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Abstract

Event detection over microblogs has attracted great research interest due to its

wide application in crisis management and decision making etc. In natural dis-

asters, complex events are reported in real time on social media sites, but these

reports are invisible to crisis coordinators. Detecting these crisis events helps

watchers to make right decisions rapidly, reducing injuries, deaths and economic

loss. In sporting activities, detecting events helps audiences make better and

more timely game viewing plans. However, existing event detection techniques

are not effective at handling complex social events that evolve over time. In this

paper, we propose an event detection method that takes advantage of retweeting

behavior for handling the events evolution. Specifically, we first propose a topic

model called RL-LDA to capture the social media information over hashtag,

location, textual and retweeting behavior. Using RL-LDA, a complex event can

be well handled by exploring the correlation between retweeting behavior and

the event. Then to maintain the RL-LDA in a dynamic environment, we pro-

pose a dynamic update algorithm, which incrementally updates events over real

time streams. Experiments over real-world datasets show that RL-LDA detects

the temporal evolution of complex events effectively and efficiently.
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1. Introduction

Microblogging services provide platforms for users to share their daily lives

and report the events occurring around them in real time. Detecting social

events is important in real applications. For example, monitoring crisis events

like bushfires over social streams could help security officers predict the impact5

of disasters and supply the best service for the public during natural disasters.

Social events can be complex and evolve over time. For instance, when the

World Cup was hosted in Brazil in 2014, a large number of messages were

posted to microblogs. The discussions over the microblogs evolved along with

the game schedule. Detecting these evolving events helped users make the right10

decisions and adjust their plans in time. In practice, due to the high complexity

of evolving events and the huge volume of social media, a satisfying quality and

speed of detection has not been achieved yet. Consequently, how to effectively

and efficiently detect such complex evolving events has become an important

research problem.15

We study the problem of complex event monitoring over social streams. A

complex event is defined as a set of real-world social media messages happening

over a time and location range but evolving over consecutive periods. Given a

social media stream M, a topic number K, we aim to continuously identify a

set of complex social events < Ei >, each of which consists of messages on the20

same topic. In practice, it is vital to note that social media may involve highly

complex and uncertain textual content and contextual information. Apart from

the general characteristics of social media data, social streaming has the special

requirement of one passing and real time response. In this paper, we focus on

the problem of effective and efficient complex event detection over high speed25

social media streams.

Techniques have been proposed for event detection over microblogs (Avvenuti

et al., 2014; Bian et al., 2015; Cai et al., 2015; Ritter et al., 2012; Yan et al.,
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2015; Zhao et al., 2007; Zhou and Chen, 2014). Existing detection methods

focus on first story discovery (Petrović et al., 2010), crisis management (Pohl30

et al., 2012; Sakaki et al., 2010; Zhou and Chen, 2014), and bursty events de-

tection (Xie et al., 2014; Yao et al., 2010; Yin et al., 2013). However, these

methods only focus on event extraction and ignore event evolution over time.

Though Abdelhaq et al. (2013) considered the temporal evolution of events, the

evolution was limited to the current time period, and the relationship between35

the time windows could not be constructed. As a result, this approach pro-

duced lower quality results for detecting evolving events. Hashtag-based event

discovery (Xing et al., 2016) identified the relationships among hashtags. How-

ever, it ignored event development over time. Although event discovery has

been studied in various domains (AlSumait et al., 2008; Bian et al., 2015; Cai40

et al., 2015), there are still challenges due to the particular characteristics of

social media. First, raw social data contain a large amount of noise, while useful

media information is extremely sparse. Much emotional and personal informa-

tion unrelated to any event fills the 140 character messages, which frequently

contain very limited factual descriptions. Second, social media contain rich45

contexts, such as location, time and retweet behavior etc., which are valuable

for enhancing the quality of event detection but hard to capture effectively. In

addition, a large volume of social media flows over microblogs at high speed,

which requires real time processing. Considering the media characteristics, to

effectively and efficiently detect complex social events, we need to address two50

challenges. First, we need to construct a robust model that will capture the

content and contexts. This is vital because content and contexts describe differ-

ent aspects of a complex event. Improperly describing them will downgrade the

quality of event detection. Then we need to design a robust model maintenance

technique over streams. As such, the data model would be able to reflect the55

social updates of media data in recent time periods.

In this paper, we propose a retweeting behavior-based approach for finding

temporally evolving social events. The proposed approach can well capture

the intelligent behaviors of users and provide support to them in their decision

3
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making, which is significant in the expert and intelligent system field. Just60

as in general intelligent systems, we study intelligent user behaviors and their

impacts on human society. By exploiting the topic modelling techniques in the

artificial intelligence field, our approach can perform more accurate and effective

operations for solving the related problem of automatic complex social event

detection without human expertise. Meanwhile, it makes applications that can65

sense the environment, perceive relevant information on complex events and

learn how to act in critical situations. Specifically, a retweeting behavior-based

topic model (RL-LDA) is first constructed over the hashtag, content, location

and retweeting behavior of social media. Then we propose a dynamic parameter

update strategy to maintain the RL-LDA model under the social updates over70

streams. Finally, we conduct extensive experiments over real tweet streams to

evaluate the performance of our proposed complex event detection approach.

Our contributions are listed as follows:

• We propose a retweeting behavior-based topic model (RL-LDA) over hash-

tag, location, textual content and retweeting behavior, where each location75

is described as a novel retweeting behavior-based graph. Using RL-LDA,

the evolution of an event can be well captured.

• An incremental computation-based update algorithm is proposed to dy-

namically maintain the RL-LDA model over streams, which well reflects

the social updates in the recent time window.80

• We have conducted extensive experiments over two real datasets. The

test results prove the high effectiveness and efficiency of our proposed

approach.

The rest of this paper is organized as follows. First, we briefly survey existing

works on social event detection. Then we present our retweeting behavior-85

based event detection approach, followed by the experimental evaluation of our

method. Finally, we conclude the whole paper.
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2. Related Work

Approaches have been proposed for detecting social events. Existing meth-

ods can be categorized into three types: feature-based, topic model-based and90

social-behavior-based.

Feature-based approaches detect the abnormal feature trends to identify the

occurrence of social event in real applications. Commonly used features include

statisticss features such as the term frequency (Chen et al., 2013) and word

co-occurrence (Yin et al., 2013), and context features like location and hashtag95

etc (Budak et al., 2013; Sakaki et al., 2010; Zhang et al., 2016). Statistics fea-

tures have been extensively utilized to monitor the potential outbreak of social

events. Chen et al. (2013) utilized the term frequency to detect pre-emergency

events before the outbreak of an emergency. Yin et al. (2013) considered word

co-occurrence in a time period as a Gaussion distribution and calculated its100

bursty degree by comparing the distribution in the current time slot and in

recent historical periods. Context features are more likely used to dig for deep

information about social events. Sakaki et al. (2010) considered users as social

sensors of events when an earthquake occurred. By gathering the geotagged

tweets on the earthquake, the location where earthquake happened could be ob-105

tained. GEOBURST (Zhang et al., 2016) detected local events over geotagged

tweet streams by ranking the centroid of clusters formed by maximum weighted

tweets. Although feature-based approaches perform well in the prenotice of

outbreak events and in digging for information, they are not suitable for the

detection of complex events that develop gradually and can not be generalized110

by any single type of information.

Topic-model-based methods detect events by adding layers. They have the

extreme capacity of topic discovery due to their robustness over data ambi-

guity. Topic models are extended to unstructured data and multiple types of

features. MGe-LDA (Xing et al., 2016) utilized a hashtag pair occurrence-based115

graph for detecting social event clusters. The clustering process is accelerated

by loosing the sampling of topic assignment. Each word in a tweet is considered
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as a bridge connecting the hashtag and topic assignment. STM-TwitterLDA

(Cai et al., 2015) collected the tweets posted in certain locations to detect lo-

cal events using two types of dictionaries, specific and general, over words and120

images respectively. GeoFolk (Sizov, 2010) added two layers, longitude topic

distribution and latitude topic distribution, into LDA to generate the location

of the topic. TOT (Wang and McCallum, 2006) added time into LDA to make

it suitable for continuous event detection. It connects event occurrences over

time. LTT (Zhou and Chen, 2014) jointly modelled text content, time, longitude125

and latitude based on LDA to locate the sphere of disasters over streams. How-

ever, existing topic-model-based approaches lack the capacity to detect complex

events with temporal evolution.

Social behavior-based methods detect the events by digging into the rela-

tionship between user behavior and events. User behavior plays a crucial role in130

event broadcasting. Existing methods discover user behavior over topics, and

explore user interests or relationships etc. Wan et al. (2009) detected social

events based on the email links between users and their neighbours. Cluster

deviations were detected to discover event occurrences. Qiu et al. (2013) con-

sidered four types of user behaviors (post, retweet, reply and mention) over135

tweets to discover the behavior distribution over topics. The results showed

that users have different interests within topics. Achananuparp et al. (2012)

weighted each tweet based on multiple features including retweet times and de-

tected the bursty events based on the abnormally weighted tweets. Though

these works find the relationships between users and topic interests, the rela-140

tionship between retweeting behavior and events has not been considered. We

summarize the existing approaches in Table 1 in terms of the information they

captured. Note that none of these approaches can capture evolving events.

3. Retweeting behavior-based complex social event detection

In this section, we first present our retweeting behavior-based topic model145

(RL-LDA) for complex event detection. Then we propose an incremental-based
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Table 1: Comparison of existing approaches

Method Text Time Location User Hashtag

behavior

Chen et al. (2013) X X X

Doulamis et al. (2016) X X X

Sizov (2010) X X X

Unankard et al. (2015) X X X X

Wang and McCallum (2006) X X

Wan et al. (2009) X X

Xing et al. (2016) X X

Yin et al. (2013) X X

Zhang et al. (2016) X X X

Zhou and Chen (2014) X X X

update algorithm for dynamically maintaining our topic model over the stream-

ing environment. Notations and definitions in RL-LDA are shown in Table 2.

3.1. Retweeting behavior-based topic model (RL-LDA)

Recall that social information is extremely noisy and sparse, which requires150

a model robust to these media characteristics. Given a corpus of social data,

various topic models can be used for handling data uncertainty and topic discov-

ery (Cai et al., 2015; Sizov, 2010; Wang and McCallum, 2006; Xing et al., 2016;

Zhou and Chen, 2014). Among them, Latent Dirichlet Allocation(LDA) (Blei

et al., 2003) variants have shown superiority in discovering unknown document155

patterns. However, in our application, an event cares about not only the topic,

time and location of a specific real-world occurrence, but also its evolution over

a time period. Thus, the social data model should be able to capture this evolu-

tion, which can not be obtained using existing LDA variants. Fortunately, the

retweeting behavior of users provides useful clues on the social information flow160

over tweets, which reflects the evolution of events. Thus, we construct our topic

model over textual content, time, location, hashtag and retweeting behavior. To
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Table 2: Notations and Descriptions

Note Descriptions Note Descriptions

T The number of time slots k A topic

V The vocabulary size h A hashtag

K Total number of topics yl, yh A switch

L Total number of locations φ Topic-word distribution

H Total number of hashtags θ Location-topic distribution

D Total number of messages θ′ Hashtag-topic distribution

N Number of words in a message ψl, ψh Bernoulli distribution

GH Hashtag graph γh Proportion of hashtag h

GL Location graph γl Proportion of location l

l A location α, β, γ Dirichlet priors

w A word τh, τl Dirichlet priors

d A message εh, εl Dirichlet priors

avoid the effect of data sparsity, we ignore very short messages with personal

and emotional related information, while only constructing our model over the

social messages with location, hashtag and retweeting behavior.165

We propose a retweeting behavior-based topic model to identify the complex

social events with temporal evolution. Unlike the MGe-LDA (Xing et al., 2016)

which considers the static hashtag context, our RL-LDA embeds user retweeting

behavior that reflects the evolutionary change trend of real-world occurrence.

Meanwhile, our RL-LDA model adopts an incremental computation-based main-170

tenance strategy to handle the social updates over streams. Given a social cor-

pus, we describe a tweet d as a combination of a word set wd = {wd1 , · · · , wdN },
a location set ld = {< lad1 , lod1 >, · · · , < ladW , lodW >} and a hashtag set hd =

{hd1 , · · · , hdM }. We extract from each tweet five types of features: content,

time, hashtag, location and retweeting behavior. The content feature is de-175

scribed as a set of textual tokens extracted from a tweet and preprocessed by

stemming, removing the stop words and emotional symbols. A time feature is

described as the time of posting a tweet. A hashtag feature is described as a

8
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token starting with # in a tweet. A location is taken from the user profile of

the original posting or that of retweeting and described as its latitude/longitude180

pair < ladi , lodi >. The retweeting behavior feature is taken from retweets, and

described as a location pair < twp, twr >, where twp is the location of the

original posting and twr that of the retweeting. These features are considered

as variables in document generation. The generative process of RL-LDA for a

document is given below.185

1. For each topic k: draw a word distribution φ ∼ Dir(β);

2. For each location l: draw a topic distribution θ ∼ Dir(η);

3. For each hashtag h: draw a topic distribution θ′ ∼ Dir(α);

4. For each tweet d = 1, · · ·D, for each word wdn , n = 1, · · ·N
(a) Draw a hashtag sdn ∼ P (h|zh)190

i. Draw a switch yh from ψ; if yh = 1, sample sdn from gh; if yh = 0,

sdn = sdn ;

(b) Draw a location odn ∼ P (l|zl)
i. Draw a switch yl from ψ; if yl = 1, sample odn from gl; if yl = 0,

odn = odn ;195

(c) Draw a topic zdn ∼ θ′sdn , θodn

Figure 1 shows the graphical model of RL-LDA. RL-LDA contains three

levels, corpus level, document level and word level. Unlike MGe-LDA, we add a

location layer based on the retweeting behavior to capture its impact on event

evolution. Each hashtag or location is represented by a multinomial distribution200

over topic and each topic is described as a multinomial distribution of words.

Thus, the generation of a tweet includes three parts, word, hashtag and location

generations respectively. Given a tweet d, let zd = {zd1 , · · · , zdN }, sd = {sd1 , · · · ,
sdN } and od = {od1 , · · · , odN } be its topic, hashtag and location assignments,

respectively. For each word wdn in d, we first choose a hashtag sdn based on205

the probability of selecting a hashtag h from the corpus under the condition zh,

P (h|zh), where P (h|zh) ∝ P (h) ·P (zh|h). Here, zh is the topic assignments for

each hashtag in the corpus, which is connected to the hashtag by the words in

the same tweet and indirectly reflects the topic distributions over hashtags. P (h)

9
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Figure 1: An RL-LDA model

is the probability of hashtag h appearing in the corpus. The topic assignments210

of each word in a tweet can be used for the topic assignments of hashtags in the

tweet. Then, we choose a location odn for each word wdn in tweet d based on

the probability of selecting a location l from the corpus under the condition zl,

P (l|zl), where P (l|zl) ∝ P (l) · P (zl|l). Here, zl denotes the topic assignments

for location l, which reflects the effect of topic distribution over the location via215

words. After that, we choose topic zdn according to θ′sdn and θodn , which are the

topic distribution of the hashtag sdn and that of the location odn respectively.

Since there are a very limited number of hashtags and locations in each

tweet, the options for the selection of hashtags and locations in it can be very

few. Thus, we expand the selection of hashtags and locations to the whole corpus220

from a single tweet to loose the selection ranges of hashtag sdn and location odn .

10
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To achieve this, we construct a hashtag co-occurrence-based graph following the

idea in MGe-LDA (Xing et al., 2016), and propose a novel retweeting behavior-

based graph for the locations in the whole corpus. Given a set of hashtags, we

consider each hashtag as a node, and two hashtags are connected with an edge225

if they appear in the same tweet. Here, we care only if two nodes are connected,

and we ignore the weight of each edge. The subgraph to a hashtag is the nodes

that are directly connected to it, based on which the hashtag assignment for

a word is conducted. Given a set of locations, we consider each location as a

node, and the locations with retweeting behaviors are connected. The subgraph230

to a location consists of all the nodes directly connecting to it. As such, the

location assignment of a word can be done over its location subset. To decide

if a hashtag or location is selected from its subgraph or the original set to its

tweet, we set two switches, yh and yl, which are determined by the values of

their Bernoulli distributions ψh and ψl respectively. If the switch of a hashtag235

is positive, we conduct the hashtag assignment to a word over its subgraph.

Otherwise, the assignment operation is done over the hashtag set of its original

tweet. Similarly, the location assignment is conducted over its subgraph if its

switch is positive otherwise, over its original location set in a tweet. Using

the subgraph-based hashtag assignment and location assignment, the sparsity240

problem of social media data over these attributes can be overcome.

After the structure of our RL-LDA model is decided, we need a parameter

estimation for this model. We use Gibbs sampling to sample hidden variable

assignment of θ, θ′ and φ with η, α, β as prior parameters respectively. According

to the processing of RL-LDA, we firstly sampled sdn from hdn as follows:245

P (sdn=h|zh) ∝ nkh + α
∑K
i=1 n

k
h +Kα

· nh
NH

(1)

where nkh is the times that topic k assigned to hashtag h, nh the times that

hashtag h appears in hashtag corpus, andNH the times of all hashtags appearing

in the corpus. The location odn is sampled based on the equation as follows:

P (odi=l|zl) ∝
nkl + η

∑K
i=1 n

k
l +Kη

· nl
NL

(2)

11
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where nkl is the times that topic k assigned to location l, nl the times that

location l appears in whole corpus, and NL the times of all locations appearing250

in the corpus. With respect to topic assignment zdn , it is sampled based on sdn

and zdn . The calculation is as follows:

P (zdn=k|h, l) ∝ nw
k +β∑V

i=1 n
w
k +V β

· nk
h+α∑K

i=1 n
k
h+Kα

· nk
l +η∑K

i=1 n
k
l +Kη

(3)

where nwk is the times that word w assigned to topic k. Thus we could get the

final result of θ′, θ and φ as follows:

θ′ ∝ nkh + α
∑K
i=1 n

k
h +Kα

, θ ∝ nkl + η
∑K
i=1 n

k
l +Kη

, φ ∝ nwk + β
∑V
i=1 n

w
k + V β

(4)

3.2. Incremental Update255

Social media data flow over streams in huge volume at high speed due to user

activities. Accordingly, the RL-LDA model constructed over the previous time

window can not reflect the data information in the current time period, thus

becoming ineffective for topic discovery. To solve this problem, we propose an

incremental model maintenance that estimates the parameters of the RL-LDA260

by using their values for the previous time windows.

To maintain the RL-LDA, we need to estimate the parameters of hashtags,

locations and words in the current time slot according to their appearance in the

previous slots. Given a set of tweets in time slot t, we estimate αth, ηtl and βtw,

the parameter of hashtag h, location l and word w in t, based on their update265

matrices Ht−1
h , Lt−1l and V t−1w obtained from δ previous time slots respectively.

We assume that the parameter estimation in the current time slot can only be

affected by their normalization of counts in δ previous time slots. Then the

columns of Ht−1
h , Lt−1l and V t−1w are formed by hj , lj and wj , where hj , lj

and wj are the normalization of counts of h, l and w in time j respectively,270

j ∈ {t− δ − 1, · · · , t− 1}. So far, three parameter update matrices Ht−1
h , Lt−1l

and V t−1w are built over hashtag, location and word in time slot t. We use

a weighted δ-dimensional vector < ω1, ω2, · · · , ωδ >, where the sum of these

weights is equal to 1, to reflect the impact of previous time slot sequence on the

12
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current time window. Then, the parameter of hashtag h, location l and word w275

in time slot t can be estimated as follows:

αth = Ht−1
h ωδ (5)

ηtl = Lt−1l ωδ (6)

βtw = V t−1w ωδ (7)

Ht
h, Ltl and V tw are updated by adding their normalized counts of hashtag h,

location l and word w in time window t and removing their values in time slot280

t− δ − 1. It is common that new elements appear in the corpus in the current

time slot but do not exist in the previous time window. Thus, the normalized

counts of an element in the previous time slots are initialized as 0 if it is a

new incoming one. For the first time slot, the parameters of hashtags, locations

and words are set as their default constants α, η and β respectively. With the285

incremental update method over RL-LDA, the evolution of complex events can

be well captured under a dynamic environment.

To accelerate the speed of model maintenance, we adaptively decide whether

the incremental update process will be conducted based on the difference of

hashtag distributions between two neighboring time slots. Given a time slot290

t, we describe its hashtag distribution Dt by counting the frequency of each

hashtag in its hashtag set. Given two neighboring time slots t and t + 1, we

measure the dissimilarity between their hashtag distributions using a Kullback-

Leibler divergence-based distance as follows:

Dht(Dt, Dt+1) =
1

2
(DKL(Dt||Dt+1) +DKL(Dt+1, Dt)) (8)

where295

DKL(Dt+1, Dt) =
∑

i

Dt+1(hi)log
Dt+1(hi)

Dt(hi)
(9)

Here hi is the probability of hashtag i that appears in a time slot. If the

dissimilarity between the hashtag distribution is smaller than a given threshold

ε, the topic discussed is not changed much; thus, we believe the model for

time slot t + 1 is the same as that for time slot t. Otherwise, we trigger the

13
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incremental update maintenance process of RL-LDA. The optimal ε will be300

evaluated in Section 4.

3.3. Cost analysis

We estimate the CPU costs of training models using different approaches,

including RL-LDA, incremental RL-LDA and MGe-LDA (Xing et al., 2016). In

RL-LDA, each word in a tweet is attached to a hashtag, a location and a topic.305

For each word, a hashtag is selected from two hashtag sets based on its switch

point. Likewise, a location is selected from its location set based on its location

switch point. Here, we estimate the cost of training RL-LDA under the worst

situation where the hashtag and location to each word are selected from their

corresponding sets over the whole corpus. Let ts be the cost of Gibbs sampling310

for one element, N be the number of words in a tweet, H, L, K be the number

of hashtags, that of locations and that of topics in the corpus respectively, the

CPU cost of training RL-LDA for each tweet is N ∗ ts ∗ (H + L+K).

Incremental RL-LDA calculates the distance between the hashtag distribu-

tions of continuous time intervals to notice the change of event in a consecutive315

time period. If an event doesn’t change within two consecutive time intervals,

the RL-LDA model doesn’t need to be retrained. Let t(RL−LDA) be the training

cost of RL-LDA in a time interval, T be the number of time intervals in the whole

dataset, TEm be the number of time intervals that events do not change. The

cost of incremental RL-LDA over the entire dataset is t(RL−LDA) ∗ (T − TEm).320

MGe-LDA detects events by utilizing a hashtag-based mutually generative

topic model. The CPU cost of training MGe-LDA for each tweet is N ∗ ts ∗(H+

K). Let tMGe−LDA be the training cost of MGe-LDA in each time interval. The

cost of MGe-LDA in dealing with the entire dataset is T ∗tMGe−LDA, where T is

the number of time intervals in the whole dataset. Compared with MGe-LDA,325

RL-LDA needs extra cost to process the location of each tweet for training the

model. Under the worst situation, the extra training cost of RL-LDA for dealing

with a tweet is N ∗L ∗ ts compared with MGe-LDA. Thus, for the training cost

in a time interval, we have t(RL−LDA) > tMGe−LDA. However, for the entire

14
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dataset, incremental RL-LDA spends less time on retraining because RL-LDA330

is retrained only when the event changes over consecutive time intervals.

For a further cost comparison between the proposed approach and MGe-

LDA, we conduct statistical analysis over a real-world dataset that contains two

events, the World Cup 2014 and the Much Music Video Awards. The dataset

contains 1,028,264 tweets, 152,073 hashtags and 22,411 locations. Suppose that335

the topic number is set to 25, then RL-LDA needs 12.8% more time than MGe-

LDA to deal with the location for training the model. Let ε be set to 0.2 as

in Section 4.3.2. 28% time intervals do not involve event changes for the given

dataset, which does not need the retraining of RL-LDA. Thus, we conclude that

the time cost of incremental RL-LDA and that of MGe-LDA are comparable over340

the whole dataset. Meanwhile, the cost of original RL-LDA incurs the highest

time cost for training the models over different time periods, while gaining better

effectiveness performance as proved in Section 4.

4. Experiment evaluation

This section demonstrates the effectiveness and efficiency of our proposed345

approach to detecting events with temporal evolutions.

4.1. Experimental setup

In order to conduct experimental evaluation, we exploit the English tweets

posted during 8-21 June 2014, a total of 22 million tweets over 70 GB data, which

are divided into two datasets DS1 and DS2. DS1 includes all the tweets in 8-350

14 June, in which the broadcast event iHeartRadio Much Music Video Awards

(MMVAs) was discussed. DS2 contains all those posted in 15-21 June, in which

another broadcast event, the 2014 Brazil World Cup (WC2014), was extensively

discussed. To meet the requirements of the RL-LDA model, tweets need contain

hashtag, retweeting behavior, location and text. Intuitively, some frequently355

appearing hashtags, such as #retweet, do not contain any relevant information

with any topics, thus are considered as stop hashtags and removed. We consider
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the locations, each of which appeared at least once in tweets with retweeting

behavior. Texts are stemmed and stop words are removed. The final filtered

dataset contains 1,028,264 tweets with 152,073 hashtags and 22,411 locations.360

We manually built the ground truth of these two events. Finally, 87,225 tweets,

712 hashtags and 5,415 locations are labelled as WC2014 and 54,060 tweets, 387

hashtags and 2,443 locations are labelled as MMVAs.

4.2. Evaluation methodology

We evaluate the effectiveness of our RL-LDA based complex event detection365

over three metrics, F1 score, probability of missed detection and probability

of false alarm over DS1 and DS2. F1 score is a commonly used method to

evaluate the quality of clusters over recall and precision simultaneously, which

is computed by:

F1 =
2 ∗ precision ∗ recall
precision+ recall

(10)

Probability of missed tweet detection (PMiss) and probability of false tweet370

alarm (PFalse) are metrics used to evaluate the effectiveness of event detection

(Cai et al., 2015; Zhou and Chen, 2014). These metrics are defined as:

PMiss =
number of missed detections

number of targets
(11)

and

PFalse =
number of false alarms

number of nontargets
(12)

A target is defined as a ground truth tweet that should be assigned to an

event, while a non-target is the opposite. PMiss and PFalse evaluate the ratio of375

the missed true targets and that of falsely assigned non-targets to all targets in

ground truth respectively. A high quality event detection method should have

a large F1, small PMiss and small PFalse.

Our effectiveness evaluation includes three parts: (a) the parameter turning

of RL-LDA; (b) the effect of threshold for the incremental updated RL-LDA;380

and (c) the comparison with the state-of-the-art topic-model-based detection

methods. We evaluate the efficiency of our proposed approach in terms of the
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overall time cost of event detection over tweet streams. The whole dataset of

70 GB data streams of 22 million tweets is used for the efficiency test. Tests are

conducted on Intel Core i7-2600 @ 3.40GHz, RAM 8.00GB with 64-bit system.385

4.3. Effectiveness evaluation

First, we evaluate the effect of topic number K over RL-LDA and update

threshold ε to find the optimal default values. Then, we compare RL-LDA and

incremental updated RL-LDA with the state-of-the-art model MGe-LDA and

LDA.390

4.3.1. Effect of topic number

We test the effectiveness of RL-LDA by varying the topic number K from

5 to 35 to find its optimal value. Figures 2 (a)-(c) show the effectiveness of

RL-LDA in terms of three metrics. Clearly, with the increase of K, the F1 and

PMiss values of RL-LDA model increase gradually, while its PFalse value drops395

quickly from 5 to 25. The reason is that tweets related to different topics are

more likely to be assigned as the same topic when K is small. With the increase

of K, the topic assignments of tweets become more precise. Meanwhile, we can

observe that the effectiveness of RL-LDA keeps steady in terms of F1, PMiss

and PFalse after K=25. This is because the discrimination power of topics400

reaches a satisfactory level, and there is less improvement space after K = 25.

Considering the balance between the effectiveness and efficiency of our event

detection, we set the default value of K as 25.

4.3.2. Effect of ε

We test the effectiveness of updated RL-LDA with the hashtag distribution405

threshold ε change from 0.1 to 0.35. Figures 3 (a)-(c) show the effectiveness

of updated RL-LDA at each ε in terms of three metrics. As we can see, with

the increase of ε from 0.1 to 0.2, the effectiveness of updated RL-LDA degrade

slightly. With the further increase of ε, the performance of our model drops

significantly. Considering the balance between effectiveness and efficiency, we410

select 0.2 as the default value of ε.
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4.3.3. Effectiveness comparison

We conduct experiments to evaluate the effectiveness of three topic model-

based event detection approaches, RL-LDA, updated RL-LDA, MGe-LDA and

LDA. Here, K and ε are set to their default values. The comparison results are415

shown in Figure 4. Clearly, RL-LDA outperforms MGe-LDA and LDA in terms

of F1 and PMiss, whereas they are not effective enough on PFalse. The reason

is that compared with MGe-LDA and LDA, RL-LDA considers the hashtag

co-occurrence and the retweeting behavior correlation as well, which effectively

helps group messages and reduces missed detections. Meanwhile, due to the420

large scale of related locations collected based on retweeting behaviors, some

irrelevant messages are grouped into clusters as well. Compared with MMVAs,

WC2014 has a wide sphere over locations. Thus, RL-LDA performs better on

MMVAs in terms of PFalse. Overall, RL-LDA outperforms MGe-LDA and LDA

considering a better balance between PMiss and PFalse, which is indicated as425

its better F1 values over all investigated events.

Compared with the original RL-LDA, incremental updated RL-LDA has an

effectiveness drop in terms of F1 and PMiss, whereas it has a better perfor-

mance on PFalse over WC2014 and MMVAs. The reason is that the grouping

of updated RL-LDA not only contains location, hashtag, retweeting behavior430

in current time slot, but also contains the impact in the previous time slots as

well. Overall, the updated RL-LDA can well capture the evolution of a complex

event.

4.4. Efficiency comparison

We evaluate the efficiency of RL-LDA, incremental updated RL-LDA, MGe-435

LDA and LDA by setting the parameters to their default values. The overall

time costs of detection using different models are reported in Table 3. RL-

LDA costs more time compared with MGe-LDA due to its extra processing on

location related calculation. Incremental updated RL-LDA outperforms MGe-

LDA and RL-LDA in terms of efficiency because it adopts incremental update440

maintenance and adaptively decides the time point for conducting maintenance,
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which removes the redundant model training operations. Though LDA costs the

least time for detection, it has extremely low effectiveness. Considering both

effectiveness and efficiency, our proposed models have much better efficacy for

complex event detection.445

Table 3: Efficiency comparison

Methods RL-LDA RL-LDA(updated) MGe-LDA LDA

Time costs(s) 2986 1813 2015 604

The experimental results show that the effectiveness of the RL-LDA model

keeps steady after the number of topics is increased to an optimal value. Thus,

we only need to detect a limited number of events to trade off the effectiveness

and source consumption of the system. Meanwhile, the event changes between

consecutive time slots kept within a certain range. For the experimental results450

on efficiency evaluation, the results prove that our approach improves the re-

sponse time of complex event detection significantly. Our proposed approach

has provided insights into the characteristics of event occurrence and event evo-

lution. The experimental results indicate that event evolution can be tracked

by detecting event changes over time.455

5. Conclusion

In this paper, we study the problem of detecting complex evolving events

over social media. We first propose a retweeting behavior based topic model,

RL-LDA, over text, hashtag, location, and retweeting behavior. Both hash-

tag co-occurrence and retweeting behavior are exploited to form two types of460

graphs that overcome the issue of tweet sparsity. Then we propose an incremen-

tal based RL-LDA update method over hashtags, locations and words to capture

the evolution of events by considering the impacts of previous time slots over

the current one. Finally, we conduct extensive tests to evaluate the effective-

ness and efficiency of our approach. The experimental results have proved the465
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high performance of our approach to detecting complex events with temporal

evolutions.

The proposed RL-LDA model extends the MGe-LDA model by embedding

the retweeting behavior of social users to accommodate the temporal evolution

of complex events. By connecting the locations with the retweeting behaviors of470

social users, RL-LDA achieves better performance for complex event detection

compared with existing approaches. This indicates that hidden relationships

between different attributes in social media contain critical information for event

detection. Moreover, the temporal event evolution is captured by measuring

the event changes between consecutive time intervals. It inspires us to think475

that event evolution can be captured by monitoring the highly correlated event

attributes. We mathematically show that the efficiency of RL-LDA depends

on the characteristics of datasets, and event characteristics decide the speed

of capturing event evolution. For practical utility, the proposed approach is

significant for game view planning and disaster management.480

The RL-LDA model for complex event detection has two limitations. First,

we have not considered the evolution of events over social dimensions. The

user connection structures may change over time, which reflects the evolution of

complex events. Thus, our future work is to further investigate the effect of user

connection evolutions. Second, our model is constructed over a single processor,485

which may not be efficient enough for handling detection over big social streams.

To address this issue, for the next step, we will design efficient RL-LDA based

complex event detection over a distributed environment. In addition, we will

investigate new solutions for predicting complex social events over future time

periods, and summarize the complex events for easy interpretation of them to490

interested social users.
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Figure 2: Effect of K
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Figure 3: Effect of ε
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Figure 4: Effectiveness comparison
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