approach based on the cloud model, which considers the

andomness and fuzziness of membership simultaneously. Kcktunc

t al. [87] proposed an automatic shot-boundary detection algo-

ithm for the videos on which various transformations are applied.

n contrast to most of the existing methods, they utilize fuzzy logic

pproach for extracting color histogram to detect shot boundaries.

he proposed method aims to detect both cuts and gradual tran-

itions (fade, dissolve) effectively in videos where heavy transfor-

ations occur, such as cam-cording, insertions of patterns, strong

e-encoding. Along with the color histogram generated with the

uzzy linking method on L ∗a ∗b ∗ color space, the system extracts
 mask for still regions and the picture-in-picture transformation

or each detected shot, which will be useful in a content-based

opy detection system. In [113] was addressed the unsupervised

o-segmentation, which involves, usually, to optimize an energy

unction, which evaluates the similarity between the foreground

bjects in the input images. The objective is to evaluate the cor-

espondence of foreground objects that penalizes the dissimilarity

etween them. The purpose is to integrate spatial information in

rder to avoid false detection. In addition to the integration of the

patial information and the usage of the local entropy during the

istogram computing, the proposed technique employs the fuzzy

ocal-entropy classification that allows modeling the ambiguity of

 pixel membership to a histogram bin. A methodology for seman-

ic indexing and retrieval images, based on techniques of image

egmentation and classification combined with fuzzy reasoning is

roposed in [151] . In the proposed knowledge-assisted analysis ar-

hitecture a segmentation algorithm firstly generates a set of over-

egmented regions. After that, a region classification process is em-

loyed to assign semantic labels using a confidence degree and si-

ultaneously merge regions based on their semantic similarity. 

.7.3. Texture analysis-based methods 

Liu et al. [103] proposed an strategy to segment the exudates

n retinal fundus images that involves three stages: (1) Anatomic

tructure removal, in which adverse effects from the main vessels

nd optic disk with similar structure information to exudate re-

ions are eliminated; (2) Exudate location in which the patches

ontaining exudate regions are identified, in this stage the his-

ograms of completed local binary patterns [52] are extracted to

escribe the texture structures of the patches, and (3) Exudate

egmentation. The main goal of the iris segmentation process is

o extract iris texture from surrounding structures, and remove

upil and reflections from iris texture. Therefore, Radman et al.

132] presented and iris segmentation method that accurately lo-

alizes the iris by a model designed on the basis of the HOG de-

criptor [29] and SVM, namely HOG-SVM. Based on this localiza-

ion, iris texture is automatically extracted by means of cellular au-

omata that evolved via the GrowCut technique [167] . Shahangian

nd Pourghassem [144] proposed an automatic brain hemorrhage

etection and classification algorithm on computed tomography

mages. To achieve this purpose, after preprocessing, a modified

ersion of distance regularized level set evolution [97] is used to

etect and separate the hemorrhage regions. Then a perfect set of

hape and texture features from each detected hemorrhage region

re extracted. Moreover, authors define a synthetic feature that is

alled weighted grayscale histogram feature. In this feature, valu-

ble information from shape, position and area of the hemorrhage

egion are integrated with the grayscale histogram of hemorrhage

egion. After that a synthetic feature selection algorithm is applied

o select the most convenient features. Eventually, the segmented

egions are classified into four types of the hemorrhages such as

pidural hemorrhage, intracerebral hemorrhage, subdural hemor- 

hage and intraventricular hemorrhage by a hierarchical structure

f classification. Lee et al. [91] addressed an efficient moving object

egmentation method using a motion orientation histogram (MOH)

n adaptively partitioned blocks. Specifically, given the motion vec-

ors of a regularly partitioned image, each vector is classified into

ne of eight possible orientations in order to reduce memory space

nd computational load. In parallel, initial shapes of moving ob-

ects are estimated using frame differencing and LBP, which can

fficiently describe image texture features [124] . Authors also par-

ition the input image into 3232 macroblocks, and each macroblock

s further divided into smaller blocks to fit the object boundary.

he motion vectors of the moving objects that are detected are

hen analyzed using MOH. The final result is a real-time video with

abels and directions of all moving objects. 
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3.7.4. Contrast enhancement 

For segmentation and identification of objects and features in a

scene, the information content of the image has to be enhanced

for better performance. Conventional processes for contrast en-

hancement include gray-level transformation based practices, i.e.,

logarithm transformation, power-law transformation, piecewise-

linear transformation, among others, and histogram based pro-

cessing techniques, i.e., histogram equalization, histogram specifi-

cation, to mention a few. The most popular method is histogram

equalization, which is based on the assumption that a uniformly

distributed grayscale histogram will have the best visual contrast

[135] . Adaptive histogram equalization (AHE) [73] method com-

putes different histogram corresponding to a definite part of the

image, and employs them to reconstruct the brightness values of

the image. It is thus ideal for increasing the local contrast of an

image and bringing out more detail. However, AHE tends to over

amplify noise in fairly homogeneous regions of an image [79] . Al-

though the techniques of contrast enhancement perform quite well

with images having a uniform spatial distribution of gray values,

difficulties arise when the background has a non-distribution of

brightness [49] . Raju and Nair [135] proposed a fast and efficient

fuzzy logic and histogram based algorithm for enhancing low con-

trast color images, which enables improvement of visual quality of

image as well as aid in extraction of the spatial features present

in the image. This algorithm is based on two important parame-

ters M and K, where M is the average intensity value of the im-

age, calculated from the histogram and K is the contrast intensifi-

cation parameter. Kaur and Sidhu [79] evaluated the effectiveness

of histogram equalization, AHE and fuzzy enhancement techniques

[135] in terms of mean square error and peak signal to noise ra-

tio. The results showed the effectiveness of the fuzzy based en-

hancement technique with improved visual quality of the image.

Integrating histogram segmentation with histogram bin modifica-

tion to yield excellent image enhancement results is the main con-

tribution of [162] , which successfully adopted the good parts of

both histogram segmentation and histogram bin modification. The

proposed bi-histogram equalization using modified histogram bins,

first divides input histogram into two sub-histograms according to

the median value of the image to preserve the mean brightness of

the image. Thereafter, the histogram bins are altered to minimize

the domination effects by high-frequency histogram bins. 

3.7.5. Model-based methods 

Model-based methods involve active contour models and the

level set methods [53,99,117,171–173] . The central assumption of

active contour model is to start with a curve around the object

to be segmented, and gradually moves the curve toward its inte-

rior and stops on the true boundary of the object, the movement

is controlled by using only low-level features such as discontinu-

ity and homogeneity. This method can partition a given image into

two regions, one representing the objects to be detected, and the

second one representing the background. In [172,173] the authors

proposed region-based active contour models for image segmenta-

tion, the proposed model segment images with intensity inhomo-

geneity by introducing the local image information into the model.

The methods are based on an improved numerical solution of bi-

modal Chan-Vese model. The models can automatically detect each

object region after given an initial curve and stop computing in

the circumstance that no more object regions can be left in cur-

rent image layer. The authors argue that unlike multi-phase Chan-

ese model, their proposed methods discard unnecessary compu-

tations and have a lower computational complexity. Another suc-

cessful improvement to active contour model is the level set, Level

set methods are the ones based on active contours. In [117] , the

authors introduce an energy term based on multi-layer structure

and optimize each layer of energy term. In their algorithm, the
uthors incorporate optimal evolution layer that is used to con-

truct final energy functional. The final segmentation results are

btained by minimizing the final energy functional based on op-

imal evolution layer. In [53] the authors introduce the moment

ompetition and weakly supervised information into the energy

unctional construction that is adopted to drive the contour evo-

ution. The moment can be constructed and incorporated into the

nergy functional to drive the evolving contour to approach the

bject boundary. Additionally, the method is more robust due to

he integration of global statistical information and weakly super-

ised information. Level set methods are designed to handle the

egmentation of deformable structures, which display interesting

lastic behaviors, and can handle topological changes. The early

evel set methods depend on the gradient of the given image for

topping the evolution of the curve. Therefore, these methods can

nly detect objects with edges defined by the gradient. Proposed

odels in [172,173] are based on Chan-Vese model to detect ob-

ects whose boundaries are not necessarily detected by the gra-

ient. Feature/detail preserving models for color image smooth-

ng and segmentation using the Hamiltonian quaternion frame-

ork were presented in [157] . A novel quaternionic Gabor filter

s first introduced; it combines the color channels and the orien-

ations in the image plane. The filters are optimally localized in

he spatial and frequency domains and provide a good approxi-

ation to quaternionic quadrature filters. Then, continuous mix-

ures of appropriate exponential basis function are proposed and

erive analytic expressions in order to model the derived orien-

ation information. Ref. [16] proposeed an algorithm that models

he human-based perception according to Gestalt laws of similar-

ty and proximity. The mean shift clustering is employed to trans-

ate laws into analysis of color layout of an image. In [106] was

resented a segmentation method of mixture models of multivari-

re Chebyshec orthogonal polynomials for color image to solve the

roblem of over-reliance on a priori assumptions of the paramet-

ic methods for finite mixture models and the problem that monic

hebyshev orthogonal polynomials can only process the gray im-

ges. The multivariate Chebyshev orthogonal polynomials are de-

ived by the Fourier analysis and tensor product theory, and the

onparametric mixture models of multivariate orthogonal polyno-

ials are proposed. To resolve the problem of the estimation of

he number of density mixture components, the stochastic non-

arametric expectation maximum algorithm is used to estimate

he orthogonal polynomial coefficient and weight of each model.

angenheim et al. [175] evaluate a combined approach intended

or reliable color image segmentation, in particular images pre-

enting color structures with strong but continuous color or lu-

inosity changes. The proposal combines an enhanced version of

he gradient network method, with common region-growing ap-

roaches used as pre-segmentation steps. The method is a post-

egmentation procedure based on graph analysis of global color

nd luminosity gradients in conjunction with a segmentation al-

orithm to produce a reliable segmentation result. In [163] is pro-

osed a denoising concept, the method used for pre-processing

he color image includes wavelet based segmentation. The wavelet

ransform has multi-resolution in both time domains as well as in

requency domain, so it can be used to describe the partial fea-

ures for both domains. Using multi-resolution of wavelet, the non-

teady features of signals can be analyzed efficiently. 

.8. Discussion 

Several of the segmentation methods are extended version of

echniques developed for gray scale images. For instance, the edge

etection, thresholding, histogram-thresholding and region based

echniques work using the intensity of the pixels. In a RGB im-

ge, the methods are applied in each of the color channels; in the
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Fig. 9. Resulting images after computing the gradients, by applying the technique in different color spaces. 
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paces where the intensity is decoupled from the chromaticity, the

ame techniques are applied to the intensity channel. These ex-

ended techniques not always work for all the color spaces. For ex-

mple, Fig. 9 shows the resulting images after detecting the edges

y computing the gradients using the Sobel mask, where the tech-

ique is applied in the color spaces mentioned. Note in the re-

ulting images processed in the HSV, HSI, L ∗a ∗b ∗, YUV and YCbCr

paces, that the edges are detected; however, the edges of the im-

ges processed in the RGB and L ∗u 

∗v ∗ spaces are not well defined.

ence, this technique is not adequate for this last space. Thus,

he development of techniques must be performed considering the

eatures of the color spaces. 

As mentioned previously, the clustering techniques are popu-

ar and they are often employed, mainly the FCM because they

re effective and easy to implement; but they require defining a

riori the number of clusters in the data. Defining the number

f clusters affects the number of parts obtained when the im-

ge is segmented; but, there are related works that address how
omputing the number of groups for FCM [44,68,82,83] . Accord-

ng to the reviewed works, the color image segmentation is pre-

ise when the FCM are used along with the L ∗a ∗b ∗ and L ∗u 

∗v ∗

paces to represent colors. The explanation is that the FCM tech-

ique uses the Euclidean metric to compute the distance between

he vectors, colors, and the center of the groups; but also, as stated

n Section 2.4.1 , the Euclidean metric can be employed to com-

ute the color changes because in the L ∗a ∗b ∗ and L ∗u 

∗v ∗ spaces

he chromaticity changes are linear. 

For instance, Fig. 10 shows the resulting images by segment-

ng them using the FCM. The segmentation of the images obtained

mploying the RGB, YUV and YCbCr spaces are affected by the in-

ensity of the colors, segmenting different parts despite having the

ame color, see the segmented part corresponding to the sky of

he farm image. The segmented parts of the resulting images, em-

loying the HSV, HSI, L ∗a ∗b ∗ and L ∗u 

∗v ∗, are more homogeneous

nd the intensity effects are minimal. Although in the images of

he cup and the beach, using the HSV and HSI spaces, are not well
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Fig. 10. Resulting images after using the FCM for image segmentation in different color spaces. 
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defined, but is easy to observe that the intensity of the colors does

not affect the segmentation processing. While using the L ∗a ∗b ∗ and

L ∗u 

∗v ∗ spaces, the segmented parts of the images are well defined,

and also the effects of the colors intensity are minimal. Alongside

FCM, neural networks have been, also, widely employed for color

image segmentation. Most of the works employed unsupervised

neural networks, principally self-organizing maps. Essentially, all

the proposals using neural networks work as follows: the neural

networks are trained with the colors of the given image, and then

the image is processed with the already trained neural network,

where the color of each pixel is set with the color of the win-

ning neuron. The contribution of the works using neural networks,

are proposals or modified versions of the training algorithm, or ar-

chitectures of the neural networks. The drawback under this ap-

proach is that the neural networks must be trained every time

a novel image is given. On the other hand, in references [43,44] ,

the self-organizing maps employed are trained to recognize dif-

ferent colors by the chromaticity features, where the neural net-

works are trained with chromaticity samples of different colors;
he chromaticity is modeled using the HSV space. Under this ap-

roach, the neural networks can be employed to any given image

ithout training them again; but also, it is not necessary, to some

xtent, to know the number of colors within the image to segment.

he neural networks process accurately the colors depending on

he function employed to compute the winning neuron. That is,

f the Euclidean metric is employed, the usage of the L ∗a ∗b ∗ and

 

∗u 

∗v ∗ spaces is advisable; if the inner product is used, the RGB,

SV, HSI, YUV and YCbCr are adequate to process color by the neu-

al networks. The other techniques mentioned in Section 3.7 have

hown to be efficient for color image segmentation. According

o the state of the art review, there is not a tendency to use

 specific technique or to establish a technique as the best one.

hese methods are less common than the FCM and the neural

etworks, because the last methods are easy to implement and

heir performance is acceptable; while the other techniques may

emand a huge background on mathematics and image process-

ng. Besides, in some cases, the complexity of the algorithms may

e high. 
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. Quantitative evaluation of color image segmentation 

Despite different methods have been proposed to evaluate the

egmentation of color images; standard metrics for this purpose

ave not been defined. The evaluation methods are divided in two

lasses [194] : subjective (supervised) and objective (unsupervised).

n the objective methods, some of them examine the impact of a

egmentation method on the larger system/application, while oth-

rs analyze the segmentation method independently. In the sub-

ective methods, the segmentation results are judge by a human

valuator. Subjective evaluation scores may vary significantly from

ne human evaluator to another because each evaluator has their

wn distinct standards for assessing the quality of a segmented

mage. It is important to mention that these kinds of methods are

he most often used [81,83,115,116,119,136] . In these methods the

esulting images are compared against a manually-segmented ref-

rence image, which is often referred as ground truth. The degree

f similarity between the human and computer segmented im-

ges determines the quality of the segmented image. Comparisons

ased on such references images are somewhat subjective because

here is not guarantee that one manually-generated segmentation

mage is better than another. In the following sections we present

he usual methods we found during the state of the art review, for

oth subjective and objective methods. 

.1. Subjective evaluation methods 

As we have stated before, the supervised methods are the most

mployed for segmentation evaluation. It involves evaluating the

esulting images depending on a defined ground truth. In sev-

ral papers we found that the Berkeley segmentation database

BSD) often employed as benchmark. Thus, the BSD it is becom-

ng the standard benchmark that provides ground truth images to

valuate segmented images [35] . The BSD contains 500 color im-

ges of size 481 × 321 (321 × 481) pixels; for each of these im-

ges, the database provides between four and nine human seg-

entations in the form of label maps. Reviewing several papers

81,83,115,116,119,136,154] , we have found that the most employed

ethods to evaluate the segmentation of color images are proba-

ilistic random index (PRI), variation of information (VOI), global

onsistency error (GCE) and boundary displacement error (BDE).

ext we present the equations employed for each method. 

.1.1. Probabilistic random index 

The PRI, also known as rand index, compares the image ob-

ained from the tested algorithm to a set of manually segmented

mages [115,136,154] . Let G = { I 1 , I m 

} and S be the ground truth set

nd the segmentation provided by the tested algorithm, respec-

ively. L 
I k 
i 

is the label of pixel x i in the kth manually segmented

mage and L S 
i 

is the label of pixel x i in the tested segmentation.

he PRI index is computed with: 

 RI(S, G ) = 

2 

n (n − 1) 

∑ 

i, j,i< j 

(
p 

c i, j 

i, j 

(
1 − p i, j 

)1 −c i, j 

)
(64)

here n is the number of pixels, c i, j is a Boolean function: 

 i, j = 

{
1 , L S 

i 
= L S 

j 

0 , L S 
i 


 = L S 
j 

(65) 

The expected value of the Bernoulli distribution of the pixel dis-

ribution p i, j is computed with: 

p i, j = 

1 

m 

m ∑ 

k =1 

T ( i, j, k ) (66) 
here I k ∈ G and 

 ( i, j, k ) = 

{
1 , L 

I k 
i 

= L 
I k 
j 

0 , L 
I k 
i 


 = L 
I k 
j 

(67) 

The PRI index is in the range [0, 1], where high values indicate

 large similarity between the segmented images and the ground

ruth. 

.1.2. Variation of information 

The VOI index measures the sum of loss of information and the

ain between two clusters belonging to the lattice of possible par-

itions in the following way [115,119,136] : 

 OI(S, I k ) = E(S) + E(I k ) − 2 G (S, I k ) (68)

here E and G are the entropy and the mutual information be-

ween two clusters, respectively. The entropy is computed with: 

(I) = −
c ∑ 

i =1 

n i 

n 

log 
n i 

n 

(69) 

here n i is the number of points belonging to the ith cluster and

 is the number of clusters. The mutual information between two

lusters is computed with: 

 (S, I k ) = 

c S ∑ 

i =1 

c I k ∑ 

j=1 

P 
(
S i , I j 

k 

)
log 

P 
(
S i , I j 

k 

)
P 
(
S i 
)
P 
(
I j 
k 

) (70)

here c S and c I k are the number of clusters of S and I k , respec-

ively; P (S i , I 
j 

k 
) is the joint probability distribution function of clus-

ers i and j of images S and I k , respectively; P ( S i ) and P (I 
j 

k 
) are the

robability density functions of clusters i and j of images S and

 k , respectively. The range of VOI is [0, ∞ ); where the smaller the

OI value is, the closer the segmentation obtained and the ground

ruth are. 

.1.3. Global consistency error 

The GCE computes how a segmented image is viewed as the

efinement of other. A measure of error at each pixel x i can be

ritten as [16,119] : 

(S, I k , x i ) = 

| R ( S, x i ) �R ( I k , x i ) | 
| R ( S, x i ) | (71)

here | · | is the cardinality, � is the set difference, and R ( S, x i )

s the set of pixels corresponding to the region in segmentation S

hat contains the pixel x i . The measure forces all local refinements

o be in the same direction, this is defined as: 

CE(S, I k , x i ) = 

1 

n 

min 

( 
n ∑ 

i =1 

C(S, I k , x i ) , 
n ∑ 

i =1 

C(I k , S, x i ) 

) 
(72)

The range of GCE is [0, 1], the better the segmentation S with

espect to the ground truth I k is when the closer GCE is to zero. 

.1.4. Boundary displacement error 

The BDE evaluates the average displacement error of boundary

ixels between two segmented images by computing the distance

etween the pixel and the closest pixel in the other segmenta-

ion. Given an arbitrary pixel x i of S , the BDE uses the minimal

uclidean distance from x i to all points of I k . A distance distribu-

ion signature D 

I k 
S 

is then obtained by adding the distances over all

oints of S . The BDE in computed with [119] : 

DE(S, G k ) = 

1 

2 

(
D 

I k 
s + D 

S 
I k 

)
(73) 

The range of BDE is [0, ∞ ), the lower the value is the better the

egmentation is. 
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4.2. Objective evaluation methods 

4.2.1. F evaluation 

This method measures the average squared color error of the

segments, penalizing over-segmentation by weighting proportional

to the square root of the number of segments. It requires no user-

defined parameters and is independent of the contents and type

of image. The F evaluation is obtained with the following equation

[17,136] : 

F (I) = 

√ 

R 

10 

3 (N × M) 

R ∑ 

i =1 

e 2 
i √ 

A i 

(74)

where I is the segmented image, N × M the image size, R the num-

ber of regions of the segmented image, A i the area of the ith re-

gion, and e i is the sum of the Euclidean distances between the

RGB color vectors of the pixels of region i and the color vector at-

tributed to region i in the segmented image. In other words: 

e 2 i = 

∑ 

p∈ R i 
[ I 0 (p) − I(p) ] 

2 
(75)

where I o is the original image and R i is the set of pixels in the

region i . The smaller the value of F ( I ), the better the segmentation

result should be. 

4.2.2. F ′ evaluation 

The F ′ evaluation was proposed to improve the F evaluation,

because F was found to have a bias toward over-segmentation,

which is the characteristic of producing many more regions than

desired within a single real-world object. Since F favors segmenta-

tions with a large number of small regions, F ′ extends F by penal-

izing segmentation that have many small regions of the same size.

The F ′ evaluation is computed with [17,136] : 

F ′ (I) = 

√ 

∑ n 
A =1 [ R (A ) ] 

1+ 
1 

A 

10 

4 (N × M) 

R ∑ 

i =1 

e 2 
i √ 

A i 

(76)

where R ( A ) is the number of regions having exactly area A , and n is

the number of pixels of the largest region or area in the segmented

image. 

4.2.3. Q evaluation 

The Q evaluation improves upon F ′ by decreasing the bias to-

ward both over-segmentation and under segmentation; that is,

having two few regions to represent all the real-world objects in

the image. The Q evaluation is obtained with [17,136] : 

Q(I) = 

√ 

R 

10 

4 (N × M) 

R ∑ 

i =1 

[ 
e 2 

i 

1 + log A i 

+ 

(
R ( A i ) 

A i 

)2 
] 

(77)

where R ( A i ) is defined as in F ′ ; that is, it denotes the number of

regions having exactly area A i . 

4.2.4. E evaluation 

This evaluation function is based on information theory and

used for measuring the uniformity of pixels. Entropy is a measure

of the disorder within a region. Given a segmented image, V k de-

fined as the set of all possible values for the luminance in region

k , and L k ( i ) denotes the number of pixels in region k that have lu-

minance of i in the original image. The entropy of region k, E ( R k )

is defined as [136] : 

E(R k ) = −
R ∑ 

i ∈ V k 

L k (i ) 

A k 

log 

(
L k (i ) 

A k 

)
(78)
The expected region entropy of image I , is defined as the ex-

ected entropy across all region where each region has weight pro-

ortional to its area: 

 r = 

c ∑ 

k =1 

A k 

N × M 

E ( R k ) (79)

The final evaluation measure is given with: 

 I = −
c ∑ 

k =1 

A k 

N × M 

log 

(
A k 

N × M 

)
(80)

herefore, E aggregates both the layout entropy and the expected

egion entropy: 

 = H I + H r (81)

.2.5. Zeboudjs contrast 

This evaluation is based on the internal and external contrast

f the regions measured in the neighborhood of each pixel [136] .

et W ( p ) be the neighborhood of the pixel p and b k is the border

f R k with length Lb k , the contrast inside and outside, C i and C o ,

espectively, and the total contrast of the region R k , denoted as Ct k 
re computed with: 

 i k 
= 

1 

A k 

∑ 

p∈ R k 
max { | I g (p) − I g (p n ) | , p n ∈ W (p) , p n ∈ A k } (82)

 o j = 

1 

Lb k 

∑ 

p∈ b k 
max { | I g (p) − I g (p n ) | , p n ∈ W (p) , p n / ∈ A k } (83)

 t k = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − C i k 
C o k 

, 0 < C i k < C o k 

C o k , C i k = 0 

0 , otherwise 

(84)

here I g is the gray level image. The Zeboudj’s contrast Z is ob-

ained with: 

 = 

1 

N × M 

c ∑ 

k =1 

A k Ct k (85)

. Applications 

Most of the image segmentation methods have been developed

ainly for gray scale images, where the shape and texture features

f the objects within the images are extracted. Color image seg-

entation methods have been addressed recently; the interest for

his kind of segmentation is due to the scientific or commercial

reas where the color features of the objects, captured in the im-

ges, provide important data. Hence, in this section we present a

ummary of the different areas applying methods for color image

egmentation. We used Science direct and IEEExplore search en-

ines to retrieve publications, published only in conferences and

ournals, containing the term image segmentation, the search pro-

uced more than 34,0 0 0 results. Fig. 11 shows the number of pub-

ications in conferences and journals per year, from 2010 to 2016. 

For the purpose of identifying the main applications of image

egmentation, we searched publications related to applications of

mage segmentation using the search engine Scopus. Using other

earch engines, such as Web of Science, IEEExplore and ACM dig-

tal library produced overlapped results. We selected the publica-

ions that satisfy the following criteria: The papers analyzed are

he published in journals, book chapters or conferences. We omit

ther types of publications such as books. Recent papers, from

010 up to 2017, were considered in the study. This ensured that

he the analysis is up-to-date Publications were selected that con-

ain at least one of the search terms in the title, abstract and/or list
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Fig. 11. Number of publications, in conferences and journals, per year that contain the search term image segmentation. 

Fig. 12. Distribution of 235 selected papers related to image segmentation by subject area. 
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f key- words. The search terms are the shown in the following

ist. This ensured that the publications are related to image seg-

entation. 

We found 5859 publications that satisfied these criteria. Finally,

o ensure the relevance of publications analyzed, we considered

he papers cited at least 20 times. Such consideration reduced our

et of papers to 235. Fig. 12 shows the distribution of papers by

ubject area. 

These 235 documents were thoroughly scrutinized by the au-

hors, to identify the specific application of image segmentation.

ost of the papers analyzed propose methods to improve image

egmentation, and then apply them to images of a specific area.

owever, some papers only tested their proposed methods with

enchmark data sets, such as Berkeley or common objects in con-

ext (COCO) . Applications in the area of health and medicine are

he most popular in the publications selected. The application of

mage segmentation for artificial vision, object detection or object

dentification is also important. Other field of applications is agri-

ulture, for plant identification, illness of plants or monitoring crop
rowing. Table 11 summarizes the main applications of image seg-

entation. The related papers correspond to the more cited. 

lgorithm 2 k-means algorithm. 

nput: Image I, Number of clusters k 

utput: Segmented image 

1: Initialize cluster centers arbitrarily. 

2: For each seed block n = 1 , N, find k given by 

k = arg min 

s 
D (A n , A s ) 

where s takes values from the set 1 , 2 , k . 

3: Define S k as the set of seed blocks whose affine parameter vec-

tor is closest to Ā k . Then, update the class means Ā k = 

∑ 
n ∈ S k A n ∑ 

n ∈ S k 
4: Repeat steps 3 and 4 until the class means Ā k do not change by

more than a predefined amount between successive iterations. 
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Table 11 

Main applications of image segmentation. 

Specific application of image segmentation Percentage of papers (%) Related papers 

Health, Medicine 22.4 [15,36,45,55,74,178,193] , 

[73,103,132,144,164,184] 

Vision, objects 13.5 [91,104,112,195] 

detection/identification 

Agriculture 12.2 [6,23,28,110,111,129] 

Navigation/tracking/traffic sign 8.3 [30,48,137,138,169,186] 

recognition 

Satellital images/remote 8.3 [2,13,98,101,150] 

sensing/GIS 

Video processing/object 8.3 [27,87,107,182,191] 

detection in video 

Industrial/survillance/security 7.1 [21,29,70,188] 

Skin detection/human 7.1 [80,145,149,187,199] , 

identification [29,29] 

Image improvement/image 5.8 [76,79,131,135,162,180] 

compression 

Other: Text extraction, Urban [4,39–42,47,94,108] , 

scenes, Contour detection, Food 6.93 [75,90] 

identification, Texture 

Algorithm 3 fuzzy c-means algorithm. 

Input: Image I, exponential weight, Number of clusters k 

Output: Segmented image 

1: Select a number of clusters 2 ≤ k and exponential weight m > 1 

2: Choose an initial partition matrix and a termination criterion ε
3: Compute the fuzzy cluster centers v l 

i | i = 1 , 2 , k 

v i = 

1 ∑ n 
j=1 

(
u i j 

)m 

n ∑ 

j=1 

(
u i j 

)m 

x j , i = 1 , ..., k 

4: Compute the new partition matrix ∪ 

l+1 by using v l 
i | i = 1 , 2 , k 

5: Compute 
 = max i, j 

∣∣∣u ( i j 
l + 1) − u l 

i j 

∣∣∣. If 
 > ε, then l = l + 1 and 

go to step 3. 

6: If 
 ≤ ε, then stop 
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The segmentation of images by color features is important for

medicine; for instance, in the study of tissue biopsies, the color of

the tissue sample may provide important information for cancer

detection or other diseases. In agriculture the color image segmen-

tation is also important, because with the color the ripeness of the

fruit can be established, or if the fruit can be transported to distant

destinations without rotting. 

6. Conclusions 

In this study, we presented different works addressing image

segmentation by color features. In the current paper, we analyzed

the characteristics, advantages and disadvantages of the usual color

spaces; the classic and current segmentation techniques; the meth-

ods for quantitative evaluation of algorithms performance using

metrics to compute the quality of the segmented images; also,

the areas where color image segmentation has been applied. The

color spaces often employed for color modeling and processing are

RGB, HSV, HSI, L ∗a ∗b ∗, L ∗u 

∗v ∗, YUV and YCbCr. The RGB space is

the most popular and widely used for color displaying devices,

such as monitors and video cameras. Despite the RGB is usually

employed for color image processing, it is not an adequate space

for color processing because it is sensitive to illumination and

the color changes within the space are not linear, thus, the Eu-

clidean distance cannot be used. The most important feature of the

HSV, HSI, L ∗a ∗b ∗, L ∗u 

∗v, YUV and YCbCr spaces is that the inten-

sity is decoupled from the chromaticity; therefore, the color recog-
ition is more robust before non-uniform illumination. But also,

he color recognition is more precise because the chromaticity is

ell characterized. The HSV and HSI spaces are known because

he color representation emulates the human perception of col-

rs [30,49,69,150] , because humans recognize color mainly by the

hromaticity, then by the intensity. The L ∗a ∗b ∗ and L ∗u 

∗v ∗ spaces

re similar, to some extent, to the HSV and HSI spaces, the dif-

erence lies, essentially, on the chromaticity characterization; but

he drawback with all these spaces is the non-removable singulari-

ies. The YUV and YCbCr, as mentioned before, are used mainly for

V color coding. These spaces have been also employed for color

mage processing because the chromaticity is decoupled from the

ntensity. But, due to these spaces are obtained by linear trans-

ormations of the RGB space, there exists correlation between the

hannels. From the color image segmentation methods presented

n this study, none of them can be established as the best one. It

s necessary to know the features, advantages and disadvantages

f the segmentation methods, but also the nature of the applica-

ion to perform in order to obtain optimal results. The methods

sually employed for color image segmentation are fuzzy c-means

nd self-organizing maps, because of the easy implementation, low

omputational complexity and the competitive results reported.

he fuzzy c-means technique requires defining a priori the number

f clusters in the data; it may be a disadvantage because not all

he colors within the images may be recognized if the number of

roups is low, or the image may be over segmented if the number

f groups is high. The fuzzy c-means is adequate to process col-

rs represented in the L ∗a ∗b ∗ and L ∗u 

∗v ∗ color spaces, because the

uzzy c-means, in general, employ the Euclidean metric to compute

he distance between vectors and the center of the groups, and the

hromaticity changes in the L ∗a ∗b ∗ and L ∗u 

∗v ∗ spaces are linear.

he most often neural networks employed for color image segmen-

ation are unsupervised, specifically, self-organizing maps. The con-

ributions of the works addressing color image segmentation using

eural networks lays mainly on the training algorithm and/or the

rchitecture. Usually, the neural networks are trained with the col-

rs of the image to process, then, the image is segmented by the

rained neural network. The drawback with this approach is that

he neural networks must be trained every time an image is given.

he performance of the neural networks depends on the function

o compute the winning neuron and the color space employed to

epresent colors; if the function to compute the winning neuron is

he Euclidean metric, the L ∗a ∗b ∗ and L ∗u 

∗v ∗ spaces are adequate, if

he inner product is used then the RGB, HSV, HSI, YUV and YCbCr
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paces are recommended to use for color representation. The other

echniques presented in Section 3.7 are less common but they have

hown acceptable performances, according to the quantitative eval-

ations they report. Due to some of the proposed techniques are

elatively new, there are several aspects open to be improved, lead-

ng to new research trends for image segmentation by color fea-

ures. It is important to mention that some of such techniques are

ot so popular because some of them demand huge mathemat-

cal and image processing background. We have presented met-

ics for quantitative evaluation of the segmented images; the eval-

ation methods are divided into subjective and objective. In the

ubjective evaluation methods, the segmented images are com-

ared with respect to a set of images segmented by a human; for

his reason they are subjective, because the criteria for segment-

ng the same image by different persons may vary. However, de-

pite there are not absolute standard metrics defined, the metrics

resented in this work, along with the Berkeleys image segmenta-

ion database, are becoming the benchmark to evaluate the algo-

ithms of color image segmentation, because in different current

orks have been employed [51,66,81,83,115,116,119,170,175] . In the

bjective evaluation metrics, the segmented parts obtained within

he resulting image are compared with the respective input image.

hese metrics have not been employed as much as the subjective

nes; however, we have observed an increasing usage of such met-

ics [72,106,116,136] . 
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