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Abstract  

Frequency Selective Surfaces (FSSs) are planar periodic structures of identical cells 

that behave like filters to electromagnetic energy.  FSSs are widely used for shielding of 

non-ionizing radiation.  They have been employed to improve wireless networks, radar 

system, and scientific research infrastructures.   However, most of the research into FSSs 

has been in two dimensional periodic arrays of resonant structures, where a single layer FSS 

is known to suffer from poor selectivity and narrow bandwidth.  

For some practical applications with restricted or conformal transmission area, it is 

desirable to realize a FSS with miniaturized elements and a stable frequency response for 

different polarizations and incident angles.  A large number of structures and modelling 

techniques have been proposed, but these features are difficult to obtain through traditional 

designs.  An innovative concept of a three-dimensional (3-D) FSS is proposed, and is 

proving a promising candidate for the realization of compact high-performance FSSs.  The 

3-D structures also lend themselves to high aspect ratio micro-fabrication techniques for 

efficient implementation at higher frequencies.   

The purpose of this thesis is to investigate novel designs of 3-D FSSs extending the 

potential functionality of the structure beyond that of its 2D analogue.  First, a novel 3-D 

FSS architecture based on a circular ring unit element is presented.  The length of the 

cylinder is shown to have a significant effect on the frequency characteristics of the FSS, 

providing tuning and reconfiguration from a band-stop to a band-pass filter response.  

Dielectric materials can also be introduced in the center of the cylindrical unit cell elements 

to simultaneously obtain a stop and pass band with a sharp transition. A similar close band 

response can be obtained using dual cylinder 3-D Frequency Selective Surface (FSS).  The 

length  of  the  cylinder  has  significant  effect  on  the  stop  band frequency selective 

characteristics of  the  FSS, resulting  in a  closely  spaced  band  pass  and  band  stop  

response.  

Conventional FSSs require  additional  bias  circuitry  to  tune  the  operating  

frequency or  to  change  its  characteristics.  A new tuning technique using spring resonator 

element is also proposed in this thesis.  The FSS frequency response can be adjusted by 

changing the spring height, h, with applied pressure. The functional characteristic of the FSS 

can also be altered between a band-stop and band-pass filter response.  



 

 

Frequency responses of FSSs are dependent not only on frequency but also on 

incident angle of incident electromagnetic waves. It is often required that an FSS provides 

stable performance for various incidence angles.  Hence, 3-D Frequency Selective Surface 

(FSS) with a response that is essentially independent of incident angle is presented.  The 

FSS is a periodic array of 3-D hollow tapered resonators.  The TE and TM angular stable is 

obtained by tapering the width of a cylinder with a square cross-section from upper opening 

to the lower opening.  Impressive frequency stability and transmission characteristics have 

been achieved up to 80 degrees for both TE and TM incidence angles.  The principles of 

operation along with guidelines for the design of the proposed FSS structures are presented.   

A novel 3-D Frequency Selective Surface (FSS) with horn shaped resonators is also 

proposed which exhibits a very wide stop band.  Simulation results prove that the FSS can 

realize selectivity of waves with a bandwidth more than 57%, and for different incident 

angles.  The wideband transmission behavior is very stable under oblique TM incidence 

angles from 0 to 80 degrees.  

FSSs with high selectivity and compact size are of increasing demand in wireless 

and mobile communication systems.  Here, a new type of FSS with miniaturized resonator 

elements is proposed.  The FSS structure is shown to have a unit cell dimension that is 

miniaturized to 0.067 λ0, achieved by coupling two meandered wire resonators separated by 

single thin substrate layer.  The FSS produces a stable angular response up to 80 degrees for 

TE and TM incident angles.  The meandered wire resonator structure is also utilized to 

enable transmission through a subwavelength aperture.  The structure exhibits effectively 

100% transmission at approximately 1.94 GHz through a square aperture of only 0.035 λ0 × 

0.035 λ0 in size.  The  extremely  high  Q resonance  presents  a  transmission  greater  than  

-10 dB  over  a bandwidth  of  0.006%.    Frequencies away from resonance are effectively 

blocked, with transmission down around -40 dB.   

A complementary subwavelength resonator is also proposed which exhibits a narrow 

band filter response operating at 1.92 GHz with a fractional bandwidth of 0.04%.  Band-stop 

transmission away from resonance is once again down around -40 dB.  The subwavelength 

structures are sensitive to fabrication tolerances, but are realizable with modern printed 

circuit fabrication techniques. The 3-D structures also lend themselves to high aspect ratio 

micro-fabrication techniques for efficient implementation at higher frequencies. The 3-D 



 

 

FSS exhibits tremendous potential in alleviating the limitations of 2D FSSs, and offering 

potential functionality beyond the capabilities of its 2D analogue. 
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CHAPTER 1 

  

INTRODUCTION 

 

1.1  Introduction 
 

Frequency Selective Surfaces (FSS) are planar periodic structures of identical 

patches or apertures of conducting elements repeating periodically in either a one or two-

dimensional array on a dielectric substrate. Depending on their physical construction, 

material and geometry, FSS are divided into four categories which are low-pass, high-pass, 

band-pass and band-stop filters. Because of its frequency-selective properties, FSS is 

incorporated in a wide variety of applications, such as radar-absorbing structures, the 

realization of reflector antennas, radome design, polarisers and beam splitters, and wireless 

communication systems[1-5].   

The FSSs were intensively studied since the early 1960s. Early work concentrated 

on the use of FSS in Cassegainian subreflectors in parabolic dish antennas. Frequency 

Selective Surface (FSS) have become one of the most commonly known since their 

application as ''Antenna feed system utilizing polarisation independent frequency selective 

intermediate reflector'' in deep space communication, and moon explorations in the 1960's 

[6]. FSS are now employed in radomes (terrestrial and airborne), radar, missiles, 

electromagnetic shielding applications, reflector antennas, making polarizers and beam 

splitters and radar absorbing material (RAM). Implementation of FSS on radar absorbing 

material (RAM) increases the absorption, and its physical strength, which is more favorable 

for practical applications [7].  

The usage of FSS in wireless communication systems is realized one of the most 

important components. As in communication systems applications FSS is designed to reflect 

or transmit electromagnetic (EM) waves with frequency discrimination, and have 

contributed significantly toward advancing modern communication systems.  
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FSS also been used in collision avoidance for aeroplane and helicopter. For instance, 

rescue helicopters have to be versatile for any weather conditions. By flying at low altitude 

they are facing obstacles that may not be detected by visual flight rules. A lot of work has 

been done in the past to develop obstacle sensors for collision avoidance, mainly for the 

expansion of operating conditions in military applications.  For instance, a high gain Fresnel 

zone plate reflector was developed for helicopter collision avoidance radar. In order to 

increase the overall efficiency and enhance the antenna performance, the primary source of 

the reflector is consists of a Frequency Selective Surface (FSS). The frequency bandwidth 

of the primary source is enhanced by the use of double side etched substrate for the FSS [8]. 

As for practical applications, it is desired to realize a FSS with miniaturized elements 

and a stable frequency response for different polarizations and incident angles. However 

these features are difficult to obtain through traditional designs; and a large number of 

structures and modelling techniques have been proposed such as single-pole and dual-pole 

MEFSS, Artificial Magnetic Conductor using Jerusalem Cross Frequency Selective Surface, 

low pass filter using single folded stepped impedance hairpin resonator, and thick hexagon 

patches FSS [9-14]. Furthermore, complexity in the design of existing frequency-selective 

surfaces and their required size and sensitivity to the angle of incidence limits their 

functionality, such as inconsistency frequency response over a wide range of incident angles.  

Sensitivity to the angle of incidence limits their functionality, causing inconsistency in the 

frequency response over a wide range of incident angles. The FSS resonant frequency can 

diverge from the operating frequency of the communication system, rendering it non-

functional.  As an example, an airborne FSS radome attached to the nose cone the incident 

angles can be very large, even up to 80 degrees. Consequently, in order to reduce the radar 

cross section of radar and to ensure normal communication functionality of the airplane, a 

FSS with stable performance over large incident angles is required [15]. Thus showing the 

demand for improving their characteristics. Therefore, the purpose of this research is to 

develop new Frequency Selective Surface (FSS) that can improved functionality and 

performance over current FSS.   

A new type of FSS that is called 3-D Frequency Selective Surfaces is proposed in 

this research where it is believed have  a  capability  to give  a positive impact in microwave 

area thus improved communication system technology. Research has shown that 3-D 

Frequency Selective Surface has demonstrated superior performance than conventional FSS. 

The third dimension of 3-D FSS extends the potential functionality of the structure and 
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adding extra degrees of freedom in the design. The extra degree dimension offer 3-D FSS 

an extra freedom into the structure provide additional advantages such as the ability to tune 

the frequency response without active component which subsequently reduce the total 

development cost. Not just has high selectivity characteristic, 3-D FSS is low profile stable 

performance with various incident angle which is more favorable in many microwave 

communication applications. Moreover, these new type of FSS is believed would be highly 

beneficial besides can be used for various applications thus improved our communication 

system technology.   
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1.2 Objective/Motivation 
 

This study embarks on the following objectives: 

• To investigate the use of novel 3D cylindrical frequency selective structures that 

reflect or transmit wireless band signals 

• To study and understand performance characteristics of 3D cylindrical frequency 

selective structures and their correlation with design parameters. 

• To design, fabricate and validate novel 3D frequency selective structures. 

 

1.3 Thesis structure    
 

The thesis comprises six chapters, and details for the contents of each chapter is given below.  

Chapter 2: Chapter 2 of this thesis presents a literature review of research on FSSs. The  

development  history  of  the  FSS  and  its  common  applications  are  addressed. Objectives  

of  this  chapter  include  identifying  the key  factors  which  govern  the  FSS performance, 

and reviewing available techniques for theoretical FSS analyses.   

Chapter  3:  This  chapter  discuss  both  2-D  and  3-D  FSSs  employing a  circular  ring  

shape  unit element.  The  3-D  structure  is  formed  by  raising  the circular  ring  height  

creating  a cylindrical element but keeping the same unit cell with planar case. The effect of 

varying height and dual cylinder are presented.    In addition,  a  study  in  to  the  effect  of  

dielectric materials  introduced  in  the  center  of  the  3-D  cylindrical  FSS  unit  cell  

architecture  is  also presented.  Moreover, a new tuning technique using spring resonator is 

also been discussed. This technique is applied to 3-D FSS design to make it reconfigurable, 

and/or fine-tune the response.  The  versatile  FSS  geometry  introduced  here  is  based  on  

a  periodic  array  of spring resonator element structures.  The unit cells consist of a thin 

aluminum wire (w = 1 mm diameter) wound into a helical spring resonator.  The effect of 

varying height of the mechanical  spring  FSS  which  is  similar  to  cylindrical  structure  

also  presented  in  this chapter.  The  operation  and  performance  of  the  3-D  FSSs  

elements  are  described,  and validated both numerically and experimentally.   

Chapter  4:   This  chapter  focuses  on  examining  techniques  which  can  be  used  to 

stabilize  the  FSS  incident angle  response.  The design procedure of producing the 3-D 
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FSSs with independent incident angle, is presented, with its origins from a 2-D and 3-D FSS 

using square loop shape.  Once again, the 3-D structures  are  formed  by  raising  the  four  

side  of  the  square  loop.  The proposed FSS is a periodic array of 3-D hollow tapered 

resonators.  The proposed 3-D FSS has reduced  sensitivity  to  the  angle  of  incidence  of  

the  electromagnetic  wave  as  a  result  of tapered  structure,  compared  to  other  2-D  and  

3-D  FSSs.  The TE and TM incident angle independence  is  obtained  by  tapering  the  

width  of  a  cylinder  with  a  square  cross-section from upper opening to the lower opening.  

Impressive frequency stability and transmission characteristics have been achieved up to 80 

degrees for both TE and TM incidence angles.   

Furthermore, a novel 3-D Frequency Selective Surface (FSS) with horn shaped 

resonators is  presented  in  this  chapter  which  exhibits  a  very wide  stop  band.  This new 

horn shaped resonator  is  a  modification  from  a  3-D  FSS  consisting  of  square  cylinder  

unit  elements. This feature introduces frequency-selective surfaces with the added 

advantage of lowering the  sensitivity  of  the  FSS  frequency  response  with respect  to  the  

incidence  angle.  The principles of operation along with guidelines for the design of the 

proposed FSS structures are  discussed  and  comparisons  are  made  in  term  of  resonant  

frequency,  fractional bandwidth, angular stability and reflection phase responses are also 

made.    

 Chapter  5:  This  chapter  presents  a  Miniature  FSS  with  high  Q  factor  which  enables 

significant  reduction  of  the  unit  cell  size,  improves  angular  stability  of  the  array 

performance  and  exhibits  very  selective  narrow  band  response.  The mechanisms 

underlying the distinctive properties of the wire resonators were examined.  The Miniature 

FSS design procedure is based on an equivalent circuit (EC) model,  and  key  parameters  

that characterize  the  required  FSS  frequency  response  are  also  examined.   

 Chapter  6  summarizes  the  main  findings  of  this thesis  and  suggests  directions  for  

future developments.  This  research  has  thrown  up  many  questions  in  need  of  further 

investigation, including multi-functional 3-D FSS design, FSSs with independent incident 

angle properties, tunable FSSs, alternative analysis and fabrication techniques, and 

optimized deployment strategies.    
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1.5 Contributions 
 

The main contributions of this research are the development and demonstration of 

various novel 3-D Frequency Selective Surfaces. The benefit of 3-D FSSs has been 

examined and quantified with both theoretical modelling and practical measurements. A 

summary of the contribution to the body of knowledge is listed below:  

• A novel 3-D Cylindrical FSS is proposed (section 3.2), where it shows that the 

length  of  the  cylinder  has  significant  effect  on  the  stop  band frequency 

selective characteristics of  the  FSS. (J1, C1) 

• Dielectric materials are introduced in the center of the cylindrical unit 

simultaneously obtain closely spaced band pass and band stop response with a 

sharp transition (section 3.2.3) extending the flexibility of the 3D cylindrical FSS 

and potential functionality beyond its 2-D FSS. (J1) 

• Adding extra freedom in design of 3-D Cylindrical FSS, 3-D Dual Cylindrical 

FSS is proposed (section 3.3), where a closer band response (approaching a 1:1 

ratio) can be achieved by extrapolating the height of planar dual ring unit cell 

without need to design a very close gap between two elements. (C2) 

• A comprehensive study of 3-D Cylindrical FSS has been done, enabling the 

creation of a new tuning technique using spring resonator element called 3-D 

spring FSS structure is presented (section 3.4).  This new structure can achieve 

functional switching between band-stop and band-pass operation without the 

need for active device integration. (J2, C3) 

• A symmetrical 3-D FSS (section 4.2) identifying key structural parameters on 

the transmission performance (section 4.3), which enable the creation of 3-D 

tapered FSSs (section 4.4) with a stability response under oblique incidence 

angles of up to 80o and 3-D wideband FSS (section 4.5) which has a significant 

improvement of the bandwidth while the angular stability of the frequency 

response was nearly unchanged. (J3, C4, C5) 

• A miniature wire resonator FSS with angular stability (section 5.2). The FSS 

structure is shown to have a FSS unit cell dimension that is miniaturized to 1/15 

λ0. (J4, C6) 

• A planar miniature wire resonator solution to enhance the light passing through 

subwavelength apertures down to 1/50 λ0 square. (Section 5.3).  (J5) 
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CHAPTER 2 

 

Literature review 

 

2.1 Introduction 
 

FSSs are usually formed by creating a periodic array of resonating elements that 

effectively act as filter to electromagnetic waves. Generally, a FSS is a 2-D planar structure 

that consists of one or more metallic patterns, each backed by a dielectric substrate. The 2-

D FSS is arranged in a periodic fashion and the frequency response is determined by the 

geometry of the structure in one period called a unit cell.  There are a wide variety of possible 

elements that can be used to realise FSS arrays, for example a circle [16, 17], square [5, 18-

20], hexagon [21, 22], fractal geometries, cross dipole [5], or convoluted shapes [23-26]. 

Different element shapes offer FSS with different frequency responses. Depending on their 

physical construction, material, and geometry, they can be divided into four categories: low-

pass, high-pass, band-pass, and band-stop filters, as shown in Figure 2.1.   

 

 

(a)                               (b)                                (c)                                 (d)  

Figure 2.1: FSSs can be classified into four categories of filter responses: (a) band-stop, (b) 

band-pass, (c) high-pass, (d) low-pass. 
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The applications of FSSs are many and varied, ranging over much of the 

electromagnetic spectrum (refer to Figure 2.2).  In communication systems applications, 

FSSs are designed to reflect or transmit electromagnetic (EM) waves with frequency 

discrimination, and has contributed significantly towards advancing modern communication 

systems. The applications of FSS encompass reflecting elements for reflector antennas [27], 

efficiency and bandwidth augmenters for antenna arrays [28, 29], and EM shielding of 

indoor environments against interference [30, 31].  FSSs can be applied to radomes to reduce 

the radar cross section (RCS) of antennas at the out-of-band frequencies.  In this situation, 

the band-pass characteristic of the surface is adopted.  In other words, the FSS radome allows 

the incident signals to pass through at the operating frequency, and reflects the signals 

outside the operating band to reduce the backscattering radar cross section [32].  More 

recently, there is an interesting application of FSS in wireless communication systems.  In 

prison cells, public libraries, and theatres, FSSs are printed on the windows and the walls of 

buildings to block the mobile phone signals and to allow the emergency Terrestrial Trunked 

Radio (TETRA) services to operate.  

                                      

 

Figure 2.2:  Some example of Frequency Selective Surface applications [33-35]. 

 

Frequency Selective 
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Another simple example of an FSS is microwave oven door. The FSS acts as a high-

pass filter. The oven door, which blocks the 2.4 GHz microwaves inside the oven, on the 

other hand, allows visible light to pass through. Hence, the cooking progress can be 

monitored without any harm. In other words, although the oven door is optically 

‘transparent’, it essentially acts like a closed metal shield to the internal 2.4 GHz microwave 

transmissions. However, there are very small amounts of radiation leakage through the 

viewing glass while it is operating due to less sensitivity to the angle of incidence inside the 

microwave oven. Nevertheless, the Food and Drug Administration (FDA) reports that the 

amounts of radiation leakage are “insignificant” and “well” below the level known to harm 

people.  

The design complexity of existing FSSs and its required size and sensitivity to the 

angle of incidence limit its functionality, thus showing the demand for improving their 

characteristics.  Specific characteristics for further research are the ability to tune the 

frequency response without active components, low dependence of the FSS on the incidence 

angle of the exciting wave, as well as operability of the surface with small dimensions of the 

FSS panel compared to the wavelength.  In this chapter, an overview of traditional methods 

in FSS design compared with more recent approaches is provided, demonstrating a 

requirement for performance superior to that of what is available. 

 

2.2 Key Properties of FSSs 
 

The following chapter will discuss key properties of designing FSS, such as: FSS 

element shape; FSS configuration; FSS standard responses; unit cell size; as well as angular 

stability.  

2.2.1 FSS element shape 

 

The resonant element geometry (including element shape) is a fundamental aspect 

in FSS design. The most common FSS element shapes include a simple straight dipole, 

circular loop, cross dipole, three-legged dipole, square loop, and jerusalem cross, as shown 

in Figure 2.3.  Depending on the physical construction and geometry of the surface, the FSS 

can efficiently control the transmission and reflection of the incident electromagnetic plane 

wave and have low pass, high pass, band pass, and band stop behaviours. 
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The shape of the conducting element which constitutes an FSS is unrestricted. 

According to Munk [36], element shapes can be generally categorised into four basic groups, 

namely:  

a) Centre connected, such as dipoles, tripoles, Jerusalem crosses, and cross 

dipoles.  

b) Loop types, such as square loops and rings. 

c) Solid interior types, usually in the form of patches or apertures. For examples, 

circular patches and square meshes. 

d) Combinations, sophisticated patterns with combinations of any of the centre-

connected, loop, or solid interior shapes to overcome FSS performance 

deficiencies that are associated with simple element shapes. 

 

Some common shapes are illustrated in Figure 2.3.  Each shape possesses unique 

frequency characteristics.  Some are possibly more sensitive to incident angles, and some 

allow a rapid transition between pass and stop bands.  Other shapes offer a desirable wide 

operating bandwidth, but may perform inconsistently between vertical and horizontal signal 

polarisations.  Table 2.1 summarises the performance of some common shapes relative to 

others, based on a single layer freestanding FSS [37]. 

 

 

   

                                                           

               

 

 

 

 

 

Figure 2.3: Different element shapes offer FSS different frequency responses. 
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Table 2.1: Performance of FSSs with different element shapes (based on the freestanding 

FSS performance, reproduced from [37]) 

Element shapes 
Angular 

stability 

Cross-

polarization 

level 

Larger 

bandwidth 

Small band 

separation 

Dipole 4 1 4 1 

Jurusalem Cross 2 3 2 2 

Ring 1 2 1 1 

Tripole 3 3 3 2 

Cross Dipole 3 3 3 3 

Square Loop 1 1 1 1 

 

Ratings: best = 1, second best = 2, third best = 3, least = 4. 

 

Table 2.1 shows that the square loop and ring outperform other types of basic 

element shapes as they are rated 1 (or 2) in every performance characteristic investigated. A 

square loop FSS provides the basis for this investigation since it has demonstrated less 

sensitivity to incident wave angle than other shaped resonator elements. Because of its 

simple shape and its appropriate frequency characteristics for notching out the transmission, 

the square loop and ring were chosen as the fundamental FSS element shape for this 

research. 

  

 

2.2.2 FSS Configurations 

 

Conventional FSSs consists of a two dimensional (2-D) periodic array of unit-cells 

either printed on a dielectric layer or cut out of a conductive surface.  Two dimensional (2-

D) FSSs (or single-layer FSSs) are light in weight and compact in volume, unlike multi-

layered FSSs.  In some FSS applications, a wide bandwidth is a requirement, and a single 

layer FSS typically has only one resonant frequency.  Conventional single layer FSS are not 

just restricted on the bandwidth; but are dependent on the polarisation of the incident wave 

as well [20, 30, 36].  
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In order to solve to create a wideband FSS, it is necessary to use a very complicated 

geometry or multilayer structures.  Stacking two identical FSS arrays causes a broad 

bandwidth response.  For instance, an FSS can be sandwiched or stacked between thick 

dielectric materials in order to obtain wideband response.  If these two arrays are cascaded, 

three distinct array interference notches appear at a low, middle, and high frequency [36].  

The null at the middle frequency will disappear or become infinitely thin if both layers of 

the FSS are resonant at the same frequency (middle frequency).  In order to make the middle 

frequency disappears to get a wider bandwidth, the spacing between the arrays is adjusted. 

Therefore, cascading two identical FSS arrays results in a reflection curve with a much 

flatter top and a faster roll off compared to a single FSS array [36].  If cascading two identical 

FSS arrays does not provide sufficient bandwidth, a third FSS layer is added, which is 

resonant at the upper null. It is also possible to cascade two FSS arrays that are not identical 

[25].  By varying the separation width or thickness of dielectric, a wideband response is 

obtained.  With a thicker dielectric, effective permittivity increases, and thus the perturbation 

becomes more distinct as the field is more confined within the dielectric substrate [38, 39].  

Multilayer FSSs can be difficult and costly to construct, as several planar FSSs must 

be manufactured and stacked in some fashion.  Such a procedure increases the cost and 

complexity over a single planar FSS in proportion to the number of stacked FSSs. Secondly, 

numerical analysis of the structures is vastly complicated due to the coupling effects between 

the stacked FSSs.  As a solution, a single planar FSS with multiple apertures/patches per 

periodic cell is proposed [40]. Instead of a single perfectly conducting strip, a group of 

multiple strips constitutes a unit cell.  In this case, the group is periodic, not the individual 

elements. Multiple periodic FSS avoids the cost and complexity of manufacturing several 

planar FSSs necessary in the stacked design.  An added benefit of the multiple periodic 

element planar design is that it allows for simple rectangular elements to be arranged in a 

group so as to produce less-polarisation dependent filter designs [41].  Nevertheless, this 

type of FSS exhibits multiple unwanted resonances features due to the multiple sizes and 

types of elements per unit cell [42].  
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2.2.3 FSSs with close band responses 

 

Recently, researchers have shown an increased interest in design of FSS with close 

band responses [43].  Close band response is needed in some applications such as in military 

system for their aircraft, missiles, and naval vessel to simultaneously communicate with 

different communications satellites [44, 45].  FSSs with close band response are also used 

in reflector antennas for space-borne applications.  Multiple operating frequencies are 

needed in these applications [46].  The challenge is to design an FSS that works for three 

bands namely S-band (2.2 GHz), Ku-band (14.9 GHz), and Ka-band (25.25 GHz), and two 

FSSs have been used to isolate the bands that are reflective at S-band, and that are transparent 

at Ku-band and Ka-band. For each band, the reflection/transmission centre band frequency 

ratio requirement is approximately 1.48 or less [45].  Typically, in close band FSS design, 

the band spacing is determined by the clearance between concentric elements.  The clearance 

must be small enough to meet the close band requirement.  In practice, a very close clearance 

cannot be implemented due to the limitations in fabrication.  Consequently a strict 

requirement for fabrication process is needed and some unexpected coupling between the 

concentric elements occurs.  

Gridded square FSSs are proposed to give closer reflection/transmission band ratios, 

which are 1.3 to 2.1 compared to >2.5 for the single square FSS [18].  This design requires 

multilayer structure that increases the cost, complexity in fabrication, and difficulty in 

maintenance.  Close band spacing can also be achieved by designing the resonant frequency 

of the double square units with different loadings by using active components [47-49].  A 

dual-band loaded FSS design has been introduced to mitigate this issue and to achieve close 

band spacing. The resonant frequency of the double square unit cells is tailored with 

different loadings of lumped components. Although this is a very useful solution in order to 

get a close band response, it requires the addition of a large number of chip capacitors that 

need to be soldered precisely into each unit cell.  
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2.2.4 Tunable and Switchable FSSs 

 

Another practical feature of FSS structure design is the ability to electronically tune 

the frequency response.  Tunable FSSs are useful for tunable radomes or adaptive screening 

of unwanted wireless transmissions [2, 50].  The characteristic of tunable FSS can be seen 

through conventional methods including loading with active semiconductor device like 

varactors diodes, PIN diodes, and Schottky diodes in a traditional FSS element design [51-

54].  For biasing the active components, DC grid arrays are required in a separate set of 

circuitry [55, 56].  By adjusting the DC voltage control, the reflectivity and transmitivity of 

an FSS can be modified.  For instance, the transmission characteristics of FSS structures can 

be switched or varied with different bias states of varactors.  However, the large scale biasing 

grids can limit the performance of FSSs by interfering with the RF signal, resulting in poor 

selectivity, providing unbalanced biasing, and introducing polarisation dependence.  

Furthermore, the fabrication cost/complexity and losses associated with the bias grid remain 

a problem in practical tunable FSS implementations.  More recent methods of implementing 

tunable FSS use micro electro mechanical systems (MEMS) technology to create capacitors 

or switches to vary the electrical shape of the unit cell [57, 58].  Radio Frequency micro 

electro mechanical systems (RF-MEMS) switches can provide continuous and smooth 

transitions between FSS characteristic behaviours.  The RF-MEMS devices electrostatically 

actuate two-state switched capacitors that control the FSS resonant frequency. The switching 

speed of RF-MEMS is fast, and the DC power consumption is very low.  However, these 

solid state switches suffer from nonlinearity and low isolation.  Moreover in FSS 

applications, a huge number of active elements are required, which again increase 

cost/complexity and the potential for failure [59, 60]. 

 

Mechanical reconfiguration of FSSs claims to deliver the most dramatic FSS 

parameter variations.  Mechanically tunable FSSs can be implemented by shifting one layer 

of double-layer FSS, hence altering the resonant frequency [61].  The relative shift of one 

layer with respect to the other changes the coupling capacitance between the layers. Another 

mechanical reconfiguration technique involves tuning unit cell geometry via pneumatically 

actuation [62].  It is shown that the pneumatic actuation approach can unite physically 

separated metallic elements, thus switching the operational frequency of the structure.  

Pneumatic switching does not require a DC bias supply, and can maintain its switch state 
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for some time.  Moreover, the major advantage of pneumatic actuation is the elimination of 

metallic biasing wires in the structure, which can interfere with the operation of the structure 

and could be prone to damage in a harsh environment.  Thus, the biasing wires are replaced 

with RF-transparent air-actuated structures. 

 

2.2.5 Incident angle stability 

 

Once exposed to electromagnetic radiation, a FSS is expected to act like a filter 

independent on the angle of incidence and polarisation.  As in reality signals arrive at various 

angles, it is desirable to design an FSS that functions consistently over a wide range of 

incident angles.  As electromagnetic waves possibly will strike the FSS from any arbitrary 

angle and have different polarisations, the transmission and reflection properties of the FSS 

should have a stable frequency response when the angle of incidence or polarisation changes. 

However, the spectral response of most FSS depends on the polarisation and the angle of 

incidence of incoming waves [63].  For an indoor office environment in which an FSS will 

be applied, signals possibly will very likely undergo multiple reflections between walls or 

furniture before they reach the receiver. Consequently, signals arrive on the FSS-modified 

wall at a range of different angles.  More specifically, the resonant frequency shifts as the 

incident angle changes. Therefore, when designing an FSS, or when evaluating its 

performance, it is very important to take into account the incident angle variation. 

The variation in FSS performance due to changing signal incident angles can be 

somewhat alleviated with a proper FSS design, such as an appropriate choice of element 

dimensions or the use of multiple FSS layers and dielectric substrates [1, 13, 30, 64].  In an 

attempt to reduce the angular sensitivity, double-layer configurations have been proposed 

and investigated [65-69].  For example, Jerusalem Cross FSSs offer stable resonance 

frequency with respect to the incidence angle of both TE and TM incident plane waves [67, 

68].  The frequencies are rather stable up to 50 degrees with only ±1% deviation.  By adding 

an extra layer, the two-layer Jerusalem Cross FSS is obtained and yields smaller cell size 

and thickness with better angular stability.  The separation distance between the two element 

layers has been identified as a key issue in the design and performance of the FSS.  The 

closer the layers are to one another, the more the angle stability will be improved.  However, 

it has been realised to only increases the stability of the TM incident angle whereas TE 

incidence performance significantly decreases after 20 degrees [68]. 
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A new method that has independence towards incident angle particularly for TE 

waves has been proposed in [70, 71].  The design of the FSS is based on the Annular 

Aperture Array (AAA).  A square array of square annular apertures is patterned on a metal 

film deposited on a glass substrate with a certain value of height.  The corresponding 

transmission position can be tuned by simply modifying the refractive index of the medium 

placed inside the cavities as well as the height of the metal thickness, which is the length of 

the annular cavity. The structure is angle-independent up to around 70o; however, additional 

transmission peaks appear in the case when TM incident angle is increased. Fractal FSSs 

have shown excellent polarisation and angular stability because of its symmetric fractal 

configuration [72, 73].  Furthermore, fractal resonators have been proposed as small size 

scatterers, thus it is able to reduce the angular sensitivity [74, 75]. Split ring resonators (SRR) 

can also be used as small-sized scatterers for FSS design. However, the 

transmittance/reflectance of SRRs makes the FSS strongly dependent on the angle of 

incidence and polarisation.  Nevertheless, a stable response can be achieved with proper 

arrangement of SRRs [76].  A stable SRR is obtained by employing two closely spaced 

arrays of ring elements with the conductor split at appropriate positions to provide 

independent control of the resonances for the vertical and horizontal field directions. 

Therefore, stable responses for TE and TM waves are achieved when the FSS operates at 

45° incidence.  A suitable isotropic modification of the proper arrangement SRR has been 

used in the design of a cubic unit element.  The results shows that the angles are stable until 

50 degrees for TE and TM incidence [77].  The only challenge is to find a suitable 

arrangement of SRRs that shows an isotropic behaviour for the FSS. 

 

(a)                                                                   (b) 

Figure 2. 4: Shows transmittances of the FSS when illuminated by different incident angle. 

(a) TE polarized wave, (b) TM polarized wave. [69] 
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2.2.6 FSSs with small unit cell size 

 

Recently, many approaches have been proposed to obtain FSS unit cell dimensions 

much smaller than a wavelength.  Physically, small microstrip arrays exhibit universal 

application because of its excellent inherent characteristics of simple configuration, light 

weight, small volume, low cost, and low sensitivity with respect to the incidence angle of 

the exciting wave.  For some applications, FSS of relatively small electrical dimensions that 

are less sensitive to incidence angle and can operate for non-planar phase fronts are highly 

desirable.  A radome for miniaturised low-frequency antennas and antenna arrays is an 

example of this category.  

In wireless communication systems, small-sized devices are needed to reduce the 

cost, and thus miniature resonators have been reported as the key components to miniaturise 

an electronic device [78, 79].  There are few approaches in resonator miniaturisation, among 

which are the use of lumped element [80-82], loading of the resonator with a helix [83], use 

of a very high dielectric substrate [84, 85], hair pin resonator, and split ring resonators [86-

91].  Another effective way to diminish the size of an FSS unit cell is by integrating a suitable 

lumped capacitor within two slots, introducing a capacitive gap between two ends of the 

resonators.  The unit cell size diminishes to 0.06 λ0 × 0.22 λ0 in this case [92].  Specific 

applications of these types of FSS filters include narrowband astronomy filters and filters 

for spacecraft instrumentation. 

The size reduction of ordinary microstrip line resonators, for example, has been made 

by using lumped capacitor [82, 91].  The proposed technique achieves 80% smaller in area 

as compared with its conventional design [90]. This method involves a miniaturisation 

technique of the hairpin resonator filters using lumped capacitors. The hairpin resonator is 

designed using a bent open-circuit transmission line with coupled line section for 

miniaturisation.  Further miniaturisation is achieved through the loading of lumped capacitor 

where the value of C varies the resonant frequency of the resonator accordingly.  Lumped-

element resonators can be made very small at low frequencies.  At high frequencies, 

however, their extremely small size may result in high insertion loss and possibly low 

power-handling capacity. 

In order to reach a compromise between size and performance, some compact 

architectures have been proposed.  Another form of resonator, which is also a miniature in 
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size (1/17λo), utilises open loops with inner split rings loading [88].  The structure achieves 

miniaturisation by first designing the open-loop square resonator at a high frequency, and 

then through loading method.  To further reduce the size, the open-loop structure is modified 

by introducing a narrow capacitive gap at the open end of the loop. The use of this multiple 

rings allows a very wide frequency perturbation and eventually allowing significant size 

reduction as compared to the meander loop resonator or the hairpin resonator [89, 90].  

Recently, transmission enhancement from a resonator array of subwavelength 

apertures has attracted the attention of many researchers.  This fascination is mainly due to 

the recent technological progress in nanofabrication, allowing prospective manufacturing of 

large periodic structures with high aspect ratios.  Furthermore, a narrow and strong peak of 

transmission is achieved through a small aperture, and the surprising fact is that the diameter 

of the holes is significantly smaller than the corresponding wavelength.  In [93], a multi-

split ring resonator is proposed and inserted perpendicular in a hole to enhance the light 

passing through a subwavelength aperture.  By using a proper aperture size, a 98% 

transmission has been achieved.  However, no measured result has been shown to prove the 

method as this structure is near impossible to fabricate over a broad area.  

 

2.3 Motivations 
 

Traditional FSSs consist of a two-dimensional (2D) planar structure, which is formed 

by periodic patch elements or slot arrays of simple elements backed by a supporting 

dielectric layer. These planar FSS structures are easy to fabricate, but have limitations in 

their performance in terms of susceptibility to changes of polarisation and sensitivity of 

angle incidence. A wide variety of methods can be found in the literature (section 2.2) for 

improving the characteristics of traditional 2D FSSs. One trend is to implement a tuning 

circuit as part of the FSS pattern so that the frequency properties can be varied [56]. When 

narrow frequency band separation is desirable, a multiband FSS can be constructed using 

concentric double square elements. However, strict fabrication tolerances are required, and 

the coupling between the concentric elements difficult to control [43]. Once exposed to 

electromagnetic radiation an FSS will ideally act like a filter independent of the angle of 

incidence and polarization, since in reality signals will arrive at arbitrary angles.  In an 

attempt to reduce the angular sensitivity, multi-layer configurations have been proposed to 
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produce a smaller cell size and thickness with better angular stability [24]. Complexity in 

the design of existing frequency-selective surfaces and their required size and sensitivity to 

the angle of incidence limits their functionality, thus showing the demand for improving 

their characteristics.  The pros and the cons of the current FSSs in the literature have been 

summarised in Table 2.2. 

Table 2.2: Summary of the Pros and Cons of Current FSSs. 

 Pros Cons 

Conventional 

Single Layer FSS 

• A planar • Incident angle and 

polarisation-dependent 

• Narrow bandwidth 

Multilayer FSS • Wide bandwidth 

• Multiband 

 

• Coupling effect 

• Difficult and costly to 

construct 

FSS with close 

band responses 

• A very selective Frequency 

Selective Surface 

  

• strict requirement for 

fabrication process is needed 

• unexpected coupling between 

the concentric elements occurs 

Active/Tunable 

FSS 

• Frequency properties can be 

varied 

 

• Requires huge number of 

active elements 

• High cost/complexity 

• Potential for failure 

Small resonator • Practical to be placed within 

curved surfaces and limited 

space 

• Enhancement of transmission 

passing through a 

subwavelength aperture 

 

• High insertion loss and 

possibly low power-handling 

capacity 

• Difficult and costly to 

construct 

 

The aim of the research in this thesis is to evaluate and validate a novel type of 3-D 

FSS that is believed to overcome some of the drawbacks identified in conventional FSSs.  

To add an extra degree of freedom in designing FSSs, the unit cell element was made 3-D 

by giving it a certain length or height, extending the potential functionality of the structure.  

The proposed structure consists of two design stages. The first stage is to design the 2-D 

FSS element and then to map it into a desired 3D shape.  The simple ring and the square 

loop shapes of flat FSS are used.  The three dimensional structures are formed by extending 

the length of the elements creating a cylindrical structure.  The characteristics of 2-D and 3-

D FSSs are analysed, including the resonant frequency, the fractional bandwidth, and the 
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stability with different incident angles.  Parametric analysis of the 3-D FSS is undertaken 

using CST electromagnetic software and experimental validation is attained.  

 

 

2.4 3-D Frequencies Selective Surfaces 
 

Recently, studies have shown that 3-D FSSs have demonstrated superior 

performance to 2-D FSS.  A multimode cavity/resonator 3-D FSS that comprises of a 2-D 

array of cavities has been proposed [94, 95].  It offers great flexibility in terms of controlling 

the number and position of desired transmission poles and zeros.  For example, to achieve 

multiple band behaviour, one needs to increase the number of poles and zeros. Its modes 

and coupling can be controlled in order to obtain a desirable frequency response. As for 

conventional designs, an increase in the number of poles and zeros translates to having a 

multilayer FSS.  Nevertheless, it has been conclusively shown that the number of poles and 

zeros can be controlled by using 3-D FSS.  

 

Recent evidence also suggests that filtering behaviour is modified by placing 3-D 

FSS between the two dielectric layers, and resultantly the FSS shows symmetric filtering 

response with stable angular stability.  The 3-D FSS is sandwiched between two dielectric 

layers, covered by perfect electric conductors (PEC) and walled by periodic boundary 

conditions (PBC).  Stability of filtering response is expected with the placement of a 

dielectric layer.  This is because an incidence from a larger angle will appear from smaller 

angle due to the refraction through dielectric material [95]. Recently, a 3D-FSS based on a 

four-legged loop element for band-stop applications has been shown to have a better angular 

stability for different angles of both TE and TM polarisations up to 50 degrees.  This FSS 

structure was designed with unit cells arranged on a four-layer PCB and it was implemented 

using via holes and in multilayer printed circuit board [97].  

A wide bandwidth 3-D FSS with a stable angular response reported recently consists 

of a waveguide element with two connected cascaded cross-shaped elements  [96].   The 

elements achieve a flat band pass response with a bandwidth of 66.6%.  The angular 

response of the FSS can be controlled by changing its periodicity, which in turn determines 

the angle at which the first higher-order Floquet harmonic begins to propagate.  Therefore, 

the beamwidth of the FSS can be controlled by varying the periodicity, thus leading to an 
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onset higher-order modes at progressively smaller angles, in turn decreasing the angular 

bandwidth.  

A new concept of 3-D FSS, which is different from conventional 2-D FSS, is 

proposed in [98].  A metallic cube cavity structure without dielectric layer is introduced, 

which is different from the mentioned 3-D or multilayer 2-D FSS.  The resonance frequency 

is scalable with the geometry dimension characterised with multiple resonances and with 

broad relative bandwidth.  The bandwidth of the structure is determined by the size of the 

hollow part of the cube.  A larger hollow part results in a broader bandwidth, and the centre 

frequencies shift to a lower frequency band while a contrary result is achieved with smaller 

hollow part.  The 3-D cube with cavity FSS has also been tested for the potential application 

in shielding electromagnetic pulses (EMP), showing superior protection.  It is concluded 

that the design of this structure is convenient, and some characteristics are better than the 

conventional FSS. 

This thesis proposes new types of 3-D FSS consisting of vertically arranged 

cylindrical unit elements of a certain length.  This extends the potential functionality of the 

structure and adding extra degrees of freedom in the design.  The frequency response can be 

tuned as well as producing either band pass or band stop operation by varying the length of 

the 3-D cylindrical elements.  Furthermore, a very selective FSS can be achieved without 

the addition of lumped components by using two cylindrical elements.  A 3-D Tapered FSS 

produces a stable angular response to at least 80o with less than 0.5% deviation without being 

sandwiched between two dielectric layers.  These structures are also much easier to fabricate 

with additive manufacture techniques and less complicated than existing 3-D FSS.  A new 

simple multi-layer wire resonator which exhibits sub-wavelength operation, high Q, has low 

incident angle sensitivity is also investigated.  Miniaturization of these unit cell elements 

can be achieved far beyond that of conventional method of realizing multilayer resonators.  

A comprehensive study on these new types of FSS is presented in Chapters 3, 4 and 5.  

Parametric studies are carried out using CST Microwave Studio simulation software to 

confirm the technique, and the manufactured prototypes verify the results experimentally.   
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CHAPTER 3 

 

3-D Cylindrical FSSs 

 

3.1 Introduction 
 

This chapter outlines the inception and design methodology for 3-D FSSs considered 

in this research.  The fundamental 3-D FSS consists of vertically arranged cylindrical unit 

elements of a certain length, extending the potential functionality of the structure beyond 

that of its 2-D analogue, a circular ring FSS.  In order to successfully understand 3-D 

Cylindrical FSS, the following research questions need to be addressed:  

 

• What are advantages of 3-D FSSs over a conventional FSS? 

• What is the mechanism that causes performance improvement of 3-D FSSs? 

• How can tunability be implemented in 3-D FSSs? 

 

This chapter addresses these research questions and presents the research findings. 

In addition, a study of the effect of dielectric materials introduced in the center of the 3-D 

cylindrical FSS unit cell architecture is presented.  The addition of the dielectric filling can 

significantly modify the frequency response, providing greater design flexibility and the 

ability to achieve an extremely closely spaced stop and pass band [99, 100]. 

 

As an alternative to using a high permittivity filling, a dual cylinder 3-D FSS is also 

proposed and studied in this chapter.  The structure enables a very close band response 

without using any additional lumped components or filler materials.  By varying the length 

of the dual cylinder 3-D FSS, the frequency response is adjusted, and a closer band response 

operation can be achieved [101].  
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3-D FSSs are shown to have the ability to set resonant frequency and shift operational 

filter states with a change in the length of a cylindrical resonator.  For this to be achieved 

dynamically, a 3-D spring FSS structure is proposed.  The 3-D spring FSS structure can be 

tuned by reconfiguring the pitch angle (and hence height) of a helical resonator of constant 

wire length.  The 3-D spring FSS presented and studied in this chapter offers tuning and 

switching functionality within the same structure without the use of additional DC bias 

networks [102].  A parametric analysis of the 3-D FSS elements is undertaken using CST 

electromagnetic software, and is validated both numerically and experimentally. 

 

 

3.2 3-D Frequency Selective Surface Structure 
 

A 2-D circular ring resonator element provides the basis for this investigation.  A 

conventional 2-D FSS was created by periodically arraying circular ring elements on top of 

a 10 mm thick foam substrate (used as the structural support).  The circular ring resonator 

was chosen since it has been demonstrated to have less sensitivity to incident wave angle 

than other shaped elements [103].  A schematic of the FSS is shown in Figure 3.1(a). The 

diameter of the ring is determined using the basic ring resonator equation: 	 ≈  ��/�.  The 

diameter d of the rings and width w (douter - dinner)/2 = (32 - 29.4)/2 = 1.3 mm of the 

conducting strip primarily determine the resonant frequency, while seperation period p 

controls the FSS angular performance.  These are general rules of thumb for designing an 

FSS [36, 103]. Studies have shown that a smaller diameter results in a higher frequency and 

a smaller p ensures frequency stability with varying incident angles. 

 

Figure 3.1(b) shows the circular ring FSS frequency response and equivalent circuit 

obtained from an electromagnetic simulation in a CST Microwave Studio.  The simulation 

shows that the FSS has the expected band stop characteristic centered at 3.12 GHz.   
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(a) 

 

   

(b) 

Figure 3.1: (a) Circular ring FSS – dimensions: p = 34mm, w = 1.3mm, d = 32mm.  

(b) Transmission performance and equivalent circuit of the circular ring FSS shown in (a). 
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The value of inductance (L = 7.13 nH) and capacitance (C = 0.37 pF) is retrieved by 

using the following equation [104]: 

 ����� =  3.937 ��8� + 11�  × ��                        �3.2.1� 
 

� = !"#$%& + !'((%&4  

 � = !"#$%& − !'((%&2  

 �� = 0.57 − 0.145 ,� -ℎ           /0�  -ℎ > 0.05;   -ℎ3�3 ℎ = 0.035 44 

 5�67� = 1�/. 2��� × 1�                                        �3.2.2� 

 

 

3.2.1 Development of 3-D Cylindrical FSSs 

 

The circular ring FSS was made 3-D by introducing a certain height to the conductors 

of the unit elements, creating cylinders with a length l (seen in Figure 3.2). The desired 

operating frequency of this 3-D cylindrical FSS can be obtained by varying the length of the 

resulting cylinders.  Figure 3.3 shows the transmission results of the 3-D cylindrical FSS 

with different lengths (all other parameters are equivalent to those in Figure 3.2).  

 

Figure 3.2: 3-D cylindrical FSS - p = 34 mm, w = 1.3 mm, d = 32 mm. 

l 

p 

w 
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The dependence of the response of frequency selective surfaces on the cylindrical 

length is studied. An increase of the cylindrical length causes a shift to higher resonant 

frequencies of the transmission stop band.  By changing the length of the cylindrical unit 

elements to 5 mm, 10 mm, 15 mm and 18 mm as shown in Figure 3.3(a), the center of the 

band-stop shifted to 3.2 GHz, 3.5 GHz, 4.1 GHz, and 4.7 GHz respectively.  This frequency 

shift initially occurs without substantially affecting the band-stop notch characteristics, 

although a slight broadening of the bandwidth is observed.  The transmission minima and 

bandwidth obtained from the |S21| curves are reasonably well maintaned until the 18 mm 

length is reached. Detailed data can be seen in Table 3.1. At this point a significant depth to 

the structure has been introduced, instigating a transition from a band stop to a band-pass 

topology for the FSS.  As seen in Figure 3.3(b), the FSS creates a band-pass characteristic 

as the length (l) of the cylinder increases more than 20 mm.  Further increasing the length 

to 24 mm 30 mm and 40 mm, the center of this band-pass decreases in frequency to  

approximately 5.4 GHz, 4.4 GHz and 3.4 GHz respectively.   

 

The 3-D cylindrical FSS can be seen to cycle between band stop and band-pass 

performance at a particular frequency as the length is increased.  Focusing on 3.12 GHz, the 

frequency of the circular ring FSS stop band, Figure 3.3(c) shows the 3-D cylindrical FSS 

becomes band-pass at lengths of 44.5 mm and 92 mm, whilst at an intermediate length of 

68.5 mm returns to being band stop (albeit with a less significant transmission notch).  

Futhermore at 92 mm length, multiple pass bands can be seen between 1 and 5 GHz.  For 

very long lengths, the sequential pass or stop bands create a higher quality factor, thus the 

bandwidth is reduced.  Accordingly, the characteristic response for a particular FSS 

geometery can be changed by varying the length of the resonant cylinder in the 3-D FSS. 

   

Figure 3.4 shows the surface current density of the 3-D cylindrical FSS illustrating 

an increased number of maximas as the length of the cylinder is increased.  Band-pass 

reponses shows an odd number of maxima and minima in the current density, while band 

stop responses show an even number.  Band-pass responses also correspond roughly to 

lengths of a half multiple of the free space wavelength, with stop bands being in between. 
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(a)  

 

 

(b) 

 

(c) 

Figure 3.3: 3-D cylindrical FSS transmission (|S21| dB) with varied length l. 

(a) Center of the band-stop is shifted as the length is increased. (b) Transition from a band 

stop to a band-pass topology after a certain length is reached. (c) 3-D cylindrical FSS can 

cycle between band-stop and band-pass performance as the length is increased. 
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     (a)                  (b)                         (c)                                       (d) 

Figure 3.4: Surface current of cylindrical FSSs of different lengths compared to the  

wavelength, ��. 
 

a) 5 mm,   b) 44.5 mm ≅ ��/2,  c) 68.5 mm ≅ 3��/4,  d) 92 mm ≅  ��. 
 

Table 3.1: Different length (l) of 3-D Cylindrical FSS 

length (mm) Frequency (GHz) BW (%) 

0.035 3.1 27 

5 3.2 54.8 

10 3.5 80 

15 4.1 83 

18 4.7 86 

 

The 3-D FSS composed of metallic cylinders exhibits a resonant behaviour which 

can be described by the LC circuit shown in the inset to Figure 3.5. For cylinders of very 

short length (l≈ 0), the 3-D cylindrical FSS exhibits a band-stop response, resonating at a 

frequency of / = 1/�2�9�:5:�, where L1 and C1 are the equivalent inductance and 

capacitance of the circular ring geometry. L1 mainly depends on the diameter d of the ring, 

and the resonant frequency of the element can be controlled by adjusting d. However in this 

case, d is fixed. When the value of l is increased, a series inductance L2 along the cylinder 

begins to modify the behaviour of the element.  The band stop center frequency is tuned to 

a higher value with increasing l, until eventually L2 dominates and generates a band-pass 

resonance.  This explains the transformation from band-stop to band-pass for the 3-D 

cylindrical FSS.  Consequently, the equivalent circuit becomes parallel-series when L2 

become dominant.  



31 

 

The equivalent circuit model was validated through comparison to the CST 

simulations, as depicted in Figure 3.5(b). The value of inductance L2 can be retrieved by 

using the following equation [105]: 

�� = ;�
2� <,�

2,
� * 1= ,				, ≫ �																�3� 

 

Where r is the radius of the cylinder. 

 

 

 

 

 

 

 

(a) 

 

 

(b) 

Figure 3.5: (a) Equivalent circuit model for the 3-D cylindrical FSS.  (b) Simulated and 

equivalent circuit transmission results. 
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3.2.2 Fabrication and Experimental Results of 3-D Cylindrical FSS 

 

A prototype was fabricated using a cylinder length of 44.5 mm to produce a band-

pass response at 3.12 GHz, which is shown in Figure 3.6(a) and (b).  The prototype was 

measured in free space measurement setup as shown in Figure 3.7(a).  For the free space 

measurement, two horn antennas are placed ~ 50 cm from each side of the FSS.  The setup 

is calibrated using a flat metal diffraction plate that is the same size as the prototype.  The 

3-D cylindrical FSS prototype is then placed in the fixture and the transmission properties 

are measured. Figure 3.7(b) shows the comparison between the simulated and measured 

transmission of the 3-D cylindrical FSS. Excellent agreement between simulation and 

measurement results was achieved, particularly in the vicinity of the band-pass. 

 

 

 

 

 

 

 

(a) 

 

(b) 

Figure 3.6: (a) Schematic and (b) Fabricated 3-D Cylindrical FSS - p =34 mm, w = 1.3 

mm, l = 44.5 mm. 
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(a) The test setup 

 

                                                             (b) 

Figure 3.7: (a) The test setup, (b) 3-D Cylindrical FSS simulated and measured 

transmission response. 
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3.2.3 Dielectric Filling of the Cylindrical Unit Elements 

To highlight the potential functionality and flexibility of the 3-D cylindrical FSS, a 

dielectric material was inserted inside the cylindrical FSS unit elements (shown in Figure 

3.8 ).  The introduction of the dielectric material enables an almost independent variation of 

the band-stop and band-pass properties of the FSS, allowing a very closely spaced band-

pass and band-stop response for a high permittivity dielectric filled FSS structure.  The 

resonant frequency is also reduced, and with high permittivity filling materials the unit cell 

becomes much smaller than a free space wavelength, essentially giving it metamaterial 

properties.  

The structure in Figure 3.8 was simulated for different cylinder lengths with a filler 

material of �&=5, and the S-parameter results are provided in Figure 3.9.  The dielectric 

loading shifted the band stop region to a lower frequency (in the range of 2.56 GHz – 2.67 

GHz), and a band-pass response (with minimum |S11|) is also created below 4 GHz.  Similar 

to the previous study of different length FSS cylinders without dielectric filling in Section 

3.2.1, the band stop frequency marginally increases with increasing l.  However, the band-

pass response rapidly shifts lower in frequency for larger values of l.  

 

 

Figure 3.8: 3-D Cylindrical FSS with dielectric filling - p = 34 mm, w = 1.3 mm, l= 18mm. 

l 

p 

Dielectric filling, �& 
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Figure 3.9: S-parameters of the 3-D cylindrical FSS with different length l, using a dielectric 

filling �&= 5. 

With the placement of a dielectric filling of �&=5 inside each unit cell, the band stop 

region of the 3-D cylindrical FSS in Figure 3.9Figure 3.8 shifts to a lower frequency of 

approximately 2.6 GHz (from 4.7 GHz for �&=1), as depicted in Figure 3.910.  A band-pass 

response is also seen at 3.2 GHz.  Using higher permittivity fillers inside the cylinder such 

as �&=40 and 70 (seen in Figure 3.10) creates sharp band responses that are very closely 

spaced in frequency.  

 

 

Figure 3.10: 3-D Cylindrical FSS for different dielectric fillings, �& 
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A detailed investigation of the influence of the dielectric filling is shown in Table 

3.2, including the band-pass to band stop ratio.  Transmission/Reflection band ratios below 

1.10 are achieved.  These ratios are an impressive result compared to greater than 1.3 for a 

gridded square FSS and more than 2.5 single square FSS [18].  It should be noted however 

that as the dielectric value is increased beyond �& ≈ 70 the s-parameter minima deteriorate.  

Table 3.2: 3-D FSS stop and band-pass characteristics for various dielectric fillers, ɛr. 

 

ɛr 

Band-stop 

frequency 

(GHz) 

Band-

stop|S21|(dB) 

Band-pass 

frequency 

(GHz) 

Band-

Pass|S11|(dB) 

Frequency Ratio 

(band-pass/band- 

stop) 

1 4.74 -49.9 7.0 -28.2 1.48 

5 2.61 -38.8 3.22 -27.4 1.23 

10 1.96 -36.7 2.24 -25.5 1.14 

20 1.45 -33.2 1.58 -29.5 1.09 

30 1.19 -26.7 1.3 -34.2 1.09 

40 1.05 -24.7 1.13 -22.6 1.08 

50 0.93 -37.2 1.0 -17.6 1.08 

60 0.86 -22.6 0.93 -15.1 1.08 

70 0.77 -16.2 0.83 -12.2 1.08 

80 0.74 -12.6 0.79 -10.6 1.07 

90 0.71 -11.6 0.75 -10.1 1.06 

100 0.64 -8.61 0.68 -8.61 1.06 

120 0.61 -7.84 0.64 -8.6 1.05 

 

 The effective electrical size of the 3-D Cylindrical FSS unit cell becomes a fraction 

of a free space wavelength (less than λ0/8 is used here) for dielectric fillings with �& > 40, 

allowing bulk metamaterial properties to be extracted.  Shown in Figure 3.11 are the 

effective permittivity, permeability and refractive index retrieved from CST simulations of 

a 3-D cylindrical FSS with a dielectric filling of � &= 40.  Figure 3.11(a) and (b) show that 

the real part of the effective permittivity and permeability are negative at approximately 1.08 

GHz.  Moreover, the refractive index plot in Figure 3.11(c) confirms the negative refractive 

index band.  This negative index is achieved with a single uniform unit cell structure, as 

compared to the binary unit cells used in [106]. 
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   (a)      (b) 

 

(c) 

Figure 3.11: (a) Effective permittivity, (b) Effective permeability, (c) Refractive index for a 

3-D cylindrical FSS with dielectric filling �&= 40.  
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3.3 Dual Cylinder 3-D Frequency Selective surfaces 
 

Dual cylinder FSS is proposed to design frequency selective surfaces with close band 

response. For each band, the reflection/transmission centre band frequency ratio requirement 

is approximately 1.48 or less [45]. In the 3-D FSSs of Section 3.2, the FSS requires a 

dielectric filling in order to obtain a close band separation. Furthermore, the band separation 

ratio is dependent on the dielectric permittivity value. A closer band separation is obtained 

by using higher value of permittivity, and can easily exceed most standard materials which 

have permittivities less than 10. An equivalent response to a high permittivity material filled 

3D FSS can be obtained by designing 3D dual cylinder FSS. Hence, the aim of this study in 

is to evaluate and validate a 3D dual cylinder FSS with close band response. 

 

The investigation of the dual cylinder 3-D FSS structure begins with the analysis of 

a planar dual ring unit cell.  The periodic cell of the FSS consists of two concentric 

conducting ring elements.  A circuit model is developed to describe the expected frequency 

behavior of the surface qualitatively.  The general geometry and equivalent circuit of the 

dual ring FSS is presented in Figure 3.12.  In this equivalent circuit model, the rings are 

modelled with two hybrid (parallel – series) resonators consisting of C f1, Lf1 and Cf2, L f2 in 

parallel, placed in series.  The diameter of the ring is determined by using a basic ring 

resonator equation which is 	 ≈  @�/�. The width w of the rings are (douter - dinner)/2 = 1mm.  

 

The FSS performance was predicted by the CST microwave simulator. The 

simulations took used the assumption that the FSS is infinite and made of a periodical 

repetition (unit cell) of an element pattern along the two axes of the FSS plane.  For the s-

parameter calculation, two Floquet ports are used: one in front and one at the back of the 

FSS plane. Figure 3.13 shows the circular ring FSS frequency response and equivalent 

circuit as obtained from an electromagnetic simulation in the CST Microwave Studio.  The 

simulation shows that the FSS has the expected band stop characteristic centered at 3 GHz. 
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Figure 3.12: Equivalent circuit model of the proposed dual ring FSS. :- p = 36 mm, w = 1 

mm, d1 = 32 mm, d2 = 28 mm. 

 

 

Figure 3.13: Simulated and equivalent circuit reflection and transmission of the circular 

ring FSS. 
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The basic equation for calculating capacitance and inductance are given by [36].  ����� =  3.937 ��8� + 11�  A ��                        �3.3.1�  � = !"#$%& + !'((%&4  

 � = !"#$%& − !'((%&2  

 

�� = 0.57 − 0.145 ,� -ℎ   /0�  -ℎ > 0.05;  -ℎ3�3 ℎ = 0.03544 

 

5�67� = 1�/. 2��� A 1�                                        �3.3.2� 
 

For the equivalent circuit given in Figure 3.12, Cf1, Lf1, Cf2, and Lf2 are calculated as 

follows [36]: 

       �B: = 2 × � �:���: + �� × 	:6 �,      -ℎ3�3 �: = ��6, -:, ��                  �3.3.3� 
                                                                   �� = ��6, -�, �� 

       5B: = 5: × 	:6 ,       -ℎ3�3 5: = 5�6, -:, ��                                     �3.3.4� 
                                                               �

B� = �� × 	�6 ,                                                                                        �3.3.5� 

        5B� = 5�  × 	�6 ,       -ℎ3�3 5� = 5�6, -�, ��                                    �3.3.6� 

 

3.3.1 Dual cylinder 3-D FSS with Close Band Spacing 

As before, the dual ring FSS was made 3-D by introducing a height to the conductors 

of the unit elements, creating cylinders with a length l.  The 3-D dual cylinder FSS was 

created by periodically arraying aluminum cylindrical ring elements (Figure 3.14(a)) on top 

of a foam substrate 10 mm thick.   
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The 3-D FSS composed of metallic cylinders exhibits a resonant behaviour which 

can be described by the LC circuit shown in Figure 3.14(b).  For cylinders of very short 

length (l ≈ 0), the 3-D cylindrical FSS exhibits a band-stop response.  However, by 

introducing the height of cylinder (l > 0 mm) the equivalent circuit changes and a series 

inductor is added as shown in Figure 3.14(b), where the La and Lb represent the height of the 

cylinder.  La represents the length of the outer cylinder while Lb represents the length of the 

inner cylinder.  The series inductances La and Lb along the cylinder begins to modify the 

behavior of the element, as the value of l is increased, increasing their value of inductance.   

The detailed geometric parameters of the dual cylinder 3-D FSS (shown in Figure 3.14) are 

listed in Table 3.3. 

 

            

    (a)               (b)    

Figure 3.14: (a) 3-D dual ring FSS (b) equivalent circuit. 

Table 3.3: Geometric Parameters of 3-D FSS. 

 Dual Ring 

p (mm) 36 

ring width,w1 (mm) 1 

d1 (mm) 32 

ring width,w2 (mm) 1 

d2 (mm) 28 

 

The frequency response of the structure as predicted from the equivalent circuit 

model of Figure 3.14(b) with the values given in Table 3.4 is presented in Figure 3.15. The 

equivalent circuit values in this table are obtained through an optimization process in CST.  

p 

d1 d2 

l 

2 1 

C1 C2 

L2 L1 

La Lb 
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In this optimization procedure the values predicted by equations (1)-(6) were used as initial 

values while value of La and Lb is obtained through optimization.  In Figure 3.15, when l = 

20mm, the 3-D dual cylinder FSS operates as a band stop at 3.18 GHz, whereas if the length 

is increased to l = 30mm, the 3-D dual cylinder FSS operates  as band-pass at 3.18 GHz.  As 

can be observed, an excellent agreement between the two is achieved. 

 

(a)  

 

(b) 

Figure 3.15: |S11| and |S21| simulated and equivalent circuit results of the 3-D dual ring 

FSS. (a) Length, l = 20mm.(b) length, l = 30mm. 
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 Table 3.4: Equivalent circuit values of Circuit Model in Figure 3.13(b) 

Parameter  C1 (pF) C2 (pF) L1 (nH) L2(nH) La (nH) Lb (nH) 

 (l = 20 mm) 0.8 0.4 2.7 4.5 1.2 1.2 

 (l = 30 mm) 0.9 0.23 2.7 4.5 10 10 

  

Shown in Figure 3.16 are the transmission and reflection result of the  dual  cylinder  

3-D  FSS  with  different  lengths  (all  other parameters  are  equivalent  to  those  in  Table 

3.3).  The operating frequency of the dual cylinder 3-D FSS can be adjusted by varying the 

length of the cylindrical elements.  By changing the length of the cylindrical unit elements 

to 10 mm, 15 mm, 20 mm and 30 mm the center of the band-stop shifted to 3.08GHz, 

3.13GHz, 3.20GHz, and 3.32GHz respectively.  The band-pass response remains relatively 

stable lengths of 10 mm, 15 mm and 20 mm at about 3.33 GHz, but jumps down for 30 mm 

when the stop and band-pass switch sides.  Hence, a very close band response is achieved 

for certain lengths of the cylinders.  

 

Figure 3.16: 3-D dual cylinder FSS transmission (|S21| dB) with varied length l. 

 

The close band spacing refers to how close the first band (band stop) is to the second 

band (band pass) by calculating the ratio between the bands. If only observing one operating 

band, the result can be viewed as a sharp roll-off performance.  Tabulated in Table 3.5 are 

the band-pass to band-stop frequency ratios  for  the  lengths  investigated. In addition, this 

dual cylinder FSS can switch from band-stop  to  band-pass  as  shown  in  Figure 3.16.  The  
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dual cylinder  3-D  FSS  at  10mm  length  operating  at  3.1GHz  is band stop; however 

when the length is increased to 30mm, it becomes band-pass. 

Typically in close band FSS design, the band spacing is determined by the clearance 

between two resonant elements (e.g. the gap between dual ring resonators).  The clearance 

between two elements must be small enough to meet the close band requirement.  The close 

band reflection/transmission centre band frequency ratio achieved in [45] is 1.48. With the 

3-D dual cylindrical FSS, a frequency ratio of 1.003 can be achieved. As the length is 

increased, an inverted frequency ratio (less than 1) is also possible, achieving approximately 

0.78 at a length of 30 mm. 

As tabulated in Table 3.5, in order to get at least 1.08 reflection/transmission band 

ratios the gap for a planar dual ring FSS is 0.5 mm. The closer the clearance between the 

two rings, the closer the band spacing obtained.  At 0.25mm and 0.05mm gap, the ratios are 

1.03 and 1.006 respectively.  In order to get 1.003 frequency ratio for dual ring FSS, the gap 

between the two concentric elements is 0.025 mm.  However, the gap required to obtain 

1.003 ratio for 3-D Cylindrical FSS is 1mm gap with length of the cylinder = 28mm. 

Therefore, with 3-D Cylindrical FSS a closer band response can be achieved by 

extrapolating the height of planar dual ring unit cell without need to design a very close gap 

between two elements. 

Table 3.5: 3-D dual cylinder FSS Band-stop and Band-pass frequency ratio as the length, l 

was changed. 

l  (mm) Band-stop 

frequency 

(GHz) 

Band-pass 

frequency 

(GHz) 

Frequency 

Ratio 

0.035 3 3.25 1.08 

10 3.08 3.32 1.07 

15 3.13 3.33 1.06 

20 3.20 3.34 1.04 

28 3.30 3.31 1.003 

30 3.32 3.25 0.98 

45 3.35 2.98 0.89 

50 3.20 2.82 0.86 

60 3 2.34 0.78 
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Table 3.6: Planar dual ring FSS Band-stop and Band-pass frequency ratio as the gap 

between rings is changed. 

gap  

(mm) 

Band-stop frequency 

(GHz) 

Band-pass frequency 

(GHz) 

Frequency 

Ratio 

0.5 3.01 3.26 1.08 

0.25 2.95 3.03 1.03 

0.05 2.91 2.93 1.006 

0.025 2.98 2.99 1.003 

 

 

3.3.2 Fabrication and Experimental Results of 3-D Dual Cylinder FSS 

 

To validate the proposed design procedure, a prototype of the 3-D dual cylinder FSS 

is fabricated and characterized using a free space measurement system. The 3-D dual 

cylinder FSS is fabricated on top of 10 mm thick of foam using an l of 20 mm as shown in 

Fig 3.16(a). The distance and alignment between two cylinders is ensured by cutting a 

preform into the foam base, and the cylinders are placed accordingly into the predefined 

slots. For free space measurement, two horn antennas are placed away from each side to 

ensure that the FSS is excited with plane waves.  First, the transmission coefficient is 

measured by placing a flat metal plate that is the same size as the prototype between the 

horns.  The metal plate is then removed and the reflection of this fixture without the presence 

of the FSS is measured.  This makes up the isolation part and is used for FSS calibration. 

The 3-D FSS prototype is then placed in the fixture and the transmission coefficient is 

measured.  Figure 3.17(b) shows the comparison between the simulated and measured 

transmission of the 3-D dual cylinder FSS.  The fabricated FSS demonstrates a 20 dB 

measured insertion loss at the band stop resonance, and a 2 dB measured insertion loss in 

the band-pass region.  The difference insertion loss between simulation and measurement is 

due to the structure being considered as infinitely array during simulation, however the 3-D 

dual cylinder FSS is fabricated using only 30 unit cell elements (6 x 5). Consequently, the 

measured transmission result shows differences although the operating frequency is almost 

perfectly matched.   
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(a) 

 
          (b) 

Figure 3.17: (a) Fabricated 3-D dual cylinder FSS (b) Measured and simulated 

transmission coefficients of the 3-D dual cylinder FSS. 

The sensitivity of the frequency response of the proposed FSS to the angle of 

incidence of the EM wave for both the transverse electric (TE) and the transverse magnetic 

(TM) incidence is also studied and examined.  Figure 3.18 shows the simulation and 

measured transmission coefficients of the 3D dual cylinder FSS at various oblique angles 

for both TE and TM incidence.  The frequency response of the structure is shifted less than 

3% at 60 degrees incidence.  It is observed that for TE incidence, the bandwidth of the 3-D 

dual cylinder FSS is decreased while the band stop level increases as the incident angle 

increases.  The TE frequency response shifts less for incidence angles up to 60° compared 

to the TM response, whose transmission bandwidth narrows with increasing incidence 

angles.  Some noise in the transmission measurements was observed for oblique angles of 

incidence due to the small size of the FSS prototype. Therefore, for large angles of incidence 

measurements, the small transmission was slightly shadowed by the surrounding absorbers, 

leading to additional noise in the measured data. 
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        (a)                                                                 (b) 

Figure 3.18: Transmission of the 3-D dual cylinder FSS as a function of incidence angle.     

(a) TE incidence (b) TM incidence 

 

3.3.3 Comparison with dielectric filled 3-D cylindrical FSS 

 

By  inserting  dielectric  filling,  the  dimensions  of 3-D  cylindrical  FSS  unit  cells  

can  be  made  significantly smaller than  a  wavelength  at  the  desired  frequencies  of 

operation [101]. With the placement of the dielectric filling inside the cylinder, the guided 

wavelength is reduced and thus the resonant frequency shifts to lower frequency.  High 

dielectric  values  inserted  into  the  3-D  cylindrical  FSS also  gives  rise  to  a  close  band  

response.  The  same response can  be  achieved  in  the  dual  cylinder  3-D  FSS  structure 

proposed  in  this  section.  Their transmission and reflection behavior is depicted in Figure 

3.19. Almost identical performance is achieved by the two structures, highlighting the 

impressive close band performance and fabrication tolerance flexibility of the dual cylinder 

3-D FSS structure. 
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Figure 3.19:  Transmission and reflection result of 3-D dual ring FSS and 3-D FSS with 

dielectric filling. 

 

3.4 Mechanically Tunable and Reconfigurable FSS  
 

3-D FSSs have displayed the ability to set resonant frequencies and shift operational 

filter states with a change in the length of a cylindrical resonator.  Here, a 3-D spring FSS 

structure tuned by reconfiguring the pitch angle (and hence height) of a helical resonator of 

constant wire length is presented.  Varying the height of the mechanical FSS can tune the 

frequency of resonance, as well as achieve switching between band-stop and band-pass 

operation.  Mechanical FSSs offer tuning and switching functionality from the same 

structure without the use of additional DC bias networks.   

 

 

3.4.1 Mechanically Tunable and Reconfigurable FSS using plastic spring 

 

The FSS geometry introduced here is based on two ring resonator element structures, 

one of which is placed on the upper side and the other one on the lower side of a plastic 

spring with number of turns/windings n = 5.  The unit cell geometry of the proposed tunable 

spring loaded FSS is shown in Figure 3.20(a) and (b).  Figure 3.20(c) depicts the equivalent 
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circuit representation of the spring loaded FSS unit cell.  The parallel capacitance C and 

inductance L represent the resonance of the circular rings, while C0 indicates the coupling 

between the stacked rings.  Detailed geometric parameters of the spring loaded FSS are listed 

in Table 3.6. 

  

                 

                           (a)                                            (b)                                     (c) 

Figure 3.20:  Geometry of the spring loaded FSS. 

a) Angular view of the unit cell, b) Side view of the unit cell, (c) Equivalent circuit. 

 

Table 3.7: Geometric Parameters of the Tunable FSS 

Parameter Value 

p (mm) 72 

ring width, w1 (mm) 12 

d (mm) 64 

n 5 

h 10 mm � 90 mm 

 

A spring FSS structure is presented that can tuned by mechanically altering the height 

of the spring shaped unit cell resonator. The overall height of the spring loaded FSS unit cell 

can be regarded as a variable, which can then be tuned by applying pressure or tension to 

the springs using nylon screws at the corners of the FSS. This alters the separation between 

the ring resonators, adjusting the coupling between them.  To predict the performance of the 

FSS, simulations in CST Microwave studio were utilized. 

 

As seen in Figure 3.21(a), varying the height h of the spring loaded FSS from 10 to 50 

mm monotonically increases the center of the FSS band-stop from 1.92 GHz through to 2.45 

64mm 
h 

plastic spring 

ring resonator 
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GHz.  By increasing the height of the spring loaded FSS, the capacitance between the rings 

is varied, thus  the frequency is shifted accordingly. When the height h exceeds 50 mm, the 

spring loaded FSS changes its characteristic performance from band-stop to band-pass, 

similar to the 3-D cylindrical FSS in [99, 100].  Further extension of the spring creates a 

band-pass characteristic at approximately 2.60 GHz for h = 60 mm.  A highly selective FSS 

is achieved between h = 60 mm and 70 mm.  Further increases in h decreases the center 

frequency of the band-pass FSS as well as decreasing the quality factor of the FSS, as seen 

in Figure 3.21(b).   

 

The parallel capacitance C and inductance L of the h = 10 mm spring loaded FSS 

create a fundamental band-stop resonant frequency at about 1.92 GHz.  As the height of the 

spring is increased the capacitance C0 value decreases.  As seen in Figure 3.21(a), when the 

height h exceeds 50 mm, the spring loaded FSS changes its characteristic performance from 

band-stop to band-pass.  Further extension of the spring creates a band-pass characteristic 

which approximately corresponds to the resonance of the series components L and C0.  Thus 

the transition from band-stop to band-pass when h is increased is a consequence of the 

diminishing influence of the parallel capacitance C being overtaken by the series C0.   

 

It is possible to define heights at which band-stop and band-pass can coincide at the 

same frequency value, as seen in Figure 3.21(c).   The heights of 30 and 80 mm produce 

band-stop and band-pass at 2.18 GHz, while 51 and 65 mm create a highly selective band-

stop and band-pass at 2.48 GHz.  Hence, mechanically tuning this spring loaded FSS 

structure between these values can reconfigure the operational characteristic of the FSS.  

More detailed frequency characteristics are tabulated in Table 3.8. 
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(a) 

 

(b)  

 

(c) 

Figure 3.21:  Spring-loaded FSS transmission (|S21| dB) with varied height.(a) Band-stop 

response  (b) Band-pass response (c) Tunable spring-loaded FSS can cycle between band-

stop and band-pass performance as the length is increased. 
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Table 3.8:  Detailed Results for the Spring Loaded FSS 

Height (mm) Frequency (GHz) 

Band-stop 

Height (mm) Frequency (GHz) 

Band-pass 

10 1.92 60 2.60 

20 2.03 65 2.48 

30 2.18 70 2.37 

40 2.29 80 2.18 

45 2.37 90 2.02 

50 2.45  

51 2.48 

 

3.4.2 A Reconfigurable FSS using a Spring Resonator Element 

 

A periodic array of spring resonator element structures can also create a tunable and 

reconfigurable FSS.  The unit cells consist of a thin aluminum wire (w = 1 mm diameter) 

wound into a helical spring resonator. The unit cell geometry of the proposed tunable spring 

FSS is shown in Figure 3.22, and the parameters are specified as: the helical height h, helical 

diameter d, helical circumference H, vertical separation between the coils S, number of turns 

n, and the pitch angle α.   

 

                            

     (a)                                     (b)                      (c) 

Figure 3.22: Geometry and parameters of the spring FSS unit cell. (a) Spring FSS single 

element geometry, (b) Spring resonator element with 14 mm height for band-stop 

response, (c) Spring resonator element with 36 mm height for band pass response. 

36 mm 
d 

14mm 

36mm 
32mm 

S h 
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The geometry of the spring unit cell is described in the following equations [107]. 

D = E��F: <G�=  �3.4.1� 

ℎ = �G                �3.4.2� 

An equivalent circuit model of the spring resonator is depicted in Figure 3.23.  The 

capacitive and inductive components of the spring can be estimated using the following 

equations [104, 105, 108, 109]: 

 ����� =  3.937 ��8� + 11�  × ��                        �3.4.5� 
� = !"#$%& + !'((%&4  

� = !"#$%& − !'((%&2  

�� = 0.57 − 0.145 ,� -ℎ           /0�  -ℎ > 0.05;   
5�67� = 1�/. 2��� × 1�                                          �3.4.6� 

�� = H ;�2�� I:��J��:��J�E���∅L × ℎ                  �3.4.7� 

5� = ��2�I���J�����J�                                                �3.4.8� 

 J� = M�5���                                                             �3.4.9�  
 

Where, I�,:��J�, ��,:��J� are modified Bessel functions, J is the transverse constant = 

1, M = 2�/�, r is the cylindrical radius, ∅ is the angle between windings, and ;� and ��are 

the permeability and permittivity of free space.   

  

 

 

Figure 3.23: Equivalent Circuit. 

L0 

C 

C0 

L 
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FSS performance was predicted using the CST microwave simulator assuming that 

the FSS is an infinite periodical repetition (unit cell) of the spring element pattern along the 

two axes of the FSS plane.  Two Floquet ports are used, one in front and the other behind 

the FSS plane.  In addition, the behavior of the FSS can also be efficiently modeled using 

the equivalent circuit representation with sufficient levels of accuracy.  Figure 3.24 shows 

the transmission S-parameter results |S21| for a spring FSS obtained from the equivalent 

circuit model calculations compared to the results obtained by full wave simulation using 

CST.  The simulation/calculation results in Figure 3.24(a) and (b) illustrate very good 

agreement. 

The capacitance and inductance of the windings is varied by changing the height of 

the spring resonator, as shown in Table 3.9.  This technique enables the FSS to be 

reconfigured or fine  tuned in its frequency response.  The parallel capacitance C of 0.152 

pF and inductance L of 13.87 nH of a h = 14 mm spring FSS create a fundamental band-stop 

resonant frequency at about 3.43 GHz.  As the height of the spring is increased the 

inductance L value decreases, while L0 rises with the spring height.  The capacitance C 

initially remains relatively stable.  As seen in Figure 3.23(a), varying h between 14, 15 and 

16 mm locates the center of the FSS band-stop at 3.43 GHz, 3.53 GHz, and 3.63 GHz 

respectively.   

 

When the height h exceeds 18 mm, the spring FSS changes its characteristic 

performance from band-stop to band-pass.  Further extension of the spring creates a band-

pass characteristic at approximately 3.76 GHz for h = 26 mm, which approximately 

corresponds to the resonance of the series components L0 = 3.08 nH and C0 = 0.658 pF.  Thus 

the transition from band-stop to band-pass when h is increased is a consequence of the 

diminishing influence of the parallel inductance and capacitance L and C being overtaken 

by the series L0  and C0 resonance.  The FSS band-stop center frequency is tuned to a higher 

value with increasing h, until eventually the series inductance and capacitance (L0 and C0) 

dominates and generates a band pass resonance.  Further increases in h decreases the center 

frequency of the band-pass FSS as shown in Figure 3.24(b). 
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(a)           

                        

(b)   

Figure 3.24: Spring FSS transmission (|S21| dB) with varied height (a) Band-stop response,  

(b) Band-pass response. 

Table 3.9: Capacitance and inductance equivalent circuit values for various spring heights. 

h(mm) L(nH) C (pF) L0(nH) C0(pF) 

14 13.87 0.152 0.49 4.096 

15 13.12 0.153 0.58 3.452 

16 12.46 0.154 1.85 1.099 

26 7.26 0.280 3.08 0.658 

30 5.71 0.314 4.87 0.417 

36 3.70 0.548 8.50 0.239 
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3.4.3 Fabrication and Experimental Results  

 

A prototype of the spring FSS was manufactured and measured in a free space 

measurement system, as seen in Figure 3.25.  A 6 x 6 array of hand-wound spring unit cell 

elements are placed between two wideband horn antennas which are connected to the two 

ports of a vector network analyzer.  Electromagnetic radiation from the transmitting horn 

illuminates the FSS and the transmitted wave is received by the other horn antenna to 

measure the transmission response.  The spring FSS is sandwiched between two 10 mm 

thickness foam substrates for structural support, and has an uncompressed h of 36 mm.  

 

     

Figure 3.25: Fabricated spring FSS and the test setup. 

The simulated and measured |S21| of the prototype spring FSS is presented in Figure 

3.26, exhibiting good agreement between the results.  The measured transmission band-stop 

response at 3.43 GHz for the spring FSS compressed to h = 14 mm is slightly shallower        

(-47 dB as compared to -63 dB) and narrower in bandwidth than was predicted by the 

simulation.  Whilst for the h = 30mm FSS the pass-band response is almost identical, 

displaying negligible insertion loss and only a marginally narrower measured bandwidth. 

The slightly non-uniform hand winding of the springs and potentially uneven compression 

across the FSS degrade the clarity of the measurement results, consequently resulting in the 

minor differences.  These effects are more significant for a lower h as more compression is 

applied to reach these values.  However, the trend of the measured response curves correlate 

well with the simulated response.   
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(a) 

               
(b) 

Figure 3.26:  Simulated and measured transmission response of the spring FSS.  (a) Band-

stop response  (b) Band-pass response. 
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3.5 Summary 

This chapter has demonstrated that as height is added to the conducting elements of 

a circular ring FSS (length of cylinders), the band-stop response is shifted to a higher 

frequency. The transmission minima and bandwidth are reasonably well maintaned. At  

certain lengths for a particular operating frequency, the FSS changes from band-stop to 

band-pass, and continues to cycle between these responses with increased length. The 

simulated FSS properties were validated through an equivalent circuit model as well as 

experimental results, both of which showed very good agreement.  

 

A close transmission/reflection band separation can be obtained through inserting a 

dielectric filling inside the cylindrical unit cell structure of the 3-D FSS.  For a dielectric 

filling with �&>40 the effective electrical size of the unit cell was sufficiently reduced to 

enable the analysis of the bulk metamaterial properties, which exhibited a negative refractive 

index band. 

 

A very close pass and band-stop response (approaching a 1:1 ratio) can also be 

achieved without the addition of lumped components or dielectric filling by using dual 

cylinder 3-D FSS. This structure was formed by extrapolating the height of planar dual ring 

unit cell. This transforms the rings into cylindrical elements of a certain length. Alteration 

to the length adjusts the frequency characteristics of the FSS, enabling a close band response 

to be achieved.  At a certain length, the pass and band-stop responses flip in frequency.  

Furthermore, dual cylinder 3-D FSSs offer a closer band response that cannot be achieved 

by 2-D dual ring FSS, where a very close gap between two printed ring elements is required. 

 

The frequency response of the 3-D cylindrical FSSs can be fine-tuned by adjusting 

the cylinder height, and hence a novel 3-D spring FSS structure is proposed that can be tuned 

by mechanically altering the height of the spring.  In addition to this continuous tuning of 

the FSS resonance, this new structure can also achieve functional switching between band-

stop and band-pass operations without the need for active device integration.  This avoids 

complications in the integration of DC bias networks in the FSS structure to obtain 

tuning/switching and eradicates any influence on the RF performance from the active circuit.  

The tunable spring-loaded FSS could also be implemented in a sealed structure with 

pneumatic actuation to control the frequency characteristics. Very good agreement in 
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frequency performance was observed between equivalent circuit calculations, numerical 

modelling and experimental testing for the spring FSS. Table 3.10 shows a comparison 

between the 2D and 3D FSSs developed in this Chapter.  

Table 3.10: Comparison between 2-D and 3-D FSSs  

 2D FSS 3-D FSS 

Close Band FSS • Minimum frequency band 

ratio: 1.48 [45] 

Minimum frequency band 

ratio: 1.003  

Tunable FSS • Frequency properties can 

be switched or varied 

using varactors diodes, 

PIN diodes, and Schottky 

diodes. [51-54] 

FSS can switched and varied 

by extrapolating the height of 

the cylindrical resonator. 

• Height < 30 mm (band stop) 

• Height > 30 mm (band pass)  

 

 

Mechanical FSS Frequency can varied by 

shifting one layer of double-

layer FSS [61]  

• tune by shift ∆A at (10 to 11 

GHz as band pass) 

• tune by shift ∆O at (10 to 15 

GHz as band pass) 

Frequency can switched and 

varied using height of 3-D 

spring resonator (1.8 GHz to 

2.5 GHz)  

• 10mm – 50mm (band stop) 

• 60mm – 90mm (band pass) 
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CHAPTER 4 

 

3-D Tapered Frequency Selective Surfaces 

(FSS)  

 

4.1 Introduction 
 

In the previous chapter, 3-D Frequency Selective Surfaces (FSS) have demonstrated 

superior flexibility in performance than their 2-D FSS counterparts.  3-D FSSs offer greater 

flexibility in terms of controlling the frequency response without the use of active 

components. The frequency response can be tuned, as well as selecting either band pass or 

band stop operation, by varying the length of the 3-D cylindrical FSS unit elements.  

However, an in-depth study regarding the incident angle of the incoming electromagnetic 

wave to these 3-D FSS structures has yet to be presented.  

In order to produce a 3-D Frequency Selective Surface (FSS) with a response that is 

independent of incident angle, a new type of 3-D FSS is proposed and following research 

question are addressed:  

• How can the performance of a 3-D FSS be improved in terms of incident angle? 

• What are the important design parameters for creating an incident angle 

independent 3-D FSS? 

The proposed 3-D Tapered FSS is a periodic array of three-dimensional hollow, 

tapered resonators.  The proposed 3-D FSS has reduced sensitivity to the angle of incidence 

of the electromagnetic wave as a result of tapered structure, when compared to other 2-D 

and 3-D FSSs. The Transverse Electric (TE) and Transverse Magnetic (TM) angular stable 

is obtained by tapering the width of a cylinder with a square cross-section from the upper 

opening to the lower opening.  Impressive frequency stability and transmission 

characteristics have been achieved up to 80 degrees for both TE and TM incidence angles. 
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The influence of key design parameters on 3-D Tapered FSS characteristics has been 

investigated using CST simulation software and will be explained in detail in the next 

section. 

In the following section a novel 3-D tapered Frequency Selective Surface (FSS) with 

horn-shaped resonators is proposed, which exhibits a very wide stop band. This new horn-

shaped resonator is a modified version of a 3-D FSS consisting of square cylinder unit 

elements. This horn-like feature introduces the added advantage of lowering the sensitivity 

of the FSS frequency response with respect to the incidence angle.  Simulation results prove 

that the FSS can realize selectivity of waves with the bandwidth more than 57%.  The 

wideband transmission behaviour is shown to be stable under oblique TM incidence angles 

from 0 to 80 degrees. 

 

4.2 3-D Tapered FSS Concept 

 
In order to stabilize the angular transmission response of the 3-D FSS, the structure 

is studied for two circumstances: TE and TM incident angles.  The design simulations took 

place under the assumption that the FSS is an infinite periodical repetition (unit cell) of an 

element pattern along the two axes of the FSS plane.  For the s-parameter calculation, two 

Floquet ports are used; one in front and one at the rear of the FSS plane.  A 2-D square ring 

FSS provided the initial basis for this investigation.  The square ring resonator was chosen 

as a foundation element since it has demonstrated less sensitivity to incident wave angle 

than other shaped resonator elements [110]. It is well known that a symmetric structure can 

realize dual-polarized operation.  However, symmetric structures are not necessarily be 

insensitive to waves coming from different incident angles, particularly up to and beyond a 

60º incident angle [20, 74]. 

 

By choosing unit cell size (p) appropriately, very low sensitivity with respect to the 

incidence angle of the wave can be achieved [111], with a smaller inter-element spacing 

usually preferred. Therefore, a FSS was created by periodically arraying PEC square ring 

elements (in free space) in a square unit cell (see Figure 4.1(a)).  The dimensions of the 

square ring are determined using a basic square ring resonator design equation, a ≈ λ0/4.  The 

dimensions of the square ring and width, s (0.5mm) of the conducting strip primarily 
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determine the location of the resonant frequency, which in this case is 2.45 GHz.  The 2-D 

elements were then extruded into 3-D cylindrical structures with a square cross section. The 

3-D square FSS structure of Figure 4.1(b) performs similarly to the cylindrical structures of 

[99, 100].  Alteration to the length/height of the cylinders adjusts the frequency 

characteristics of the FSS.  The 2-D square ring FSS (h ≈ 0) exhibits a band-stop response 

resonating at a frequency of / = 1/�2�9�:5:�, where L1 and C1 are the equivalent parallel 

inductance and capacitance of the square ring geometry as shown in Figure 4.2.  L1 mainly 

depends on the diameter a of the square ring, and the resonant frequency of the element can 

be controlled by adjusting a. However in transition process to a 3-D square cross-section 

cylinder FSS, a is fixed. When the value of h is increased, a series inductance L2 along the 

cylinder length increases and hence modifies the behavior of the element [100]. 

Consequently, the band stop center frequency is tuned to a higher value with increasing h 

from 2.45 GHz for 2-D square ring (h ≈ 0) to 3.0 GHz for 3D square cross-section cylinder 

FSS with h = 14 mm.    

      

                 (a)                                                                  (b) 

Figure 4.1: Transition process to a 3-D Tapered FSS: (a) 2-D square ring FSS, (b) 3-D 

square cross-section cylinder FSS. 

Parameters: p = 35 mm, h = 14 mm, a = 28 mm, b = 14 mm, s = 0.5 mm 

 

 

 

 

 

 

s a 

s 
h 

b a 
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                                (a)                                                          (b) 

Figure 4.2: Equivalent circuit of (a) 2-D square ring FSS, (b) 3-D square FSS. 

 

4.2.1 Control of the TM incident angle response 

 

Figure 4.3 shows that the symmetric 2-D square FSS structure is not independent of 

the incident angle for TM incidence.  The frequency of resonance achieves independence 

from incident angle for TE incidence only, as shown in Figure 4.3 (a).  This is because in 

the TE incidence scenario, the E-field is always parallel to the metallic strip and excites the 

full length regardless of incident angle. However, in the TM incidence scenario, the E-Field 

arrives obliquely to the broadside of the strip, resulting in a shorter projected strip length as 

the incident angle increases. The resonant frequency shift for TM incident angles seen in 

Figure 4.3 (b) was 13% for 0 to 80 degrees, and matched the calculation using the equations 

in [31].  

 

                                     (a)                                                                    (b) 

Figure 4.3: |S21| results for a 2-D Square Ring FSS as incident angle is varied: 

(a) TE incidence, (b) TM incidence. 

 

C1

L1  

L2

1 2 
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The TM incidence variation of the 2-D square ring FSS can be alleviated by 

transitioning to the 3-D square cross-section cylinder FSS of Figure 4.1 (b).  The 3-D square 

cross-section cylinder FSS was created by periodically arraying 2-D square ring elements 

with unit cell size of 35 x 35 mm, and adding significant height to the conductor to create 

the third dimension.  

The resonant response of the 3-D square cross-section cylinder FSS is shown to be 

independent from TM incident angles (Figure 4.4(a)).  However, the resonant frequency at 

around 3 GHz now varies by 5.1% for TE incidence up to 80 degrees, as observed in Figure 

4.4(b).  The characteristics of a one- or two- dimensional resonant-length based FSSs usually 

depend on the way the surface is exposed to the electromagnetic wave.  This dependence 

includes the effective aperture size of the FSS and the incidence angle of the wave.  

However, by introducing height to 2-D FSS geometry, the resonance characteristics do not 

solely rely on surface mode but also on a cavity mode, whose resonant frequency is angle-

independent [71, 112].  Although the 3-D square cross-section cylinder FSS is angle-

independent for TM incidence, the TE incidence response is still governed by a surface 

(square ring) mode.  For the TE incidence response of the 3-D square cross-section cylinder 

FSS seen in Figure 4.4 (a), a second resonance at around 5.3 GHz remains stable for angles 

from 0 to 80 degrees.  Listed in Table 4.1 is the frequency deviation for TE and TM incident 

angles of the 3-D square cross-section cylinder FSS from center frequency (at normal 

incidence). 

The aforementioned 3-D square cross-section cylinder FSS exhibits a frequency 

response that is independent of both TM and TE (2nd resonance) incident angles, albeit at 

different frequencies.  In order to stabilize FSS response for both TE and TM incidence at 

the same frequency, a modification to the 3-D square cross-section cylinder FSS is proposed 

which tapers the cross-sectional size of the cylindrical element.  This feature enables the 

FSS to utilize higher frequency cavity resonances that have very low sensitivity to the 

incidence angle.  
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(a)                                                                   (b) 

Figure 4.4: |S21| for the 3-D square cross-section cylinder FSS as incident angle is varied 

for TE and TM incidence.  (a) |S21| for 3-D TM incidence, (b) |S21| for TE incidence, 

indicating the 2nd resonance shows a stable resonance. 

Table 4.1: Values of the Center Frequencies – 3-D square cross section cylinder FSS 

Degree Frequency  

(TE incidence) 

deviation % Frequency  

(TM incidence) 

Deviation % 

0 3.002 GHz 0 3.002 GHz 0 

10 3.002 GHz 0 3.002 GHz 0 

20 3.009 GHz 0.23 3.009 GHz 0.23 

30 3.037 GHz 1.16 3.009 GHz 0.23 

40 3.058 GHz 1.87 3.009 GHz 0.23 

50 3.072 GHz 2.33 3.011 GHz 0.29 

60 3.114 GHz 3.6 3.009 GHz 0.23 

70 3.126 GHz 4.13 3.002 GHz 0 

80 3.156 GHz 5.13 3.002 GHz 0 

 

Here, different values of the lower aperture dimension b (as per Figure 4.5) are 

studied in order to obtain an independent frequency response for both TE and TM incidence.  

The simulated transmission coefficient at 0 and 60 degree incident angles for different b 

values are shown in Figure 4.6 with fixed values of h = 14 mm and a = 28 mm.  

 

              

Figure 4.5: Transition process of 3-D square cross-section cylinder FSS with different 

values of the lower aperture dimension b. 

2nd 

resonance

s 

h h h 

a aa 

b b b 
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As can be seen in Figure 4.6, a reduction in b maintains TM incident angle 

independence with an increased resonant frequency.  At b = 14 mm, the center frequency of 

the band-stop reaches 5.256 GHz, whilst the second resonance for TE incidence at 60 degree 

matches the 0 degree case at 5.256 GHz.  However, as b is increased from 22 mm to 30 mm, 

the center frequency reduces and begins to vary when the incident angle changes.  For the 

larger values of b, congruence between the 0 and 60 degree cases is lower, especially for TE 

incidence.  Therefore, in order to maintain FSS response for both TE and TM, it is found a 

reduction in b to 14 mm maintains the TM incident angle independence with an increased 

resonant frequency, whilst improving the TE incident angle response.  

 

                              (a)  b = 14 mm                                              (b)  b = 18 mm 

  

                       (c)  b = 22 mm                                                 (d)  b = 26 mm 
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(e)  b = 30 mm 

Figure 4.6: TM and TE incidence for different values of b at 0 and 60 degrees. 

(a) when b = 14 mm, (b) 18 mm,  (c) 22 mm, (d) 26 mm, and (e) 30 mm. 

 

Different heights, h of 3-D Tapered FSS are also studied in order to obtain a stable 

performance of the FSS resonant frequency verses the angle of the incident plane wave. The 

dimensions of the unit cell, a and b, are kept at 28 mm and 14 mm respectively; only the 

height parameter is changed.  The height of the 3-D Tapered FSS is set to h = 12 mm, 18 

mm,   22 mm and 26 mm, respectively. When the height of the structure is increased, the 

length of the tapered section is also increased, which would cause the resonant frequency to 

decrease in theory [36].  

Figure 4.7 shows the transmission response 3-D Tapered FSS with varying height. 

The comparison of the resonant frequency, the fractional bandwidth and the angular 

dependence of the structures are presented in Table 4.2.  As predicted, simulation results 

show the resonant frequency decreased as the height is raised at the same incident angle.  

The frequency offset at TE angular incidence is again larger than that of the TM incident 

angle. Thus, the height of the 3-D tapered FSS can also play a role in stabilizing the TE 

incident angle response.  From this study, it is found that the best angular stability occurs 

when the height, h is between 12 mm and 18 mm.  From Figure 4.6, the optimal value was 

shown to be 14 mm, or when h = b.  There is a change of the fractional bandwidth at -10dB 

as the height is increased.  The bandwidth of the 3-D Tapered FSS with h = 12 mm is slightly 

wider than for larger values of h. 
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Table 4.2: 3-D Tapered FSS with different height, h 

  TE Incident TM Incident Bandwidth (%) 

Incidence angle 0o 60o 60 o  

h =12 mm 5.30 5.32 5.30 8.61 

h =18 mm 5.26 5.11 5.263 6.73 

h =22 mm 5.22 5.00 5.17 5.77 

h =26 mm 5.12 5.20 5.03 4.85 

 

 

  (a) h = 12 mm                                               (b) h = 18 mm 

 

                            (c) h = 22 mm                                                (d) h = 26 mm 

Figure 4.7: Transmission response of 3-D Tapered FSSs with varying height, h, at different 

incident angles. (a) h = 12 mm, (b) h = 18 mm, (c) h = 22 mm, (d) h = 26 mm. 
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4.3 Design of 3-D Tapered FSSs with Angular Stabe  
 

The aforementioned 3-D square cross-section cylinder FSS exhibits a frequency 

response that is independent of both TM and TE (2nd resonance) incident angles, albeit at 

different frequencies.  In order to stabilize the FSS response for both TE and TM incidence 

at the same frequency, the cross-sectional dimension of the 3D square FSS element is 

tapered.  This feature enables the FSS to utilize higher frequency cavity resonances that have 

very low sensitivity to the incidence angle.  Furthermore, the simulation software CST 

Microwave Studio was used to investigate the design parameters of the 3D FSSs and confirm 

the angular stability.  

In the previous section (4.2.1), tapered dimensions of the 3-D FSS introduced an 

additional design parameter that enables enhanced control of TE and TM incidence 

responses separately. Using these concepts, a 3-D Frequency Selective Surface (FSS) with 

a response that is independent of incident angle for both TE and TM incidence can be 

generated.  

The proposed 3-D FSS has reduced sensitivity to the angle of incidence of the 

electromagnetic wave compared to other 2-D and 3-D FSSs as a result of the tapered 

structure.  The TE and TM angular stability is obtained by tapering the width of a cylinder 

with a square cross-section from upper opening to the lower opening.  Impressive frequency 

stability and transmission characteristics are shown to be achieved up to 80 degrees for both 

TE and TM incidence angles. The influence of key design parameters on the 3-D Tapered 

FSS characteristics has been investigated using CST simulation software and will be 

explained in detail in this section.  
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Figure 4.8: Geometry 3-D Tapered FSS :- h = 14 mm, a = 28mm, b = 14mm, p = 35 mm. 

 

The 3-D tapered FSS consists of a three-dimensional periodic array of horn shape 

resonators as seen in Figure 4.8 with h = 14 mm, a = 28 mm, b = 14 mm.  By tapering to b 

= λ0/4 at the desired frequency, a cavity mode whose resonant frequency is angle 

independent is accessed.  The dimensional requirements of the 3-D tapered elements for 

frequency stability up to 80 degrees are as follows: b = a/2 and h ≈ b.  The lattice spacing 

(p) is chosen to avoid grating lobes for all scan angles; for a square lattice this corresponds 

to ��√3, which is 35 mm at 5.2 GHz [104].  The dimensional requirements of the 3-D 

tapered elements for frequency stability up to 80 degree incidence can be calculated as 

follows: 

/ = ��                                                �4.3.1� 

� = �2                                               �4.3.2� 

� = 2Q                                               �4.3.3�   

a 

h1 

b 

p 

h2 
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ℎ�� = ℎ:� + <� − Q2 =�                   �4.3.4� 

Equation (3) is inserted in equation (4), hence; 

<Q2=� =  ℎ�� − ℎ:�                       �4.3.5� 

Equation (1), (2) and (3) is inserted in equation (4): 

ℎ�� = ℎ:� + R �2/ − Q2 S�             �4.3.6� 

4�ℎ�� − ℎ:�� = < �2/ − Q=�
 

T4�ℎ�� − ℎ:�� = < �2/ − Q= 

�T4�ℎ�� − ℎ:�� + Q = 2/�U�V� 

/�U�V� = �
2 WT4�ℎ�� − ℎ:�� + QX 

Replacing �ℎ�� − ℎ:�� with YZ�[�
 (from equation 5) simplifies the equation as: 

/�U�V� = �
2 WT4 YQ2[� + QX 

Where c is light velocity, 3 × 10\  and all dimensions are in mm. 

The equivalent circuit model of 3-D Tapered FSS is shown in Figure 4.9(a), and is 

used to analyze the structure.  L1 and C1 are the equivalent inductance and capacitance of the 

square ring geometry of the larger upper opening of the tapered structure.  L1 mainly depends 

on the diameter of the ring.  A series inductance L2 related to the height, h1 of the structure 

appears in series with the parallel combination of L1 and C1.  A second parallel combination 

of L1/2 and C1 represents the smaller lower opening of the 3-D tapered resonator.  In order 

to validate the LC model, the transmission characteristics of the 3-D Tapered FSS of Figure 

4.8 have been simulated in CST Microwave Studio and compared to the LC model 
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prediction.  The transmission coefficient of the equivalent circuit model is plotted in Figure 

4.9, and the resonant frequencies agree well with the simulations.    

 

 

 

(a)  

 

Figure 4.9: (a) Equivalent circuit of the 3-D Tapered FSS shown in Figure 4.8. (b) 

Simulation result compare with numerical calculation equivalent circuit. 

 

The value of inductance (L1 = 3.8 nH, L2 = 0.84 nH) and capacitance (C1= 0.48 pF) 

used in the equivalent circuit model can be retrieved from the following equations [104], 

[113]: 

�:���� = 3.937 ] YQ + �4 [�
8 YQ + �4 [ + 11 YQ − �2 [^ × 0.57 

5:�67� = < 1/. 2�=�
�:  

������ = ;"ℎ:4� W2�� ln��� −  ���2 ln�Q� + 1� + Q���Q� X 

 



73 

 

Where; 

a = inner diameter 

b = outer diameter 

ℎ:= length 

f  = frequency 

 

The 3-D Tapered FSS was modeled using CST for TE and TM incident angles from 0 

to 80 degrees.  The results are shown in Figure 4.10, and values of the center frequencies 

and their deviation from the 0 degree response are presented in Table 4.3.  In Figure 4.10(a) 

and (b) the transmission results are reported.  The transmission band-stop for normal 

incidence occurs at approximately 5.26 GHz, with minimal frequency variation for all angles 

up to 80 degrees.  A corresponding resonant phase transition is also observed in Figure 

4.10(c) and (d).  Although the frequency response is stable for TE incident angles, a 

resonance appears below 5.26 GHz for 40, 60 and 80 degrees.  This is due to the incident 

angle exciting a surface resonant mode on the upper square opening of 3-D Tapered FSS.  

This finding is supported by the distribution of the electric field that will be discussed further 

in this section.  Table 4.3 confirms the angular stability, with a maximum deviation of the 

resonant frequency of 0.4% for both TE and TM incidence up to 80 degrees.  The -10 dB 

fractional bandwidth is approximately equal to 21%.  A slight decrease in the bandwidth 

with elevated angles to 60 degree is evident, particularly for TE incidence, and increases 

again when approaching grazing angles.  
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                                       (a)                                                                     (b) 
 

 

(c) 

 

 (d) 

Figure 4.10: Simulated |S21| for the 3-D Tapered FSS: (a) TE incidence, (b) TM incidence, 

(c) |S21| Phase versus Frequency - TE incidence, (d) |S21| Phase versus Frequency - TM 

incidence. 
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Table 4.3: Center Frequency Values – 3-D Tapered FSS 

Degree 

(o) 

Frequency  

(TE incidence) 

Deviation 

% 

Frequency  

(TM incidence) 

Deviation 

% 

0 5.256 GHz 0 5.256 GHz 0 

10 5.256 GHz 0 5.256 GHz 0 

20 5.256 GHz 0 5.256 GHz 0 

30 5.256 GHz 0 5.256 GHz 0 

40 5.255 GHz 0.02 5.255 GHz 0.02 

50 5.250 GHz 0.11 5.250 GHz 0.11 

60 5.250 GHz 0.11 5.247 GHz 0.17 

70 5.248 GHz 0.15 5.240 GHz 0.30 

80 5.245 GHz 0.21 5.235 GHz 0.40 

 

A comparison of the electric field distributions at the respective centre frequencies 

for the 3-D Tapered FSS and the 3-D square cross-section cylinder FSS in both incident 

planes is shown in Figure 4.11 and Figure 4.12. The cavity modes seen in Figure 4.11 for 

both structures display a similar shape for all TM incident angles.  This reinforces the finding 

of stable center frequencies for TM incidence.  However, the electric field mode is disparate 

for increasing TE incident angles in the 3-D square cross-section cylinder FSS in Figure 

4.12. The tapered design of the 3-D Tapered FSS elements introduces an additional design 

parameter that controls the scattered field, enabling a relatively stable cavity mode at the 

same frequency for TE and TM incident angles. 
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Figure 4.11: Cross-section view of electric field distribution for the 3-D Tapered FSS and 

3-D square cross-section cylinder FSS at resonance (5.256 GHz and 3 GHz respectively) 

in the y-z plane at 0, 40, 60 and 80 degrees (TM incidence). 
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Figure 4.12: Cross-section view of electric field distribution 3-D Tapered FSS and 3-D 

square cross-section cylinder FSS at resonance (5.256 GHz and 3 GHz respectively) in the 

x-z plane at 0, 40, 60 and 80 degrees (TE incidence). 

 

4.4 3-D Tapered FSS Prototype 

 
To verify the independent incident angle response of the 3-D Tapered FSS, a 

prototype was constructed using 3-D printing technology. This additive manufacturing 

technology enables the realization of complex 3-D shapes and is perfectly suited for these 

3-D FSS prototype structures.  The downside to this technology is its limitation in material 

selection, resolution and sometimes cost.  
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A U-Print Plus SE was used to manufacture the proposed 3-D Tapered FSS structure 

out of Acrylonitrile Butadiene Styrene (ABS).  The process used is called Fuse Deposition 

Modelling (FDM) and is extremely cheap. The structure is printed layer-by-layer using the 

ABS polymer. The dielectric properties of this polymer are different to free-space (which 

was used in previous sections for the 3-D FSSs) hence a redesign of the 3-D tapered FSS 

was required. The dielectric structure of the FSS also needs to be metalized to realize the 

tapered resonator elements.  A silver spray coating was employed to metalize the required 

planar surfaces of the tapered resonators, as indicated in Figure 4.13(a).  An alternative, 

more expensive process would be to directly print the metallic structure using the Selective 

Laser Melting (SLM) method.  

To simulate the effects of ABS on the FSS structure, its complex permittivity was 

measured using a waveguide transmission/reflection method. The resultant relative 

permittivity (εr) was extracted and was found to be 2.12.  The low permittivity is attributed 

to the high porosity of the printed material, and as such the loss tangent was minimal 

(~0.001).  The 3-D Tapered FSS was redesigned using the structure of Figure 4.13(a). The 

unit cell dimensions are presented in Figure 4.13(b).   

                     

 

(a)                                                             (b) 

Figure 4.13: The geometric configuration of the fabricated prototype 3-D Tapered FSS. (a) 

Unit cell structure of the proposed 3-D FSS showing the dielectric ABS/Plastic and silver 

materials, (b) Side view of the structure with detailed dimension values. 
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Figure 4.14: Fabricated prototype of the proposed 3-D Tapered FSS. 

 

The FSS comprises of 6 x 6 elements with an overall lateral dimension of 238 x 238 

mm2, as shown in Figure 4.14. An ABS base plate was used to locate the individually printed 

tapered resonators at the precise unit cell spacing.  The 3-D Tapered FSS was tested in a 

free-space measurement setup as shown in Figure 4.15. This comprised of two double-ridge 

wideband horn antennas which were placed about 1 meter from each other.  The setup was 

calibrated using a through calibration (with isolation), and the 3-D Tapered FSS prototype 

was placed in the fixture and the transmission coefficient (|S21|) was measured. 

 

Figure 4.15: The measurement setup for 3-D Tapered FSS 
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(a) TE incidence 

 
 
(a) 

 

  (b) TM incidence   

Figure 4.16: Comparison of the simulated measured results for the 3-D Tapered FSS for 

θ=0° to 80°. (a) TE incidence,  (b) TM incidence. 

Parameters: p = 35 mm, h = 11.5 mm, a = 28 mm, b  = 23 mm. 
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Figure 4.16 compares the simulated and measured results of the fabricated 3-D 

Tapered FSS, and no considerable change in the resonant frequencies of the FSS are 

observed for TE and TM incident angles up to 80 degrees.  Figure 4.16(a) shows that the 

bandwidth becomes narrower for TE when the angle of incidence increases, though in Figure 

4.16(b) the bandwidth becomes broader for TM incidence. The measured -10dB bandwidth 

at normal incidence is about 33%, which displays good similarity to simulated results.  Less 

bandwidth variation is observed in the realized prototype of 3-D tapered FSS due to the 

dielectric in the cavity as compared to 3-D tapered FSS in Section 4.3.  The measured and 

simulated transmission minima at the center frequency 3.3 GHz are 28 and 30 dB, 

respectively under normal incidence.  The measured results do deviate slightly from 

simulations for larger oblique angles (60 and 80 degrees) for TE incidence.  This is due to 

the finite size of the FSS presenting an increasingly smaller cross section at higher angles. 

Nevertheless, a very good level of agreement is seen between simulated and measured 

results 

 

4.5 3-D Tapered FSS with Wideband Response 

 
 This section demonstrates that a widened bandwidth response can be obtained by 

using a 3-D Frequency Selective Surface.  A novel 3-D Frequency Selective Surface (FSS) 

with horn-shaped resonators is proposed which exhibits a very wide stop band.  This new 

horn-shaped resonator is also a modification from a 3-D FSS consisting of square cylinder 

unit elements.  The proposed structure provides a wide bandwidth response without using 

any dielectric material.  By varying key parameters of the 3-D FSS, the frequency response 

can be adjusted as well as producing a wider frequency response. 

As can be seen in Figure 4.17(a) and (b), one end of a square cylinder unit cell 

resonator is flared in both lateral dimensions from a intermediate point in the cylinder’s 

height, enlarging the aperture and forming the horn-like shape.  The influences of the various 

geometrical parameters of the 3-D horn-shaped FSS shown in Figure 4.18 were determined 

and optimized using CST simulation software to widen the stop band.  In the designed 

structure, the two parameters a and l2 are primarily considered.  The values of a and l2 are 

changed in isolation, whilst all other parameters remain the same.  These two parameters are 

considered as they have the greatest influence on enhancing the bandwidth of 3-D FSS.  In 

principle, any variation which changes the perturbation of the cavity field leads to a change 
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in frequency spacing and thus bandwidth [36].  In the l2 case, smaller values lead to a higher 

resonance frequency, whilst the contrary will happen in the a situation. 

                           

(a)                                                                (b) 

Figure 4.17: (a) 3-D FSS with square cylinder resonators, (b) 3-D horn-shaped FSS.  

 

                                               

Figure 4.18: Three- and two-dimensional views of 3-D Horn-Shape FSS geometry with: 

a = 56 mm, b = 28 mm, p = 60 mm, l1 = 18mm, l2 = 11mm. 

 

A plot for a parametric sweep of these two parameters is shown in Figure 4.19(a) and 

(b) respectively.  When increasing a (the square aperture becomes wider), the center 

frequency of the band stop region moves to lower values and has enhanced bandwidth.  A 

wide bandwidth response is obtained between 53 mm to 56 mm.  Varying the l2 length leads 

to an opposite effect. It has been identified that from the parametric study that a narrower 

bandwidth is obtained as the length of l2 is increased.  Optimizing the two parameters 

together leads to the proposed design with the dimensions l2 = 11mm and a = 56mm, as they 

provide the desired wide bandwidth response.  

 

l1 

l2 

a 

b 

p L= l1 + l2 

a 
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                                        (a)                                                                  (b) 

Figure 4.19: Transmission performances of the FSSs with different radii and lengths when 

illuminated by normal incident waves. 

(a) |S21| result with different a,. (b) |S21| result with different l2. 

 

The square cylinder resonators (a = 28 mm) produce a band-stop centered at 

approximately 3.7 GHz with a bandwidth of approximately 6.25%.  Flaring the end of the 

resonator to a horn-like shape significantly broadens the band-stop to more than 57% (for 

greater than 10 dB transmission loss).  A comparison of the resulting frequency responses 

is given in Figure 4.20(a). This horn-like feature also has the advantage of lowering the 

sensitivity of the FSS frequency response with respect to the incidence angle of the 

propagating wave.  To investigate the oblique incidence performance, an analysis has been 

carried out for different incident angles θ, where θ is defined with respect to the normal of 

surface of the FSS. The wideband transmission behavior seen in Figure 4.20(b) is very stable 

under oblique TM incidence angles from 0 to 80 degrees.  Also, the transmission bandwidth 

of the FSS increases from 57% to 61% when the angle of incidence is varied from the normal 

to θ = 80o.  Table 4.18 contains the complete bandwidth analysis of the FSS. The extra 

degrees of freedom in 3-D FSS design have led to a horn-shaped unit cell geometry that 

enables a very wide band-stop and impressive angular tolerance.  
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                                       (a)                                                                     (b) 

Figure 4.20: (a) Comparison |S21| result between the 3-D FSSs with horn-shaped and 

square cylinder resonators, (b) Transmission performances of the FSS when irradiated by 

waves of different TM incident angles 

Table 4.4: Oblique Incident Bandwidth Analysis 

Degree (o) flower (GHz) fupper (GHz) Bandwidth (%) 

0 2.5 4.5 57 

20 2.5 4.5 57 

40 2.5 4.6 59 

60 2.6 4.8 59 

80 2.6 4.9 61 

 

4.6  Summary 

 
A symmetrical 3-D FSS with a resonant frequency independent of incident angle and 

polarization was presented in this chapter. The 3-D tapered FSS is shown to have 

significantly improved frequency stability characteristics as the incident angle is steered 

from normal to 80°.  Traditional FSS design techniques using multiple layers or additional 

dielectric layers to achieve enhanced angular responses (for example, Jerusalem Cross), 

offer stable resonant frequency with respect to the incidence angle of both TE and TM 

incident plane waves up to 50 degrees with only ±1% deviation [67, 68].  The 3-D Tapered 

FSS is shown to have significantly improved resonant frequency stability characteristics 

from 0 to 80° for both TE and TM incidence. 
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The effect of key structural parameters on the transmission performance was 

examined.  It was found that the combination of the upper square and lower square opening 

dimensions of the 3-D unit cell resonator have a great influence on the structures frequency 

selective angular performance. Parametric analysis of the tapered structure (formed by 

changing the b dimension) enables a stable cavity resonance to be matched at a single 

frequency for both TE and TM incident angles.  The 3-D Tapered FSS was shown via 

electromagnetic simulation to have a maximum frequency deviation of 0.4% for angles up 

to 80 degrees from normal incidence.  The validity of the proposed 3-D Tapered FSS concept 

was experimentally demonstrated by fabricating a prototype 6 x 6 element FSS using 3-D 

printing technology and testing its frequency response using free space measurements.  The 

measurement results correspond very well with the simulation results and demonstrate that 

the 3-D Tapered FSS structure can achieve frequency performance independent of incident 

angle. 

A 3-D wideband FSS which uses a horn-shaped resonator element has also been 

presented and discussed.  The optimized results show that bandwidth properties of the FSS 

can be strongly enhanced by enlarging the aperture a and reducing the length of l2.  The 

response has also been shown to be stable under oblique incidence angles of up to 80o.  A 

93% improvement of the bandwidth was observed while the angular stability of the 

frequency response was nearly unchanged.  
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CHAPTER 5 

 

Frequency Selective Surface with 

Miniaturized Unit Cell 

 

5.1 Introduction 

 
Recently, many approaches have been proposed to obtain FSS unit cell dimensions 

much smaller than a wavelength.  New geometries such as convoluted ring slots, fractals, 

multipoles, and patches or their complementary structures have been proposed, where the 

size of unit cell has been shrunk to around 0.16λ0 [114, 115].  A miniaturized FSS has been 

proposed comprising of a periodic array of a dual-concentric square element with reduced 

size slots printed on one side of a dielectric substrate, and an inductive grid printed on the 

other side [116].  The combination of the capacitance of the patch array and inductance of 

the wire mesh results in a parallel LC combination, which acts as a first-order band-pass 

filter at the resonant frequency of the structure.  Similarly, a complimentary design can be 

created to selectively absorb narrow band-pass regions. Another effective way to diminish 

the size of an FSS unit cell is by integrating a suitable lumped capacitor within two slots, 

introducing a capacitive gap between two ends of the resonators. The unit cell size 

diminishes to 0.06 λ0 x 0.22 λ0 in this case [87]. Specific applications of these types of FSS 

filters include narrowband astronomy filters, and filters for spacecraft instrumentation. 

As a driver for creating a miniature wire resonator FSS, following research question 

are addressed:   

• What are the key performance advantages of creating miniature FSS?  

• How can the transmission through a subwavelength aperture be 

enhanced with the use of a miniature wire resonator? 
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This chapter presents a novel miniaturized resonator element which can be applied 

to frequency-selective surfaces, and also as an alternative solution to enhance transmission 

through a subwavelength aperture.  Miniaturization of the FSS unit cell is achieved by 

coupling two meandered wire resonators separated by single thin substrate layer. The 

capacitance due to the small separation between the meandered wire elements results in a 

lowering of the resonant frequency.  To demonstrate the validity of the design, the 

meandered wire resonator FSS was fabricated and tested using a free space measurement 

facility.    

 

5.2 Angularly Stable Frequency Selective Surface with 

Miniaturized Unit Cell 

In some applications, a low sensitivity with respect to the incidence angle of the 

incoming wave is required, or in cases where a uniform phase front is difficult to establish, 

the overall FSS size needs to be small.  In such applications with limited space, the concept 

of miniaturized element FSSs has been proposed using sub-wavelength resonant elements 

instead of much larger traditional elements [9].  These miniaturized element FSSs can 

achieve large element numbers in a limited space to act more like an infinite FSS.  Therefore 

miniature FSSs yield less distortion of elements and more consistent performance for FSS 

structures with significant curvature, such as radomes.   

In this chapter a miniature wire resonator has been presented, with application to 

FSSs and enhanced subwavelength transmission. Common approaches of resonator 

miniaturisation include integrating lumped capacitors between two slots, consequently 

introducing a capacitive gap between two ends of the resonator.  The unit cell size can be 

diminished to 0.06 λ0 × 0.22 λ0 in this case [92], however an large number of lumped 

capacitors are required to realise the FSS, increasing cost and complexity.  A miniature FSS 

with angular stability has been demonstrated in this chapter which consists of a printed 

micro-wire frequency selective unit cell structure that realizes a 0.067 x 0.067λ0 resonance.  

The miniaturization of the unit cell reduced the sensitivity of the FSS to variation in 

incidence angles. This section describes a printed micro-wire frequency selective unit cell 

structure that realizes a 0.067 x 0.067 λ0 resonator and produces a stable angular response 

up to 80O for TE and TM incidences. 
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5.2.1 Design Procedure 

The micro-wire resonator was inspired by miniaturized 3-D dipole antennas structures 

constructed on a large conducting ground plane [117].  In [117], a cube was chosen to realise 

one half of a center fed, symmetrical dipole, mapped to 27 (3 × 3 × 3) grid points. This 

structure uses a meander line technique where the meander path was found by numerical 

optimisation, and is illustrated in Figure 5.1.  

An analogous printed wire resonator structure in free space was devised and optimized 

for application as an FSS element shown in Figure 5.2 (a).  The micro-wire structure 

resembles a 2-layer compressed version of the 3D dipoles without vertical interconnecting 

conducting elements. The increased capacitance between the micro-wire elements due to the 

small separation results in a lowering of the resonant frequency.   

Figure 5.2 shows the geometry of the micro-wire resonator, consisting of meandering 

printed wires separated by a single substrate layer.  The printed wires are chemically etched 

on the upper and lower surfaces of a 0.127 mm thick Rogers RT/duroid 5880 substrate with 

a dielectric constant of 2.2 and a loss tangent of 0.0009.  The unit cell design parameters are 

also indicated in Figure 5.2, including the wire trace width w = 0.75 mm, the maximum wire 

strip length d = 6.0 mm, the substrate thickness td = 0.127 mm, and the periodic separation, 

s = 6.3 mm.  

 

Figure 5.1:  An example of cubic meander line [117].  
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(a) 

 

 
                                                          (b)                                      (c) 

 

Figure 5.2: Geometry of the proposed micro-wire FSS: (a) 2 x 2 unit cell structure, (b) upper 

printed layer, and (c) lower printed layer. :- dimensions: s=6.3mm, d=6.0mm,   td =0.127mm, 

w=0.75 mm. 

 

Numerical analysis of the micro-wire FSS was performed using CST Microwave 

Studio using unit cell boundary conditions to provide periodicity along x and y directions. 

The FSS is excited by an electromagnetic wave with the propagation vector (k) in the z 

direction, electric field vector (E) in the y direction, and magnetic field intensity vector (H) 

in the x direction.  It is known that thin metallic strips supporting axial electric current 

excited by an incident wave generate an inductive response, where the total inductance 

produced depends on the wire width and length.   
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The equivalent circuit model of the micro-wire resonator is shown in Figure 5.3(a), 

and is used to analyze the structure. The equivalent circuit is generated by placing Port 1 

between the two open ends of the micro-wire on the bottom and top layer of the substrate, 

whilst Port 2 is placed across the opposing open ends. The lengths of conductor with no 

opposing conductor on other side of the substrate contribute to equivalent inductances L1.  

The capacitances C1 result from the sections of the unit cell that have broadside coupled 

conductors on opposing sides of the substrate.  From a physical standpoint, a weaker 

capacitive content (which has been neglected) also arises in the wire resonators due to the 

edge coupled conductor arms running parallel to the surrounding unit cells when the FSS 

array is constructed. 

The wire resonator inductive responses (L) can be calculated using following 

equation [118]: 

� = 0.002 × , W,� <4.0 × ,	 = − 1 + 	2.0 × , + ;&.a�A�4.0 X �;�� 

a�A� ≈ b 0.873011 + 0.00186128A1.0 − 0.278381A + 0.127964A� 

A = 2.0��b2.0;/c  

Where: d is diameter (cm) of wire (w), l is the length (cm), f is frequency in GHz, r is d/2 

(cm), ; is absolute magnetic permeability of conductor,  

�;� = ;" × ;& 

While capacitance (C) value is calculated using the equation for capacitance between 

two parallel plates:    

5 = d�" e	 

Where: k is dielectric constant of the material, A is the overlapping surface area of the 

plates, d is the distance between the plates, and �" = 8.854 × 10F:�.  
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Using this theoretical calculation, the L and C parameters for the FSS have the values 

L1 = 1.27 nH, and C1 = 0.33 pF.  In order to further validate the LC model, the transmission 

characteristics of the micro-wire resonator with the unit cell of Figure 5.2 have been 

simulated in CST Microwave Studio and compared to the LC model prediction.  The 

transmission coefficient of the equivalent circuit model is plotted in Figure 5.3(b) which 

agrees well with the simulations.  A band-stop center frequency of 3.33 GHz is obtained and 

the band-stop transmission coefficient less than -10 dB from 3.25 GHz to 3.38 GHz (a 

bandwidth of ~ 4%).  The micro-wire resonator exhibits a superior miniaturization factor 

and is capable of generating resonance at 0.067 x 0.067 λ0. 

        
                              (a)                                                                   (b) 

Figure 5.3: (a) Equivalent circuit model, (b) Transmission and reflection properties of the 

micro-wire resonator FSS. 

 

Miniaturization of the unit cell reduces the sensitivity towards incidence angles by 

stabilize the transfer characteristic of the FSS.  To demonstrate the resonant stability 

performance of the FSS, the angular response is shown in Figure 5.4.  The FSS has extremely 

stable resonance with respect to incidence angles up to 80 degrees for both TE and TM 

incidence, maintaining a band-stop transmission coefficient below -10 dB.  The resonant 

frequency stability performance still holds for incident angles larger than 80 degrees, 

however transmission rises above -10 dB for TM incidence.  Band-stop bandwidth broadens 

for elevated TE incidence angle, but narrows for TM incidence. 
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                (a) TE incidence 0 – 80 degrees                      (b) TE incidence 0 – 80 degrees 

 

               (c) TM incidence 0 – 80 degrees                   (d) TM incidence 82 – 88 degrees 

Figure 5.4: Transmission coefficients results of micro-wire resonator FSS as a function of 

incident angle for TE and TM incidence from 0 to 88o. 

5.2.2 Parametric study  

i) Substrate thickness, td  

A parametric analysis of the center frequency of the band-stop versus the substrate 

thickness is also studied.  The studies indicate that the substrate thickness can strongly 

influence the band-stop centre frequency, reducing it significantly for thinner substrates. 

Figure 5.5 shows the center frequency of the band-stop at different thickness of the substrate. 

As substrate’s thickness td is decreased from 0.2 mm to 0.02 mm, the resonant frequency of 

the FSS decreases from 3.8 GHz to 1.5 GHz.  A second observation is that the band-stop 

depth also decreases with decreasing substrate thickness.  
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Figure 5.5: Result of wire resonator as difference thickness of substrate is varied. 

 

ii) Resonator line width, wt  

The effect of the variable line width of the wire resonator on resonance frequency, fr 

and bandwidth is shown in Figure 5.6.  As the printed wire width wt increases from 0.2 to 

0.8 mm, the bandwidth narrows and the resonant frequency decreases monotonically, 

leading to a much smaller size.  For instance, when wt = 0.2 mm, the -10 dB band-stop is 

from 3.48 GHz to 3.66 GHz, with a centre frequency of 3.59 GHz. Therefore the relative 

bandwidth is 5%, with a resonator size of 0.07λ0. When the line width increases to wt = 0.8 

mm, the band-stop if from 3.0 GHz to 3.14 GHz, with the center frequency 3.07 GHz. The 

relative bandwidth decreases to 4.5%, and dimension of the resonator is even smaller at only 

0.06λ0. However, the only drawback is that the band-stop depth is weaker as the line width 

is increased.  These results are also validated against the equivalent circuit model, with very 

good agreement. 

 

Figure 5.6: |S21| results for different line width compared with equivalent circuit calculation. 
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iii) Extraction of bulk permeability and permittivity properties 

Each wire structure resonates with a dimension much smaller than the wavelength and 

hence bulk permeability and permittivity properties can be extracted, and may be suitable to 

construct artificial materials.  Figure 5.6 shows a comparison of the real part of the material 

properties (Eps = ε, Mu = μ) between 4, 8 and 16 layer resonators with the same cell size of 

6.3 mm.  The 4, 8 and 16 layer resonators have a strong electric resonance. A negative 

permittivity and negative permeability response appear around the frequency of 2.3 GHz, 

1.95 GHz, and 1.68 GHz for 4, 8 and 16 layers respectively as shown in Figure 5.6.  This 

negative refractive index is achieved with a single uniform unit cell structure, as compared 

to the binary unit cells used in [106].  The electromagnetic properties of the resonator can 

be controlled conveniently by changing its size and the substrate properties [119, 120]. 

  

          (a)                                         (b)                                               (c) 

Figure 5.7: Extracted Permittivity and permeability of: (a) 4 layers, (b) 8 layers, (c) 16 

layers. 

 

iv) Wire resonator FSSs with 4, 8 and 16 layers 

The miniaturization of the microwire resonator FSS unit cell can be futher reduced 

by stacking extra meander wire layers on the original structure, as shown in Figure 5.7.  

Simulation results of wire resonators with 4, 8 and 16 layers when illuminated by at a range 

of incident angles are shown in Figure 5.8.  The wire resonators with 4, 8 and 16 layers 

simulated at oblique incidence have demonstrated high stability of their response over a 

broad range of incidence angles. It is observed that the resonance frequencies at normal and 

up to 80o incidence are practically indistinguishable. Even for oblique waves of 80° incident 

angle for 4 layers FSS, the band-stop only  changes  from 2.3 GHz to 2.33GHz, a 1.3% 

deviation.  The angular response in even better as more layers is added, where only 0.8% 

and 0.68% deviation for 8 and 16 layers respectively.   
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Strong capacitive coupling between the metallic strips at different layers are 

introduced in such resonators to significantly reduce the resonator size.  As more layers are 

added, the structures become more angularly stable while the bandwidth decreases.  The size 

reduces from 0.067λ0 at 2 layers, to 0.046λ0, 0.039λ0, and 0.033λ0 for 4, 8 and 16 layers 

respectively. The characteristics of the micro-wire resonator arrays at normal and oblique 

incidence are summarized in Table 5.1. 

                                                         
                (a)                                            (b)                                            (c) 

 

Figure 5.8:  Multilayer wire Resonator. (a) 4 layers, (b) 8 layers, (c) 16 layers. 

 

                  

                                       (a)                                                                     (b) 

     
           (c) 

Figure 5.9: |S21| result of multilayer wire resonator with different angles. (a) 4 layers, (b) 8 

layers, (c) 16 layers. 

 



96 

 

 

Table 5.1: Data of the wire resonator arrays at normal and oblique incidence. 

Layers 
Center Frequency, 

 fc 

Bandwidth  

(%) 

Size  

(λ0) 

2 3.33 3.9 0.067 

4 2.30 3.4 0.046 

8 1.95 3.2 0.039 

16 1.68 2.9 0.033 

 

 

5.2.3 Experimental validation 

The micro-wire resonators as shown in Figure 5.2 were fabricated on a Rogers 

RT/duroid 5880 substrate with relative dielectric constant of 2.2, loss tangent of 0.0009 and 

thickness of 0.127 mm.  The fabricated FSS contained 30 x 30 elements on each side of the 

substrate, and is shown in Figure 5.10.  Measurement is performed using two horn antennas 

in a free space measurement setup.  The distance from transmitting to receiving antenna is 

1 meters, with the FSS located centrally between the two.  The measurement setup is 

calibrated using a through transmission coefficient (with isolation) where metal diffraction 

plate the same size as the prototype FSS is used.  The micro-wire FSS is placed in exactly 

the same place as the metal plate used during the calibration and the transmission coefficient 

was measured. 

Figure 5.11 displays a comparison of the measured and simulated frequency 

selective characteristics of the micro-wire FSS.  The measured central frequency of the band 

stop response is located at 3.3 GHz, in good agreement with the simulation.  However, the 

measured transmission band-stop has a broader response, and is significantly  shallower (-

18.8  dB  as  compared  to  -51.3  dB)  than  was  predicted  by  the  simulation.  This is 

primarily due to the fabricated sample being of finite size (approximately 2 x 2 wavelengths 

at 3.3 GHz) compared to the infinite simulation, as well as minor fabrication tolerances and 

flatness variations. 
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Figure 5.10: Photograph of the fabricated micro-wire resonator FSS. 

 

Figure 5.11: Comparison of measured and simulation |S21| results for the micro-wire 

resonator FSS. 

Figure 5.11 shows the measured vs simulated transmission coefficients of the micro-

wire FSS prototype for TE and TM incident angle variation.  The measured central 

frequencies and band edges have reasonable congruence with the simulated results. Table 

5.2 and Table 5.3 present the detailed data of measurement and simulation results.  Notably, 

a central frequency variation of less than 2% is observed for both TE and TM incidence up 

to 80 degrees off normal.  
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(a) TE Incidence 

 

 

(b) TM Incidence 

Figure 5.12: Measured vs simulated transmission coefficients of the micro-wire resonator 

FSS as a function of incident angle. (a) TE Incidence, (b) TM Incidence.  
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Table 5.2: Simulation and measurement data for TE incident angles. 

Degree 

Simulation Measurement 

Frequency 

(GHz) 

|S21| 

(dB) 

Frequency 

deviation (%) 

Frequency 

(GHz) 

|S21| 

(dB) 

Frequency 

deviation (%) 

0 3.33 -51.33 0.00 3.31 -18.84 0.00 

30 3.32 -61.25 0.30 3.30 -21.98 0.30 

60 3.31 -41.97 0.60 3.28 -30.76 0.91 

80 3.31 -70.56 0.60 3.27 -35.85 1.20 

82 3.31 -62.66 0.60 

 
84 3.30 -57.67 0.90 

86 3.29 -60.57 1.20 

88 3.28 -75.71 1.50 

 

Table 5.3: Simulation and measurement data for TM incident angles. 

Degree 

Simulation Measurement 

Frequency 

(GHz) 

|S21| 

(dB) 

Frequency 

deviation 

(%) 

Frequency 

(GHz) 

|S21| 

(dB) 

Frequency 

deviation (%) 

0 3.33 -51.33 0.00 3.31 -18.84 0.00 

30 3.32 -40.33 0.30 3.30 -14.64 0.30 

60 3.31 -17.88 0.60 3.27 -11.41 1.21 

80 3.29 -12.18 1.20 3.25 -9.90 1.81 

82 3.28 -4.00 1.50 

 
84 3.27 -3.92 1.80 

86 3.25 -3.90 2.40 

88 3.24 -3.80 2.70 

 

 

 

 



100 

 

5.3 Miniature Wire Resonator with Enhanced 

Transmission using sub wavelength aperture 
 

The micro-wire resonator is proposed as an alternative solution to enhance 

electromagnetic transmission through a sub-wavelength aperture.  Inserting a miniaturized 

metal resonator structure in a sub-wavelength aperture couples electromagnetic energy 

through to the other side of the aperture plane, enhancing the transmission efficiency. Figure 

5.12 illustrates how the resonators are incorporated within the aperture. The wire resonators 

are placed in plane with the aperture on a large metal surface with a unit cell dimension of 

26.24 mm × 26.24 mm.  The sub-wavelength aperture is 4.65 mm × 4.65 mm with resonator 

maximum dimension d = 3.61 mm, wire diameter, wt = 0.45 mm.  The thickness of the  

substrate,  ts  =  25  µm  and  deposited  copper  thickness,  h = 18 µm.  

The simulated transmission results of a sub-wavelength aperture with 2, 3 and 4 

layers of wire resonators are plotted in Figure 5.14.  The simulation shows a band pass 

characteristic with high selectivity and low insertion loss, essentially reaching 0 dB (100% 

transmission).  As the number of layers are increased, the resonance shifted to lower 

frequency, reaching 2.3 GHz (0.028λ0), 1.9 GHz (0.023λ0) and 1.75 GHz (0.021λ0) for 2, 3 

and 4 layers respectively.  These results provide further support for the hypothesis that by 

utilizing deep sub-wavelength resonators, complete transmission can be achieved from the 

array of subwavelength apertures.  

 

  

   (a)              (b)    (c)  

Figure 5.13: Proposed miniaturized wire resonator in a subwavelength aperture. (a) square 

hole array only, (b) wire resonator inserted (front view), (c) wire resonator inserted (rear 

view). 
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Figure 5.14: Simulated transmission response of the design as in arrays with 2, 3 and 4 

layers. 

 

5.3.1 Experimental Validation 

 

To validate the characteristics of the proposed subwavelength aperture, prototypes 

were fabricated on two sides of an Ultralam 3850 substrate with εr = 2.9.  The total dimension 

of the proposed design is 109.22 mm x 54.61 mm which equates to the size of a waveguide 

flange for WR-430.  The behavior of the planar resonators was tested as single element in a 

WR-430 waveguide. This measurement method is chosen as a very large prototype panel is 

required using free space measurement techniques due to the low frequency, and inadequate 

laboratory space was available.  In practice FSSs have finite dimensions, and in order to 

observe the desired frequency response the finite surface must include a large number of 

constituting elements.  Therefore, an alternative waveguide measurement technique was 

chosen to test it as single elements resonator. A single element of the miniaturized wire 

resonators as shown in Figure 5.15 was designed for this purpose. Detailed explanation 

regarding waveguide transmission/reflection measurement setup that was used in this 

measurement is available in [121]. 

  

The simulated and measured transmission response of the miniaturized wire resonator 

is presented in Figure 5.16.  A blank aperture (without a resonator) is also measured for 

comparison which essentially exhibits no transmission.  However once the miniaturized wire 

resonator is added into the aperture, a sharp resonance at approximately 1.94 GHz appears.  

A relatively good agreement exists between the measured results and the results obtained 

from the CST EM simulations.  The fabricated FSS demonstrates a 0.43 dB measured loss 
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at the center frequency of operation at 1.94 GHz (0.023λ0), and only 0.05% shifted from 

simulation result. The measurement of transmission at resonance is problematic due the very 

high quality factor.  A large number of frequency points (168 points) were required over a 

very narrow band (1.939 to 1.943 GHz) in order to record the transmission peak.  Even given 

this small frequency step, it is possible that the peak is actually closer to 100% transmission 

than what has been experimentally observed.  The resonators were detuned primarily due to 

fabrication tolerances; consequently the centre frequency is slightly shifted from the 

simulation.  Frequencies away from resonance are effectively blocked, with transmission 

down around -40 dB.  Nevertheless, these results confirm that the addition of miniaturized 

wire resonator can achieve close to 100% transmission through a subwavelength (0.023λ0) 

aperture. 

 

             

                                     (a)                                                                 (b) 

 

(c) 

Figure 5.15: Photograph of miniaturized wire resonator with measurement setup. (a) front 

side, (b) rear side, (c) WR-430 Waveguide measurement setup. 
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Figure 5.16: Comparison measured and simulated transmission coefficients of a fabricated 

prototype of the proposed miniature wire resonator as in single element measured in WR-

430 waveguide. 

 

5.3.2 Complementary Design 

A complementary version of the miniaturized wire resonator cut into metallic sheets 

on either of an Ultralam 3850 substrate with similar dimensions to Figure 5.12 can also 

exhibit subwavelength transmission.  Figure 5.16 shows the layout of a proposed design and 

the simulations results with different numbers of layers.  The advantage of the 

complementary design is a smaller size is achieved due to an external aperture wall not being 

required.  The resonant frequency of the complimentary structure (seen in Figure 5.16(a) 

and (b)) is 9% lower than the design shown in Figure 5.12. The complementary design shows 

a band-pass characteristic with high selectivity and it is further minaturized as more layers 

are added. As the number of layers is increased the frequency shifted to lower, from 2.1 GHz 

(0.025λ0), to 1.85 GHz (0.022λ0) and 1.72 GHz (0.02λ0) for 2, 3 and 4 layers respectively. 

  The proposed complementary design is fabricated using an Ultralam 3850 substrate 

as a single element.  A similar measurement was conducted as in the previous section, where 

1/42.8 λ0 
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WR-430 waveguide is used.  Since the planar resonators was tested as single element in a 

waveguide, the resonant frequency shifted to lower frequency (1.92 GHz) compared to the 

2 layer proposed design that was simulated as infinite array (2.1 GHz).   

  The fabricated resonator is shown in Figure 5.18, and the measured and simulated 

results are shown in Figure 5.19.  The measured transmission loss of 0.5 dB is marginally 

higher than the simulated value of 0.3 dB.  As before, the observed value from finite 

resolution measurement may not be the actual value of the transmission loss due to the high 

quality factor resonance.  The proposed complementary resonator exhibits a narrow band 

filter response operating at 1.92 GHz with a fractional bandwidth of 0.04%.  Once again, 

frequencies away from resonance are effectively blocked, with transmission down around -

40 dB.  The very minor frequency discrepancy between measured and simulated results is 

attributed to the fabrication tolerances. 

   

                                   
(a)                                                    (b) 

 

 
(c) 

Figure 5.17: Proposed miniaturized complementary subwavelength aperture. (a) front view 

(b) rear view (c) Simulated transmission response with 2, 3 and 4 layers. 
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(a)                                                                     (b) 

Figure 5.18: Photograph of the single element miniaturized complementary subwavelength 

aperture.  (a) front view, (b) rear view. 

 

Figure 5.19: Comparison between the simulated and measured |S21| of the miniaturized 

complementary subwavelength aperture using WR-430 waveguide. 

 

1/43.3 λ0 
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5.4 Summary 
 

A miniature FSS with angular stability has been demonstrated in this chapter which 

consists of a printed micro-wire frequency selective unit cell structure that realizes a 0.067 

x 0.067λ0 resonance.  The miniaturization of the unit cell reduced the sensitivity of the FSS 

to variation in incidence angles. The simulated results showed that the miniature FSS 

produced a stable angular response up to 80 degrees for TE and TM incidences.  The micro-

wire resonator FSS was fabricated on a Rogers RT/duroid 5880 substrate with a thickness 

of 0.127 mm and measured using free space measurement.  A good agreement between 

theory, simulations, and measurement results was observed.  In addition, experimental 

characterization of the fabricated prototype demonstrates a stable frequency response with 

central frequency variation of less than 2% for both TE and TM incidence up to 80 degrees 

off normal.  The observed performance has a good agreement with the simulated results, 

which confirms the new FSS structure has excellent miniaturization performance. 

Also presented is a method of obtaining essentially complete transmission through 

periodically arranged sub wavelength apertures by inserting micro-wire resonators.  The 

micro-wire resonator approach has shown approximately  100%  transmission  at  1.94  GHz  

through  an aperture  that  is  0.023 λ0 square  in  size.  The response of the micro-wire 

resonator in a subwavelength aperture is extremely high Q, presenting a -10 dB transmission 

bandwidth of 0.007%.  A much smaller resonator can be achieved by using a complementary 

design of the wire resonator, and the resonant frequency shifted 9% lower than the previous 

design. It was demonstrated that the complimentary subwavelength apertures achieved 

excellent agreement between simulated and measured results, exhibiting transmission at 

1.92 GHz with a fractional bandwidth of 0.04%. 
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CHAPTER 6 

 

THESIS SUMMARY 

 

6.1 Introduction 
 

A summary of the developments in this area of research is provided in this chapter. 

Starting with Chapter 2 where it is presents a development history of the FSS, its applications 

and reviewing available design techniques. Chapter 3 discuss development of 3-D 

cylindrical FSSs unit element, followed by a new tuning technique using spring resonator. 

Chapter 4 focuses  on  examining  techniques  which  can  be  used  to stabilize  the  FSS  

angular  response,  which  is  3-D Tapered FSS. Furthermore, a novel 3-D Frequency 

Selective Surface (FSS) with horn shaped resonators is  also been studied  in  this  chapter  

which  exhibits  a  very wide  stop  band with stable angular response. Miniature  FSS  with  

high  Q  factor  which  enables significant  reduction  of  the  unit  cell  size was presented 

in Chapter 5. The mechanisms underlying the distinctive properties of the wire resonators 

were examined including formulations  for  the  EC  model  and  transmission  passing  

through  a  sub  wavelength aperture  in  planar. 

 

6.2 Chapter 1,2 

 
Background: The development history of the FSS and its common applications are 

addressed. As a foundation for the subsequent investigations presented in this thesis, the 

characteristic of FSS is examined.   

Aim of the research: Objectives of this chapter include identifying the key factors, 

limitations which govern the FSS performance, reviewing available techniques for 

theoretical FSS analyses and conclude the review with a statement of hypothesis and 

research question that will be addressed in each technical chapter, Chapter 3, 4 and 5. 
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Methodology: Survey of important articles, journals article, conferences papers and text 

books were reviewed.   

Results: A comprehensive study of the previous methods in design of frequency selective 

surface revealed that there are some problems and disadvantages of the current FSS. 

Nevertheless, 3-D FSS has demonstrated superior performance than current FSS. With this 

background, design of the new frequency selective surface was started with the goal of 

producing new microwave, Frequency Selective Surface for communication systems that 

can provide improved functionality and performance. 

Future Work: This concludes the extent of the current research for this dissertation. 

However, there are several extensions possible for future research possibilities. While most 

of the work in this dissertation considers only planar FSS were considered here, non-planar, 

three dimensional periodic structures can be constructed. Also, the work presented here 

considered FSSs illuminated with only a plane wave which is TE and TM incidence wave. 

Another extension of this research could include studying the effect of varying in the degree 

of illumination coherence.  

Original Contribution: While extensive research has been conducted on FSSs and 

summarized in table form, no extensive analysis on 3-D Frequency Selective Surface exists. 

This extensive knowledge base is necessary in order to construct a 3-D FSS design 

methodology. 

 

6.3 3-D Cylindrical FSS: Chapter 3 

 
Background: 3-D FSSs has been reported in literature review to offer greater flexibility and 

providing an extra degree of freedom in the design when compared to a conventional 2-D 

FSS where the design limitations are relatively well known. A new type of 3-D frequency 

selective surface based on a cylindrical unit element has proven it. The FSS was made 3D 

by extending ring into a cylindrical element of a certain length. This extends the potential 

functionality of the structure and adding extra degrees of freedom in the design. By varying 

the length of the 3D cylindrical FSS, the frequency response is adjusted, and a closer band 

response operation can be obtained through inserting a dielectric filling inside the cylindrical 

unit cell structure of the 3-D FSS. A similar response can be achived by extrapolating the 

height of planar dual ring unit cell.  Two bands can be designed from the structure of dual 
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cylindrical 3-D FSS to produce a very close band response without using any additional 

active lumped components.  

It is known that 3-D FSSs have displayed the ability to set resonant frequency and 

shift operational filter states with a change in the height of a cylindrical resonator. Therefore 

a novel 3-D spring FSS structure is presented that can tuned by mechanically altering the 

height of the spring shaped unit cell resonator. Whereas, conventional FSSs require 

additional bias circuitry to tune the operating frequency or to change its characteristics. This 

new structure can also achieve functional switching between band-stop and band-pass 

operation without the need for active device integration. 

Aim of the research: To investigate and prove the hypothesis of the 3-D FSS functionality 

of the structure and extra degrees of freedom in the design can dramatically improve the 

limitations of conventional FSS. 

Methodology: 2-D circular ring resonator element provided the basis for this investigation 

and it was made 3-D by introducing some height. A parametric analysis of the   3-D FSS 

elements is undertaken using CST electromagnetic software. The simulated FSS properties 

were validated through an equivalent circuit model as well as measurement of a fabricated 

prototype. 

Results: 3-D FSSs  have  displayed  greater  flexibility  and  design control compared  to   

2-D  designs,  with  the  ability  to  set  resonant frequency  and  shift  operational  filter  

states  with a  change  in the  length  of  resonator. It is also has a capability to produce very 

close band response without using any additional lumped components. 3-D Spring FSS has 

shown to achieve functional switching between band-stop and band-pass operation without 

use of additional DC bias networks. Very good agreement in frequency performance was 

observed between equivalent circuit calculations, numerical modeling, and experimental 

testing for the 3-D cylindrical FSS and 3-D Spring FSS. 

Future Work: It is suggested to embed lumped reactive components between the cylinders 

of the Dual Cylindrical 3-D FSS. The aim of this future work is to transform the conventional 

passive FSSs into active ones in addition to close band response. Furthermore, to make full 

use of 3D design space in FSS, a promising research direction is to investigate the shape of 

a sphere and cubic.  
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Original Contribution: Cylindrical 3-D FSS has shown it has tremendous potential in 

solving problem faced by 2-D FSS and it offers the potential functionality of the structure 

beyond 2-D analogue where never been done by recent publish 3-D FSS. (see publication: 

J1, J2, C1, C2, C3) 

 

6.4 3-D Tapered FSS: Chapter 4 

 
Background: A symmetrical 3-D Tapered FSS with a resonant frequency independent of 

incident angle and polarization was presented.  Unlike traditional FSS design techniques 

using multiple layers or additional dielectric layers to achieve enhanced angular responses, 

or to improve the transmission bandwidth. 3-D Tapered FSS is modification from 3-D 

Square FSS, where the structure is modified by tapering the square cross section of the 

resonator element. This feature enables the FSS to utilize higher frequency cavity resonances 

that have very low sensitivity to the incidence angle. Furthermore, an improved bandwidth 

response can be obtained as well without using additional dielectric material. 3-D FSS with 

horn shaped resonator is a modification from a 3-D Tapered FSS consisting of square 

cylinder unit elements. 

Aim of the research: To investigate and develop 3-D FSS that produce stable frequency 

response as well as wideband response with angular stability up to more than 80° for both 

TE and TM incidence. 

Methodology: Angular stability of 2-D square ring element is studied followed by its 3-D 

structure which is 3-D cylindrical Square FSS. Angular stability of 3-D cylindrical square 

FSS is improved by tapering the cross-sectional size of the cylindrical element, called 3-D 

Tapered FSS. As the angular response is achieved, 3-D Horn FSS is develop to improve the 

bandwidth performance.   

The 3-D Tapered FSS and 3-D Horn Shape FSS were modelled using CST MWS. The 

influence of various key parameters on both FSS characteristics has been investigated using 

CST simulation software tool. Parametric analysis is done at angle of incidence of 0, 20, 40, 

60 and 80, respectively for both TE and TM excitation. The effect of the structure on the 

electric field distribution were investigated and compare with 3-D square FSS. Finally, the 

validity of the proposed concept was experimentally demonstrated by fabricating 3-D 
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Tapered FSS using 3-D printing technology and measuring its frequency response using free 

space measurements. 

Results: 3D Tapered FSS is shown to have significantly improved resonant frequency 

stability characteristics from 0 to 80° for both TE and TM incidence.  The validity of the 

proposed concept was verified experimentally. The measurement results correspond very 

well with the simulation results, demonstrate that the 3D Tapered FSS structure can achieve 

frequency performance independent of incident angle and polarization.  

The bandwidth properties of the FSS can be strongly enhanced by enlarging the aperture of 

the square resonator.  The simulations  results  carried  out  by  the  CST simulation tools 

showed  that  the  proposed  approach  is  a  good  candidate of designing 3-D and wideband 

absorbing structures with angular stability is remained nearly unchanged. 

Future Work: Modification of square resonator has shown to improve the bandwidth as 

well as angular response. Nevertheless, other elements shape also need to be studied as well. 

The 3-D Tapered FSS is structured out of Acrylonitrile Butadiene Styrene (ABS) hence a 

redesign of the 3-D tapered FSS was required. Alternatively, the structure could be printed 

using the Stinted Laser Melting (SLM) method with metal thus redesign shall not require. 

Original Contribution: A new theoretical formula and design approach of designing 3-D 

FSS with angular stability is presented. It is shows that 3-D tapered FSS has a similar cavity 

mode for all incidence angle, therefore reinforce the finding of stable center frequency for 

TE and TM incidence. The tapered design in 3-D FSS introduces an additional design 

parameter that controls the scattered field, enabling a relatively stable cavity mode at the 

same frequency for the incident angles. Furthermore, a simple and fast approach to design a 

3-D wideband FSS is presented and discussed. (see publication: J3, C4, C5) 

 

6.5 Miniturize FSS: Chapter 5 
 

Background: Recently, many approaches have been proposed to obtain FSS unit cell 

dimensions much smaller than a wavelength as an increasing demand for low frequency 

applications and reducing the angular dependence of the frequency selective properties. 

Here, a new type of miniaturized FSS with angular stability is describe. It is a printed micro-
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wire frequency selective unit cell structure which could lower the resonant frequency 

effectively, with high Q, has less sensitivity towards incident angle and provide negative 

permittivity and permeability. The micro-wire structure resembles a 2-layer compressed 

version of the 3D dipoles without vertical conducting elements.  With the proposed new 

method, miniaturization to a greater extend can be achieved.  

Aim of the research: To develop and study a new type of miniature resonator that is 

independent towards incident angle and as alternative solution to enhance the light passing 

through a subwavelength aperture.  

Methodology: Miniaturization of the FSS unit cell is achieved by coupling two meandered 

wire resonators separated by single thin substrate layer. The capacitance due to the small 

separation between the meandered wire elements results in a lowering of the resonant 

frequency.  To enhance transmission efficiency, the wire resonator is placed in planar in the 

aperture hole regions on a large metal area. The configuration and performance of the 

subwavelength transmission structure are described and validated numerically using CST  

Microwave  Studio  software. The micro-wire resonator FSS was fabricated on a thin 

substrate and measurement results is compared with the simulations. 

Results: A miniature FSS has been demonstrated to be angular stability up to 80o as for TE 

and TM incidences. The angular response is even better as more layers is added as well as 

miniaturization amount increases. A good agreement between theory, simulations, and 

measurement results was observed.   

While, the  micro-wire resonator has shown approximately  100%  transmission  at  1.94  

GHz  through  an aperture  that  is  0.023 λ0 square  in  size.    The response of the micro-

wire resonator in an aperture is extremely high Q, presenting a -10 dB transmission 

bandwidth of 0.007%.  A much smaller resonator can be achieved by complementary design 

of wire resonator as the resonance frequency shifted 9% lower than the previous design. The 

study is finalized by demonstrating transmission enhancement from an array of 

subwavelength apertures and relatively good agreement between the simulated and 

measured results have been achieved. 

Future Work: 3-D Meandered wire resonator is proposed for future work as it is will 

utilization of three-dimensional space, the unit cell size of the FSS can be further reduced. 

A feature of interest in design of FSS’s is the ability to tune the frequency response of the 
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surface by manipulating the FSS layers’ reactive characteristics by incorporating tuning 

elements into the layers. Study the performance of miniature FSS under bending conditions.  

Original Contribution: A novel subwavelength transmission structure is presented that 

utilizes a micro-wire resonator structure, which could lower the resonant frequency 

effectively, with high Q, has less sensitivity towards incident angle and provide negative 

permittivity and permeability.  With the proposed new method, miniaturization to a greater 

extend can be achieved compares to the conventional method of realizing multilayer 

resonator. It is also can  be  fabricated  via  the  standard  planar  substrate  based  fabrication  

techniques and much lower frequency is attained by adding more layers to the structures. 

(see publication: J4, J5, C6). 
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