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Abstract 

This thesis employs computational molecular modelling techniques to explore the 

physicochemical interactions occurring at the interface between gold nanomaterials and 

their biological coatings in order to better understand, predict, and ultimately design the 

properties of novel biomedical devices. In direct collaboration with experimental research, 

atomistic classical molecular dynamics (MD) simulations are used to investigate ligand 

conformational behaviour, reveal structure–property relationships, and guide the effective 

engineering of three distinct functionalised gold nanomaterial systems.  

A general introduction is given in Chapter 1 to provide a background into the appeal of gold 

nanomaterials for biological applications, including an outline of the unique size-dependent 

properties these fascinating materials possess and examples of how nanogold-based devices 

are revolutionising diagnostic methods and the treatment of disease. In the subsequent 

Chapter 2, the current successes and challenges associated with multiscale computational 

strategies for simulating Au–bio systems, from electronic structure calculations to force 

field methods, are given to illustrate links between different approaches and their 

relationship to experiment and applications. In Chapter 3, a methodological overview of 

physics-based computational techniques is presented, focusing on gold interfacial all -atom 

classical MD due to its application in this thesis. 

Chapter 4 utilises MD to clarify the conformations adopted by different peptide-monolayers 

on Au(111) surfaces and explores how these relate to the experimental efficacy of an in vitro 

diagnostic approach, which identifies and quantifies the presence of disease marking 

antibody molecules in solution. The peptide-monolayers formed on Au(111) are found to be 

intimately related to the inclusion and location of particular amino acids in individual 

peptide chains of the monolayers, with certain residues strongly influenci ng the 

conformational landscapes exhibited. The complex gold–peptide-topographies and solvent 

exposure of antibody-specific residues correlate well with empirical performance and 

provide non-intuitive characterisations of the assemblies unattainable through experiments. 

To study how peptide-ligand conformations affect the photoluminescence (PL) properties of 

Au25 nanoclusters that are capable of in vivo bioimaging, MD is used in conjunction with 

quantum mechanical calculations in Chapter 5. Following the systematic MD modelling of 

different Au25(SP)18 nanoclusters (where P = hexapeptide), properties such as peptide 
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arrangement, hydrodynamic radii, distribution of chemical groups around the gold core, 

water structuring, and hydrogen bond networking are each correlated with experimentally 

measured AuNC PL. Key findings from this chapter present design principles to optimise the 

PL of these systems and postulate potential mechanisms for PL quenching.  

Next, Chapter 6 employs MD to examine octanethiol-protected Au25 nanoclusters, which are 

inherently hydrophobic and form an integral component in a composite gold–silica 

theranostic material. Simulations in explicit water and ethanol solvents reveal significant 

structural differences in the alkanethiol ligand layers on Au 25(SC8H17)18 and these 

differences are then used to hypothesise a steric–kinetic mechanism to explain performance 

issues that these materials face in their drug delivery applications. 

The outcomes of this thesis contribute to the overall understanding of organic –inorganic 

materials in targeted applications through exploring the intricate interactions that occur on 

the nanoscale. This work also highlights how the synergistic union of theoretical and 

experimental approaches can be used to produce translational research, improve insight, 

and facilitate the development of biocompatible gold nanomaterials for applications in the 

fields of bioimaging, biosensing, drug delivery, and biomedicine in general. 

 

 

 



 

3 

Chapter 1:  

Introduction 
 

 

1.1 Overview 

Gold nanomaterials show enormous potential to provide significant biomedical 

advancements in biosensing,4,5 bioimaging,6-8 drug delivery,9 magnetic and photothermal 

therapies,10 antimicrobial devices11 as well as many other innovative diagnostic12 and 

therapeutic technologies.10,13 The widespread applicability of gold nanoparticles (AuNPs) 

within these diverse contexts is largely owed to the unique size-dependent chemical, 

physical and optical properties they exhibit, along with the ease in which they can be 

synthesised and functionalised by biologically relevant chemistries.14 State-of-the-art 

engineering of efficient and safe gold nanomaterials for in vitro and in vivo applications 

involves multiple levels of design challenges.4,14-19 These include the careful selection of 

metallic core size and functional layer (peptides, antibodies, DNA, organic and other 

ligands); the solvent/buffer composition; effects of external forces such as mechanical 

stresses, electric and magnetic fields; and even the choice of the biological environme nt 

itself (plasma/lipid membranes). Despite significant recent advancements in experimental 

synthesis and characterisation,20 a comprehensive multiscale understanding of the structure 

and dynamics of the Au–bio interface relevant to biomolecular and physiological responses 

is still lacking. In silico methods are widely accepted as a means to complement, clarify and 

predict experimental findings at time and length resolutions technologically unattainable in 

the laboratory. In light of this, this thesis aims to develop and apply computational 

strategies to practical Au–bio interfacial systems, providing specific insights to aid in the 

rational design and optimisation of AuNPs for biomedical applications. 

1.1.1 Scope of the Thesis 

This thesis explores the physicochemical interactions occurring at the functional interface 

of biologically coated AuNPs through the use of molecular modelling approaches. The 

overall aim of this work is to complement and rationalise empirical data in order to predict 

AuNP behaviour, develop structure–property relationships, and guide the effective 

engineering of novel biomedical devices. 

The first three chapters of this thesis are devoted to providing a background into the 

biological appeal of AuNPs, and give an overview of how computational approaches produce 
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physicochemical information that can facilitate the design of efficient biomedical devices. 

Chapter 1 introduces what nanomaterials are, gives a synopsis of the history and properties 

of AuNPs, and provides representative examples of how AuNPs can revolutionise diagnostic 

methods and the treatment of diseases. Chapter 2 delivers a perspective into the multiscale 

computational strategies available to simulate the Au–bio interface and presents exemplar 

studies of their application. Following this, the technical details of the computational 

methodologies used in this thesis are outlined in Chapter 3. 

In Chapters 4 to 6, molecular modelling results are presented from studies performed 

concurrently, and in collaboration, with the innovative biomaterials engineering Stevens’ 

group at Imperial College London (http://www.stevensgroup.org/). Chapter 4 focuses on 

molecular dynamics simulations of anti-viral peptide monolayers on Au(111) surfaces and 

illustrates the effect that amino acid sequence has on the complex peptide-layer 

topographies formed on AuNPs. The results presented demonstrate why particular peptide-

functionalised AuNPs display superior experimental performance as plasmonic antibody 

biosensors.3 Chapter 5 explores the relationships between peptide ligands and the 

photoluminescence of peptide-functionalised Au25 nanoclusters via the systematic 

modelling of different amino acid substitutions. Properties such as hydrodynamic radius, 

embedded water content, and the distribution of chemical groups around the gold core are 

shown to collectively affect the measured fluorescence of the peptide-AuNC materials.1 Next, 

Chapter 6 investigates the structure and dynamics of octanethiol-functionalised Au25 in 

explicit water and ethanol solutions. The AuNCs form part of a composite theranostic 

material21 and significant structural differences observed in the different solvents help 

explain performance issues for these materials in their drug delivery applications. 

Finally, Chapter 7 outlines the key outcomes of this work and presents future perspectives. 

The outlook of this thesis is towards a promising approach to synergy between experiments 

and simulations in providing molecular insight into the Au–nano–bio interface. 

1.2 Nanotechnology and Nanomaterials 

Nanotechnology, by definition, involves the manipulation of matter at dimensions of roughly 

one billionth of a meter with the aim of understanding, controlling and utilising the new 

properties of the materials that emerge at the sub-microscopic scale. No longer described as 

an emerging field, nanotechnology is attributed to many major advances in technology and 

medicine. For example, nanotechnology has contributed to impressive developments in: 

computing, electronics, energy generation and storage;22 medicine and healthcare;23 

automotive, nautical and aerospace materials;24 agriculture and food production;25 as well 

http://www.stevensgroup.org/
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as everyday consumer products such as textiles26 and cosmetics.27 Despite the science-

fiction portrayal of nanotechnology in popular culture (consider Star Trek, Red Dwarf, 

Doctor Who, Terminator and GI Joe to name a few), the field itself is not an entirely new one. 

In Nobel laureate Richard P. Feynman’s famous 1959 lecture “There’s Plenty of Room at the 

Bottom” to the American Physics Society,28 it was foretold about nanotechnology that “in the 

year 2000, when they look back at this age, they will wonder why it was not until the year 

1960 that anybody began seriously to move in this direction”. In his seminal speech 

Feynman described the possibility of synthesising materials via the direct manipulation of 

atoms. After many years of scientific research, nanotechnologies are only now starting to 

gain commercial use, with inventories reporting there are over 3,000 consumer products 

containing nanomaterials currently available for purchase on the European market. 29 

The unique, and often superior, properties that make nanomaterials appealing for so many 

applications can predominantly be attributed to their large surface-to-volume ratio. While 

atoms in the core of a nanomaterial determine intrinsic properties such as hardness and 

conductivity, under-coordinated surface atoms define a particle’s solution characteristics 

and chemical reactivity. Moreover, as the size of a nanostructure decreases below ~10 nm, 

quantum confinement affects the electronic and optical properties. This leads to an enlarged 

band gap that makes NPs electronically akin to molecular species, i.e. randomly moving 

electrons become confined to discrete energy levels instead of continuous bands.  

As depicted in Figure 1.1, nanomaterials can be broadly classified into three categories 

based on their composition (organic, inorganic or hybrid). Organic nanomaterials, such as 

self-assembling lipid- and biopolymer-based NPs, are generally simple to prepare, 

biodegradable, biocompatible, bioselective and have good stability in biological fluids.30 The 

second group, inorganic nanostructures, are perhaps the best known for their industrial 

uses31,32 and include: carbon-based derivatives (e.g. nanotubes, fullerene particles and 

graphitic sheets), silicon and other metallic NPs, mesoporous silica and many metal oxide 

species. These materials possess exceptional electrical, chemical, thermal and optical 

properties that are beneficial for accurate biosensors, enhanced diagnostic tools and 

therapeutic devices.33 The third category of nanomaterials are termed hybrid since they are 

composed of a combination of organic and inorganic elements, such as metal–organic 

frameworks and bio-functionalised (metal or semi-conductor) NPs. Hybrid assemblies 

exhibit attributes of both aforementioned nanomaterial classes and arguably offer the most 

tunability and customisation for specific properties and applications. 34 Regardless of the 

type however, all nanomaterials have sizes comparable to biological molecules and typical 

cellular components (Figure 1.1), which provides a unique opportunity to exploit their 
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properties for medicine via manipulation of fundamental biological phenomena occurring at 

the nanoscale. Gold nanomaterials, especially those functionalised with biologically-

compatible molecules, display a perfect blend of properties to achieve this.13  

1.3 Gold Nanoparticles 

Gold, as a precious metal, has been used in jewellery, coinage and decoration since ancient 

times and has well-known physical and chemical characteristics. In its purest, bulk form, 

gold is yellow in colour, shiny, soft, malleable and ductile. Metallic gold has a melting point 

of 1,064.18°C, a face-centred cubic (FCC) crystal structure with a precise lattice parameter 

of 0.40782 nm, is a good conductor of heat and electricity, reflects infrared radiation, and is 

virtually chemically inert.37 However, when gold is miniaturised to nanoscale dimensions, 

these distinct properties drastically change. For example, AuNPs with radii less than 10 nm 

melt at significantly reduced temperatures (due to high surface energy) 38 and are known to 

catalyse a variety of chemical reactions,39 while colloidal AuNP suspensions are renowned 

for producing vibrantly coloured solutions that optically depend on constituent NP sizes.  

1.3.1 The Origin of Gold Nanoparticles 

Historically, the first use of AuNPs involved exploiting their unique optical properties to 

create red-coloured glass and ceramics, even though their existence (and role in the 

process) was unknown at the time. Perhaps the most famous and earliest example of this is 

 

Figure 1.1 | Relative sizes of molecules, biological entities and macroscopic materials compared to 

representative examples of nanomaterials. Main figure adapted with permission.35 Copyright 2016, 

Elsevier Ltd. DNA-nanotube adapted with permission.36 Copyright 2008, American Chemical Society. 
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the Roman Lycurgus cup (Figure 1.2), which is dated back to the 4th century.40 Due to trace 

amounts of 50–100 nm gold and silver NPs41 being incorporated into the glass during its 

fabrication, in reflected light the Lycurgus Cup appears jade green while in transmitted light 

it glows a deep ruby red. This dichroic effect results from the NPs scattering light when the 

glass is illuminated from the outside and absorbing light when illuminated from the 

inside/behind.42 Although a stunning specimen of ancient nanotechnology, the colouring of 

glass using precious metals was not routine for the time period and the Romans were 

unable to control the process, preventing the technology from developing any further.  

At the end of the 17th century (1,300 years later), the production of red-coloured glass using 

gold was finally revisited. This was sparked by the discovery of  Purple of Cassius (a gold 

preparation obtained via the reduction of a gold chloride aqueous solution)  and the 

innovation that it could be added as a colourant to melted glass.43 Over a century later, in 

1857, Michael Faraday made the first suggestion of the existence of NPs in his Bakerian 

Lecture to the Royal Society.44 Faraday postulated the composition of “Purple of Cassius to 

be essentially a finely-divided gold, associated with more or less oxide of tin” and attempted 

“to induce the belief that finely-divided metallic gold is the source of the ruby colour” in 

stained glass. In 1905, Viennese chemist Richard Adolf Zsigmondy conclusively showed, 

thanks to a light-scattering based microscope he co-developed, that Purple of Cassius is 

indeed composed of “very finely divided gold with colloidal stannic acid” (and subsequently 

he was awarded the 1925 Nobel Prize in Chemistry for this work). 45 

 

 

Figure 1.2 | The 4th century Roman Lycurgus cup. The dichroic optical effect the glass is due to the 

presence of AuNPs; it appears green (left) unless illuminated from the inside/behind, in which case it 

glows red (right). Reproduced from the British Museum free image service.40 
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Shortly after, in 1908, Gustav Mie proposed a theoretical basis for the optical properties of 

homogenous spherical particles that provided the first rationalisation as to why AuNPs 

create coloured solutions.46 Essentially, Mie used Maxwell’s electromagnetic theory to 

explain that the colour of gold colloids comes from the absorption/scattering of light 

however the physical nature of these processes remained unclear until the 1950–60s and 

the electronic band theory of metals was established. It is now known that incident light on 

a AuNP induces a collective excitation of the metal’s conduction electrons and these 

oscillating electrons absorb and scatter light. This process is called Localised Surface 

Plasmon Resonance (LSPR) and will be expanded on in Section 1.3.2. 

Starting in the 1940s, the advent of transmission electron microscopy allowed researchers 

to physically ‘see’ NPs and precisely measure their size and morphology.47 Around the same 

period, solution-phase synthesis of low polydispersity AuNPs was accomplished by using 

trisodium citrate (Na3C6H5O7) to reduce gold salt (tetrachloroauric acid, HAuCl). Conceived 

in 1940 by Hauser and Lynn,48 the approach was made famous in 1951 by Turkevich and co-

workers in their landmark description of the nucleation/growth process of AuNPs,49 then 

later refined by Frens in 1973.50 Although still commonly used,51,52 citrate-stabilised AuNPs 

aggregate irreversibly upon being dried and can therefore only exist in solution.  

In the late 1980s, a scientific interest in self-assembled monolayers of thiols on planar gold 

surfaces began53,54 that led to an important advancement in the fabrication of stable AuNPs. 

In 1994 and 1995, Brust et al. pioneered a simple method for the room temperature 

preparation of thiol-functionalised AuNPs that could be dehydrated and re-dissolved 

without irreversible aggregation or decomposition.55,56 Small adaptions of the Brust–

Schiffrin method have since emerged to produce ‘gram-scale’ quantities of AuNPs with 

tailored gold core dimensions and a wide range of biomolecular ligand functionalities.54,57,58 

1.3.2 Size-Dependent Morphology 

Today, AuNPs are perhaps one of the most extensively studied and attractive nanomaterials 

due to their fascinating properties, which are heavily influenced by particle size and 

morphology.59 The structure of monolayer-protected AuNPs, such as those synthesised 

using the Turkevich and Brust–Schiffrin methods, consists of three parts: 

1. Core/central atoms: a close-packed symmetric metallic interior that determines 

crystallinity and overall shape. 

2. Surface atoms: high-energy, exposed metal atoms which lie on a NP’s outer surface 

facets or at their edges and vertices. These sites govern catalytic activity.60 
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3. Ligand layer: the passivating outer layer of molecules that are anchored to the surface 

metal atoms, stabilise the AuNPs against irreversible aggregation and/or provide 

surface functionality that influences the particles’ solution properties. 

Although these fundamental structural features are universal, AuNPs can be separated into 

two broad subclasses based on their size and size-dependent properties. Particles of 10–300 

nm diameter exist in a variety of shapes (e.g. rods, stars, polyhedrons, and wires 59) and are 

characterised by isotropic FCC gold lattices that feature various fractions of (111), (100) 

and (110) Miller index surface facets.61 These larger AuNPs display electronic band 

structures (i.e. valence and conduction bands) typical of bulk-like semiconductor/insulator 

materials.62 Particles < 10 nm in diameter consist of a countable number (tens to hundreds) 

of atoms and are commonly referred to as gold nanoclusters (AuNCs). In this size regime 

there is a transition from FCC crystal structuring to non-FCC geometric core morphologies 

(e.g. icosahedral) around 2–3 nm ‘effective diameter’ (Figure 1.3).63 Moreover, as NC size 

decreases there is an increase in the density of under-coordinated gold atoms (edges and 

corners) which leads to enhanced catalytic activity,64 and molecular-like electronic 

structure emerges. Further discussion about AuNCs morphology is given in Section 2.2.1. 

1.3.3 Optical Properties 

Of the many useful characteristics nanoscale gold materials exhibit, their remarkable size-

dependent optical properties are particularly beneficial for biosensing and cellular imaging 

applications.5 As consequence of their different morphologies and electronic structuring, 

large AuNPs and small AuNCs have different optical responses when irradiated with light. 

For AuNPs of diameter 𝑑 ≪ 𝜆 but > 5–10 nm (where 𝜆 is the wavelength of the incident 

light), absorbed photons cause the quasi-free conduction band electrons on the gold surface 

 

 

Figure 1.3 | Transition from molecule-like to bulk-like electronic properties as a function of the 

number of gold atoms. Reproduced with permission.63 Copyright 2015, American Chemical Society. 
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to undergo collective coherent oscillations in a process called LSPR (Localised Surface 

Plasmon Resonance, Figure 1.4a). These surface plasmon oscillations then typically decay by 

either radiating energy through light scattering or by converting the absorbed light to heat.  

For AuNPs, this LSPR absorption predominately occurs in the visible region of the 

electromagnetic spectrum and results in intensely coloured colloidal solutions. 65-68 In 

general, there is a complementary relationship between the apparent colour of an object (or 

solution in this case) and the wavelength of light the material absorbs, for example if green 

light is absorbed, red is perceived. Consequently, the colour of AuNP solutions is dependent 

on the wavelength of light absorbed which in turn strongly depends on the size and shape of 

the AuNPs as these affect the frequency at which LSPR occurs. The larger the NPs, the more 

red-shifted the absorption maximum and subsequently the more ‘blue’ the colloidal solution 

appears (Figure 1.4b). Interestingly, when NPs coalesce or are in close proximity to each 

other, the change in interparticle spacing is also accompanied by a significant Stokes shift in 

the absorbed LSPR wavelength.69 Therefore, the aggregation of AuNPs in solution (or re-

dispersion of AuNP aggregates) results in a visible colour change to be observed at nano-

molar concentrations and provides a basis for very sensitive plasmonic biosensors. 70,71 

On the other hand, AuNCs (< 3 nm in diameter) have electronic structuring analogous to 

molecular species. In this smaller size regime the continuous band structuring that bulk-like 

materials exhibit breaks up into discrete electron energy levels (see Section 2.2.2). Hence, 

when AuNCs are exposed to light of an appropriate frequency they display vibrant 

fluorescence.7,8,72,73 As shown representatively in the Jablonski diagram of Figure 1.4c, this 

photoluminescence occurs as a result of valence electrons from the AuNCs absorbing 

incident photons and becoming excited to higher energy states, thereafter they lose some 

energy through non-radiative pathways (e.g. vibrational energy). When the electrons relax 

back down to the ground state, a photon of lower energy is released than the photon 

initially absorbed. This is typical of (non-resonant) fluorescence, meaning excitation and 

emission occur at different wavelengths, i.e. the absorbed radiation can be in UV region 

while emission occurs in the visible light spectrum (Figure 1.4d). 

For both small AuNCs and larger AuNPs, the frequency, intensity and quenching of 

absorbed/emitted light is heavily influenced by the size, shape, solvent, and environment in 

the vicinity of the particles. To exploit and tune these optical properties for biological 

settings, it is necessary to carefully design gold particles with attached functional molecules 

that can act as a bridge between the inorganic and organic systems. 
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1.3.4 Functionalisation 

Gold nanomaterials are rarely used as bare materials (especially in biology) as they coalesce 

in aqueous solutions.76,77 Instead, they are typically coated with synthetic or biologically 

inspired molecules that improve colloidal stability and impart specific functionality ont o the 

particles. To do this, ligand molecules are anchored to gold via chemical (chemisorption) or 

physical (electrostatic or hydrophobic) interactions, frequently through self -assembly 

processes.78 Examples of molecular species that have been shown to bind to AuNP surfaces 

can be found in 65,67,79-81 and references therein and include: amines, phosphines, thiols, 

dendrimers, polymers (e.g. PEG, PMMA), biomolecules (e.g. DNA/RNA, proteins) as well as 

many others (e.g. porphyrins, salts etc.). Figure 1.5 shows a small selection of common 

hydrophobic and hydrophilic gold-binding ligand molecules. 

 

Figure 1.4 | Mechanisms and examples of the size-dependent optical properties of gold 

nanomaterials. (a) Schematic of plasmon oscillations of a metal sphere, showing the displacement of the 

conduction electron charge cloud relative to the nuclei in response to an incident electric field. Adapted 

with permission.66. Copyright 2003 American Chemical Society. (b) Aqueous solutions of AuNPs whose 

colour depends on particle size. Adapted with permission.74 Copyright 2008, American Chemical Society. 

(c) Jablonski diagram showing photophysical processes for AuNCs. Radiative processes: absorption (hν), 

fluorescence (F), and phosphorescence (P); Non-radiative processes: internal conversion (IC) and 

intersystem crossing (ISC). (d) Excitation (dashed), emission (solid) spectra and images of AuNCs under 

UV irradiation (366 nm). Adapted with permission.75 Copyright 2004, the American Physical Society. 

 

a) b) 

c) d) 
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Of the many chemical groups that possess affinity to gold surfaces, thiols are the most 

commonly used for AuNP passivation. This is due to the robustness and strength (~200 kJ 

mol-1) of the Au–S bond,54 as well as the simple and modifiable Brust–Schiffrin synthesis 

approach55,56 to obtain functional thiol-stabilised AuNPs.54,57 While Au–S interactions are 

often described as purely covalent, the exact nature of this bonding has been a topic of 

extensive debate,83-86 with recent evidence suggesting there are significantly large 

contributions to the bond character from van der Waals (vdW) dispersion forces. 87 

In the context of small thiol-protected gold clusters (Aun(SR)m), by selecting appropriate R–

groups one can manipulate many innate characteristics of the underlying AuNCs. 32 These 

include stability,88,89 photoluminescence,90,91 optical activity,92 magnetism,93 redox 

behaviour,94 and even induce SPR absorbance in much smaller than expected AuNCs. 95,96 

Furthermore, ligand characteristics such as hydrophobicity and charge can be tailored to 

influence responsiveness to external stimuli,97 solubility and molecular recognition.98 

For biological applications, peptides are particularly appealing ligands (normally anchored 

via cysteine residues) as they seamlessly integrate with biological components, are water 

soluble, and they display a range of properties that are readily controlled by varying their 

length and composition.99,100 With appropriate design of their amino acid sequence, 

peptides can act as recognition elements for the specific detection of a variety of 

biomolecular targets such as disease markers, proteases/enzymes, antibodies and other 

biologically relevant proteins.5,99 Ultimately, this allows for the properties of both the gold 

core and the peptide functional layer to be accurately controlled via their respective 

synthesis methods, enabling the fabrication of highly specialised biomedical devices.  

 

Figure 1.5 | Selection of common gold-binding ligand molecules. Representative images are drawn to 

scale showing 5 nm diameter AuNPs with different hydrophobic (left) and hydrophilic (right) ligand 

molecules. Adapted with permission.82 Copyright 2010, the Royal Society. 
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1.4 Gold Nanomaterials for Biomedicine 

Gold nanomaterials are able to transform the conventional ways that we diagnose and treat 

diseases. For example, they can: dynamically interact with and respond to their 

environment creating ultra-sensitive biosensors,71 be loaded with molecules to deliver 

drugs into targeted locations101 or be selectively heated to destroy cancer cells when 

injected into tumour sites.102 Due to the diversity of research on biomedical AuNPs and 

AuNCs, and the scope of this thesis, this section is not intended to be an exhaustive overview 

but rather serves as a general introduction to ways in which gold can be used for biomedical 

applications. Readers are referred to detailed reviews in each relevant section.  

1.4.1 Diagnostics, Therapeutics and Theranostics 

There are two kinds of clinical diagnostic tests that need to be considered, in vitro assays 

and in vivo imaging. The former of these tests are performed on biological samples that have 

been taken from a living body (e.g. blood, urine, tissue) and typically aim to either: 

determine/confirm the presence of a disease in an individual; or to measure the quantity of 

a particular constituent in the sample (e.g. blood sugar). Alternatively, in vivo diagnostic 

tests are conducted within living organisms, such as laboratory animals or the human body, 

and are often used to track and visualise specific abnormalities within the body in a time -

resolved manner, such as the size, shape and location of a tumour. The modes in which 

AuNPs can be used for both in vitro and in vivo diagnostics are discussed below. 

Gold-based diagnostic biosensors, like all sensors, are composed of two parts: a recognition 

element (functional coating) to selectively bind a target of interest and a transduction 

component (metallic core) to signal the binding event. As discussed in Section 1.3.4, AuNP 

surfaces can facilitate diverse ligand chemistries that allow for the specific detection of a 

variety of biochemical molecules. Binding between a ligand molecule and a target analyte 

then generates a detectable signal by either inducing structural changes in the assay, or by 

altering the physicochemical properties of the underlying gold material (Table 1.1). 

There is a huge multitude of AuNP- and AuNC-based in vitro tests that have been developed 

to detect an assortment of different species including: small organic molecules, nucleic 

acids, proteins, pathogens, and even cells.12 In addition, by exploiting the optical properties 

of AuNPs and AuNCs, sensitive in vivo imaging devices have also been created.103 For further 

examples please see 4,5,104,105 and references therein.  

Gold-based technologies are also practical for the in vivo treatment of diseases, primarily 

through drug delivery and photothermal therapies. For the former, pharmaceutical 

molecules are conjugated onto carrier AuNPs and transported to desired regions in the body 
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where they are selectively delivered to kill malignant cells. In the latter, AuNPs are 

embedded into tumour sites and externally applied electromagnetic radiation stimulates 

LSPR to make the NPs a point source of heat (via the release of vibrational energy) and 

cause cell hyperthermia/death. In addition, AuNPs can enhance radiotherapy, 100,106 induce 

cell apoptosis through photochemical generation of free radical oxygen, 107 and block 

cancerous pathways.108 Further therapeutic applications of gold can be found here 10,13,59. 

As discussed above, gold nanomaterials are inherently multifunctional. They can serve as 

optical probes and contrast agents for diagnostic imaging, kill cells through photothermal 

effects, and they can release drugs in response to external stimuli. Moreover, these 

functions can be combined into a single theranostic material that provides both targeted 

therapy and diagnosis. This is especially valuable for cancer treatment since AuNPs are able 

to both identify and hamper the growth of cancer in vivo.109 Supplementing the previously 

mentioned reviews, references 33,110 detail theranostic research surrounding AuNPs. 

1.4.2 Design Principles and the Biomolecular Corona 

For engineered gold nanomaterials to be effective for their intended biomedical applications 

(especially in vivo) there are several requirements to be considered.111 These are as follows: 

Stealth: It is vital that in vivo AuNPs do not trigger an immune response and reach their 

target undetected, avoiding unwanted adsorption from other entities.  

Targeting: To be successful, AuNPs must specifically and selectively recognise their 

target while discouraging non-specific interactions. 

Aggregation: Irreversible NP aggregation can significantly affect colloidal stability, 

cellular uptake, biodistribution and toxicity.15 While in situ aggregate formation is 

usually undesirable, some biosensors exploit this to generate a signal (e.g. Chapter 4). 

Elimination: Upon completing their objective, AuNPs need to be eliminated from the 

body but it is important to control the rate of elimination. If cleared too quickly, the 

probability of reaching their therapeutic/diagnostic target is reduced however 

prolonged tissue retention presents serious concerns for toxicity. 112 

Table 1.1 | Properties of AuNPs used to generate a biosensing signals. 

Property Detectable signal 

LSPR (AuNP > 3.5 nm) Colourimetric, LSPR absorption 

Photoluminescence (fluorophore: AuNC or ligands) Stokes shift, quantum yield 

Redox (AuNP-films, -wires or -supported electrodes) Electrical conductivity/current 

Surface-enhanced Raman scattering (AuNP > 3.5 nm) Raman intensity 
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Of course while the engineering of surface coating molecules is critical to meeting these 

conditions, to effectively translate AuNP-biomaterials from the bench-top to the clinic it is 

necessary to characterise NPs in an environment that is as close to their intended 

environment as possible. Therefore, it is worth noting that the physicochemical properties 

and behaviours of nanomaterials characterised under idealised conditions (as is often the 

case for proof-of-concept studies) are not the same as in the complex physiological 

environment.113 As NPs progress through in vivo pathways, or experience biological fluids 

(e.g. blood, plasma, interstitial fluid, cell cytoplasm) during in vitro applications, they 

encounter a diverse mixture of biomolecules that adsorb to their surface with varying 

affinities forming what is known as a protein/biomolecular ‘corona’ (Figure 1.6). This 

corona, whose constituents are suggested to be constantly and dynamically in exchange 

with other molecules, is what primarily interacts with biological systems and thereby 

constitutes a major element of the particles’ biological identity and hence its fate. 16,114,115 

 

 

Figure 1.6 | Biomolecular coronas formed around nanoparticles in various different biological 

environments. In ex vivo environments biomolecules rapidly adsorb onto NPs until the corona is in 

equilibrium. In vivo, a molecularly richer corona is formed that is in dynamic exchange with other 

molecules as it evolves over time. Reproduced with permission.117 Copyright 2017, Nature Publishing. 
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Consequently, it is typical to aim at maximising specific interactions for molecular targeting 

and recognition while discouraging non-specific interactions that lead to unwanted corona 

formation and potential adverse effects, such as loss of NP functionality and selectivity. 

Alternatively, there are efforts to exploit the biomolecular corona by designing NPs to 

adsorb particular plasma proteins as a means to target certain cells and promote 

internalisation.116 In either case, to successfully engineer new bio-nanomaterials it is 

paramount to understand the structure and dynamics of the AuNP–bio interface before, 

during, and after corona formation. Computational and theoretical methods can accelerate 

this insight and are a widely accepted approach to enhance, elucidate and predict empirical 

findings at multiple time scales, length scales and levels of detail (Chapter 2). 

1.5 Conclusion 

This chapter has delivered an overview of the unique and exciting properties exhibited by 

nano-sized gold materials, which form the basis of a considerable number of diagnostic and 

therapeutic biomedical technologies. Our ability to rationally design AuNP-based biomedical 

devices requires intimate knowledge about how AuNPs and their properties adjust in 

biological media (e.g. plasma, cell membranes and, various intra and extracellular 

environments) as well as how the components of biological milieu (e.g. water, proteins, lipid 

bilayers, and DNA) respond to the presence of AuNPs. While advances in empirical 

approaches20 have improved the synthesis and characterisation of AuNPs, experimental 

techniques are deficient in comprehensively probing the atomic and sub-atomic length and 

time scales needed to interpret the fundamental interactions occurring at the nano–bio 

interface. In the following chapter recent computational works that bring complementary 

and critical insights to the structure and dynamics of Au–bio interfaces are discussed.
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Chapter 2:  

Computational Studies of Au–Bio Systems 

A perspective of the current successes and challenges associated with the multiscale 

computational treatment of Au–bio interfacial systems, from electronic structure 

calculations to force field methods, is provided to illustrate the links between different 

approaches and their relationship to experiment and applications. Content from this 

chapter has been published in the journal Small and is reproduced in part with 

permission.2 Copyright 2016, Wiley-VCH Verlag GmbH & Co. While I am solely responsible 

for all adaptations to the original text that are included in this thesis and I personally 

collected, examined and interpreted all literature outlined here, I would like to explicitly 

acknowledge the contributions each co-author made to the publication.2 Specifically, 

sections in the paper were primarily written by the following: P.C. (1.) Introduction, (3.) 

All-Atom Molecular Mechanics and Dynamics (Force Field Methods) , (4.) Coarse-Grained 

and Simplified Approaches, and (5). Enhanced Sampling Techniques; A.J.C. (2.) Electronic 

Structure Calculations; N.T. (6.) Applications; and I.Y. (1.) Introduction, and (7.) 

Conclusions. Methodological details of the computational techniques discussed in this 

thesis chapter are further described in the subsequent Chapter 3. 

 

 

2.1 Introduction 

Theoretical and computational approaches provide an opportunity to systematically probe 

and visualise the interface between gold nanoparticles (AuNPs) and biological matter at 

resolutions unavailable to experiments. These techniques offer enormous promise in 

providing an in-depth appreciation of the structure and dynamics of gold–bio systems, 

which is essential information needed to design and optimise gold nanoparticles (AuNPs) 

for incorporation and efficiency within biomedical devices and in vivo. The gold–bio 

interface is inherently complex and contains phenomena simultaneously occurring across 

multiple time and length scales. For example, charge transfer reactions 118 take place at 

femtosecond time scales and angstrom resolutions; while ligand exchanges, 119 biomolecular 

conformational changes,120 AuNP reconstructions79,121 progress over milliseconds to hours 

and can span tens of nanometres (see Heinz et al.122 for a description of the relevance of 

each time/length scale to the physics/chemistry of nano–bio interfaces). It is therefore 

necessary to employ a computational technique that is commensurate to the 

physicochemical phenomena of interest (Figure 2.1). 
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Methodologies based on quantum mechanics (QM, Section 3.2) perform calculations with 

electrons explicitly represented and therefore can derive properties of materials that 

depend on electronic distribution, including the modelling of chemical reactions where 

bonds are broken and formed. In the context of Au nanomaterials, QM calculations are 

primarily used for AuNP structure determination, analysis of optical properties, chemical 

functionalisation characteristics, and force field (FF) parameterisation for classical 

simulations (see Figure 2.1a–f and several literature reviews that discuss the role of QM 

calculations in describing structural, morphological and optical properties of Au surfaces 

and particles85,123-125 – especially Ma et al.126). While QM calculations provide accurate and 

precise molecular information, they are also very time-consuming as well as CPU and 

memory intensive. Unfortunately, the complexity and size of Au–bio systems, which can 

contain inorganic, biomolecular, ionic and aqueous species, quickly renders even the most 

efficient QM techniques computationally intractable. Furthermore, the common workaround 

to increase QM system size by neglecting solvent effects is less than ideal since these effects 

are well known to play an active role in biological processes. 127 

Force field methods (also known as molecular mechanics, MM) ignore electronic motions 

and calculate the energy of a system as a function of the nuclear positions only. Simulations 

of this nature are based on the laws of classical mechanics, thermodynamics and statistical 

physics (see Section 3.3). Although MM approaches cannot provide properties that depend 

on electronic distribution, they complement enthalpically driven QM calculations with a 

description of the system’s free energy that includes both the enthalpic and entropic 

contributions. Classical simulations are therefore able to investigate thermodynamic 

properties of larger gold–bio systems (Figure 2.1g–n) in physiological environments and at 

an appreciable level of accuracy without compromising computational efficiency.  

In this chapter, recent studies employing QM and classical MM approaches to provide 

electronic and molecular insight into complex bio–gold systems are summarised. The 

reviewed literature not only illustrates how computational approaches are being used to 

investigate Au–nano–bio systems, it also highlights capabilities and challenges associated 

with their application. In Section 2.2, QM studies are described that examine Au–bio 

interactions to advance knowledge in the physical, chemical and optical properties of AuNP 

systems. These range from revolutionary discoveries that have transformed our 

understanding of gold nanocluster (AuNC) morphologies, to approaches that are aimed at 

providing accurate parameters for MM FF development. Section 2.3 presents research that 

utilises classical MM techniques, in synergy with experimental data, to explain and design 

biologically active gold nanomaterials. Examples are given of how MM simulations are 
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helping engineer AuNPs for: amyloid fibril inhibition, improved cellular penetration (for 

drug delivery), and facet selective peptide adsorption. Finally, Section 2.4 gives some brief 

conclusions and outlines the research questions this thesis intends to resolve. Please note 

that technical details of methodologies discussed in this chapter, especially those that are 

directly relevant to results presented in this thesis, are described in Chapter 3. 

 

 

Figure 2.1 | Molecular models and simulation approaches used to capture physicochemical 

interactions at the interface between gold nanomaterials and biological matter. (a) Au surface 

functionalisation reactions; (b) AuNC electronic excitation and fluorescence, (c) AuNP growth; (d) AuNP 

structure/morphology; (e) AuNP surface plasmon resonance; (f) Au–solvent interactions and 

polarisation; (g–l) biomolecular interactions and adsorption on Au surfaces and NPs, including (in the 

order of appearance) grafted functional chains/peptides, DNA, self-assembled monolayers, protein 

complexes, individual proteins, and fibrillar protein aggregates; (m) AuNP–lipid membrane interactions 

and internalisation mechanisms; and (n) AuNP aggregation. The background colour indicates the 

relevance of each model/method to biomedical applications. The temporal and spatial resolutions shown 

reflect the scale of the AuNP properties (a–n) and the blue arrow is indicative of the (current) modelling 

approaches capable to treat each respective phenomena; however, as high performance computing 

capabilities increase it is expected that the time and length scales of each method will also increase. 

Images (a–n) were created using the VMD 1.9.2 program128 with some components and structures 

adopted from protein data bank entries (PDB ID: 4F5S, 4S05, 2L86), published models129 and X-ray 

crystal structures.130,131 Reproduced with permission.2 Copyright 2016, Wiley-VCH Verlag GmbH & Co. 
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2.2 Electronic Structure Calculations 

2.2.1 Structure Determination and Mechanics of Nanoparticle Formation 

Structure determination (i.e. exact atomic arrangement) is critical for understanding the 

physical and chemical properties of molecules and materials.132 One of the most significant 

early successes for AuNC characterisation is the structure determination of Au 25 by Akola et 

al. in 2008.133 In this pioneering work, three Au25(SR)18 isomers were geometry optimised 

with DFT and their theoretical X-ray diffraction patterns and optical absorption spectra 

were calculated (in agreement with experimental data, Figure 2.2). Properties such as 

electron affinities and ionisation potentials were also assessed and collectively this 

information was used to predict the ground state structure of Au25(SR)18 (labelled 1 in 

Figure 2.2), which was later confirmed by X-ray crystallography.131,134 Similarly, in 2010 

DFT was successfully used to determine the structure of Au38(SR)24
135 just prior to the 

resolution of the X-ray crystal structure.136  

The revolutionary discovery established from these early studies (and the experimental 

crystallisation of Au25,131,134 Au38
136 and Au102

137) is that thiolated AuNC assemblies exhibit 

highly symmetric gold cores that are surrounded by adatom gold “staples” (1 of Figure 2.2). 

This view of AuNC morphology is quite contrasting to previous models that proposed 

thiolates simply form a protective layer on NC surfaces.85 The “staple” motif has since been 

shown to consistently appear in various experimentally and computationally determined 

structures, including: Au22(SR)18,138,139 Au67(SR)35,140 Au144(SR)60,141 Au147(SR)𝑛 (where 𝑛 = 0, 

12, 24, 50, 72),142 Au187(SR)68,143 and Au333(SR)79,144 as well as on planar Au surfaces.145 

 

Figure 2.2 | Optimised [Au25(SR)18]− (where R = CH3) structural isomers with the corresponding X-

ray diffraction patterns compared to experiment. Gold (orange) and sulphur (yellow) are shown but 

methyl groups are omitted. Reproduced with permission.133 Copyright 2008, American Chemical Society. 
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Several other works have been focused on elucidating the formation of these Au–sulphur 

staples.146-148 While it should be noted that the empirical compositions of many of these 

exceptionally stable “magic number” AuNCs are associated with closed-electron shell 

valence counts,125 this is not a strict requirement for AuNC formation149 as geometric 

features and symmetry are also known to play a role in AuNC stability. 150 

DFT structure prediction is particularly useful in the absence of X-ray crystal data (since not 

all AuNPs diffract to atomic resolution), however it is sensitive to input parameters 151 

(Section 3.2.4) and the calculated lowest-energy model is not always the one found in 

nature. For example, in 2012 Pei et al. proposed an interlocked catenane-like arrangement 

for Au24(SR)20 based on DFT,152 but in 2014 Das et al. resolved the crystal structure153 and it 

did not match the lowest-energy model. Instead, Das’ structure correlated to the third-

lowest energy model (Iso3 in Pei et al.). Furthermore, for atomic configurations with limited 

experimental data, semi-empirical methods such as density functional tight-binding154-156 

and approaches employing empirical potentials157-159 are often used as a first step in 

geometry optimisation where first-principles calculations are prohibitively expensive. 

In addition to static structure determination, QM methods are beneficial for investigating 

the dynamics of AuNP formation, including aspects such as: self-assembly/aggregation,160-

162 doping,163-165 metal oxidation,166 ligand exchange,89,130,167-170 and the binding of small 

molecules to gold surfaces171-173 and AuNCs.174-176 Using DFT to study alkanethiol self-

assembled monolayer formation on AuNPs, Barnard showed that the most favourable 

adsorption sites are the (111) facets adjacent to (111)|(111) edges and that alkanethiol 

concentration and chain length guide the growth of AuNPs into different morphologies. 177 

DFT calculations have also provided insight in the effects of collocation of different 

adsorbents on nano-gold,178 atomic substitutions,179 chiral transfer,180 and adsorption-

induced gold reconstructions.181 Despite these accomplishments, probing the precise 

mechanics of AuNP formation, specifically on the gold core itself, is a challenge for ab initio 

methods. Recent works have made great strides in this direction by considering the 

nucleation and growth process of small AuNCs at the QM level,182,183 and by examining 

growth as a function of colloidal stability.182 

First-principles methods are an invaluable tool to determine AuNC structures and to reveal 

how nanoparticles form. As morphological information becomes more comprehensive, the 

capability to predict experimentally valid structures will enable us to better understand the 

intrinsic size-dependent physical and chemical properties of nano-gold and this will 

undoubtedly assist in the development of novel biologically relevant gold-based materials. 



Chapter 2: Computational Studies of Au–Bio Systems 

22 

2.2.2 Optical and Electronic Properties 

As one of the key biomedical applications for nano-gold is biosensing,33 an extensive 

understanding of AuNPs’ (and AuNCs’) optical and electronic properties is essential. Time -

dependent density functional theory (TDDFT) is an extremely advantageous method for 

calculating electronic excited states, and can provide insight into the origin and nature of a 

systems’ optical properties.184 Several examples in the literature employ TDDFT to 

investigate gold assemblies. Tlahuice-Flores et al. showed that Au25 geometry distortions 

reduce the energy difference between the highest occupied and lowest unoccupied 

molecular orbitals (HOMO and LUMO, respectively);185 Antonello et al. found that oxidation 

state affects the triple degeneracy of the Au25 HOMO;186 and for the recently crystallised 

Au18(SR)14,187,188 TDDFT revealed that the HOMO extends over the staple with the LUMO on 

the core kernel, in contrast to other nanoclusters. In a series of papers by Fihey et al., a 

combined MM and QM approach was used to systematically modify the ligand on Au 25 until 

excited-state charge transfer was enabled (Figure 2.3)189 and a molecular switch could be 

formed.190 For larger AuNPs (> 200 atoms), Fihey et al. employed TDDFT in combination 

with a discrete interaction model to simulate surface plasmon resonance. 191,192  

Although TDDFT is an exceptional method for examining the optical behaviour of AuNCs, 

other QM-based methods can also be used to predict optical spectra (and validate 

theoretically proposed structures – see Section 2.2.1) or explore electron transfer processes. 

For example, Tlahuice-Flores et al. used standard DFT methods to produce IR and low-

frequency Raman spectra of AuNCs, which is useful to “fingerprint” clusters based on size, 

 

 

Figure 2.3 | TDDFT obtained absorbance spectrum of [Au25(SH)17Py(NH2)2S]− (where Py = pyrene 

= C16H10). Reproduced with permission.189 Copyright 2014, American Chemical Society. 
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composition and structure;193 and Corni et al. showed that dye–metal charge transfer 

interactions can adequately be modelled by having AuNPs represented as a polarisable 

continuum and only treating dye molecules explicitly at the QM level of theory. 194 

Several factors need to be carefully considered when interpreting calculated absorption 

spectra and other optical properties of nanoparticles and clusters. In addition to the choice 

of DFT parameters,195 obtained results are well-known to be very sensitive to: size, shape, 

“magic number”;196 atomic substitutions;197-202 and the truncation of ligands (e.g. shortening 

aliphatic chains to CH3 or H for the sake of computational efficiency).203,204 Moreover, the 

optimisation of excited states, which is required for fluorescence emission spectra, is 

extremely computationally intensive and can only currently be achieved for small 

molecules.205 While these limitations are not fundamental flaws of DFT, they technologically 

inhibit the calculation of emission spectra for most ligand-protected AuNCs due to size 

restrictions and the need to explicitly include all ligand atoms.204 

2.2.3 Gold Interactions with Biomolecules 

In addition to structure determination and optical characterisation, QM calculations can 

study the adsorption of biomolecules to AuNP surfaces through both physisorption and 

chemisorption mechanisms. Physisorption, i.e. the accumulation of molecules onto a surface 

without chemical binding, is generally non-specific (apart from hydrogen bonding and 𝜋–𝜋 

stacking), reversible, and dominated by van der Waals (vdW) forces with binding energies 

in the 2–10 kcal mol-1 range per functional group. Chemisorption processes on the other 

hand, such as the thiolate functionalisation of gold, involve a direct molecule-to-surface 

chemical reaction which leads to binding energies that can be a hundred times stronger. 206 

Regardless of the type of adsorption, the proper treatment of weak dispersion interactions 

is critical.207-211 This is especially true when considering water–gold interactions, as several 

studies have shown that dispersion is essential to properly model adsorption energy, 

binding orientation, and diffusion.212-214 

Adsorption studies and improving our understanding of water–gold interactions are also 

very important when parameterising MM FFs for nano–bio systems215,216 (discussed in 

Section 3.3.3). For example, in the parameterisation of the GolP FF,215 Hoefling et al. found 

substantial differences between the DFT-derived orientations of gold-adsorbed amino acid 

building blocks and the geometries obtained from molecular dynamics (MD) simulations 

with explicit solvent.217 In vacuum, the molecular orientations are driven by attractive 

dispersion interactions and the repulsive exchange term of the DFT functional, while in 

explicit solvent MD simulations the charged groups reorient for maximum exposure to 
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water. To extend the GolP FF to the GolP-CHARMM FF,216 Wright et al. utilised Plane Wave 

DFT (with the vdW-DF218,219 and revPBE220 functionals to treat dispersion) in order to 

examine the binding of both water and amino acid functional groups to Au(111) and 

Au(100) surfaces. From their in vacuo calculations they found that Au(100) binding affinity 

and selectivity was greatest for molecules containing sulphur or nitrogen, which weakly 

chemisorb to gold surfaces. In addition, their water adsorption calculations showed that 

water molecules preferentially orient their oxygen atoms directly above gold atoms and 

closer to the Au interface than their hydrogen atoms (see Figure 3.2). Nadler et al. also 

observed this in similar DFT investigations,212 suggesting that gold-interfacial water 

molecules tend to act as hydrogen bond donors. 

Apart from gold surfaces, QM has been useful to derive FF parameters for organically-coated 

AuNCs,221,222 and to examine the interactions between a small number of gold atoms and 

amino acids such as cysteine223 and glycine.224 For individual amino acids interacting with 

small AuNCs, Pakiari et al. found that anionic amino acids were favoured.225 Similar results 

were found for the tripeptide glutathione,226 which is an alternative capping ligand to 

alkanethiolates (references given in Section 6.1) for AuNC nano–bio applications. 

In addition to amino acids, the interactions of nucleobases with gold surfaces227 and small 

clusters228 have also been investigated. A recent DFT study found that the energy barrier for 

the interaction of nuclueobases with small AuNCs follows the order G > A > C > T > U.229 

Moreover, Rai et al. observed that AuNCs can also alter the properties of DNA base pairs.230 

2.3 Force Field Approaches 

Recent FF and methodological developments of classical simulation approaches (Section 

3.3.3) provide a platform to improve our understanding of the different interactions 

occurring at the Au–bio interface (Figure 2.1g–l), and help us gain insight into large scale 

phenomena such as AuNP aggregation and membrane permeation (Figure 2.1m–n). This has 

already afforded a novel route to the generation of nanoparticle assemblies with predictable 

architectures217,231-233 targeting specific applications. 

2.3.1 Nanoparticle Synthesis and Design 

The design of peptide sequences that can discriminate between gold facets under aqueous 

conditions offer a promising route to control the growth and organisation of biomimetically -

synthesised AuNPs. As such, computational modelling has secured an important role in 

emerging fields such as bionanocombinatorics and biomaterials engineering where 

specifically designed/encoded biomolecules and nanostructures are used to create 

materials and devices with unique properties and functions. 
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Over the years, several gold-adsorbing peptides have been identified (summarised in Tang 

et al.234), some of which have shown binding affinities similar to those of thiols on go ld. Due 

to the small molecular weights of these ligands, they have become favourable models for 

molecular simulations and have been investigated in varying conditions using different 

techniques.234-240 Initial studies describing peptide–nanogold mechanisms of interactions 

focused on the enthalpic contributions to binding, by describing the probable number, 

distribution, and type of residue–surface contacts.236,241-243 Also, classical “brute-force” MD 

simulations have provided insights into the entropic factors of binding. For instance, Vila 

Verde et al. explored the influence of peptide flexibility and conformational movement on 

peptide binding,238,244 and Heinz et al. estimated the configurational entropic changes of 

strong binding peptides adsorbing to gold.235 Although both studies had limitations in their 

MD approaches, such as the lack of structural data for comparison, the period of time over 

which the binding behaviour was monitored, and the nature of the peptide–gold 

interactions (i.e. the surface only interacts with the peptide via dispersive interactions), 

their results correlated well with experimental observations. While the assumption that the 

gold surface does not reconstruct in response to peptide/solvent interactions may be 

reasonable, neglecting polarisation of the gold surface (Section 3.3.2) is potentially more 

serious.245 Tang et al. employed experimental methods in conjunction with MD simulations 

using the polarisable GolP-CHARMM FF and enhanced sampling techniques (see Section 

3.4.5) to study the binding of various peptide sequences to a Au(111) surface (Figure  2.4).234 

Their work quantitatively demonstrated the importance of entropically motivated 

adsorption and established design principles for creating both entropically and enthapically 

driven nanomaterial-binding peptide sequences. Furthermore, the interplay between 

sequence, conformation(s) and binding propensity were noted to significantly impact the 

affinity of peptides to gold. 

 

 

Figure 2.4 | Integrated approach using experimental measurements and molecular simulations to 

establish design principles for specific interactions-driven peptide binding sequences to gold 

surfaces. Reproduced with permission.234 Copyright 2013, American Chemical Society. 
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Several MD simulation studies have provided the structural connections between a given 

peptide sequence and its binding affinity to the commonly-featured Au(111) and Au(100) 

facets,89,123,235,237,246 which is information not easily obtained by experiment. In a recent 

work, Wright et al. used the combination of enhanced sampling techniques with the GolP-

CHARMM FF to predict the adsorption free energy of a gold-binding peptide, AUBP1, at the 

aqueous Au(111), Au(100)(1 × 1) and Au(100)(5 × 1) interfaces.240 Their results showed 

that the peptide adsorption to the Au(111) surface is stronger than to Au(100), irrespective 

of the reconstruction status of the latter. The surface hydration of gold was identified as the 

key determining factor in peptide–surface recognition, further highlighting the importance 

of explicit solvent treatment in classical FF simulations. Subsequent works from the same 

group have similarly focused on peptide adsorption and interactions on gold surfaces to 

reveal residue-specific binding preferences.247,248 

Protein–gold adsorption can also been investigated using molecular docking approaches, 

where rigid body transformations and rotations explore different binding orientations. For 

example, Khan et al. used molecular docking to investigate the adsorption of human serum 

albumin (a major protein component in human serum) onto AuNPs that cover a span of 

different sizes (1–200 nm).249 Although water molecules, ions and the citrate-coating of the 

AuNPs were not physically considered, their findings revealed that curvature and particle 

size substantially affect stable protein–gold binding conformations (Figure 2.5). 

 

Figure 2.5 | Docking example showing different protein binding conformations dictated by AuNP 

size and curvature. The circled regions in the space filling models show the contact amino acids for 

the human serum albumin protein on the different sized AuNPs: (a) 1–3 nm, (b) 4–10 nm, (c) 11–20 

nm, and (d) > 20 nm. Reproduced with permission.249 Copyright 2014, AIP Publishing LLC. 
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While the interactions of proteins with bare Au surfaces have been investigated in detail, 

albeit with differences in methodological approaches and techniques used, the study of 

proteins interacting with functionalised Au surfaces is still in its infancy. In reality, bare NPs 

are unstable and prone to aggregation in solution. To combat this problem, NPs are often 

synthesised with various functional capping agents (surfactants) conjugated to their 

surface, such as citrate, alkanethiol, or peptide ligands, which aid the colloidal stability and 

solubility of the AuNPs. However, translating this into a computational model requires an 

accurate description of any covalent, semi-covalent and/or van der Waals interactions 

between relevant gold facets and the ligated molecules. The recent development of citrate 

parameters for gold has enabled a more realistic representation of the functionalised gold 

interface in full atomic detail.232,250 Despite recent experimental efforts,251 structural 

information about citrate anions adsorbed onto Au surfaces is still limited. From a 

modelling perspective, the net negative (−3e) charge of each gold-adhered citrate molecule 

contributes to the electrostatic forces present at the gold interface and therefore it is 

important to carefully consider the structure and arrangement of the adlayer. 

Computational studies that have looked into this differ in their treatment of the underlying 

gold core’s surface charge. For example, Wright et al. assumed a neutral gold surface to 

investigate a range of citrate densities adsorbed at the aqueous Au(111) interface using MD 

simulations.252 Their work showed that citrate overlayers are disordered, and many of their 

key characteristics, such as the formation of 3D rather than 2D morphologies, are invaria nt 

with surface density (Figure 2.6a). Generally, the anions closest to the Au surface oriented 

with their carboxylate groups pointing away from the surface. The authors postulate that 

from their findings they expect small biomolecules interacting with citrate-coated AuNPs to 

coadsorb at the Au–citrate interface, rather than (or as well as) displace the adsorbed 

citrates. In contrast, Brancolini et al. studied the interaction between 𝛽2-microglobulin 

(𝛽2m) and a citrate-coated 5 nm AuNP, using a positively charged gold core (corresponding 

to electrochemistry experiments).253 Their simulations showed rigid structuring of the 

citrate layer without any displacement from the surface (Figure 2.6b). Repeating their 

simulations using charge neutral gold led to qualitatively similar results for the mechanisms 

of interactions between protein and citrate-capped gold; however, the positively charged 

gold core resulted in better agreement with the NMR data for 𝛽2m.253 

Utilising Brancolini’s approach,253 Wang et al. performed explicit solvent MD simulations of 

amylin (hIAPP) interacting with both neutral and charged citrate-coated Au(111) and 

Au(100) surfaces.254 Their simulations showed different protein behaviour on the charged 

and neutral surfaces; however, irrespective of the gold facet and surface charge, the N -
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terminal region of amylin consistently displayed preferential binding to the citrate-capped 

gold surface. This example highlights that a careful consideration of the surface and 

functional layer treatment in computer simulations of Au surfaces in solution is required. In 

a different study, the binding orientation of 𝛼-synuclein to a 12 nm AuNPs coated with 

anionic citrate and cationic (16 mercaptohexadecyl) trimethylammonium bromide (MTAB) 

was investigated using NMR spectroscopy and MD simulations,255 where the interactions 

between the gold and the rest of the system were represented by van der Waals interactions 

only (Figure 2.7). Similar to Wang et al.,254 their results showed that the N-terminal region 

of 𝛼-synuclein interacted favourably with the negatively charged citrate-protected NP, while 

the C-terminal region was strongly attracted to the MTAB coated NP. Despite the lack of 

treatment of polarisation effects or crowding effects of neighbouring proteins, the 

simulations were in agreement with the NMR results that suggested a reversal of protein 

binding orientation upon changing the AuNP surface charge. 

A well-established technique to conjugate molecules to AuNPs and AuNCs in order to 

introduce new functionalities is a reaction known as ligand exchange. 256 In an interesting 

QM/MM study by Rojas-Cervellera et al., the mechanism for ligand exchange of a glutathione 

molecule in [Au25(SG)18]− (where G = glutathione) to a protein fragment of an anti-influenza 

antibody was studied.257 The findings of their work showed which glutathione peptide 

ligand will be preferentially substituted and that it occurred through a mechanism which 

involved a proton transfer. Classical MD simulations have also been useful in characterising 

 

Figure 2.6 | Examples from the literature showing the strong dependence of Au(111) citrate 

adlayer structuring on the overall charge of the gold surface. (a) Citrate assemblies of varying 

surface densities on a neutral Au(111) surface. Adapted and reproduced with permission.252 Copyright 

2014, American Chemical Society. (b) Initial (left) and final (right) citrate distribution on a positively 

charged Au(111) surface. Reproduced with permission.253 Copyright 2015, American Chemical Society.  
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the binding mechanisms of peptide functionalised-AuNCs with various proteins.258-260 

Others have provided insight into the mechanisms of direct electron transfer between redox 

proteins and electrode surfaces, which play an important role in bioelectrocatalysis, 

enzymatic biofuel cells and biochips.261-264 

2.3.2 Targeted Applications: Biomedical Materials and Devices 

Self-assembled monolayers (SAMs) impart functionality to underlying gold nanostructures 

that can be tailored for specific applications. Much work has been done both experimentally 

and computationally to characterise SAMs on AuNPs.78 In many cases the NP simply acts as a 

carrier vehicle and it is really the structure and properties of the functional layer and/or 

corona formation that are of interest for applications. Depending on the AuNP surf ace 

coverage density, and the length and type of the conjugates, the solvent-exposed outer 

functional layer of a SAM may be minimally affected by the Au surface due to relatively long 

separations from the NP surface itself. Although not ideal, this means an explicit 

representation of the AuNP interactions with the environment may not be necessary and as 

such specific Au surface–bio parameters can be completely omitted from some simulation 

models to reduce computational cost. Several studies have employed this approach and 

their results were well correlated to experiments. 

For example, experimental protein assays and MD simulations were used to investigate  the 

adsorption of cytochrome C (Cyt C)265 and lysozyme (Lyz)266 onto SAM-protected AuNPs 

with only the monolayer being represented explicitly. In these studies, the SAMs had regular 

nanoscale variations of hydrophobic octanethiol and hydrophilic mercaptohexanol ligands 

(Figure 2.8a), and the simulations revealed that amphipathic, amine-containing, amino acids 

 

 

Figure 2.7 | One of the largest all-atom models of protein–gold nanoparticle systems to date 

showing 𝛼-synuclein interacting with 12 nm AuNP. The functionalisation of the AuNP is (a) citrate 

(negative) ligands, and (b) MTAB (positive) conjugates. Reproduced with permission.255 Copyright 2015, 

American Chemical Society 
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facilitated direct protein adsorption to the nanostructured surfaces. Specifically, lysine 

played a significant role in the selective adsorption of Cyt C onto the nanostructured 

surfaces,265 while for Lyz, it was the amphipathic character of arginine that enabled the 

protein to form close contacts with both polar and non-polar surface ligands 

simultaneously.266 In a separate study using the same AuNPs, it was shown that nanoscale 

structuring had an appreciable effect on the local organisation, structure and energetics of 

the interfacial solvent.267 Collectively, these findings suggested that nanopatterned surfaces 

are able to be designed with interfacial hydrophobicity that can selectively interact with 

different proteins, and in particular amphipathic amino acids can be used to engineer 

synthetic proteins for selective adsorption on nanopatterned surfaces.  

Nanoparticle functionalisation with cell-penetrating peptides, such as the transcription 

transactivation TAT peptide from the human HIV-1 virus, has proven to be a good strategy 

in the development of drug delivery vehicles, albeit with variable performance.270-272 In a 

conjoined experimental/computational study that also features AuNPs as non-functional 

 

Figure 2.8 | Exemplar in silico all-atom models where AuNPs feature as non-functional substrate 
carriers. (a) Nanopatterned surface selectively interacting with proteins. Reproduced with 
permission.266 Copyright 2013, The Royal Society of Chemistry. (b) Peptide-functionalised nanoparticle 
used as cell-permeating agent. Reproduced with permission.268 Copyright 2013, American Chemical 
Society. (c) Mixed alkanethiol-coated AuNP embedding into a lipid bilayer. Reproduced with permission. 
269 Copyright 2015, Royal Society of Chemistry. 
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substrate carriers, the effects of TAT peptide concentration and distribution on small 

pentapeptide-functionalised (CALNN) AuNPs was investigated.268 Here the NP was modelled 

as a neutral sphere commensurate in size to a 3 nm AuNP, and the interactions between the 

CALNN–TAT peptide layer and the solvent were the primary focus of the simulations. The 

results provided evidence that the TAT concentration and distribution on the NP surface 

distinctly influenced the properties of the peptide layer in solution and this directly 

correlated with the AuNPs’ experimentally determined cell internalisation capacity (Figure 

2.8b). This study demonstrated the need to control the structure and dynamics of functional 

peptides in solution in order to achieve the desired membrane-permeating activity of 

peptide-functionalised NPs for efficient drug delivery. 

To study the spontaneous fusion and membrane permeation characteristics of monolayer-

protected AuNPs, many have used all-atom as well as simplified modelling approaches.273-276 

A recent coarse-grained (CG) study by Quan et al. showed that the asymmetry of lipid 

membranes and the surface chemistry of AuNPs have an important role in how the two 

species interact.277 In this work, the AuNP anionic/cationic nature was found to control 

whether the particles adhered to the membrane surface or penetrated to the membrane 

core, and the asymmetric distribution of charged lipids in membranes helped facilitate NP 

permeation. Pioneering research by Van Lehn et al. utilising CG278 and atomistic 

simulations269,274,279-283 also predicted the unbiased behaviour of ligand-functionalised 

nanoparticles interacting with cell membranes (Figure 2.8c), for drug delivery and 

biosensing applications. Their investigations showed that the interaction with solvent-

exposed lipid tail protrusions is the transition step for AuNP insertion into defected and 

pristine bilayers. They also identified several methodological issues of importance in 

studying NP-bilayer interactions:269 (1) in free energy calculations of NP insertion, while the 

NP–bilayer distance may be the more-widely used (and logical) reaction coordinate, 

considering only the distance can result in missing the subtle interplay of lipid and ligand 

fluctuations;163,174 (2) there is a necessity for free boundary conditions to accommodate the 

asymmetric insertion of NPs via the hydrophobic effect, which generates bilayer curvature; 

and (3) accurate atomistic models capable of representing ligand flexibility and 

electrostatics interactions are required in order to resolve bilayer interior to aqueous 

solution dielectric constant differences, and the corresponding free energy cost for exposing 

charges to a low dielectric environment. 

Experiments have also shown that functionalised AuNPs can be used for DNA sensing 

applications.284 In particular, Mirkin and co-workers exploited DNA-AuNPs to develop a 

highly selective colourimetric diagnostic method for DNA detection.285 Other applications 
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are similarly expected to arise as a result of advances in the preparation of crystalline 

materials based on DNA-linked particles and computational insight. Even though these are 

challenging materials to describe due to their complexity, size, and the polyelectrolyte 

character of DNA, important progress has been made using all-atom and CG MD simulations, 

as demonstrated in a perspective by Lee et al.286 For example, MD simulations have been 

used to characterise the conformation DNA adopts when linking AuNPs to form nanoparticle 

superlattice crystals.287,288 Lee et al. showed that double-stranded DNA molecules transition 

from A-form to B-form when connected between two Au(111) surfaces irrespective of salt-

concentration or mechanical constraints imposed by the separation distance between the 

surfaces.287 Using much larger, million-atom MD simulations, Ngo et al. studied different 

supercrystals of DNA-functionalised 3 nm facetted AuNPs in water.288 Their work 

demonstrated noticeable differences in the linking DNA structure from that of B-form DNA 

due to DNA contraction, deviation in base-base stacking and hydrogen bond breaking. 

2.3.3 Benign-by-Design: Nanotoxicology 

Understanding possible adverse effects of inorganic particles on the normal structure and 

dynamics of biomolecules is crucial for any medical application. Nanoparticles and clusters 

can affect the structure of proteins and ultimately their function. 289,290 Furthermore, due to 

the large surface-to-volume ratio of NPs, they can promote a locally increased concentration 

of proteins and facilitate the formation of insoluble amyloid aggregates.291 These amyloid 

fibrils are associated with many debilitating diseases292 and recent studies suggest that 

depending on their size, shape and chemistry, nanoparticles may either facilitate formation 

of these toxic species291,293 or ultimately be used as therapeutic agents for the treatment of 

amyloid-type conditions.33,65,110,294 In either situation, any biomedical application requires a 

detailed understanding of the complex interactions at the bio-nano interface. One of the 

initial computational studies of amyloid peptide interactions with AuNPs is that of Hoefling 

et al. where the GolP FF was used to study the adsorption mechanism of amino acids and 𝛽-

sheet forming polypeptides on an Au(111) surface.233,295 Their results showed that amino 

acids with an intrinsic propensity to form 𝛽-sheets were “predisposed” to interact with gold 

surfaces. The latter work revealed that the adsorption of 𝛽-stranded peptides occurred in a 

stepwise mechanism on the polarised Au(111) surface, where the positively charged amino 

acid arginine facilitated the initial contact formation between the protein and gold surface. 

The observation of a very fast and strong adsorption indicated that in a biological matrix no 

bare gold surfaces will be present, instead the biomolecular corona and bioactivity of AuNPs 

will critically depend on the history of particle administration and the proteins present 

during initial contact between gold and biological material.  
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More recently, Brancolini et al. presented comprehensive studies based on experiment and 

multiple levels of theory, including: docking by Brownian dynamics; Poisson–Boltzmann 

electrostatics calculations; and enhanced atomistic MD molecular simulations; to study the 

𝛽2m protein in the presence of charged (citrate-capped) AuNPs253 and hydrophobic (thiol-

protected) AuNCs222 (Figure 2.9). Their simulations showed that the interaction of 𝛽2m with 

the charged surface of citrate-capped AuNPs did not disrupt the structure of the protein and 

did not form any unfolded amyloidogenic intermediates. Moreover, the MD results 

suggested that in a low pH environment the effects of certain protonated residues (HIS31 in 

particular), which are known to destabilise the protein toward amyloidogenic 

intermediates, are enhanced by the interaction with the negative citrate surface. Similar to 

their previous findings on hydrophobic AuNCs,222 this work highlighted that AuNP surfaces 

may provide either stabilising or destabilising effects with respect to amyloidogenic 

proteins and to control the outcome, a proper balance of electrostatic and hydrophobic 

interactions between the NP surface and protein is essential.  

Since the ground breaking publication by Dawson et al.,115 it is well recognised that in 

complex biological milieu NPs adsorb a biomolecular corona which changes their 

physicochemical properties and confers upon them a new (and changing) bio-identity, 

different from their properties when in pristine form (Figure 1.6). Recent experimental 

research shows that corona-coated AuNPs significantly reduced the amyloid inhibitory 

effects of the same bare NPs,296 while other corona-coated NPs, such as graphene oxide,297 

silica, polystyrene and multi-walled carbon nanotubes,298 showed higher inhibitory effects 

on amyloid-𝛽 fibrillation compared to the bare particles. These studies suggest that in order 

to obtain a more accurate insight into the therapeutic or toxic effects of NPs, it is necessary 

 

 

Figure 2.9 | Computational studies investigating how an amyloid fibril forming protein responds 
in the presence gold nanomaterials. (a) 𝛽2-microglobulin (𝛽2m) interacting with a citrate-coated 
nanoparticle modelled as a dielectric sphere and in all-atom detail. Reproduced with permission.253 
Copyright 2015, American Chemical Society. (b) 𝛽2m interacting in six favourable ways with all-atom 
[Au25(S(CH2)2Ph)18]− (where Ph = phenyl = C6H5) AuNCs. Adapted and reproduced with permission.222 
Copyright 2014, Royal Society of Chemistry. 
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to investigate the biological effects of the protein corona—NP complex. Mahmoudi and co-

workers suggested that appropriate handling of the physicochemical properties of NPs is a 

promising strategy to tune the protein corona decoration, and consequently, its effect on the 

fibrillation process.298 The mechanisms of corona formation are complex and depend on 

many parameters, such as: physicochemical properties of the NP (size, shape, composition, 

surface decoration, and surface charges); the nature of the physiological environment 

(blood, cell cytoplasm, etc.); and the duration of exposure. For computational modelling, the 

temporal and spatial resolutions of all-atom simulations are unable to provide insight into 

all parameters at the same time,299 while CG simulation methods can accommodate a few 

parameters with reasonable computational expense at the cost of atomistic detail. 236,300 

Tavanti et al. employed CG simulations to study protein corona formation on multiple 

citrate-coated AuNPs by two of the most abundant plasma proteins, insulin and fibrinogen 

(Figure 2.10).301 Their simulations included 10–100 insulin and 1–8 fibrinogen proteins in 

the presence of 5 nm AuNPs. Using this simplistic approach they were able to explore the 

protein concentration effects on NP adsorption, the competitive binding process of the two 

proteins on the NPs, and the dual NP binding to fibrinogen in comparison with experiment. 

In a similar work, CG simulations were used to study ubiquitin corona formation on AuNPs 

of different sizes (10, 16, 20 and 24 nm diameters) in bare and citrate-coated form.302  

It is evident that advances in simulation algorithms and “petascale” computing capabilities 

are moving the atomic resolution models of biological systems into the million-to-billion 

atom regime, providing insight into the structure and real time evolution of supramolecular 

complexes. A recent review highlights the progress driven by large-scale MD simulations in 

applications ranging from cell biology and health sciences to biofuel production, 303 re-

emphasising the ever-increasing role of simulations as a ‘computational microscope’304 

 

Figure 2.10 | Coarse-grained simulation study to study an insulin protein corona formation on 5 

nm AuNP. a) The number of insulin proteins bound to the citrate-coated AuNP during the simulations at 

different protein concentrations: 10 (blue), 20 (green), 34 (red), 50 (cyan), 70 (purple), and 100 (brown). 

b) Snapshot of the protein corona (20 insulin molecules) formed on the citrate-coated AuNP. Reproduced 

with permission.301 Copyright 2015, American Chemical Society. 
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complementary to experiments. These and other examples highlight the ability of 

theoretical simulations to help derive the understanding necessary for designing Au 

nanomaterials for precise targeting in biological medium while avoiding undesirable non-

specific adsorption processes. The growth in successful applications of computational 

studies in conjunction with experiments will enable the “benign-by-design” concept for 

nanomedicine to become a reality sooner rather than later. 

2.4 Conclusions and Context of the Thesis 

Through a multiscale molecular modelling approach, electronic, atomistic, and coarse-

grained levels of treatment can offer a multidimensional view of the complex bio–nano–gold 

interface. Indeed, while the number of computational works targeting the Au–bio interface 

at varying levels of theory has drastically increased in recent years, an all-encompassing 

comprehensive knowledge of these systems has not yet been realised. This is largely due to 

serious challenges associated with the computational approaches themselves as well as the 

huge variability in possible Au nanostructures and even greater variety of their biomedical 

applications. Nevertheless, DFT and ab initio based methods (Section 2.2) have been hugely 

beneficial for investigating the optical (e.g. fluorescent and plasmonic), chemical (e.g. thiol 

functionalisation and “staple” formation) and physical (e.g. morphological) properties of 

engineered AuNPs and AuNCs which inherently involve electronic effects. On the other 

hand, classical mechanics approaches (Section 2.3) have revealed imperative information 

into the packing of ligands onto NP surfaces, as well as the conformational responses of 

proteins and lipid bilayers to the presence of the AuNPs, which are largely governed by 

physical interactions (e.g. electrostatic and van der Waals forces). Coarse-grained 

simulations have also been tremendously helpful when the packing and self-assembly of 

ligands, or the AuNPs themselves, become the point of main interest, even though there is a 

sacrifice of chemical detail. Despite all current approximations and limitations, multiscale 

molecular modelling has been able to provide non-intuitive insights in the nano–bio 

interface structure and properties at the electronic and all-atom levels that were not 

achievable through any other techniques, and will therefore remain an indispensable tool 

for obtaining fundamental knowledge of gold (and other) nano–bio systems. 

In general, there is still a substantial gap in the scientific knowledge relating to the 

underlying principles and molecular mechanisms that govern: 

1. How biomolecules (especially peptides) interact with gold nanomaterials? 

2. How specific Au-biomolecule interactions affect the particles’ optical properties?  

Therefore, the aim of this thesis is to apply a systematic approach using classical molecular 

dynamics techniques (Chapter 3) to investigate the structural, dynamic and thermodynamic 
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properties of Au–bio interfacial systems and contribute to the overall understanding of 

these organic-inorganic materials in targeted applications. This is achieved through the 

exploration of three distinct functionalised gold nanomaterial systems, including: plasmonic 

peptide-coated AuNPs useful for the colorimetric sensing and diagnosis of diseases (Chapter 

4); fluorescent peptide-coated AuNCs with potential for biosensing and cellular imaging 

(Chapter 5); and alkanethiol-protected fluorescent AuNCs for targeted drug delivery and 

cellular imaging (Chapter 6). The outcomes of this thesis describe the intricate interactions 

that occur on the nanoscale and offer interesting atomistic insights that aid the development 

and design of new gold nanomaterials within biological settings. 
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Chapter 3:  

Computational Methodologies 

A methodological overview of physics-based computational procedures used for 

investigating Au–bio systems under various conditions is presented. Focus is given to all-

atom classical molecular mechanics and molecular dynamics techniques due to their 

application in the studies presented in this thesis (Chapters 4–6). Sections 3.3.1–3.3.3 are 

published in the journal Small and reproduced in part with permission.2 Copyright 2016, 

Wiley-VCH Verlag GmbH & Co. Details identifying the individual contributions each co-

author made to the Understanding and Designing the Gold–Bio Interface: Insights from 

Simulations publication2 are given in the opening outline for Chapter 2. 

 

 

3.1 Introduction 

Molecular modelling is an umbrella term that embodies all theoretical computational 

methods that mimic the behaviour of electrons, atoms, and molecules to describe 

(sometimes very complex) chemical systems. These approaches are a powerful tool (ideally 

in complement with experimental data) to understand, explain, and provide perspectives 

that yield new information at temporal and spatial resolutions, and well controlled 

environmental conditions, that are unachievable with any other technique. As described in 

Chapter 2, and perfectly encapsulated in Figure 2.1, different levels of theory are able to 

probe distinct gold–biomolecular phenomena and mechanisms. This chapter gives an 

informative summary of these methodologies.  

First a brief synopsis of the various types of quantum mechanical (QM) techniques available 

to perform molecular modelling is delivered. Then, in Section 3.3, a detailed discussion of 

classical molecular mechanics (MM), its underlying methodologies and general concepts is 

presented. Following this, in Section 3.4, emphasis is placed on the algorithms that govern, 

modulate, and maintain the physics of a classical molecular dynamics (MD) simulation, a 

method that is applied extensively throughout this thesis. Finally,  a succinct generalised 

procedure outlining the steps used to construct molecular models and perform MD is given.  

3.2 Quantum Mechanical Methods 

The concepts of QM are non-trivial to understand and this section was written with the aid 

of many references.305-309 Unfamiliar readers are encouraged to consult them. 
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3.2.1 Basics of Quantum Theory 

All matter is described at a fundamental level by quantum mechanics and underpinnin g all 

QM is the multi-body wavefunction: 

 Ψ(𝐫1, 𝐫2, … , 𝑡) (3.1) 

Here, 𝐫1, 𝐫2, … etc. are the (𝑥, 𝑦, 𝑧) positions vectors of all fundamental particles in the 

system (electrons, protons, neutrons) and the wavefunction evolves in time, 𝑡. In other 

words, a wavefunction is a mathematical function that describes the quantum state of a 

system. Through the wavefunction all information about the system (e.g. particle positions, 

momentums, and/or spins) can be determined, albeit in a probabilistic sense. The physical 

significance of the wavefunction is that it’s square, Ψ², provides a probability distribution for 

finding particle one at 𝐫1, particle two at 𝐫2, etc. for a given time. Note that a wavefunction 

describing an electron (or pair of electrons) in an atom is often called an atomic orbital 

whereas a wavefunction describing an electron in a molecule is called a molecular orbital. 

Most QM calculations are focused on determining an approximate, time-independent form of 

a system’s wavefunction by solving the time-independent Schrödinger equation: 

 Ĥ Ψ(𝐫) = 𝐸 Ψ(𝐫) (3.2) 

where Ĥ is the Hamiltonian operator acting on the system’s wavefunction Ψ that depends 

only on particle positions, r, and 𝐸 is the total energy of the system. An “operator” is simply 

the mapping of one function to another function and in QM, all observables (like energy, 

momentum, velocity etc.) are formulated as operators. In Equation 3.2, the Hamiltonian 

operator (known as the total energy operator) is itself is a sum of two other operators, the 

kinetic (T̂) and the potential (V̂) energy operators: 

 
Ĥ = T̂+ V̂ =

−ℏ2

2𝑚
 
𝜕2

𝜕𝐫2
+ 𝑉(𝐫) 

(3.3) 

where ℏ is Planck’s constant, 𝑚 is particle mass and 𝑉 is potential energy.  

There are many eigenfunctions (wavefunctions) with corresponding eigenvalues (energies) 

that satisfy Equation 3.2 for a particle confined in a potential (e.g. an electron in an atom). 

Each 𝜓 and 𝐸 solution gives a stationary (equilibrium) state of the quantum system and this 

importantly implicates that there is a different wavefunction (𝜓1, 𝜓2, 𝜓3, …) for each allowed 

energy (𝐸1, 𝐸2, 𝐸3, …) in a system, meaning electron energies are quantised not continuous. In 

most cases we would like to solve the Schrödinger equation for the ground-state of a system, 

i.e. we want to find the wavefunction (𝜓1) that has the lowest associated energy (𝐸1).  
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3.2.2 Common Approximations 

To solve Equation 3.2 and obtain properties for a system of interest, it is first necessary to 

make several simplifications to the form of the wavefunction and Hamiltonian. The types 

and degrees of simplifications made give rise to different classes of QM techniques. There 

are theoretical approximations that, in principle, limit the accuracy of the methods that use 

them and there are computational approximations that reduce the cost of computational 

resources at the expense of numerical accuracy. Equation 3.2, already implies the neglection 

of relativistic effects and the separation of time and position variables to produce a time-

independent relation, however, a few more QM approximations are still needed.  

The Born–Oppenheimer approximation310 is a theoretical simplification that assumes nuclei 

are infinitely heavier than electrons and allows for the Schrödinger equation to be solved 

assuming that nuclear positions are fixed, i.e. nuclei have no kinetic energy. In other words, 

electrons can be described as moving in a static electric field of stationary nuclei. 

Wavefunctions of a system will therefore only be functions of electronic coordinates and the 

molecular Hamiltonian operator will only contain terms for: electron kinetic energies, 

electron–nucleus attractions, electron–electron repulsions, and nucleus–nucleus repulsions. 

While the Schrödinger equation can be exactly solved for the hydrogen atom, in multi-

electron systems the motion of electrons cannot be decoupled from each other and 

consequently there is no analytical solution to Equation 3.2 for polyelectronic systems. This 

is mainly due to the electron–electron Coulomb repulsion in the Hamiltonian but other 

complexities (e.g. spin and antisymmetry of electrons) also factor in. 

Because non-interacting systems can be solved analytically, many QM techniques start by 

assuming electrons do not directly interact with each other and then introduce corrections 

to help offset this assumption. For non-interacting electrons, the Hamiltonian for 𝑁 

electrons can be rewritten as a sum of one-electron Hamiltonians (ĥ): 

 
 Ĥ =∑ ĥ𝑖

𝑁

𝑖

=∑(
−ℏ2

2𝑚𝑖
 
𝜕2

𝜕𝐫2
+ 𝑉𝑖(𝐫))

𝑁

𝑖

 
(3.4) 

An appropriate form (as we will see below) for a 𝑁-electron wavefunction is then a 𝑁×𝑁 

determinant composed of single-electron wavefunctions (called a Slater determinant311): 

 

Ψ(𝐱1, 𝐱2, … , 𝐱𝑁) =
1

√𝑁!
|

𝜙1(𝐱1) 𝜙2(𝐱1) … 𝜙𝑁(𝐱1)
𝜙1(𝐱2) 𝜙2(𝐱2) … 𝜙𝑁(𝐱2)

⋮ ⋮ ⋱ ⋮
𝜙1(𝐱𝑁) 𝜙2(𝐱𝑁) … 𝜙𝑁(𝐱𝑁)

| 
(3.5) 
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Here, the total electronic wavefunction Ψ is now made-up of a linear combination of “spin 

orbitals” 𝜙𝑖 that are functions of space-spin coordinates 𝐱 = {𝐫, 𝜔}. Each of these spin 

orbitals are a one-electron wavefunction that is the product of a spatial orbital 𝜓(𝐫) and a 

spin function (𝜔), which can be spin up (𝛼) or down (𝛽). For example, 𝜙𝑁(𝐱1) indicates a 

function that depends on the space-spin coordinates of the electron labelled “1”. 

Representing the electronic wavefunction as a single Slater determinant is called the 

Hartree–Fock (HF) or mean-field approximation and it is particularly convenient. 

Interchange of any two rows or columns of the determinant physically corresponds to 

electron exchange, and these results in wavefunction sign reversal (satisfying the 

antisymmetry property, without this exchange interaction is missing). If any two rows or 

columns are identical, the wavefunction collapses (Ψ = 0), i.e. occupation of a spin orbital by 

more than one electron is forbidden (satisfying the Pauli exclusion principle). Finally, the 

factor in front of Equation 3.5 ensures the wavefunction is normalised. 

When Ψ describes molecules, the one-electron functions that go into a Slater determinant 

are often approximated as a finite linear combination of atomic orbitals (LCAO): 

 
𝜙𝑖 = 𝜓𝑖𝜔𝑖 = [∑𝑐𝑣𝑖𝜑𝑣𝑖

𝐾

𝑣=1

]𝜔𝑖 (3.6) 

where 𝜙 is the spin orbital of electron 𝑖 with spin 𝜔, 𝑐𝑣 are coefficients, and 𝜑𝑣  are so called 

basis functions or atomic orbitals (since they are typically atom-cenetered). The complete set 

of 𝐾 one-particle basis functions that build the spatial orbitals (𝜓) of an atom are called a 

basis set. The smallest possible basis set for an atom is referred to as a minimal basis set, and 

usually it contains one basis function per electronic orbital of the atom it is describing 

(including unoccupied orbitals), e.g. a minimal basis set for carbon has 5 basis functions (1s,  

2s, 2px, 2py, and 2pz). If there are two basis functions per electron, this is called a double zeta 

basis set, e.g. 10 functions for carbon, and likewise for triple zeta. There are many types of 

basis sets that vary in the number and functional forms of the basis functions. Two common 

examples of basis function types are Slater-type orbitals (STO) and Gaussian type orbitals 

(GTO). The former are inspired by exact atomic orbital solutions to the Schrödinger equation 

for the hydrogen atom, while the latter are mathematical Gaussian functions. It is important 

to mention that molecular orbitals that go into or come out of a QM calculation (apart from 

hydrogen) are not true molecular orbitals. They are guesses to what orbitals “might look 

like” since they are solutions to approximate Schrödinger equations. 
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One last mention before moving onto the next section is the variational principle/theorem. 

The variational principle says for any time-independent Hamiltonian operator, any 

wavefunction that is not the ground-state wavefunction will have an associated energy that is 

greater than or equal to the true ground-state energy for the given Hamiltonian. This 

provides a method for finding the ground-state wavefunction of a system, the variational 

method. Basically after guessing a “trial” wavefunction for the problem, which consists of 

some adjustable parameters, these parameters are continually adjusted until the energy of 

the trial wavefunction is minimised. The resulting trial wavefunction is then assumed to be 

a sufficient estimate of the true ground-state wavefunction of the system and the energy of 

the trail wavefunction is an upper bound to the exact ground-state energy. 

With the groundwork laid, there are now two main approaches to take to find the ground-

state wavefunction of a system and both are self-consistent, i.e. the variables in the 

equations to be solved depend on themselves so they must be solved in an iterative manner. 

The first is termed wavefunction methods (the simplest of which is the HF procedure or often 

just called HF), and the other is density functional theory. 

3.2.3 The Hartree–Fock Procedure 

In the HF procedure, because we are using a single slater determinate to represent Ψ, it is 

necessary to reformulate the molecular Hamiltonian and this leads to a new approximate 

single-electron Schrödinger equation called the Hartree–Fock equation312,313: 

 
F̂ [{𝜙𝑗}]𝜙𝑖 = 휀𝑖𝜙𝑖 (3.7) 

Here, F̂ is a new operator called the Fock operator that is generated by a set of orbitals {𝜙𝑗} 

and applied to a single one-electron orbital 𝜙𝑖 to obtain its energy 휀. In other words F̂ is a 

functional (note the square brackets) of the 𝑗 orbitals used to generate it, where a functional 

simply means a function that depends on another function . Since the Fock operator depends 

on the orbitals used to generate it, Equation 3.7 actually means that the eigenfunctions (𝜙𝑖) 

of a Fock operator are new orbitals, with new 𝑐𝑣𝑖 (Equation 3.6), that in-turn can be used to 

construct a new Fock operator. So, after a basis set is chosen and an initial guess is made for 

the linear 𝑐𝑣𝑖 parameters, a Fock operator is constructed and Equation 3.7 is solved. The 

new set of orbitals 𝜙 (with new 𝑐𝑣𝑖 and energies 휀) are then used to construct a new F̂ and 

this continues until 𝑐𝑣𝑖 no longer change. In practice this is done by matrices. At this point, 

the system’s total energy has converged and a self-consistent set of one-electron orbitals 

has been constructed through the variational method. Ultimately, the accuracy of Ψ 

described by these orbitals only depends on the chosen basis set. 



Chapter 3: Computational Methodologies 

42 

At the end of a ground-state QM calculation (HF or otherwise) we get the following: the 

electronic energy (one point on the potential energy surface); the electronic wavefunction 

(can be used to get dipole moments, polarisability, electrostatic potential, etc.); orbital 

locations (which can give insight into bonding); and orbital energies/occupancy (i.e. the 

amount of energy required to remove/put an electron from/in that orbit).  

The HF approach, or more accurately Equation 3.6 with 3.7, describes a system of 𝑁 non-

interacting “electron-like” particles (that have zero charge and physical dimensions), each 

moving in an effective potential created by the other 𝑁−1 particles. In other words, each 

electron is independent of all others except that is feels the Coloumb repulsion due to the 

average positions of all other electrons. This introduces an error in Ψ and its energy. Given a 

large basis set this energy error (called the total electron correlation energy, 𝐸c) only 

represents about ~1% of true ground-state energy however this energy difference has 

significant ramifications for studying chemical properties such as dispersive effects, which 

are crucial for intermolecular interactions. There are several techniques available that 

attempt to recover 𝐸c such as: using multiple Slater determinates to represent Ψ (called 

configuration interaction),314 Möller–Plesset perturbation theory,315 and coupled cluster 

methods,316 but these will not be discussed here. 

3.2.4 Density Functional Theory 

The electron density ((𝐫)) of a system, i.e. the probability of finding 𝑁 electrons within a 

volume element, is one of the most important properties we can examine from an electronic 

structure calculation. Not only can other properties be obtained from it such as dipoles and 

electrostatic potentials, (𝐫) is also something that can be measured experimentally, e.g. by 

X-ray diffraction. In 1964, Hohenberg and Kohn discovered two more very important 

features of 𝜌(𝐫).317 The first is that the total energy of an electron gas (including exchange 

and correlation) is a unique functional of (𝐫), i.e. [(𝐫)]. The second is that the ground-state 

electron density and energy can be obtained variationally via minimisation of [(𝐫)], or in 

other words, any density that is not the ground-state density, will have an energy higher than 

the true ground-state energy. Density functional theory (DFT) is built on these.  

Modern DFT, or Kohn–Sham DFT,318 bears are a lot of similarities to the HF procedure 

described in Section 3.2.3. The system is still treated as a fictions system 𝑁 of non-

interacting electrons that is represented by a single Slater determinate constructed from a 

set of fictions orbitals, in this case called Kohn–Sham (KS) orbitals. KS orbitals are still found 

by solving one-electron equations similar to Equation 3.7, except that the Fock operator is 

replaced by the Kohn–Sham operator, which is slightly more complicated and contains an 
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exchange–correlation term (more below). In a DFT calculation, a self-consistent approach is 

used to take an initial guess of the system’s total electron density, which produces a set of 

single-electron wavefunctions that in turn are used to improve the value of the density. The 

cycle of density updates and wavefunction generation continues iteratively until 

convergence of the density (and electronic energy) is finally achieved.  

Before we can solve for the electron density of a system, we need to first make a guess at 

what it looks like. Practically speaking, the accuracy and quality of DFT calculations strongly 

rely on the choice of an appropriate functional to describe the electron density of the 

system. These DFT functionals can be divided into different groups based on the 

approximations used for the exchange–correlation terms in them: local density 

approximations (LDA, functional depends only on the local density at a given point), general 

gradient approximation (GGA, functional depends on local density and its gradient), hybrid 

functionals (mixes in Hartree–Fock exchange), and others. These will not be discussed here; 

the only note that will be made is that while HF only considers electron exchange, DFT 

explicitly considers both exchange and correlation through these functionals.  

For large nanoparticle systems (thousands of atoms), where conventional DFT becomes 

prohibitively computationally expensive, simplified QM approaches such as tight-binding319 

and other semi-empirical methods320,321 play a valued role. These methods use empirical 

parameters within a QM framework to improve computational performance, albeit with 

many approximations such as: only explicitly calculating valence electron interactions, or 

completely neglecting two-electron interactions. 

Linear-Scaling DFT 

Over the last few decades, the development of linear-scaling O(N) methods such as 

ONETEP322,323 and SIESTA324 have become significant tools for studying large (biomolecular) 

systems at the electronic level (see the comprehensive review by Cole et al.325). The key 

feature of these methods is their computational efficiency obtained by exploiting the 

inherent locality or “near-sightedness” of the single-particle density matrix, while retaining 

accuracy akin to traditional plane-wave basis set codes. Such efficiency opens up the 

possibility of performing accurate DFT calculations on systems with tens of thousands of 

atoms, including nanomaterials,326 proteins,327 and more complex systems such as 

nanoparticles interfaced with complete proteins328 and gold/thiolate molecular junctions.329 

QM techniques can also be combined with MM methods to investigate large complex 

systems, where the electronic properties of a selected region are described at the QM level 

and the surrounding environment described at the MM level.330,331 A challenge of this 
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method is the uncertainty in how to define these two (or more) regions, which will 

ultimately affect the accuracy of the results, especially if the QM region is not large enough 

or the interface between the QM and MM regions is not modelled accurately. 

While each of these QM strategies are slightly different in methodology, they can all produce 

highly accurate results to determine the total energy, predict molecular structures and 

derive properties that depend on electronic distribution (see Section 2.2). These properties 

often cannot be determined by other methods and include: electric multipole moments (i.e. 

dipole, quadrupole etc.); electron density distributions; atomic charge distributio ns (on 

each nucleus of the system); bond orders (i.e. number of chemical bonds between pairs of 

atoms); bond formation and breakage; electrostatic potentials (useful for rationalising 

interactions between molecules); thermodynamic values (e.g. enthalpy driven heat of 

formation); electron transfer; polarisation effects; and the development of parameters to be 

used in classical modelling methods. 

Ultimately, the application of QM to large Au–bio systems (such as interfacial systems in 

solvent) is limited both by computational capacity and the range of approximations 

currently involved in the methodologies themselves. While linear-scaling DFT methods 

show the most promise, they still need significant developments to become a routine tool 

for modelling the dynamic evolution of biologically relevant nano–bio systems. Instead, 

classical approaches offer an attractive alternative to model large Au–bio systems. 

3.3 Classical Molecular Mechanics 

Although not as accurate or robust as QM techniques, MM methods enable the investigation 

of much larger systems in realistic atomic detail to better understand and predict the 

macroscopic (often physical) properties of inorganic and biological materials. This scale up 

is achieved by applying the Born–Oppenheimer approximation to assume that electronic 

motion is negligible and that the Hamiltonian of a system depends only on nuclear variables 

(i.e. only on atomic positions). Consequently, this means that MM approaches cannot 

investigate electronic properties however they can provide accurate calculations of physical 

phenomena in a fraction of the computer time. 

3.3.1 The Potential Energy Function 

Underlying all MM methods is an analytical expression called a force field (FF) that 

describes the interactions between particles/atoms. Used to calculate the total potential 

energy (𝑉𝑡𝑜𝑡) of a molecular system, a common functional form of a FF is given below.  
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𝑉𝑡𝑜𝑡 = ∑ 𝐾𝑏(𝑏 − 𝑏0)
2

𝑏𝑜𝑛𝑑

+ ∑ 𝐾𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒

+ ∑ 𝐾𝜑[1 + cos(𝑛𝜑 − 𝛿)]

𝑡𝑜𝑟𝑠𝑖𝑜𝑛

+∑4휀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝐿𝐽

+ ∑
𝑞𝑖𝑞𝑗

4𝜋휀0𝑟𝑖𝑗
𝐶𝑜𝑢𝑙𝑜𝑚𝑏

+∑𝑉𝑜𝑡ℎ𝑒𝑟 
(3.8) 

Each term of Equation 3.8 is composed of two distinct components which collectively 

describe the energetic contributions associated with a specific type of inter-atomic 

interaction, namely: a function used to generate the potential energy of that interaction; and 

the corresponding equilibrium parameters for the function (empirically and/or 

theoretically determined). The first two terms of Equation 3.8 describe covalent bond 

stretching and angle bending using harmonic functions (Hooke’s Law) with force constants 

𝐾𝑏 and 𝐾𝜃 defining the strength of the energetic penalties imposed for deviations of the bond 

length (𝑏) and angle (𝜃) from defined minimum energy positions (𝑏0 and 𝜃0, respectively). 

The torsion term uses a periodic function to model how varying the dihedral angle (𝜑) 

between atoms separated by three covalent bonds affects the energy with respect to the 

potential barrier to rotation (𝐾𝜑), periodicity (𝑛), and phase (𝛿). Non-bonded atom pair 

interactions are described as functions of the separation distance r between the centres of 

particles 𝑖 and 𝑗. Close-range repulsion and van der Waals (vdW) dispersion interactions are 

represented by a Lennard–Jones (LJ) 12–6 potential where 𝜎𝑖𝑗 and 휀𝑖𝑗 are the finite distance 

at which the inter-atomic LJ potential is zero and the potential well depth, respectively. 

Electrostatic interactions are treated via Coulomb’s law where 휀0 is the permittivity of free 

space and 𝑞𝑖 is the partial charge assigned to each atom. Finally, the last term of Equation 

3.8 encompasses all other FF specific interactions that may feature, such as term coupling, 

out-of-plane bending, induced polarisation (Section 3.3.2), external applied forces, etc. 

Since most FFs employ an almost identical (or at least very similar) functional form, it is 

primarily the availability and quality of a FF’s parameters that reflect how accurately inter-

atomic interactions (and subsequently physical phenomena) are emulated in silico. Well-

established biological FFs (e.g. AMBER,332 CHARMM,333 GROMOS,334 and OPLS/AA335) have 

been developed and validated over several decades to reproduce basic biomolecular 

properties, however they lack parameters for investigating biomolecule behaviour in gold-

containing systems. Due to gold’s innate chemical inertness, most species (excluding thiols) 

primarily physisorb to gold, therefore extending conventional biological FFs to capture this 

interaction mainly requires reliable gold–organic vdW parameters and atomic charges (see 

Appendix A for examples generating custom atomic charges from this thesis).  
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Many FFs handle vdW interactions through a LJ potential, commonly in the 12–6 form 

(Equation 3.8). By incorporating tailored gold-specific LJ parameters (i.e. 𝜎𝑖𝑗, 휀𝑖𝑗 where 𝑖 = 𝑗 

= Au) for various Au surface facets and cluster geometries into an existing FF’s functiona l 

form, the interaction energy between gold and other atom types can be estimated (Section 

3.3.3). This is done through assuming the validity of standard mixing/combination rules, 

such as 𝜎𝑖𝑗 = (𝜎𝑖 + 𝜎𝑗)/2 and 휀𝑖𝑗 = (휀𝑖 × 휀𝑗)1/2 which are already established approximations 

within biological FFs. Yet as highlighted by Latour,336 parameters derived to represent 

biomolecule–solution interactions should not automatically be assumed to be directly 

transferable to biointerfacial systems. With this in mind, the only viable approach to 

modelling AuNP–bio interfacial systems is through developing parameters (in a consistent 

way) to be both specific for particular Au nanostructures or surface facets and compatible 

with extensively tested bio-organic FFs. Ideally, further developments and refinements of 

gold–bio FFs will be done in conjunction with experimental data however at this moment, 

there is little (if any) useable data available for this purpose. While some metal–molecule 

adsorption experiments have been specifically designed and used for validating non-bond 

interaction potentials,234 QM calculations are currently filling the parameterisation gap. 

3.3.2 Polarisability 

Before discussing the different types of gold–biomolecule FFs available (Section 3.3.3), it is 

worth mentioning the importance of polarisation, also known as image charge effects. This 

is a phenomenon that occurs when (charged) molecules come in proximity to metal -like 

materials. Essentially, the delocalised sea-of-electrons of gold (surfaces) becomes polarised, 

i.e. dipoles are induced, by the intrinsic electron-cloud electric field of a nearby molecule 

(Figure 3.1). Image effects not only create an attractive interaction between charges and 

metals, they can also affect mutual interactions between charges in adsorbed molecules. 

Although not all classical FFs for metal–molecule interactions explicitly include polarisation 

terms in their functional form, some effects might still be implicitly included in the 

remaining two-body metal–molecule parameters, depending on the parameterisation 

approach (e.g. QM approaches where polarisation is intrinsic). Nevertheless, since many 

biomolecules invariably feature charged domains, polarisation effects are generally not 

negligible. Therefore, the incorporation of explicit, on-the-fly, polarisability for gold atoms 

in classical simulations is ideal. A few dynamic models currently implemented for this 

purpose include the rigid-rod approach of Iori and Corni,337 and more recently the 

capacitance-polarisability interaction model which also allows an atomistic description of 

charge migration within a particle.338,339 Other a posteriori methods to quantitatively 

measure facet-dependent polarisation effects have also been published in the literature,246 
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however these carry the limitation that the atomic positions cannot respond to the image 

potential (see discussion given in Jha et al.340). 

In the rigid-rod approach337 (which underpins the FF utilised in Chapter 4), polarisability is 

emulated through the addition of a virtual interaction site on each gold atom. The virtual 

site has mass 𝑚, charge 𝑞 and is forced to remain at a fixed radial distance 𝑙0, but otherwise 

rotationally unrestrained, from the original gold atom’s centre (which has an opposite 

charge of –𝑞 assigned to it, Figure 3.1c). This site has no vdW parameters therefore it can 

only interact with other atoms via electrostatic interactions, and interactions between the 

virtual site and its respective gold atom do not contribute to the energy and force 

calculations of a simulation. When an external charge comes in proximity to a given gold 

atom (i.e. the partial atomic charge on a nearby biomolecule atom), the rod freely rotates to 

find the most energetically favourable position. Since the rod always has a finite dipole 

moment given by, 𝜇 = 𝑞𝑙0, the orientationally averaged dipole moment only yields physically 

meaningful results for temperatures 𝑇 greater than zero. The polarisability 𝛼 is therefore 

given by Equation 3.9 (where 𝑘𝑏 is the Boltzmann constant). 

 
𝛼 =

𝜇2

3𝑘𝑏𝑇
=

𝑞2𝑙0
2

3𝑘𝑏𝑇
 

(3.9) 

While it is noted that this method to treat polarisation is: qualitative; empirical in nature, i.e. 

sacrifices the realism of a quantum description; and does not allow for charge accumulation 

to develop on the metal, the rigid-rod method has been very successfully incorporated into 

several FFs to describe induced polarisation on gold surfaces 215,216,342,343 (as further 

discussed in Section 3.3.3), as well as for carbonaceous nanomaterials.344 

 

Figure 3.1 | Schematics illustrating induced polarisation and the rigid-rod model. (a) A charged 

particle at close proximity to a metal induces a net charge at the surface. (b) Electric field produced by the 

external point charge (field lines shown by arrows). Reproduced and adapted with permission.341 

Copyright 2013, Nature Publishing Group. (c) A two-dimensional depiction of the rigid-rod model used to 

dynamically polarise atoms (circles). Adapted with permission.337  Copyright 2008, Wiley Periodicals, Inc. 

 

a b c 
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3.3.3 Gold–Biomolecular Force Fields 

When FFs are developed they are usually designed with a specific application in mind, and 

aim to explicitly reproduce some characteristic of a particular atomic system as a validation 

step. This focus may be ensuring that the crystal structure of a small AuNCs is maintained, 

or verifying that the experimental interaction energies and adsorption geometries of 

molecules onto different gold surface facets are adequately reproduced. Although there is 

no one-size-fits-all FF capable of replicating all complex physicochemical phenomena at the 

gold–bio interface, currently there are two conceptually different mainstream approaches 

commonly taken when constructing gold–biomolecular FFs. One approach is targeted at 

general and transferable interfacial gold-specific parameters capable of modelling any 

shaped gold material as well as reconstruction of the substrate within a single 

comprehensive framework. The alternative approach introduces a number of tailored 

parameters aimed at differentiating the interactions between particular biomolecular 

species and different crystallographic facets and shapes of gold, while keeping the geometry 

of the gold substrate/centre rigidly intact. For detailed descriptions of both methods, 

including validation data, please refer to discussions given the literature, 343,345 and 

references therein. Presented herein is a general account of both approaches, as well as 

others, used in developing custom FFs able to represent the interactions occurring between 

gold (surfaces and clusters) and biomolecules (e.g. water, ligands, proteins, and DNA). As 

with all simulation work, there is no single best method to model gold, rather the best 

approach for a system is one that most accurately reproduces the properties of interest.  

Lennard–Jones Gold Particles 

Possibly the most “transferable” and hence popular gold LJ parameters are those of the 

METAL/INTERFACE FF of Heinz et al.122,346 which were developed to reproduce the 

experimentally measured bulk density and surface tension of homoatomic face-centred 

face-centred cubic (FCC) metals. Available as 12–6 and 9–6 LJ parameter sets, 𝜎Au,Au and 휀Au,Au 

are claimed to be compatible with a wide-range of organic FFs such as AMBER,332 

CHARMM,333 OPLS/AA,335 COMPASS,347 and CVFF.348 The applicability with so many organic 

FFs is reasoned to be a result of parameter validation only involving properties of pure gold 

and non-bonded interactions. The LJ description of gold in the METAL/INTERFACE FF 

allows for the classical Hamiltonian energy expression to reproduce the FCC structure and 

surface energy of gold which leads to agreement of the calculated metallic thermal and 

mechanical properties with experimental values.122 Furthermore, the authors assert that 

these metallic properties dictate all interactions with other components (e.g. biomolecules) 

and this enhances the LJ parameters’ applicability to interfacial systems.  
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While the gold atoms in this FF are charge-neutral, they are not geometrically restricted, 

allowing for the exploration of molecules interacting with different crystallographic 

surfaces,349 facetted and spherical AuNPs,350,351 as well as other shaped gold 

constructs.237,352 Polarisation is not described explicitly, but polarisation effects were 

quantitatively tested a posteriori and found to contribute up to ~20% of the binding energy 

for highly charged biopolymers on the Au(111) surface, while for other surfaces such as the 

Au(100) the contribution from polarisation is even more significant or even dominant. 246 

Peptide/protein binding to Au(111) using the METAL FF is described as a “soft epitaxy” type 

mechanism, with adsorption via the surface’s hollow sites,241 which is (albeit indirectly) 

supported by experimental studies showing near perfect epitaxial ordering of alkanes and 

some amino acids at monolayer coverage on Cu(111) and Pt(111) surfaces. Alternative 

hypotheses suggest that interfacial water structuring rather than epitaxy is what plays a 

critical role in influencing peptide–gold binding.240 It should also be mentioned that as a 

result of solely relying on LJ terms to maintain gold atoms in the desired FCC morphology, 

the depth of the LJ potential well is relatively large (12–6: 휀Au,Au = 19.1 kJ mol-1) since it 

represents strong cohesion. Although this raises concerns about overestimating the 

strength of vdW interactions between mixed species, computed water and peptide 

adsorption energies using the METAL FF are in agreement with experiment, 235 and recently 

published thiolated AuNC FFs also features similar magnitude ε values for gold atoms.353 

Besides the METAL FF, several other sets of LJ parameters have been used to model bio –

gold systems while relying on cross-terms to govern gold’s interactions with organic and 

biomolecular components.354-360 These include: the hydrophilic parameters of Vila Verde;244 

parameters borrowed and modified from the generic Dreiding361 and Universal362 FFs, 

parameters adapted from experimental data,363 and those taken from self-assembled 

organic monolayers on gold substrates.364 It is worth noting that due to the ubiquitous 

nature of thiolates in AuNP–bio systems, it is often necessary to accurately and explicitly 

represent the Au–S bond (e.g. found between deprotonated cysteine and Au) within the 

simulation protocol. There have been many examples in the literature where harmonic 

potentials,365,366 Morse potentials355,367 and various strong short-range potentials354,368,369 

have been used to reproduce this bond for specific applications. However, as adhesion of 

many biomolecules (such as proteins) to gold is known to be largely dominated by 

secondary interactions, standard mixing rules may fail to accurately describe the varying 

physicochemical strength of interaction different atom types have with gold. This issue has 

been a strong motivator behind the also popular GolP family of FFs. 215,216,222,342,343,370 
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Peptides and Proteins on Crystallographic Gold Facets 

The Gold–Protein (GolP) FF, as the name suggests, was designed to examine how proteins 

interact with gold surfaces. It was parameterised against both QM and experimental data to 

reproduce adsorption geometries and interaction strengths of natural amino acids on the 

(111) facet initially.215 Although interactions between gold and other atomic species are still 

governed by 12–6 LJ potentials, GolP additionally introduces explicit “Au–X” LJ terms to 

ensure weakly chemisorbed sulphur- and nitrogen-containing molecules (imidazole, NH3, 

CH3SH and CH3SCH3) and 𝜋-conjugated species are correctly described. Furthermore, two 

unique features of the GolP FF are the inclusion of LJ virtual sites to constructively direct the 

geometry of biomolecule adsorption (as obtained from DFT calculations), and the use of the 

rigid-rod dipole method337 to dynamically and efficiently describe gold polarisation. The 

inclusion of polarisation effects is not only beneficial for the reasons discussed in Section 

3.3.2, but also because this potentially enables the transferability of gas-phase derived 

parameters to the condensed phase, as demonstrated by the polarisable AMOEBA FF.371 

The GolP Au(111) surface is represented as a 5-layer periodic slab in two dimensions with 

gold atoms holding no partial atomic charge and no intra-surface (i.e. gold–gold) 

parameters. As a result, gold atoms must be kept rigid in their equilibrium position, which 

disables gold lattice deformations and removes the ability of the FF to describe nanocrystal 

growth or compute metallic properties. However, for studying gold surface–biomolecular 

interfaces this is an acceptable approximation, considering the much stronger cohesion of 

gold relative to soft OPLS/AA372 (henceforth be referred to as GolP-OPLS). 

To address the facet-selectivity of peptide adsorption, Wright et al. reparameterised GolP-

OPLS with the CHARMM FF333,373,374 and extended it to describe biomolecule interactions 

with the Au(111) and Au(100) surface facets (Figure 3.2), which are the most common 

facets of AuNPs larger than 3 nm.61 Termed GolP-CHARMM,216 the FF analogously features 

virtual sites and dynamic polarisation while additionally introducing explicit LJ terms to 

reproduce the energetics and structuring of water at gold surfaces (Figure 3.2), an 

important aspect for biological applications. In a further extension, the GolP-CHARMM FF 

was expanded to describe reconstructed Au(100)-hex surfaces, approximated as (1 × 5).343 

Although experimental evidence shows that both Au(111) and Au(100) are present in their 

reconstructed forms in biologically relevant conditions,375 only Au(100)-hex shows 

significant morphological differences from its unreconstructed counterpart Au(100)(1 × 1). 

Through MD with GolP-CHARMM, the authors highlight that this surface reconstruction 

cannot be ignored as differences in water structuring at the native and reconstructed 

Au(100) interfaces leads to significant discrepancies in peptide binding affinities. 240,343 
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Small Thiolated Gold Nanoclusters 

Unlike gold surfaces and facetted NPs, small thiol-protected AuNCs exhibit a very different 

atomic arrangement149 from that of the well-recognised FCC lattice (see Figure 1.3). Instead, 

these small AuNCs (approx. < 3 nm) exhibit X-ray crystal structures that contain highly 

symmetric gold cores, surrounded by adatom “staples” (see models in Figures 2.2 and 2.3). 

Within this small size regime, capturing the quantum chemical nature (no longer bulk metal 

band structuring) and vastly different morphology of AuNCs, presents a significant FF 

design challenge for classical all-atom molecular simulation. The limited availability of 

experimental data and the newness of the chemical characterisation of AuNCs has hindered 

the development of AuNC FFs, which is reflected by the fact that only very few all-atom 

(staple motif containing) thiolate-AuNC FFs have appeared, namely for: 

Au25(SR)18,221,222,290,376,377 Au38(SR)24,221,378 Au144(SR)60,379,380 and very recently 

Au𝑚(SR)𝑛353,381 Within these FFs, gold can be designated different atom types depending on 

the coordination to metallic and/or ligand atoms (i.e. Au–Au–Au, Au–Au–S or S–Au–S).221,222 

This allows for interaction parameters to be optimised for each gold type much like 

different atom types are treated in biological FFs. Similar to many atomistic surface FFs, 

gold atoms may be neutral376 or have assigned charges,379 and either be forced to occupy 

their equilibrium positions (restricting intra-gold interactions and removing the need for 

Au–Au parameters)376 or allowed to evolve under a fully parameterised Au–Au FF.222 While 

a primary parameterisation goal for these FFs is to maintain the internal AuNC morphology 

of an experimental crystal structure, this only applies to the Au and S atoms, and 

exploration of the ligand-conformational energy landscape is of prime importance.377 

 

Figure 3.2 | Preferred conformations of biomolecular species adsorbed to gold surfaces as 

obtained from calculations employing the GolP-CHARMM FF. The left panel shows a plot of the facet 

specific adsorption energies for different small molecules (insets show example of imidazole adsorption). 

The right panel depicts a single water molecule adsorbed to Au(111) which reproduces the general 

structuring obtained from DFT calculations. The central panel displays a capped histidine amino acid in a 

fully solvated system. Adapted with permission.216 Copyright 2013, American Chemical Society. 
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Recently, GolP-OPLS compatible parameters for [Au25(S(CH2)2Ph)18]− were developed to 

investigate how small hydrophobic AuNCs interact with proteins.222 Bond parameters (and 

corresponding angles) for Au–Au, Au–S and S–C atom pairs were established based on 

extensive ab initio calculations and validated against the experimental [Au25(SR)18]− crystal 

structure. Charges for gold and organic atoms were also derived in addition to LJ 

parameters fitted to replicate the QM interaction of (an OPLS) methane molecule with the 

AuNC, but unlike its predecessor the FF does not contain dynamic polarisation. 

3.3.4 Periodic Boundary Conditions 

To overcome the computational prohibition associated with modelling very large 

(sometimes infinite) systems, approximations can be applied to the boundaries/borders of a 

simulation so that a much smaller subset of the original model can be used. Periodic 

boundary conditions minimise edge effects in a finite system while still allowing for 

molecules to interact with each other and solvent as if they were in a bulk fluid. Essentially 

atoms of a system are placed into a space-filling box (called a unit cell) that is replicated so 

that each atom is surrounded by translated copies (or images) of itself (Figure 3.3). In three 

dimensions this results in a unit cell having 26 nearest neighbouring image cells. During a 

simulation the number of particles in the unit cell remains constant since a particle leaving 

the central box is replaced by an image particle from an opposite side. Consequently, only 

the properties of the original simulation box need to be recorded and propagated.  

3.3.5 Treatment of Non-Bonded Interactions 

Non-bonded interactions are the most computationally intensive and expensive calculations 

in classical MM since the number of non-bonded pairs grows exponentially with system size. 

While reducing the cost of this task (as much as practical), some important concerns also get 

addressed. The first is that a particle must only interact with another particle/molecule 

once (i.e. not multiple times across periodic boundaries, and never with its own images), 

and the second is related to the accurate treatment of long-range electrostatics effects. 

To deal with the former, it is necessary to apply the minimum image convention which 

ensures that only the nearest image of each particle is considered when calculating short-

range non-bonded interactions. As shown in Equation 3.10, this is achieved by imposing a 

cut-off radius (𝑅𝑐) that truncates all non-bonded interactions that exceed a distance more 

than half the length of the shortest periodic box vector (𝐚, 𝐛 or 𝐜). 

 
𝑅𝑐 <

1

2
 min(‖𝐚‖, ‖𝐛‖, ‖𝐜‖) 

(3.10) 
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When investigating large solutes in explicit solvent (such as the functionalised-AuNC shown 

in Figure 3.3), to properly satisfy the minimum image convention the length of each box 

vector must be greater than the length of the solute in the direction of the vector plus the 

cut-off radius. This guarantees that no molecule will interact with both sides of a solute.  

Cut-off treatments are generally quite adequate when describing vdW interactions since the 

LJ potential for a given pair of particles rapidly decays to a negligible value at relatively 

short distances (> 1.5 nm). This, however, is not the case for the Coulomb potential that 

decays with the inverse of 𝑟𝑖𝑗 (see Equation 3.8) and cannot simply be truncated without loss 

of accuracy to the system’s potential energy. Also, these long-range interactions need to 

extend into adjacent image cells and this poses the risk of self-interaction artefacts. 

Some of these issues have been resolved with the Ewald summation method,382 which 

removes the need to directly solve the Coulomb potential in Equation 3.8 (for 𝑁 particles 

and their periodic images). Instead, each point charge is replaced by a smeared Gaussian to 

estimate the electrostatic potential field. Each charge interacts with the resulting field to 

yield the potential energy. As shown in Equation 3.11, this allows the total electrostatic 

 

Figure 3.3 | A three-dimensional visualisation of periodic boundary conditions. The unit cell 

containing a fully solvated peptide-coated AuNC model is outlined in black, box vectors 𝐚, 𝐛 and 𝐜 are 

drawn in white, and 6 (out of a total 26) nearest neighbouring image cells are shown. 
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interaction energy (𝑉𝑒𝑠) to be broken up into: a short-range term (𝑉𝑠𝑟, for 𝑟𝑖𝑗 < 𝑅𝑐); a long-

range term (𝑉𝑙𝑟, for 𝑟𝑖𝑗 > 𝑅𝑐); and a constant term (𝑉𝑐) to correct for self-interactions. 

 𝑉𝑒𝑠(𝑟𝑖𝑗) = 𝑉𝑠𝑟(𝑟𝑖𝑗) + 𝑉𝑙𝑟(𝑟𝑖𝑗) − 𝑉𝑐 
(3.11) 

This representation of the electrostatic potential allows the slow converging sum in 

Equation 3.8 to effectively be replaced by two quickly-converging terms: one solved directly 

in real space (𝑉𝑠𝑟), and one solved using Fourier Transforms in reciprocal space (𝑉𝑙𝑟). To 

extend this technique to large systems where the Ewald method becomes computationally 

unaffordable, the smooth Particle Mesh Ewald (PME)383 approach maps charges onto a 

three-dimensional grid then calculates 𝑉𝑙𝑟 in reciprocal space. This method gives the exact 

result for the electrostatic energy of a periodic system containing an infinitely replicated 

neutral box of charged particles (i.e. counter-ions need to be incorporated into the system to 

ensure overall charge neutrality). The PME method has been used throughout this thesis as 

it is a computationally efficient approach for the treatment of long-range electrostatics.384,385 

3.3.6 Energy Minimisation 

The potential energy of a molecular system is a rugged, complex and multi-dimensional 

landscape (Figure 3.4). The troughs (local minima) in the energy landscape are associated 

with metastable structures that molecules adopt, the ridges represent free energy barriers 

between these states, and the single deepest point is the global minimum. Knowledge of all 

stationary points on a potential energy surface gives a complete description of all free 

energies, structural conformations, and transitions for a given system. Unfortunately, it is 

near impossible to comprehensively sample the entirety of this configurational space, even 

for relatively small systems sizes, in a practical amount of time (Section 3.4.5 discusses 

approaches that improve our endeavour). However, there are methods to find the nearest 

local minimum and these are termed energy minimisation (EM) techniques. 

Given an atomic configuration, EM changes the geometry of a system in a step-wise fashion 

until the inter-atomic forces on each atom are acceptably close to zero, and the net energy of 

the system reaches the nearest local minimum described by the potential energy function of 

a FF (Figure 3.4). At each EM step, an algorithm differentiates the potential energy function 

to produce an energy gradient with respect to atomic coordinates. The magnitude of this 

gradient is also the net force acting on the system (see Equation 3.13 in Section 3.4.1) and 

the sign of the gradient provides information about which direction on the potential energy 

landscape the nearest local minimum is. The steepest descent method, which is utilised in 

this thesis, iteratively takes steps in the direction of the negative gradient until the local 

energy minimum is achieved (as specified by an energy convergence criterion).  
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The process of EM removes a system’s kinetic energy, reduces the forces on all particles, and 

eliminates steric clashes between atoms. This is especially important when manually 

building a molecular model, a procedure which is often done without the help of a priori 

knowledge of a molecules’ three-dimensional structure. For these reasons, EM is often a 

required step in preparing a system for MD since it ensures the initial configuration is not 

too far from an energetic equilibrium. If a configuration is very far from equilibrium, 

performing MD on that configuration will result in very large atomic forces and energy 

differences that may cause the simulation to fail. 

3.4 Classical Molecular Dynamics 

Molecular dynamics is a numerical approach to study the structural time-evolution of a 

many-particle system. First applied to physical systems in the late 50s and early 60s, 386-388 

MD is now a widely used method to investigate nanoscale phenomena. Unlike EM where the 

goal is to minimise the potential energy, MD samples many regions across  the potential 

energy surface to generate a Boltzmann weighted ensemble of thermodynamic equilibrium 

structures. Analysis of the molecular trajectories produced from MD provides valuable and 

insightful structural, dynamic, and thermodynamic information (see Chapter 2). 

3.4.1 Equations of Motion 

Classical MD is based on solving the differential form of Newton’s equations of motion for a 

system of 𝑁 interacting particles:  

 
𝐅𝑖 = 𝑚𝑖𝐚𝑖 = 𝑚𝑖

𝑑2𝐫𝑖
𝑑𝑡2

, 𝑖 = 1 . . . 𝑁 
(3.12) 

 

Figure 3.4 | Graphical representation of a complex one-dimensional potential energy function and 

an energy minimisation process. Starting from an initial atomic structure (point 1), most energy 

minimisation methods determine the energy and slope of the potential energy function then use 

numerical methods to adjust the atomic coordinates to reduce the potential energy. This process is then 

repeated iteratively (points 2–7) until the nearest local minimum structure (point 8) is obtained. 
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Equation 3.12, Newton’s second law, states that the force (𝐅𝑖) acting on any atom (𝑖) in a 

system is the product of its mass (𝑚𝑖) and acceleration (𝐚𝑖), which can be expressed as the 

second order differential of atomic position (𝐫𝑖) with respect to time (𝑡). If the force acting 

on a particle is conservative, i.e. a function of position only, then it can be derived from the 

system’s potential energy function (𝑉), which itself is defined by the FF (see Equation 3.8): 

 

 
𝐅𝑖 = −

𝑑𝑉

𝑑𝐫𝑖
 

(3.13) 

By combining Equations 3.12 and 3.13, the derivative of the potential energy is related to 

changes in position as a function of time. Because the motion of atoms is coupled to all other 

atomic motions, the potential energy is a complicated function of 3𝑁 atomic coordinates and 

there is no analytical solution to the equations of motion. Instead numerical methods (MD 

integrators) such as the Verlet,389 leap-frog,390 Beeman’s391 and velocity Verlet392 algorithms 

are used. By using a finite time-step (𝛿𝑡), changes to the force on a particle due to its own 

motion can be neglected and therefore atomic positions (𝐫), velocities (𝐯), and accelerations 

(𝐚) can be approximated by Taylor series expansions: 

 
𝐫(𝑡 + 𝛿𝑡) = 𝐫(𝑡) + 𝛿𝑡𝐯(𝑡) +

1

2
𝛿𝑡2𝐚(𝑡) +

1

6
𝛿𝑡3𝐛(𝑡)… 

(3.14) 

 
𝐯(𝑡 + 𝛿𝑡) = 𝐯(𝑡) + 𝛿𝑡𝐚(𝑡) +

1

2
𝛿𝑡2𝐛(𝑡)… 

(3.15) 

 𝐚(𝑡 + 𝛿𝑡) = 𝐚(𝑡) + 𝛿𝑡𝐛(𝑡)… (3.16) 

where 𝐛(𝑡) is the time derivative of acceleration.  

The Verlet integrator,389 as shown in Equation 3.17, uses current atomic coordinates and 

accelerations, 𝐫(𝑡) and 𝐚(𝑡) respectively, as well as previous atomic coordinates, 𝐫(𝑡 − 𝛿𝑡), 

to determine new positions at the next time-step, 𝐫(𝑡 + 𝛿𝑡). 

 𝐫(𝑡 + 𝛿𝑡) = 2𝐫(𝑡) − 𝐫(𝑡 − 𝛿𝑡) + 𝐚(𝑡)𝛿𝑡2 (3.17) 

While this method is straightforward, there are caveats in Equation 3.17: (1) the term (𝑡)𝑡² 

takes on very small values compared to the other two terms and this may result in 

numerical problems; (2) velocities are inaccurate since they do not explicitly feature in the 

algorithm and must be estimated after positions have been calculated for the next time-step: 

 
𝐯(𝑡) =

𝐫(𝑡 + 𝛿𝑡) − 𝐫(𝑡 − 𝛿𝑡)

2𝛿𝑡
 

(3.18) 
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An alternative to this is the leap-frog algorithm390 (employed in this thesis) which 

calculates/uses velocities at half time-step intervals, 𝐯(𝑡 ± ½𝛿𝑡), to determine positions at 

full time-steps, 𝐫(𝑡 + 𝛿𝑡). This is done using the following two relations: 

 𝐯(𝑡 +½𝛿𝑡) = 𝐯(𝑡 −½𝛿𝑡) + 𝐚(𝑡)𝛿𝑡 (3.19) 

 𝐫(𝑡 + 𝛿𝑡) = 𝐫(𝑡) + 𝐯(𝑡 −½𝛿𝑡)𝛿𝑡 (3.20) 

The algorithm’s name is reflective of the fact that velocities and positions leap over each 

other like frogs leaping over one another (see Figure 3.5). Velocities in this method are 

explicitly calculated, albeit not at the same time as the positions, yet this integrator is fast 

and accurate for most MD applications. 

The classical equations of motion used in MD are deterministic, i.e. once initial coordinates 

and velocities (often randomly assigned) are known, a time-dependent trajectory that 

describes positions, velocities and accelerations at a later time can be calculated. In practice, 

Equations 3.14–3.20 are also modified for temperature and pressure coupling (Section 

3.4.3), and extended to include the conservation of constraints (Section 3.4.4). 

3.4.2 Thermodynamic Ensembles 

MD can be performed using various different thermodynamic ensembles including: 

microcanonical (𝑁𝑉𝐸), canonical (𝑁𝑉𝑇) and isothermal–isobaric (𝑁𝑃𝑇), depending on the 

requirements of the user. Each of these ensembles are in statistical equilibrium with  respect 

to a set of macroscopic variables, denoted above by the three symbols in parentheses, 

namely: total number of particles (𝑁), total energy (𝐸), volume (𝑉), pressure (𝑃), and 

temperature (𝑇). While these quantities can fluctuate and influence the nature of a system’s 

microstates (i.e. the system’s configuration at a particular time-step), the average of these 

properties over a series (or ensemble) of Boltzmann distributed microstates remains 

constant. In other words, taking the 𝑁𝑉𝑇 ensemble as an example, the number of particles, 

volume, and temperature are observable parameters of the system that are in statistical 

equilibrium and therefore remain fixed over the ensemble of the system’s microstates.  

 

Figure 3.5 | Visual representation of the leap-frog algorithm. The velocities (𝐯) and positions (𝐫) are 

calculated half time-steps apart so that the two quantities appear to leap-frog over each other. 
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It is often desirable to perform simulations in a thermally controlled setting with either 

constant volume (𝑁𝑉𝑇) or constant pressure (𝑁𝑃𝑇). The former is useful when simulating 

systems that require a fixed unit cell size, for instance an infinite surface that extends across 

periodic boundaries (see Chapter 4), while the latter is advantageous when directly 

comparing with experimental measurements that are regularly carried out in isothermal–

isobaric environments (see Chapters 5 and 6).  

3.4.3 Temperature and Pressure Coupling 

To maintain temperature in a MD simulation, systems can be coupled  to an external bath 

with the use of thermostat algorithms. To apply temperature coupling to a molecular 

system, two of the most widely used thermostats are the weak-coupling Berendsen393 and 

extended-ensemble Nosé–Hoover394,395 schemes (although there are others396,397 available). 

The Berendsen thermostat393 utilises first-order kinetics to weakly couple a system to an 

external heat bath with a given temperature 𝑇0. Using Equation 3.21, the Berendsen 

algorithm slowly modulates temperature deviations, via a time constant 𝜏, to exponentially 

decay the system temperature back to 𝑇0. 

 d𝑇

d𝑡
=
𝑇0 − 𝑇

𝜏
 

(3.21) 

While coupling strength is easy to adjust (by changing 𝜏) and the scheme is very efficient at 

relaxing a system to a target temperature, the Berendsen thermostat suppresses kinetic 

energy fluctuations leading to an improper Boltzmann distribution of states. 398 

An approach which remedies this to give a correct thermodynamic ensemble is the Nosé–

Hoover temperature coupling algorithm.394,395 In this method two additional degrees of 

freedom are added to a system’s Hamiltonian: a thermal reservoir and frictional term. The 

friction term takes the form of an additional force in Newton’s equations of motion that is 

proportional to the product of each particle’s velocity and a friction coefficient (𝜉, sometimes 

also called a heat bath variable), effectively replacing Equation 3.12 by: 

 𝐅𝑖
𝑚𝑖

=
𝑑2𝐫𝑖
𝑑𝑡2

+ 𝜉
𝑑𝐫𝑖
𝑑𝑡

, 𝑖 = 1 . . . 𝑁 
(3.22) 

This friction coefficient is an independent dynamic quantity that depends on the position of 

the imaginary heat reservoir to which the system is coupled (𝑠, Equation 3.23) and comes 

with its own equation of motion (Equation 3.24). 
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𝜉 =

𝑑 ln(𝑠)

𝑑𝑡
 

(3.23) 

 𝑑𝜉

𝑑𝑡
=
1

𝑄
(𝑇 − 𝑇0) 

(3.24) 

where 𝑇 and 𝑇0 are the current instantaneous temperature and the desired reference 

temperature, respectively. The parameter 𝑄 has dimensions of energy × (time)2, and can be 

considered as an “effective mass” associated with 𝑠 that determines the strength of the 

coupling between the reservoir and the real system, therefore it influences the temperature 

fluctuations. The Nosé–Hoover thermostat is strongly coupled to the system and modulates 

temperature using oscillatory relaxations, which can make it slow to converge to 𝑇0. 

Analogous to the above thermostats, the Berendsen393 and Parrinello–Rahman399,400 

barostats couple a system to a “pressure bath”. In these approaches, the external bath 

incrementally scales unit cell dimensions to regulate pressure to a given reference value. 

For the Berendsen barostat,393 the scaling of the system pressure (𝐏) towards a reference 

pressure (𝐏0) is performed via first-order kinetics, with coupling constant 𝜏𝑝: 

 d𝐏

d𝑡
=
𝐏0 − 𝐏

𝜏𝑝
 

(3.25) 

Again, while this weak-coupling scheme quickly converges, it fails to adequately sample 

fluctuations in pressure and volume needed to accurately generate a true thermodynamic 

ensemble, especially for small systems.398 

Alternatively, the extended-ensemble Parrinello–Rahman399,400 barostat can be combined 

with the Nosé–Hoover thermostat,394,395 to (in principle) obtain a true 𝑁𝑃𝑇 ensemble. In the 

Parrinello–Rahman method, the systems equations of motion include a matrix box vector 

term (𝐌, similar to the frictional term in Equation 3.22): 

 𝐅𝑖
𝑚𝑖

=
𝑑2𝐫𝑖
𝑑𝑡2

+𝐌
𝑑𝐫𝑖
𝑑𝑡

, 𝑖 = 1 . . . 𝑁 
(3.26) 

A common approach used to equilibrate a MD simulation is to first use a weak-coupling 

scheme to quickly converge the temperature/pressure then switch to an extended-ensemble 

schemes to probe the correct thermodynamic ensemble (see Chapters 5 and 6). 

3.4.4 Bond Constraints 

While a complete FF (see Equation 3.8), together with a topology, provides terms that 

satisfy bond lengths, bond and torsional angles, there are often times where it is desirable to 
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neglect motions along one (or multiple) degrees of freedom to increase computational 

efficiency. This is only beneficial if the neglected degrees of freedom do not influence the 

phenomena being studied, e.g. the vibration of atomic bonds when investigating large 

conformational changes of a biomolecule. Bond constraint algorithms such as SHAKE401 or 

LINCS402 can be incorporated into a simulation to remove bond vibrations, which can occur 

on time scales as short as 1 fs for hydrogen bonds. Constraints allow for integration time-

steps (Section 3.4.1) to be increased, often from 1 fs to 2 fs, significantly reducing the 

computational demand needed to run a simulation. 

In the SHAKE algorithm,401 at each time-step bonds (and/or angles) are reset to their 

equilibrium/prescribed values by applying a constraint force to preserve the desired atom 

separations at the new positions (after an unconstrained update). Because the coordinates 

of the particles are not independent, and the equations of motion in each coordinate 

direction are connected, the SHAKE method considers and solves each constraint iteratively 

until all constraints are satisfied to within a user specified tolerance – usually within a few 

iterations. While this approach is simple and numerically stable, if displacements are large 

no solutions may be found due to the iterative nature of the algorithm, i.e. satisfying one 

constraint may cause another constraint to be violated. 

The Linear Constraint Solver (LINCS) method402 is a non-iterative process that always uses 

two steps, after an unconstrained update (Figure 3.6). In the first step the new bonds are 

projected onto the old directions of the bonds. Following this, the lengthening due to 

rotation is corrected, which results in bonds at time 𝑡 having the same length (𝑑) as the 

bonds at time (𝑡 – 𝛿𝑡). Although the algorithm is based on matrices, no matrix 

multiplications are needed, making the method applicable to very large molecules. The 

LINCS algorithm is comparable in accuracy and more stable than the SHAKE approach, while 

being three to four times faster.402 

 

 

Figure 3.6 | Visual representation of the LINCS algorithm. The three position updates of a bond that 

the algorithm goes through are shown for a single time-step, from (𝑡 – 𝛿𝑡) to 𝑡. 
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3.4.5 Enhanced Sampling Techniques 

Extraction of realistic kinetic and thermodynamic quantities from gold–bio interface 

simulations requires a thorough and comprehensive sampling of the potential energy 

landscape. For complex systems this free-energy profile is characterised by multiple low 

energy metastable states separated by high energy barriers (Figure 3.4). Classical (brute-

force) MD simulations can often fail to cross high energy barriers and sample rare events 

due to the inherent femtosecond integration time steps and limited simulation times. 

Therefore, as with other systems incorporating highly flexible molecules, it is necessary to 

employ techniques capable of robust sampling of the conformational space to obtain a 

statistically representative depiction of the system’s behaviour. Some of these techniques 

include umbrella sampling,403 metadynamics,404,405 replica-exchange based techniques,406-411 

and approaches based on performing exhaustive multiple independent MD simulations 

starting from different initial orientations, structures and/or velocities (as has been done in 

this thesis). Several comprehensive reviews on the advancement and need of enhanced 

sampling techniques have recently appeared336,412-414 (see especially Pietrucci et al.415). 

Through the development of advanced sampling simulations techniques, along with the 

increase in computational power, rigorous conformational sampling and more accurate 

determination of both the enthalpic and entropic contributions to the behaviour of 

biomolecules at the Au interface in solution can be achieved. 

3.5 Simulation Procedure Employed in the Thesis 

While specific details such as: particular FF and parameters, cut-offs, box dimensions, 

simulation times, etc. are described in the Computational Details of each results chapter (see 

Sections 4.2, 5.2, and 6.2), here the general approach used in this thesis to construct 

molecular models and run MD simulations is described below. 

1. Identify the problem/phenomena of interest to be studied. 

This is presented upfront in Sections 4.1.1, 5.1.1, and 6.1.1 after a succinct introduction 

and literature review relevant to the problem of interest. 

2. Select suitable tools to perform the simulations, i.e. software and FF. 

3. Generate/obtain the initial coordinates for each molecular component of the system. 

4. Generate a topology file for the system which contains all appropriate FF parameters. 

5. Define the simulation box and solvate the system. 

6. Energy minimise the system. 

7. (Optional) Perform short restrained MD to equilibrate the solvent. 

8. Run unrestrained MD to equilibrate the entire system and produce data for analysis. 

9. Analyse and visualise the resulting trajectories and data files. 
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Chapter 4:  

Peptide-Coated Plasmonic Gold Nanoparticles 

In this chapter, different monolayers of anti-viral peptides on Au(111) surfaces are 

investigated using molecular dynamics simulations. The relationship between the 

complex peptide-topographies displayed on gold surfaces and the experimental 

performance of recently synthesised plasmonic AuNP biosensors is explored. This work 

has been performed in collaboration with the biomaterials engineering team of Prof. 

Molly M. Stevens at Imperial College London to whom due acknowledgment is given, 

especially Dr Heiko Andresen, for all empirical results (Section 4.1.1) presented. Research 

from this chapter is published in the journal Chemistry of Materials where my 

contributions are recognised as first and primary computational author. Content  has been 

adapted/reprinted in part with permission.3 Copyright 2014, American Chemical Society. 

 

 

4.1 Introduction 

The identification and quantification of antibodies circulating in blood and other bodily 

fluids is a major discipline of clinical chemistry that has been particularly important for the 

medical diagnosis of infections, immune deficiencies, allergies, and autoimmune disorders 

for many decades.416-418 Moreover, antibody detection forms the basis of many laboratory 

routines and immunoassays that competitively measure drug and small molecule content in 

biological samples.419 Therefore it is highly desirable to develop antibody biosensors with 

improved sensitivity, cost efficiency, and simplicity compared to conventional methods. For 

in vitro diagnostic purposes, there is also a need for rapid and robust signal transduction 

upon antibody-analyte binding, which preferably occurs through a single-step electrical or 

optical readout mechanism. One way to realise this goal is to use the aggregation of gold 

nanoparticles (AuNPs) to generate an optical signal in response to chemical binding.12 

Antibodies, otherwise known as immunoglobulin molecules, are large Y-shaped proteins 

that are produced in vivo when cells of the immune system encounter toxins or other foreign 

substances (e.g. pathogens). The role of antibodies in the body is to selectively recognise 

and bind to antigens (molecular tags) present on the surface of unwanted entities, then to 

trigger complex biochemical pathways intended to neutralise or destroy the invader (Figure 

4.1). Each antibody has two identical sequences of amino acids located at the tips of its two 

“arms” that form the molecule’s antigen-binding sites (paratopes), which are very specific to 
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a particular epitope (antigenic determinant) present on an antigen. The binding between 

paratope and epitope is therefore analogous to a lock-and-key and since each antibody is 

bivalent, the cross-linking of antigens results in very stable antibody–antigen binding. 

In principle, the bivalent and specific nature of immunoglobulin targets could be exploited 

to cross-link antigen-coated AuNPs and create single-step homogenous immunoassays. 

However, aggregated NPs generally require an interparticle spacing that is smaller than the 

constituent NPs’ diameters to induce a distinct shift in surface plasmon resonance 

adsorption (Section 1.3.2); a prerequisite that is compromised when antibodies or full-

length protein-antigens functionalise AuNPs due to the sheer size of these molecules. 99 

Instead, short immuno-dominant peptide-epitope ligands minimise the interparticle spacing 

of NP aggregates to offer more conducive optical shifts, while still retaining capacity for 

lock-and-key specificity via antibody–antigen interactions.420 

To successfully design biosensors that take advantage of this approach, the cross -linking 

mechanisms between coated AuNPs and antibodies needs to be optimised in order to direct 

NP aggregation in the desired setting. This typically requires precise a priori paratope–

epitope binding information and although experimental characterisation of therapeutic 

immunoglobulins is improving,421 many antibodies and their complexations with antigens 

are not yet crystallised. To exacerbate matters, even if information exists for similar 

antibody fragments that are known to specifically bind to an epitope, the primary sequence 

of these similar antibodies, as well as the shape of the immune complexes formed, might be 

completely different to the antibodies of interest. Alternatively, the characterisation of 

epitope–AuNP surfaces prior to antibody exposure (as is the focus of this present work) 

allows for structure–property relationships to infer favourable conditions that may 

encourage (or discourage) antibody cross-linking, without any explicit antibody structures. 

 

Figure 4.1 | Cartoon illustration showing the in vivo role of antibodies in cell destruction, and 

the main features involved in antibody–antigen binding. Upon binding to an antigen, antibodies 

generate a signal that initiates an immune response to destroy the foreign cell.  
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Classical molecular modelling has proven to be an invaluable tool to provide atomistic detail 

into the nano–bio interface of bioactive AuNPs,2 as summarised in Section 2.3.1. Although 

molecular dynamics (MD) investigations into peptide–gold adsorption are starting to gain 

traction,89,123,238,240,243,247,248,358,422-424 only very few studies simulate experimentally dense 

peptide-monolayers on gold substrates.268,425-429 In the separate works of Duchesne et al.425 

and Todorova et al.,268 CALNN-coated AuNPs that feature additional functional peptide 

heterogeneities incorporated into their monolayer matrices are simulated using MD with 

approximate models. For the former study, the conformational space and volume explored 

by the functional peptides (CALNNGKGALVPRGSGKbiotinTAK) was assessed with CALNN–

AuNPs being represented as only the monolayer’s solvent exposed residues (i.e. asparagine) 

arranged to reproduce the curvature of a CALNN layer on a 10 nm AuNP. 425 On the other 

hand, Todorova et al. analysed how the monolayer concentration and distribution of HIV-1 

TAT (GRKKRRQRRRPPQ) on CALNN-AuNPs correlates with experimental membrane 

permeation efficacy by modelling peptides on NPs that are approximated as neutral 3 nm 

spheres..268 Colangelo et al. recently used MD simulations of CALNN (and CFGAILSS) 

peptide-monolayers on fully atomistic spherical (5, 10 and 25 nm) AuNPs to show how 

peptide secondary structure depends on: AuNP size, peptide density, Au–S bond lateral 

freedom, and gold surface hydration.426 The approaches used in these studies are 

convenient for modelling relatively small AuNPs (< 20–30 nm) however they become 

expensive and unsuitable for much bigger gold constructs. 

When large AuNPs are the substrate of interest, local NP curvature becomes negligible in 

reference to the simulation cell dimensions and this allows for a planar description of gold. 

For example, White et al. used MD to investigate the spatial organisation of a homogeneous 

peptide-monolayer made up of inherently 𝛼-helical synthetic peptides (each 30 residues 

long) on a planar gold surface and found that the monolayer displayed a repeating pattern 

of well-defined hydrophobic and hydrophilic regions.427 Helical peptides also featured in the 

work of Nowinski et al., where replica exchange MD simulations were used to investigate 

the secondary structure of 4 peptide-monolayers on a gold surface.429 Bergamini et al. 

employed the polarisable GolP FF215 with a harmonic potential emulating strong Au–S 

bonding to evaluate the thickness of a hexapeptide (CLPFFA) monolayer on a Au(111) 

surface.428 While studies such as these emphasise how peptide–gold MD simulations provide 

detailed physicochemical information that is inaccessible to experiments, much more nano –

bio interfacial research is still needed to build a generic comprehensive knowledge into 

these systems to aid the design of novel nano-biotechnologies. 



Chapter 4: Peptide-Coated Plasmonic Gold Nanoparticles 

65 

4.1.1 Experimental Project Design and Computational Aims 

An in vitro diagnostic approach to identify and quantify the presence of disease marking 

anti-viral antibody molecules was recently developed using epitope-tagged AuNP 

biosensors that generate a colourimetric response upon antibody binding. 3 Explicitly, 60 nm 

AuNPs were synthesised and functionalised with short peptides decorating their surface, 

which correspond to linear viral epitopes such as those exhibited on pathogenic cells 

(Figure 4.1). These peptides are the Haemophilus influenzae hemeagglutinin epitope 

YPYDVPDYA (HA), herpes simplex virus glycoprotein D epitope TQPELAPEDPED (HSV), and 

the c-Myc protein epitope EEQKLISEEDLL (Myc), which each exclusively interact with the 

anti-viral antibodies for: human influenza virus, herpes simplex virus, and the Myc 

regulatory gene whose overexpression is associated with cancer, respectively. In addition, a 

cysteine residue and a glycine spacer, as well as Glu–Asp–Glu in the case of the HA-epitope, 

were flanked on either the C-terminus (CT) or the N-terminus (NT) of the peptides (Figure 

4.2) to direct their anchoring to, and increase the colloidal stability of, the AuNPs. 3 

The generic concept of the immunoassays, as shown in Figure 4.3, is that initially the AuNP 

suspensions appear red in colour before being exposed to a solution (e.g. patient 

serum/blood) possibly containing the analogous anti-viral antibodies for the gold-

passivating epitopes. If the antibodies are indeed present in the serum, their 

bivalent/multivalent nature is expected to cause cross-linking of the peptide-coated AuNPs, 

via antigen-specific interactions, resulting in an overall solution colour change to blue. 

 

 

Figure 4.2 | Linear representation of the engineered peptides used in this work. HA, Haemophilus 

influenzae hemeagglutinin epitope; HSV, herpes simplex virus glycoprotein D epitope; Myc, c-Myc protein 

epitope. Each peptide is 16 amino acids in length and labelled to show the epitope fragment that is 

immuno-dominant, and the linker region used to direct binding to the AuNPs either via the C-terminus 

(CT) or the N-terminus (NT). Colouring is as follows: red, negatively charged residues; blue, positively 

charged residues; green, polar residues; white/black, nonpolar residues; yellow, terminal sulphur. 

Adapted with permission.3 Copyright 2014, American Chemical Society. 
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However, in the absence of the specific anti-viral antibodies, no aggregation is anticipated 

and therefore the solution colour should remain unchanged. It is this distinct colourimetric 

response that presents a simple yet effective technique to quickly, cheaply and efficiently 

detect circulating antibodies in vitro. 

In practice, each system’s capacity to form cross-linked AuNP aggregates depends on a 

range of factors including, antibody concentration, individual epitope–antibody pairs, and 

the immobilisation direction of the peptides on the gold.3 For example, after the epitope-

tagged AuNPs were mixed with solutions containing their cognate antibodies (at a range of 

concentrations), a spectroscopic aggregated-versus-dispersed ratio (A/D) was measured to 

quantify the amount of AuNPs involved in cross-linking for each sample (Figure 4.4). The 

results revealed that even though the HA-CT and HSV-CT epitope systems exhibited very 

similar assay responses, their N-terminal counterparts lead to an enhancement (HSV-NT) or 

strong reduction (HA-NT) of the assay sensitivity. Moreover, neither the Myc-CT epitope nor 

the Myc-NT epitope led to detectable aggregation of AuNPs after the addition of anti-Myc 

antibody (data not shown). Therefore according their experimental A/D ratios, the peptide -

AuNPs’ likelihood to yield a positive assay response can be ranked as follows: HSV-NT (best-

performer) > (HA-CT = HSV-CT) > HA-NT > (Myc-CT =  Myc-NT) (non-performers). 

These experimental findings immediately bring about two questions: (1) why do some 

antibody–epitope–gold assemblies have a higher propensity for selective aggregation 

compared to others? and (2) how does epitope–gold orientation, i.e. C-terminal or N-

terminal immobilisation affect the cross-linking reaction? Since we know the atomic 

composition of the epitopes (Figure 4.3), interrogating the antibody structures would 

normally be the first approach when seeking answers to these questions. This requires 

knowledge of (at least) the primary sequence of the antibodies in question, knowledge that 

 

Figure 4.3 | Schematic depiction of an epitope-tagged AuNP solution undergoing a colourimetric 

response after antibody-induced AuNP aggregation. The focus of this chapter is to better understand, 

and improve, this scheme through characterising the epitope–AuNP surface (scenario on the left) using 

molecular dynamics simulations. The green immunoglobulin molecules shown in the right image are 

representative of antibodies that are tethered between two AuNPs. The image on the right is adapted 

with permission.3 Copyright 2014, American Chemical Society. 
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is currently unavailable due to challenges in experimental characterisation. 421 Arguably, the 

second best approach is to pursue a better understanding of the peptide-monolayer 

landscape presented on the surface of the AuNPs. This will provide topographic-type 

information that can be used to gauge what an antibody will “see”, and hence interact with, 

as it approaches a functionalised AuNP in solution. This also reduces the complexity of the 

antibody–epitope–gold system to one that only involves the AuNP and epitope-monolayer. 

While current experimental characterisation techniques are limited in their ability to probe 

this landscape, computational methodologies are not (see Section 4.1). 

In this chapter, MD simulations are used to investigate peptide-monolayers formed on 

planar Au(111) surfaces in order to resolve the abovementioned questions.  Following an 

outline of the computational details employed (Section 4.2), properties of the peptide-

monolayers such as their overall thickness and average atomic mobility are presented 

(Section 4.3.1). Next, Section 4.3.2 focuses on exploring the solvent accessibility and 

geometric distribution of specific amino acid regions of the epitope-monolayers that are 

expected to be essential for paratope binding, and therefore antibody crosslinking. Finally, 

Section 4.3.3 determines the role solvent has in stabilising the various peptide-monolayer 

assemblies on gold. In the subsequent Section 4.4, these results are summarised and 

discussed in the context of the empirical findings, then concluding remarks are given.  

 

Figure 4.4 | Empirically measured immunoassay response curves for the HA and HSV epitope-

coated AuNPs. N-terminal immobilisation of the HA epitope results in significant cross-linking 

impairment while for the HSV epitope, N-terminal anchoring to gold increased assay sensitivity. Note: A 

large A/D ratio indicates AuNP aggregation (stimulated by antibody–gold cross-linking). Adapted with 

permission.3 Copyright 2014, American Chemical Society. 
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4.2 Computational Details 

Classical MD simulations were performed using the GROMACS (version 4.5.5) software 

package430 in conjunction with the GolP FF,215 which is parameterised for interactions 

between amino acids and gold (111) surfaces and includes dynamic polarisation for gold 

atoms. The approximation that 60 nm AuNPs are planar on a submicrometer resolution is 

supported by experimental and computational evidence that large AuNPs are truncated 

octahedral in morphology predominantly composed of Au(111) facets.61 Switch cut-offs 

were employed to truncate the calculation of atom–atom Coulomb and van der Waals 

interactions at 1.0 nm, with long-range electrostatics treated using the particle mesh Ewald 

method383 (grid spacing of 0.1 nm). MD was performed in the canonical 𝑁𝑉𝑇 ensemble with 

the Nosé–Hoover thermostat394,395 regulating temperature to 300 K. An integration time 

step of 2 fs was applied with all bond lengths constrained using the LINCS algorithm.402 

Peptide-monolayer–gold systems for each of the HA-CT, HA-NT, HSV-CT, HSV-NT and Myc-

CT epitope-peptides (shown in Figure 4.2) were constructed by placing 16 identical 

peptides, in extended initial conformations, equidistant apart and in close proximity above a 

five-layer Au(111) slab (Figure 4.5) using the PACKMOL431 program. This peptide density 

was established via MD simulations progressively loading the gold surface from low density 

up to the steric limit (see Appendix Section C.1) and corresponds to approximately one 

peptide per 2.23 nm2 gold surface area, which is ~1.5-fold lower than the experimentally 

measured 1.4 nm2 per peptide.3 Peptide–gold models were placed in a periodic simulation 

box of dimensions 6.09 × 5.86 × 8.50 nm3, and solvated with ~7,000 H2O molecules (water 

density of ∼1 g cm-3) utilising the SPC water model.432 To emulate an experimental NaCl salt 

concentration of 150 mM and to conserve overall charge neutrality, 107 Na+ (or 91 Na+ for 

Myc-CT) and 27 Cl− were also added. The 𝑥–𝑦 box dimensions of the unit cell were chosen to 

produce a perfectly periodic Au(111) surface, and the 𝑧-dimension was made sufficiently 

large to ensure the +𝑧 periodic image did not influence the peptide–water interface. 

Throughout MD, gold atoms were held frozen in their ideal bulk lattice positions and Au–S 

bonds were unrestrained, both conditions that are consistent with the parameterisation of 

the GolP FF.215 The steepest decent algorithm was employed to energy minimise each 

system within a convergence criterion of 20 kJ mol -1 nm-1, following which the systems were 

equilibrated over 200 ns of MD (Figure 4.5). Production data for statistical analysis was 

collected every 5 ps over the final 5 ns of the trajectories, which is determined to be the 

equilibrium simulation stage as verified by monitoring energy drifts and root-mean-square 

deviations of atomic positions (Appendix Section C.2).  
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Analysis Procedures 

Unless otherwise stated, analysis was performed on the equilibrated stage of the MD 

simulations with GROMACS 4.5.5 analysis tools,430 and visualisation was achieved with the 

VMD 1.9.1 package.128 Specifically, root-mean-square deviations and potential energies 

(Appendix Figure C.2) were calculated using g_rmsd and g_energy, respectively. Root-mean-

square atomic fluctuations (Appendix Figure C.3) were calculated with g_rmsf. Normalised 

atomic distribution profiles to get monolayer thickness (Figure 4.6 and Table 4.1) and density of 

specific residues relative to gold (Figure 4.7 and Appendix Figure C.6) were obtained with 

g_dens (also see description in first paragraph of Section 4.3.1). Monolayer solvent accessible 

surface area values (Table 4.2) were attained via g_sas. Radial distributions for solvent atoms 

(Figure 4.8, Appendix Figure C.7 and Appendix Table C.1) were calculated with g_rdf. 

4.3 Results 

4.3.1 Peptide-Monolayer Characterisation 

To measure, characterise, and compare structural differences between the various peptide -

monolayers formed on Au(111), atomic density plots with respect to the 𝑧-axis, i.e. the axis 

perpendicular to the gold surface (see Figure 4.5), are calculated. This is achieved by 

partitioning the simulation box into 85 𝑥–𝑦 cross-sections (0.1 nm in depth), totalling the 

number of atoms in each volumetric slice, and dividing by the cross-sectional volume to give 

a number density (ρ). Each volumetric number density is then time-averaged across the 

ensemble of equilibrated peptide-monolayer structures produced from MD and divided by 

the total number of peptide atoms in the respective monolayer. In this way, the outputted 

densities are normalised (ρnorm) with respect to differences in the total number of peptide 

atoms for each system (HA: 3,488 atoms, HSV: 3,296 atoms, and Myc: 3,728 atoms).  

The normalised atomic distribution profiles are plotted in Figure 4.6. Initially, < 0.2 nm 

from Au(111), repulsive interatomic forces prevent peptide atoms from approaching too 

 

Figure 4.5 | Computational setup depicting the approach taken to thermally equilibrate the dense 

peptide monolayers on Au(111). The initially linear-extended peptide-epitopes (left) gradually relax 

into their preferred monolayer configurations on the gold surface (right) over 200 ns of MD. The Au(111) 

surface (gold), peptide atoms (coloured as per Figure 4.2) and unit cell (blue) are shown but for clarity, 

the solvent molecules are not displayed. 
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close to gold. At 𝑧-distances of 0.2–0.6 nm, “surface-bound” peptide atoms, such as the gold-

anchoring sulphur atoms and other adsorbed amino acids, contribute to ρ norm, therefore the 

area under the plots in this range indicates the percentage of each peptide-monolayer that is 

surface-bound (Table 4.1). Interestingly, approximately one fifth to one quarter of each 

peptide monolayer is surface-bound with subtle variations between HA-CT to HA-NT layers, 

but a ~6% increase in peptide adsorption for HSV-NT compared to HSV-CT. While 

differences between systems are observed for ρnorm at distances > 0.6 nm (e.g. note the 

depression in the HSV-NT layer density between 1.1–1.9 nm versus HSV-CT), perhaps more 

useful is the interpretation of this data to estimate the thickness of the peptide-monolayers. 

This is approximated to be the height above the gold surface where the cumulative peptide 

density is 90 % (see inset of Figure 4.6 and Table 4.1). In this case, an opposite trend is 

observed to peptide–Au adsorption with HSV epitopes forming a peptide layer of equal 

thickness in both immobilisation directions whereas C-terminal immobilisation of HA 

results in a ~0.2 nm more compact monolayer when measured against HA-NT. 

To elaborate on these findings and obtain an impression of the flexibility of the peptide 

chains within each epitope-monolayer, ensemble-averaged root-mean-square fluctuations 

(RMSF) are calculated for each 𝛼-carbon (C𝛼) atom (Appendix Section C.3). This technique 

effectively measures how far a residue’s C𝛼 atoms fluctuate about their average locations, 

which is beneficial to characterise local changes along the peptide chains. For all systems, 

 

 

Figure 4.6 | Normalised peptide-monolayer number density as a function of height above the 

Au(111) surface. The inset shows a representation of the HA-CT peptide monolayer with the drawn 𝑥–𝑦 

cross-sectional plane illustrating the estimate of the peptide-monolayer thickness (indicated by a vertical 

line in the density plots). The criterion used to approximate this thickness is given in the text. 
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the majority of the C𝛼 atoms show minimal RMSFs indicating that most peptide chains 

remain relatively rigid within the equilibration time. However, the epitope ends of the 

chains (especially for HA-NT) show more fluidity than the remainder of the layers. 

Visual comparison of each system’s ensemble of peptide conformations reveals 

unambiguous differences (Figure 4.7), especially when comparing between the N- and C-

terminally gold-immobilised sequences. For example, although the monolayer thickness is 

similar (~2.5 nm) for HSV-NT and HSV-CT, the distribution of the individual peptide chains 

is not. In the HSV-NT monolayer, peptides are elongated and evenly dispersed as opposed to 

the C-terminally immobilised counterpart (HSV-CT), which assembles in more clustered 

structures and forms a compact peptide layer. Likewise for the HA epitope systems, HA-NT 

displays extended structures on Au(111) leading to a monolayer that is ~0.2 nm thicker, 

while for HA-CT, chain–chain interactions cause peptide agglomerates to accumulate within 

the layer. For the experimentally non-performing Myc-CT system, a compact yet evenly 

dispersed peptide coating is formed on the Au(111) surface. These noticeable differences 

are found to be directly related to the primary structure of the peptide-monolayers, i.e. 

sequence of the consistent amino acid subunits, with the inclusion and location of certain 

residues strongly influencing the conformational landscapes exhibited.  

MD simulations of single peptides adsorbing onto Au(111) were conducted to investigate 

the influence gold has on amino acid and peptide conformations (Appendix Section C.4). 

Most prominent are the interactions of gold with aromatic and negatively charged residues.  

If aromatic resides are present in the peptide sequence (e.g. in the HA peptides), the chains 

remain flexible and dynamic until the aromatic rings are flush with the surface and 

thereafter the peptides become “locked” into surface-bound configurations (Appendix 

Figure C.4). Previous computational studies similarly observe epitaxial fitting of aromatic 

rings into the hexagonal packing of gold atoms on Au(111),235 and show that tyrosine is a 

strong Au(111)-binding residue.89,233 The single peptide simulations also reveal that all 

peptides manoeuvre their negatively charged amino acids away from the surface in order to 

Table 4.1 | Percentage peptide–Au adsorption and peptide-monolayer thickness. 

System 
Surface bound  

atoms* (%) 
Monolayer  

thickness† (nm) 

HA-CT 24.5 2.4 

HA-NT 24.0 2.6 

HSV-CT 22.8 2.5 

HSV-NT 28.8 2.5 

Myc-CT 20.0 2.3 

*Cumulative peptide density < 0.6 nm. 
†Height above Au(111) where peptide density ~90%. 



Chapter 4: Peptide-Coated Plasmonic Gold Nanoparticles 

72 

maximise charged residue solvent exposure. While it may appear counterintuitive since the 

gold surface has an overall neutral charge, this repulsive response seems to be an inherent 

feature of the GolP force field.233 For the monolayer systems, these energetically favourable 

gold–amino acid binding preferences, together with peptide–peptide and peptide–solvent 

interactions (further discussed below), govern the conformations observed (Figure  4.7). 

 

 
Figure 4.7 | Typical equilibrium monolayer structures and distribution of immuno-dominant 

residues observed from the simulated epitope–gold systems. (Left) Representative images 

highlighting differences in overall peptide-monolayer structuring. Peptide backbones are shown in 

ribbon representation with the terminal immobilisation sulphurs displayed as yellow spheres. Negatively 

charged Asp and Glu (red), positively charged Lys (cyan), and aromatic Tyr (green) residues are 

highlighted as liquorice representations in the central unit cell, and the core epitope motif LISE for Myc-

CT is shown in orange. The Au(111) surface is displayed in gold and for clarity, water and salt molecules 

are not shown. (Right) Normalised atomic density plots as functions of height above the Au(111) surface 

for immuno-dominant residues in each system. HA: Y and D; HSV; D and E; Myc: LISE core motif. 
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4.3.2 Immuno-Dominant Residues 

To associate the abovementioned peptide-monolayer assemblies to the experimental 

performance of the nanoparticle systems (Figure 4.4), there is a need to identify how likely 

it is that an incoming antibody will bind to epitopes within the monolayer (and result in 

AuNP cross-linking). The peptides used throughout this project are linear viral epitopes, i.e. 

the paratopes of their cognate anti-viral antibodies bind to the entire immuno-dominant 

sequence (IDS) which is labelled as epitope in Figure 4.2. Despite explicitly knowing the 

primary IDS, neither the HA or HSV antibody paratopes (nor their antigen binding 

mechanisms) have previously been characterised, so the exact immuno-dominant residues 

(IDRs) within the epitope IDS that are essential for complimentary antibody binding remain 

unknown. Since biophysical and structural studies show that charge–charge interactions 

(i.e. “salt bridges”) can make critical contributions to antibody–antigen binding,433 it is 

assumed that the acidic residues (Asp and Glu) in the charged HA and HSV IDS will form 

strong electrostatic interactions with oppositely charged regions of the antibodies’ 

paratopes. In addition, a study of 53 non-redundant antigen–antibody complexes found that 

antibody paratopes feature tyrosine residues almost two-times more than any other 

residue.434 For these reasons it is logical to consider charged and aromatic amino acids as 

IDRs, and assume that their distribution within the monolayer constructs (see density plots 

in Figure 4.7) can be used to gauge for advantageous antibody-binding configurations. 

For the HA epitope–AuNP systems, peptide conformations are predominantly affected by 

the location of Tyr residues in the epitopes’ primary sequence (Figure 4.2). For HA-CT, 

hydrophobic Tyr residues are located near the free N-terminus of the peptide chains and 

encourage the chain-ends to fold into the layer to reduce their aqueous exposure. In turn 

this solvates negatively charged amino acids so that they occupy outer regions of the 

monolayer in two clustered sections at 1.7 nm and 2.3 nm above the Au(111) surface 

(Appendix Figure C.6a). In the N-terminally immobilised HA epitope system, aromatic 

residues are primarily consolidated around the middle of the IDS where they are 

intrinsically shielded from the solvent and this leads to more than two-times the amount of 

Au-bound Tyr residues compared to HA-CT (peak at 0.4 nm in Figure 4.7 and Appendix 

Figure C.6b). The distribution of negatively charged residues in the HA-NT layer is more 

evenly spread, however the density of residues close (< 1.3 nm) to the gold interface is 

higher than HA-CT and, due to the increased extension of peptide chains, the density also 

attenuates further from the gold surface (> 3.0 nm, Appendix Figure C.6a). 

For the HSV systems, charged amino acids of HSV-NT are solvent exposed at the peptides’ 

free C-termini and contribute to peptide–peptide repulsions at the outermost sections of the 
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monolayer. This allows for a more even distribution and elongation of ligand chains, both 

steric features that are postulated to be conducive in enabling antibody binding. In contrast, 

HSV-CT assembles in more clustered structures and forms a significantly more compact 

peptide layer with charged residues concealed in the peptide monolayer (Figure 4.7). 

While there is little information is available on the antibody–antigen binding mechanisms 

for HA and HSV, the X-ray crystal structure of the paratope–epitope complex for c-Myc has 

been previously resolved435 and IDRs within the peptide-epitope have been reported.435,436 

The core epitope motif is made up of the linear sequence of residues L 12I11S10E9 (numbering 

from the C-terminus in Figure 4.2). As illustrated in Figure 4.7, MD simulations show that 

the Myc-CT forms a compact peptide assembly driven by ionic interactions between the 

basic Lys and the acidic Glu/Asp residues. Although Glu residues are exposed to the aqueous 

interface, the LISE segment is mainly buried in the bulk of the monolayer and this is 

anticipated to be a major factor in the experimental non-performance of Myc-CT. 

To facilitate the binding between paratope and antigenic determinant, peptide-monolayers, 

and ideally their IDRs, should be as solvent accessible as possible to maximise the logistics 

of being reachable to the antigen-binding sites of the antibodies. This has been assessed 

through solvent accessible surface area (SASA) calculations of the monolayers, IDS, and 

IDRs that are expected to be essential for lock-and-key binding (Table 4.2). A probe radius 

of 1.4 nm was used to map the peptide–gold Connolly surface and the results show that 

although all monolayer and IDS are relatively evenly solvent accessible (0.6–0.8 nm2 per 

residue), the immuno-dominant charged residues in HSV-NT are significantly more solvent 

exposed. This is postulated to beneficially aid the HSV-NT AuNP system establish salt-

bridges with the anti-viral HSV antibody, which is correlated to HSV-NT’s superior 

experimental performance (Figure 4.4). The IDRs of Myc-CT are appreciably less exposed 

than the other systems and this complements the non-performance of the assembly. 

Table 4.2 | Monolayer solvent accessible surface areas.* 

System Total monolayer (nm2) IDS† (nm2) IDRs‡ (nm2) 

HA-CT 154.7 ± 2.1    (0.6 ± 0.1) 99.1 ± 1.4    (0.7 ± 0.1) 63.5 ± 1.2   (0.8 ± 0.1) 

HA-NT 160.5 ± 2.4    (0.6 ± 0.2) 110.1 ± 2.4    (0.8 ± 0.2) 66.1 ± 1.7   (0.8 ± 0.2) 

HSV-CT 155.2 ± 1.7    (0.6 ± 0.1) 138.3 ± 1.6    (0.7 ± 0.1) 65.9 ± 1.0   (0.8 ± 0.1) 

HSV-NT 164.9 ± 2.2    (0.6 ± 0.1) 149.0 ± 1.9    (0.8 ± 0.1) 80.5 ± 1.4   (1.0 ± 0.1) 

Myc-CT 152.9 ± 2.7    (0.6 ± 0.1) 136.5 ± 2.5    (0.7 ± 0.1) 43.3 ± 1.0   (0.7 ± 0.1) 

*SASA is given as mean ± standard deviation, and normalised per residue (in brackets). 
†IDS labelled as epitope in Figure 4.2. 
‡Specific IDRs important for antigen–antibody binding. HA: Y and D; HSV: D and E; Myc: LISE core motif. 
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4.3.3 Solvent Effects  

Intermolecular radial distribution functions (RDFs), otherwise known as pair correlation 

functions g(r), are calculated to measure the average separation between solvent and 

peptide IDS atoms (Figure 4.8 and Appendix Figure C.7). In all systems, positively charged 

salt ions (Na+) accumulate in very close proximity to the epitopes’ IDS (sharp navy blue g(r) 

peaks at ~0.25 nm of Figure 4.8a and Appendix Figure C.7a) due to electrostatic interactions 

of Na+ with Glu− and/or Asp− residues. This structuring provides a dynamic shielding 

mechanism between like charges in adjacent peptide chains and ultimately lowers the 

systems’ overall potential energy to promote more stable monolayer assemblies. Comparing 

amplitudes of the RDF maxima reveals that the amount of Na+ ions correlates with the 

trends observed for IDS solvent exposure (Table 4.2), i.e. more cations interact with HSV-NT 

epitopes than HSV-CT, and the same goes for HA-NT versus HA-CT. In contrast, there is 

negligible Cl− ion organisation in all systems except for the HSV-NT coating where a small 

electrical double layer is apparent (green peak at ~0.35 nm in Figure 4.8a). 

In a similar fashion, water molecules also participate in the electrostatic buffering of 

peptide charges by embedding into, and structuring around, the monolayers. In Figure 4.8b 

and Appendix Figure C.7b, the discrete hydrogen (blue) and oxygen (red) RDF peaks at 

~0.18 nm and ~0.27 nm suggest that at least two hydration shells form around the 

peptides’ IDS. The approximate ratio of the hydrogen to oxygen RDF peak amplitudes at the 

first hydration shell (Appendix Table C.1) is used to estimate the orientation of water 

molecules at the IDS–water interface. For example, a ratio of 2 (hydrogens) to 1 (oxygen) 

indicates no preferential orientation of hydrogen or oxygen atoms to the peptides; a rat io of 

2 to 2 implies that interactions between structured water’s oxygen atoms and the peptide 

chains is a third more favourable than interactions with water’s hydrogen atoms, i.e. 66.7% 

of water molecules are facing their oxygen atoms towards the IDS; and a ratio of 2 to 0.5 

indicates the exact opposite, that 66.7% of water molecules in proximity of the IDS are 

oriented with their hydrogen atoms nearer to the peptides.  

The MD simulations show that in all systems, aside from HA-CT, water molecules 

spontaneously and preferentially position their hydrogen atoms towards the IDS of the 

peptide chains, in particular the negatively charged amino acids (Figure 4.8c and d). 

Therefore the dipole moments of individual water atoms at the peptide–water interface are 

directed towards the monolayer allowing for water to donate positive charge to the 

epitopes. Although weaker than Na+ interactions with negative residues, water molecules 

help facilitate a denser packing of individual chains in the peptide monolayers by 

obstructing electrostatic repulsions between neighbouring Glu− and Asp− residues. 
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4.4 Discussion and Conclusions 

Through analysing the structural landscapes exhibited on the surface of each epitope−gold 

complex, it is apparent that monolayer conformations are strongly influenced by 

peptide−peptide and peptide–gold interactions and therefore intimately related to amino 

acid composition and location within individual peptide sequences. For example,  the HA 

epitope−AuNP systems contain three aromatic Tyr residues per peptide that endeavour to 

reduce their solvent exposure and epitaxially interact with the gold surface. For HA-CT, 

where two of the three hydrophobic amino acids are intrinsically located at the free N-

terminus of the peptides, the drive to reduce hydration promotes a compact layer that 

causes negatively charged Asp residues to become solvent exposed in the process. When the 

epitopes functionalise the AuNPs via a mirror-inverted immobilisation direction, the Tyr 

 

Figure 4.8 | Solvent structuring in the HSV-NT monolayer. (a) The radial distribution of Na+ (blue) 

and Cl− (green) ions relative to the IDS of HSV-NT demonstrates that the cations strongly interact 

with the epitopes (large peak at ~0.25 nm) and Cl− ions form a small electrical double layer (peak at 

~0.35 nm). (b) The RDF of hydrogen (blue) and oxygen (red) atoms of water molecules around the 

IDS in the monolayers shows two prominent solvation shells and the suggestion of a third. (c) An 

illustrative snapshot from MD highlighting the preferential orientation of water molecules’ (red and 

white van der Waals spheres) hydrogen atoms towards the negatively charged residues in the 

peptide chains (red liquorice representations). (d) The RDF of water molecules in relation to 

negatively charged aspartate and glutamate residues further highlights this structuring with a very 

large hydrogen maxima at ~0.18 nm compared to oxygen. 

 

a) b) 

c) d) 



Chapter 4: Peptide-Coated Plasmonic Gold Nanoparticles 

77 

residues in HA-NT more readily interact with the gold surface, there is a higher 

concentration of Asp− amino acids inherently close to Au(111), individual peptide chains 

are more extended, and a thicker monolayer is produced. In the HSV and Myc systems, 

electrostatic (rather than hydrophobic) effects are deduced to be the main motivation for 

the monolayer configurations. For HSV-NT, four of the five negatively charged residues in 

the IDS are at the unbound C-terminus of the peptides and consequently, to minimise 

Asp−/Glu− electrostatic repulsions, the peptide chains remain elongated and well dispersed 

in the peptide layer. In the Myc-CT simulations on the other hand, it is the attraction 

between basic (lysine) and acidic (glutamate/aspartate) residues that prompts a compact 

layer to form where the paratope-binding LISE segment of the IDS is mainly buried in the 

bulk of the monolayer. For all systems, the stability of the assemblies is enhanced through 

peptide–solvent interactions that lower overall potential energy by balancing electrostatic 

interactions. The dynamic shielding of like charges in adjacent peptides also helps to 

support a denser packing of individual chains in the monolayers.  

To correlate these properties to the empirical capacity each system has for forming AuNP 

aggregates in the desired conditions, it is first important to understand how different 

epitope conformations influence antibody binding. While this usually requires an explicit 

and prior knowledge of the unique paratope–epitope complexation specific for each 

antibody–antigen pair, this information is rarely available. Instead, immuno-dominant 

residues essential for complimentary antibody binding are predicted from the literature and 

general features that are expected to contribute to advantageous epitope–antibody binding 

are explored. Interestingly, the MD simulations reveal that the HSV-NT monolayer (also the 

best experimentally cross-linking system) displays superior elongation and dispersion of 

peptide chains, which is anticipated to sterically enable the coordination of antibodies 

around the peptides’ IDS. Furthermore, the assumed IDR within the HSV-NT epitopes are 

found to be significantly more solvent exposed compared to the other systems and this is 

postulated to beneficially establish salt-bridges between the peptide monolayers and anti-

viral HSV antibodies. On the contrary, the (experimentally non-performing) Myc-CT 

monolayer is compressed and has noticeably less solvent exposure of its immuno-dominant 

(LISE) residues when juxtaposed against the other monolayers. In relation to epitope 

immobilisation orientation on gold, the clear monolayer differences observed are very 

probable to influence antibody binding since the matching of epitopes to their cognate 

antibody paratopes is almost certain to be more effective in one orientation over another.  

It would be ideal to simulate the MD obtained epitope–AuNP surfaces with antibodies to 

confirm how epitope conformation and immobilisation orientation influences binding 
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propensity. Unfortunately, there are still no available epitope-relevant antibody structures 

for the peptides/antibodies used experimentally in this study. Despite this, Figure 4.9 has 

been artificially constructed to provide a perspective on the scale of how big a typical 

antibody binding region is compared to the epitope–NP surfaces. The paratope region of the 

antibody fragment is likely to be a relatively small sequence of amino acids between the red 

and green protein chains. From this image it is easy to see how extended epitopes (blue) on 

the surface are expected to facilitate binding more readily than compact epitopes. 

Following the justification provided, one might assume that longer spacers between the 

IDRs and the gold surface might lead to better steric binding with the antibodies. While this 

may well be true, antibody binding only constitutes a small part of these assays. Upon 

binding, antibodies also need to cross-link the NPs and furthermore, the interparticle spacing 

between the aggregated NPs needs to be as small as possible to obtain an “eye-readable” 

distinct shift in optical signal. Experimentally, the substitution of the glycine-triplet spacer 

HA and HSV eptiopes (Figure 4.2) with a longer and more flexible polyethylene glycol spacer 

(11 ethylene oxide units) resulted in a slower assay response and a loss of assay sensitivity. 3 

Therefore, when interpreting the MD results in the context of antibody-induced AuNP cross-

linking, several factors need to be carefully considered. Although the binding between an 

antibody and epitope monolayer may be optimal, there is a chance that an immunoglobulin 

molecule will bind with both valences to the same AuNP and this will e ffectively disable 

cross-linking. Additionally, the axial symmetry of immunoglobulin molecules or the 

 

 

Figure 4.9 | Representative antibody fragment with an epitope–Au surface. This image highlights 

the size difference between a typical epitope-binding fragment of an antibody (shown in red and 

green) and the MD equilibrated HSV-NT functionalised Au(111) surface. It is easy to see how the 

linearly extended HSV-NT peptides (blue) in this system are likely to sterically encourage antibody 

binding. Please note that no MD has been conducted with this antibody fragment (PDB Code: 3W9E). 

Its orientation and positioning have been arbitrarily chosen for the image.  
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particular molecular structure of the antigen–antibody immune complex might be 

fundamentally impaired to bivalent cross-linking. Finally, the equilibrium monolayer 

structure may drastically change during and upon antibody interaction and therefore may 

not be the ideal representation to infer if multiple antibody binding events will occur or to 

establish the AuNP cross-linking propensity of a system. As antibody characterisation 

improves, it would be very interesting to check these scenarios via modelling the specific 

antibodies in this study interacting with the epitope–AuNP surfaces (Figure 4.9).  

In addition, as force fields advance and computational resources increase, the complexity of 

atomistic simulations could also increase to give better insights into these fascinating 

multicomponent systems. Namely, larger and more realistic nanoparticle models could be 

used to study the effect of curvature on monolayer conformation, multiple nanoparticle 

aggregations could be modelled in solution, and complex physiological environments could 

be explored (inclusion of serum and blood proteins). Ultimately though, to generate generic 

design principles for antibody–epitope–AuNP colourimetric bioassays there first needs to 

be more experiments and simulations performed on protein epitopes that have linear amino 

acid sequences and the cognate antibodies that recognise them. 

Despite the fact that a purely molecular-scale examination of the epitope–gold interface 

cannot completely explain the selective experimental aggregation performance of the 

various coated AuNPs, the presented study not only characterises the assemblies with a 

resolution that is empirically unavailable, it also provides non-intuitive insights. This work 

also highlights how the synergy between theoretical and experimental approaches can 

produce translational research that facilitates the development of novel bioassays. 
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Chapter 5:  

Peptide-Coated Fluorescent Au25 Nanoclusters 

Correlations between peptide ligand conformations and the photoluminescent properties 

of Au25 nanoclusters are explored in this chapter using classical molecular dynamics. 

Structure–property relationships are established that link differences in the particles’ 

hydrodynamic radii, embedded water content and distribution of chemical groups around 

the gold core atoms to changes in the experimentally measured photoluminescence of the 

materials. This research has been performed concurrently, and in collaboration, with the 

biomaterials engineering team of Prof. Molly M. Stevens at Imperial College London to 

whom due acknowledgment is given, predominantly Dr Yiyang Lin, for all empirical 

results presented (Section 5.1.1 and Appendix Section D.1). Recognition is also given to 

Dr Andrew Christofferson (RMIT University) for parameterisation of the Au–S–C–C 

dihedral used in the classical force field (Appendix Section A.1), and the quantum 

mechanical results presented at the end of Section 5.3.2. Special acknowledgement is 

made to Prof. Stefano Corni (CNR Institute of Nanoscience, Italy) for useful discussions 

relating to the a posteriori electrostatic potential analysis presented in Section 5.3.5, and 

to Dr Matthew Penna (RMIT University) for his input and advice involving the analysis of 

water in the molecular dynamics systems. Gratitude is also expressed to the developer’s 

group of the ONETEP program (http://www.onetep.org/Main/People) for their 

assistance, guidance, and recommendations, particularly during the 2013 and 2015 

ONETEP masterclasses in the U.K. Research from this chapter is in the final stages of 

preparation for publication submission with joint first authorship. 1 

 

 

5.1 Introduction 

Gold nanomaterials are attracting extensive research attention for applications within a 

wide range of biomedical fields437 due to their rich and tuneable, size-dependent, physical, 

chemical, and photoluminescent properties (Section 1.4). Of particular interest are gold 

nanoclusters (AuNCs) whose sizes are comparable to the de Broglie wavelength of electrons 

near the Fermi energy of metallic gold (0.5 nm), since they experience molecule-like 

interactions with incident light to produce intense photoluminescence (PL, see Section 

1.3.3). Compared to organic dyes, AuNCs exhibit broad excitation ranges, weak 

photobleaching, red/near-infrared (NIR) emission, and less toxicity, which makes them 

ideal for cellular and subcellular imaging.438 To enable their application as biological probes, 

http://www.onetep.org/Main/People
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much effort has been devoted to the design of biocompatible clusters using biomolecules. 14 

For instance, some of the first highly luminescent AuNCs to be synthesised using “green 

chemistry” routes involved exploiting the reduction capacity of bovine serum albumin at 

basic pH.439 Since then, a series of proteins including human serum albumin, 440 papain,441 

insulin,442 bovine pancreatic ribonuclease A,443 lysozyme,444 and lactoferrin445 have all been 

used to template AuNC nucleation, while the NIR emission properties of the AuNCs have 

enabled their application as novel contrast agents for the PL imaging of tumours in vivo.446 

Over the past few decades many hypotheses have emerged regarding the nature of AuNC 

PL.19 For example, solid-state models suggest that the red/NIR PL of Au25(SG)18 (where SG = 

glutathione) arises from intraband (sp–sp) and interband (d–s) electronic transitions in the 

gold core.447,448 Ligand exchange reactions of Au25(SG)18 with functionalised-glutathione and 

3-mercapto-2-butanol indicated that “emission is an inherent property of the core, and the 

same electronic transitions can be accessed for a variety of ligands”.449 Likewise, very recent 

work has highlighted that despite the fact that structural isomers of Au 38(S(CH2)2Ph)24 

(where Ph = phenyl = C6H5) display varied absorbance spectra and electronic relaxation 

pathways, core-to-core transitions are still the underlying source of Au38’s PL.450 Contrasting 

theories propose that AuNC PL emission is independent of core-based electronic transitions 

and core size, but rather results from localised electronic surface states related to ligand 

atoms.451 There have also been suggestions that AuNC PL is either: correlated to ligand-to-

metal charge transfer (LMCT),91,452 which strongly depends on the type of ligands;453 or 

linked to ligand-to-metal-metal charge transfer (LMMCT) that is associated with the 

presence of aurophilic (Au–Au) interactions.454-456 Moreover, the interplay between surface 

ligand and gold is reported to influence the emission intensity of PL AuNCs. The exchange of 

nonpolar ligands with more polar species has been shown to increase emission intensity 

with a linear dependence on the number of substituted polar ligands. 457 Additionally, it has 

been suggested that ligands containing electron-rich atoms (e.g. N, O) or groups (e.g. amides 

and carbonyls) are able to directly donate delocalised electron density to the gold core of 

Au25 NCs via the Au−S bond, which can significantly enhance fluorescence quantum yield. 91 

In complement to experimental findings, theoretical approaches provide non-intuitive 

insight into the electronic, structural and dynamic behaviour of the Au–bio interface that is 

not achievable through any other technique (see Chapter 2). Work by Aikens in 2009 using 

time-dependent density functional theory (TDDFT) showed that aliphatic ligand chain 

length plays only a minor role on the excitation energy of [Au 25(SR)18]− (where R = H, CH3, 

CH2CH3).458 Instead, the geometric and electronic structure of the gold core primarily 

dictates the discrete optical absorption exhibited. In a follow up, TDDFT was used to 
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investigate [Au25(SR)18]− (where R = H, CH3, CH2CH3, CH2CH2CH3) in the gas phase before 

and after photoexcitation and revealed that indeed all excited states arise from Au 13 core-

based orbitals.204 The authors suggest that subtle differences in the AuNCs’ PL are 

predominantly bought about by the ligands’ interactions with the AuNC core, and not from 

“semi-ring” (or “staple” motif) states. Tlahuice-Flores et. al. used DFT to systematically 

study the structure and electronic optical properties of [Au25(SR)18]− with 11 different 

ligands: low polarity substituents, where R = H, CH3, C6H13, and (CH2)2Ph; thiophenols, 

where R = PhX, and X = H, Cl, COOH, NO2; and chiral molecules, where R = N-acetyl-

cysteine, H2C*H(X)Ph, and X = NH2, CH3.185 They found that distortions to the Au25S18 

framework, such as puckering, tilting and rotation effects, are strongly correlated to a 

reduction in the energy difference between the highest occupied and lowest unoccupied 

molecular orbitals, i.e. the HOMO-LUMO gap, and that these distortions are generally 

associated with electron-withdrawing ligands. Although the DFT and TDDFT methodologies 

are ideal for examining how ligands affect the electronic and optical properties of AuNCs 

(also see Section 2.2.2), the computational expense associated with these techniques 

restricts: the ligand (and gold core) sizes able to be investigated, the capacity to include 

explicit solvent effects, and the ability to dynamically explore and optimise structures in 

different local minima of the potential energy surface. 

Combing DFT with quantum mechanics/molecular mechanics (QM/MM) approaches, Rojas-

Cervellera et al. reported that the HOMO-LUMO gap of [Au25(SG)18]− and [Au25(SCH3)18]− 

depends sensitively on both ligands and solvent.331 In a recent subsequent work, 

[Au25(SG)18]− structures were also investigated with molecular dynamics (MD) and QM/MM 

to determine the mechanisms for ligand exchange of glutathione to an antibody protein 

fragment,257 and important reaction used to introduce functionality to AuNCs. For the 

QM/MM components of both computational studies, gold atoms and glutathione cysteine 

segments (–S–CH2–C–) were treated by DFT, while the remainder of the ligands and solvent 

were handled using classical MM, for a total simulation time of 7–7.5 ps. While simulations 

of this time scale are unable to adequately sample the effect of conformational changes, 

supplementing with classical MD simulations can help achieve equilibrated structures. 257 

Force field (FF) approaches that model biologically relevant AuNCs over longer periods of 

time are starting to appear and expected to increase since the advent of FFs that inherently 

consider structural Au–S staple motifs (see Section 3.3.3). For example, classical MD 

simulations have been useful to characterise interactions between: proteins and AuNCs that 

are densely functionalised with peptides258-260,459 or thiophenols;222 pairs of AuNCs coated 

with glutathione and other small molecules;380,460 as well as, single peptides and spherical 
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gold particles (5 nm).461 In addition, there is a number of MD works targeting AuNCs 

decorated with alkanethiol molecules and their derivatives (summarised in Section 6.1). 

Despite considerable theoretical and experimental efforts, fundamental understanding into 

the PL origin of ligand-coated AuNCs remains incomplete. This is especially true for 

biocompatible ligands, such as peptides, due to the complex chemistries and conformational 

space that the biomolecules can explore, making it difficult to separate the effects of 

primary and secondary structure on the PL mechanisms of AuNCs. In this chapter, various 

hexapeptide-protected Au25 NCs are simulated with both MD and QM to elucidate how the 

local chemical environment near the AuNC surface, and peptide conformations exhibited, 

correlate to the experimentally measured PL intensities of these materials.  

5.1.1 Experimental Project Design and Computational Aims 

A library of 24 different hexapeptides (Table 5.1) have recently been synthesised and used 

to produce bioactive PL AuNCs with potential for bioimaging and biosensing applications. 1 

The synthetic peptides are intentionally designed to investigate the effect of peptide 

structure (e.g. primary sequence, N-terminal capping, electron-withdrawing capacity, and 

hydrophobic character) and solution pH on the PL properties of small AuNCs. Specifically, 

cysteine (C) residues at the peptides’ N-termini are introduced to anchor the peptide-

ligands to gold via covalent Au–S bonding, while aspartic acids (D) are appended to the C-

termini to provide negative charges for enhanced solubility of the clusters. The amino acids 

between cysteine and aspartic acid are systematically varied to investigate their roles in 

influencing the PL performance of the AuNCs. 

The rationale behind the chosen sequences can be illustrated by examining the CHYGDD 

peptide sequence, which contains histidine (H), tyrosine (Y), and glycine (G), as an example. 

Since tyrosine is known to display reducing462 and antioxidant capabilities,463 and histidine 

 

Table 5.1 | Engineered sequences used to prepare peptide-protected AuNCs.† 

CXXGDD 

CGGGDD* (39.4)  CQGGDD (189.1) CGYGDD* (292.7) CFGGDD (388.7) 

CKGGDD (145.6) CSGGDD (215.2) CHYGDD* (303.3) CYGGDD* (400.9) 

CNGGDD (162.8) CHGGDD* (251.1) CVGGDD* (347.0) CFFGDD (513.3) 

CTGGDD (176.2) CVVGDD* (253.9) CYHGDD* (365.4) CYYGDD* (875.3) 

Ac-CXXGDD 

Ac-CGGGDD* (90.6) Ac-CHGGDD* (732.5) Ac-CHYGDD* (873.9) Ac-CYHGDD* (877.7) 

Other 

CDGGGD (102.0) DGYCGD (516.1) CYYGRR*‡ Ac-CYYGRR*‡ 

*Au25(SP)18 (where P = peptide) structures investigated with molecular modelling. 
†Colours and values in brackets represent the maximum AuNC PL emission intensity measured experimentally at pH 
7.5 using a spectrofluorometer (Appendix Figure D.2). Reported values are in photon counts per second ×10³. 
‡PL of comparable magnitude to other sequences but measured independently so not reported here. 
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is electron-rich with a high affinity towards metallic surfaces,464 this sequence is expected to 

be a good candidate to promote in situ NC nucleation. Indeed, the resultant solution(s) from 

CHYGDD (and the other sequences) is found to contain intensely luminescent small metallic 

NCs that are determined to be approximately 25 gold atoms in size with a hydrodynamic 

diameter (Dh) of ~3.1 nm (Appendix Figure D.1).1 

Cysteine acetylation is noted to affect AuNC PL through N-terminal amine groups. The PL 

intensity of AuNCs prepared from Ac-CGGGDD is measured to be ~2.3 times higher than that 

of CGGGDD without acetyl capping (Figure 5.1). Similar phenomena are observed for 

peptide sequences CHGGDD/Ac-CHGGDD, CHYGDD/Ac-CHYGDD, and CYHGDD/Ac-CYHGDD 

which display PL enhancements of 2.9, 2.9 and 2.4-fold increases, signifying that the capping 

of N-terminal amine with –COCH3
 positively impacts the PL intensity. 

The effect of residue hydrophobicity/aromaticity on the PL of AuNCs prepared from 17 

peptide sequences (Table 5.2) is also studied. Each peptide is assigned a hydrophobicity 

score by summing individual hydrophobicity indices465 for the three amino acids adjacent to 

cysteine, i.e. residues 2–4 (numbering from the N-terminus). As shown in Figure 5.2a, an 

increase in peptide hydrophobicity is linearly correlated to stronger AuNC PL. Furthermore, 

electron-rich and donating tyrosine residues are found to efficiently promote PL, which is 

observed to depend on the number of aromatic residues and their proximity to cysteine in 

the primary sequence, e.g. CYYGDD > CYGGDD > CGYGDD > CGGGDD (Figure 5.2b). 

When the peptide-protected AuNCs are diluted into buffer solutions at pH 7.5 or pH 5.5, PL 

intensity is noted to be inversely proportional to pH for CGGGDD, CVGGDD, CVVGDD, 

CHGGDD, CYGGDD and CHYGDD, but unresponsive for acetyl-capped sequences (Figure 5.3). 

 

Figure 5.1 | Effect of N-terminal acetyl capping on AuNC PL. (a) Representative structures of CHYGDD 
and Ac-CHYGDD showing the subtle difference of peptide structure at the N-terminus. (b) Maximum 
emission intensity of AuNCs prepared from capped and uncapped peptides (Ex = 400 nm). 
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Since PL variations in this manner are expected to originate from peptide–Au interactions 

and not morphological changes of Au core structure, it is anticipated that 

protonation/deprotonation of titratable groups (i.e. carboxyl, imidazole and amine 

moieties) is important for AuNC PL, especially near the peptides’ N-termini. 

 

Table 5.2 | Investigated peptide sequences with varied residue hydrophobicities. 

Sequence (Hydrophobicity*) 

CDGGGD (-1.25) CTGGDD (-0.16) CHYGDD (-0.03) CYYGDD (1.87) 

CKGGDD (-1.01) CSGGDD (-0.15) CYHGDD (-0.03) CFFGDD (2.25) 

CHGGDD (-0.98) CVVGDD (-0.15) CYGGDD (0.92)  

CQGGDD (-0.60) CVGGDD (-0.09) CGYGDD (0.92)  

CNGGDD (-0.44) CGGGDD (-0.03) CFGGDD (1.11)  

*Calculated as the sum of the hydrophobicity indices465 for the three amino acids closest to cysteine. 

 

 

Figure 5.2 | Correlation of peptide hydrophobicity to increased PL intensity. (a) Relationship 
between peptide side-group hydrophobicity and AuNC PL. The hydrophobicity index was calculated as 
the sum of the individual hydrophobicity indices of the three amino acids close to cysteine.465 (b) Effect of 
tyrosine and cysteine position on the PL response of the peptide-protected AuNCs. 

 

 

Figure 5.3 | Experimental PL of peptide-protected AuNCs as a function of solution pH. The ratio of 
the PL at pH 5.5 and pH 7.5 (I5.5/I7.5) is used to elucidate PL pH responsiveness. A ratio ~1 indicates a pH 
independent PL response while a ratio > 1 signifies intensified PL in acidic solution. 

 

b) a) 
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To characterise and explore the structure, dynamics and interaction mechanisms of the 

Au25(SP)18 (where P = peptide) and water, extensive all-atom MD simulations in explicit 

solvent are performed and reported in this chapter. The purpose of this study is to employ 

MD (and QM) to elucidate how the physicochemical properties of the functional AuNC –

peptide interface varies with amino acids sequence and how these relative differences are 

correlated to the observed PL responses accounted above. 

Following a description of the computational details employed in this work (Section 5.2), 

MD simulations are used to characterise general properties of the Au 25(SP)18 nanocluster 

systems, such as hydrodynamic radii, volumes, and overall peptide flexibilities (Section 

5.3.1). Next, detailed investigations are undertaken to clarify how the presence of N-

terminal acetyl caps on peptide ligands affect: the distribution of amino acids around the 

gold–sulphur NC cores; peptide conformation; structuring and dynamics of water 

molecules; as well as the formation of hydrogen bond networks (Section 5.3.2). This 

subsection concludes with results from QM calculations that clarify how acetyl affects 

partial charge distribution on the AuNC cores. In Section 5.3.3, results are presented to 

propose the role aromatic residues play in promoting increased empirical PL. Findings are 

then reported in Section 5.3.4 relating to MD simulations involving doubly protonated 

histidine residues, emulating the amino acids in a low pH environment. Finally, Section 5.3.5 

elaborates on the role of asparate in quenching PL and delivers the outcomes from linear -

scaling DFT calculations of a Au25(SP)18 system in explicit/implicit solvent. In the succeeding 

Section 5.4, the computational findings of this chapter are combined with the experimental 

evidence from above to generate principles for designing biocompatible AuNCs for broad 

applications in the field of bioimaging and biosensing, then concluding remarks are given.  

5.2 Computational details 

5.2.1 Molecular Dynamics 

The AuNC structure used for MD contains 25 gold atoms (in agreement with experiment) 

and a morphology consistent with that of highly stable Au25(SR)18 clusters, which can 

conceptually be divided into an icosahedral Au13 core protected by six –[SR–(Au-SR)2]– 

“staple” motifs.466 The peptide-coated AuNCs modelled (indicated by asterisks in Table 5.1) 

were constructed by attaching, via the N-terminal cysteine, 18 extended peptide ligands 

equidistantly onto the X-ray crystal structure466 of Au25(SR)18 (Figure 5.4). All peptides have 

been NH2 capped on the C-terminus and N-terminated with either a NH3+ moiety or a CH3CO 

acetyl group (denoted by an “Ac-” prefix). To emulate the protonation state of histidine (H) 

in neutral (pH 7.5) and acidic (pH 5.5) aqueous solution, two cognate models were built for 
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peptides (Ac-)CHGGDD, (Ac-)CHYGDD and (Ac-)CYHGDD with all imidazole groups either 

singly-protonated or doubly-protonated (H+), respectively. In total, 19 different Au25(SP)18 

models were constructed with the following peptide sequences: CGGGDD as a control; 

CVGGDD, CHGGDD, CYGGDD, CGYGDD, CHYGDD, CYHGDD, CYYGDD, and CVVGDD to explore 

hydrophobicity and individual amino acid location; Ac-CGGGDD, Ac-CHGGDD, Ac-CHYGDD 

and Ac-CYHGDD to study N-terminal acetyl capping; and CH+GGDD, CH+YGDD, CYH+GDD, 

Ac-CH+GGDD, Ac-CH+YGDD, and Ac-CYH+GDD to examine histidine protonation. The chosen 

models represent diverse and distinct experimental systems with distributed PL intensities.  

Explicit solvent MD simulations were conducted using the GROMACS 4.6.5 software.430 

Peptide interatomic interactions were modelled using the all-atom AMBER99SB-ILDN FF,467 

with CYX parameters used for charge neutral (unprotonated) cysteine residues. The TIP3P 

model was used for water.468 Bonded parameters and Lennard-Jones potentials between Au 

and peptide atoms (S, C, and H) were adopted from a FF parameterised for similar 

monolayer-protected AuNCs assuming no explicit partial charges on gold atoms. 221 

Additional parameters for the Au–S–C–C dihedral were obtained from a quantum mechanics 

dihedral scan at the B3LYP/6-31G* level (with the LanL2DZ basis set for Au) in 

Gaussian09469 (see Appendix A.1). For non-bonded interactions, long-range electrostatics 

were evaluated using the Particle Mesh Ewald method with a real space cutoff of 1 nm and a 

0.12 nm fast Fourier transform grid spacing, while van der Waals (vdW) interactions were 

truncated at 1 nm. To preserve the core crystal structure466 of Au25(SP)18 during MD, 

distance restraints470 of 1,000 kJ mol-1 nm-2 were applied between Au–Au atoms. Each 

Au25(SP)18 was placed in a periodic cubic box of side length ∼8.4 nm, solvated with ∼19,000 

water molecules (water density of ∼1 g cm-3) and Na+ or Cl− counter ions were added to 

 

Figure 5.4 | Example of the Au25(SP)18 and peptide structures used for MD, with ligands extended. 

(Left) Images highlighting the components that make up the Au25(SP)18 models, i.e. the icosahedral Au13 

core, six –[S–(Au-S)2]– “staple” motifs, and 18 peptide-ligands. (Right) Schematic showing the chemical 

structure of the exemplar capping-peptide (from N- to C-terminus: CHYGDD). The C-termini of all 

peptides used in this study are amide capped, whereas the N-termini are free amine. Peptide atoms (left) 

are coloured as indicated in the schematic, gold atoms are orange, and solvent is hidden for clarity. 



Chapter 5: Peptide-Coated Fluorescent Au25 Nanoclusters 

88 

ensure a neutral simulation cell. Energy minimisation was carried out using the steepest 

descent algorithm to remove any steric clashes and 1 ns of position restrained MD was 

performed using the Berendsen393 thermostat and barostat to equilibrate the solvent 

around the AuNCs at 300 K temperature and 1 atm pressure. Position restraints were then 

removed and 100 ns of 𝑁𝑃𝑇 (constant pressure and temperature ensemble) MD was 

performed with the Nosé–Hoover thermostat395 and Parrinello–Rahman barostat394 to 

maintain temperature and pressure at 300 K and 1 atm. The LINCS algorithm 399 was applied 

to constrain all bonds to their equilibrium lengths, which enabled a time step of 2 fs to be 

used for each simulation, and frames were outputted to a trajectory file every 2 ps. To 

enhance conformational sampling, each system was simulated ten times starting from 

different initial atomic velocities, resulting in a total of 1 µs of MD for each Au 25(SP)18.  

Analysis Procedures 

Properties and structures presented in this chapter are ensemble averaged over ten 

independent trajectories for each Au25(SP)18 system and, unless stated otherwise, analysis 

has been performed on the thermally equilibrated stage of the simulations covering the final 

20 ns of each trajectory (i.e. 200 ns of production data per system), as verified in Appendix 

Section D.2 by monitoring energy trends and convergence of the radius of gyration (R g) and 

root-mean-square deviation (RMSD). Statistical analysis was primarily performed using the 

GROMACS 4.6.5 suite analysis tools430 and the VMD 1.9.2 package,128 as detailed below. 

GROMACS programs were used for the following analyses. Root-mean-square deviations 

(Appendix Figure D.4) were calculated with g_rmsd. Ellipsoid volumes and shapes (Figure 

5.5) were calculated with g_principal, g_dist and a custom python script for matrix algebra 

(see descriptions in Section 5.3.1 and Appendix B.1). Root-mean-square fluctuations of each 

residue’s alpha carbon atoms (Figure 5.6a and Appendix Figure D.8) were obtained with 

g_rmsf. To acquire the radial minimum distance distributions between residues and the gold 

core (Figure 5.7, Appendix Figure D.9, Appendix Table D.1 and Figure 5.11), i.e. at any given 

time there is X residues within a certain distance to the nearest gold or sulphur atom, g_rdf 

was used with the –rdf res_com and –surf mol flags, group 1 index being all Au25S18 atoms 

and group 2 being heavy atoms of the residue of interest or water. To obtain the absolute 

minimum distance distributions between aspartate residues and the gold core (used in 

Figure 5.13), i.e. at any given time the closest ASP residue to gold is at distance X, g_mindist 

with the –respertime flag was used. Calculation of the electrostatic potential energy part of 

Figure 5.13 has been described in Appendix Section B.2. 
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VMD was used for the following analyses and visualisation. Radius of gyration 

measurements for the nanoclusters (Appendix Figure D.5) and individual peptide chains 

(Figure 5.6b and Appendix Figure D.7) were obtained with measure rgyr. Peptide backbone 

angles and C-terminal to gold distances (Figure 5.8b and Appendix Figure D.10) were 

calculated using atomic center-of-masses as coordinate locations and distance vectors. 

Analyses done with dynamic water selections were particularly non-trivial. Radial 

distribution functions given in (Figure 5.9a and Appendix Figure D.11) were manually 

created. First selections were made for different types of atoms, e.g. gold, peptide, water 

within X nm of gold or sulphur etc., then the number of atoms present in each radial shell 

(0.5 Å thickness) from the central gold atom of the nanoclusters was calculated and 

outputted every 10 ps. These atom counts from dynamic selections were then post-

processed via the formula given in the caption of Appendix Figure D.11 to give a radial 

distribution (and standard deviation) value at each distance. The atom density of bulk 

water, i.e. the water density far from the nanoclusters, was used to normalise the plots. The 

same data was also used to make the water histogram plots in Figure 5.9b. Hydrogen bond 

analysis (Figure 5.10 and Appendix Table D.2) was done with package hbonds and dynamic 

water selections again (see description given in Section 5.3.2 for weighting). Water decay 

profiles (Appendix Section D.5.3) also employed dynamic water selections and a description 

of how these were generated can be found in the caption of Appendix Figure Figure D.12.  

Hydrodynamic diameter estimates (Appendix Section D.3.1) were obtained for 2 × 104 

configurations per system (i.e. 1 frame every 10 ps) using the path-integration program 

ZENO471 with 1.5 × 105 random paths at each configuration to achieve low uncertainty in D h. 

5.2.2 Quantum Mechanics 

The QM calculations presented at the end of Section 5.3.2 were performed in a consistent 

approach to Fihey et al.189 Initial geometries of the Au25Cys18 AuNCs, with acetylated (259 

atoms) or protonated amine N-termini (331 atoms), were taken from equilibrated MD 

simulation snapshots. Geometry optimisation of the cysteine ligands was performed by 

keeping the gold core frozen in the crystal structure geometry466 and using the Amsterdam 

Density Functional (ADF) program472 with the BP86 DFT exchange correlation functional 

and triple-ζ polarised (TZP) basis set with a frozen core approximation for Au orbitals up to 

4f. Relativistic effects were accounted for using the zero-order regular approximation 

(ZORA),473 and solvent effects were treated using the conductor-like screening model 

(COSMO).474 This choice of QM package and theory was used because it was found that 

geometry optimisation in this way produces better ground-state structures.189 Electrostatic 

potential (ESP) atomic partial charge calculations of the optimised structures were 
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performed using Gaussian09,469 with the PBE DFT functional475 and the relativistic double-ζ 

LANL2DZ basis set and effective core potential (ECP) for Au atoms, and the 6-31G(d) basis 

set for other atoms. Solvent effects were treated using the Polarizable Continuum Model 

(PCM).476 The change in methodology to Gaussian and a smaller basis set was done to 

emulate the approach of Fihey et al.189 

Single-point energy calculations are also performed in Section 5.3.5 using the linear-scaling 

DFT code ONETEP,477 which employs a set of strictly localised non-orthogonal generalised 

Wannier functions (NGWFs)478 to achieve accuracy that is comparable to traditional plane-

wave DFT codes. The ONETEP program self-consistently minimises the total energy of a 

system with respect to both density kernel and NGWFs. The NGWFs are expanded in a basis 

set of periodic sinc (psinc) functions479 and optimised in situ until converged to a kinetic 

energy cut-off. The reasons for changing to this linear-scaling methodology are entirely 

based on computational efficiency. In this section of the study, ground-state energy 

calculations are performed on structures containing 1816 and 3658 atoms. Without linear-

scaling, even single-point calculations on systems of these sizes are extremely 

computationally demanding with QM codes like Gaussian and ADF. 

In Section 5.3.5 three MD obtained snapshots (conformers) of Au25(SP)18 (where P = 

CH+YGDD) with all proximate and embedded water (selections defined in Section 5.3.2) were 

used to conduct implicit solvent calculations, which are performed in two steps. First, open 

boundary conditions are used to determine the isosurface of the ground state density in 

vacuo to define a ‘solute cavity’ where implicit solvent will subsequently not be applied; 

then, the calculations are restarted applying a relative dielectric permittivity of 78.54 

around the ‘solute’ that smoothly tapers to 1 at the cavity boundaries. Explicit internalised 

water is maintained in the structures containing a total of 1816 atoms because these 

molecules are deemed structural and removing them would disrupt the electrostatics. Also, 

from a physical and practical perspective, a dielectric cannot be locally applied in the 

regions where structural water is removed, i.e. within the cavity. To explore if water in the 

first hydration layer around the nanoclusters does more than just screen electrostatics, an 

implicit solvent calculation was also performed on a system where the ‘solute’ explicit 

contains all hydration, embedded, and proximate water (3658 atoms in total). 

The PBE generalised-gradient approximation was used to describe exchange and 

correlation,475 and norm-conserving pseudopotentials were employed to describe the 

interactions between electrons and nuclei. The Elstner damping function480 was utilised to 

correct for dispersion interactions, however, no dispersion parameters are available for Au 
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in this approach therefore dispersion interactions involving gold were neglected. The 

Au25(SP)18 (+ water) systems are centred in each supercell, and sufficient padding (20 bohr) 

is added the box dimensions to ensure electron density propagating out from the NGWF 

spheres does not interfere with the open boundaries. In all cases, NGWF radii of 9 Bohr 

were used for all atoms, truncation of the density kernel was applied at 1,000 Bohr, and the 

kinetic energy cut-off for the psinc basis was 880 eV. 

5.3 Results 

5.3.1 General Au25(SP)18 Size, Shape and Peptide Flexibility 

The ensemble of atomistic Au25(SP)18 structures predicted from MD show an average Rg 

between 1.2–1.5 nm (Appendix Figure D.5) and a corresponding Dh of 3.2–3.9 nm (Appendix 

Figure D.6) in good agreement with both dynamic light scattering (Appendix Figure D.1) and 

small angle X-ray scattering experiments (Appendix Figure D.3). To characterise the size 

and shape of each ligated-AuNC system, the moment of inertia tensor for Au25(SP)18 is 

calculated and diagonalised at every simulation frame to find the principal axes of the 

peptide-coated AuNCs. These principal moments of inertia are then used to represent 

Au25(SP)18 as a “best fitting” inertia ellipsoid with an easily measurable volume and 

sphericity that is comparable between each system (see Appendix B.1). Average values of 

Au25(SP)18 volume presented in Figure 5.5a highlight the emergence of a correlation 

between NC volume and PL intensity. With the exception of CHYGDD and CYGGDD, inflated 

Au25(SP)18 volumes (where P = CXXGDD) are observed to complement the experimentally 

 

 
Figure 5.5 | Average MD obtained Au25(SP)18 size and shape. (a) Au25(SP)18 volumes and inset 

illustrating a snapshot of the CHYGDD system with the “best fitting” inertia ellipsoid superimposed. The 

inset suggests that AuNC size and shape is adequately described using an ellipsoid with semi-principal 

axes 𝑎 (major), 𝑐 (minor) and 𝑏 (orthogonal to 𝑎–𝑐). (b) Au25(SP)18 semi-axes lengths 𝑎 (red), 𝑏 (yellow) 

and 𝑐 (blue) and calculated sphericity ratio (𝑐/𝑎). A ratio of 1 indicates a perfect sphere and a value of 0.5 

is an oblate/prolate ellipsoid, i.e. twice as long as it is wide. In both (a) and (b), error bars represent 

standard deviations and histogram colours reflect experimental PL intensity (see Table 4.2). 

 

a) b) 
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determined AuNC fluorescence performance. This volume to PL intensity relationship is also 

noted when comparing NCs coated with peptides that have different N-terminal caps but are 

otherwise identical in primary sequence. Acetyl capping of peptides (i.e. Ac-CGGGDD, 

Ac-CHGGDD, Ac-CHYGDD, and Ac-CYHGDD) is found to result in an overall Au25(SP)18 

volume increase of 24–42% (versus CGGGDD, CHGGDD, CHYGDD, and CYHGDD). No 

conclusive trends are observed between AuNC shape and PL, as the degree of sphericity is 

similar for all systems studied (Figure 5.5b).  

Relative Au25(SP)18 volume enlargement is associated with steric hindrance near the gold-

interface, i.e. the inclusion of two bulky aromatic residues adjacent to cysteine (e.g. 

CHYGDD, CYHGDD and CYYGDD) or the acetylation of cysteine. These steric effects cause an 

increase in extended peptide chain conformations, which can be quantitatively estimated 

via the average Rg of individual peptide-ligands (Figure 5.6a and Appendix Figure D.7). The 

majority of Au25(SP)18 peptides in double aromatic and acetyl-containing systems have a 

mean Rg larger than 0.58 nm, which is comparable in magnitude to the Rg for the fully 

extended peptide-ligands on Au (0.67–0.86 nm) and therefore suggests peptide elongation. 

In addition, the standard deviation of the average ligand Rg increases (especially when 

acetyl is present), implying that peptide conformations are more fluid for these systems. 

Similar findings regarding peptide backbone flexibility are also obtained from the average 

root-mean-square fluctuations (RMSF) of each residue’s alpha carbon (Cα) atoms. While 

unsurprisingly the solvent exposed (and untethered) C-terminals residues show the 

 
Figure 5.6 | Peptide-ligand structuring/flexibility for an exemplar Au25(SP)18 system.  (a) Cα RMSF 

for each residue. The black line is the ensemble averaged RMSF with standard deviation error bars, 

whereas coloured lines are the RMSFs for single ligands (18 ligands per system × 10 simulations). The 

inset is a representative structure showing Au (orange), S (yellow), N and C backbone atoms (grey), 

and Cα atoms (coloured by β-factor, where: β = 8π2/3 × RMSF2 and RMSF is in Å). (b) Population of 

average ligand Rg (y-axis) against standard deviation in that value (x-axis). Summing a given row’s 

populations provides an average count of compact/extended peptide-chains (note the fully extended 

peptides have a Rg of 0.67–0.86 nm), whereas the columns reveal the flexibility of conformations. 

 

b) 

β-factor 

a) 
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greatest structural variability (Figure 5.6b and Appendix Figure D.8), acetylation not only 

results in approximately two to six times more flexible C-terminals, it considerably 

increases RMSFs along the entire peptide chains (compared to uncapped peptide systems).  

5.3.2 Effect of N-terminal Acetylation 

To examine how these geometric features affect PL, it is useful to understand the 

distribution of different chemical groups around gold for the various systems. Since it is 

expected that the electronic properties of Au25 are primarily dictated by the interactions 

between ligand atoms and the AuNC core,204 specific focus is given to amino acids with 

chemistries that are capable of partial charge donation (TYR) or electron transfer (ASP, HIS) 

to the Au25S18 nanocluster core as these interactions are likely to influence PL in this 

context.91 The average distributions of minimum distances between the centres-of-mass of 

side-chain heavy-atoms (TYR: phenol, ASP: carboxylate oxygen atoms, and HIS: imidazole) 

relative to the nearest AuNC core atom (either gold or sulphur, AuS nearest) are presented in 

Figure 5.7 (and Appendix Figure D.9). For peptide sequences CGGGDD, CHGGDD, CHYGDD 

and CYHGDD, an average of 6–7 negatively charged ASP residues are consistently situated in 

close proximity (r < 0.5 nm) to Au25S18, whereas for the acetyl-containing counterparts 

there are effectively none (Appendix Table D.1). It is postulated that the correlation 

between experimental fluorescence enhancement and the distancing of the C-terminal ASP 

residues from Au25S18 suggests an unfavourable direct electron transfer from the 

carboxylate groups on ASP to the Au core may be quenching PL in the uncapped systems (as 

further discussed in Section 5.3.5). In the acetyl-capped Au25(SP)18 systems, the closest 

registered ASP residue is an average of 0.7–1.0  nm away from the Au25S18 core (Appendix 

 

 

Figure 5.7 | Effect of acetyl on the minimum distance distributions between gold and amino acids 

that are capable of electron charge transfer or donation of delocalised electron density.   Pairwise 

distribution functions, g(r), show the minimum distances from ASP (red), TYR (green), and HIS (blue) 

residues to the closest Au25S18 atom for CHYGDD (left) and Ac-CHYGDD (right) systems. The insets are 

enlarged regions to illustrate the probability of residues being within close proximity to the gold core. 
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Table D.1), outside of the 0.5 nm range typical for electron transfer interactions. 481,482 In 

contrast, while all systems show only minimal populations of TYR and HIS residues in 

Au25S18 contact range, the presence of acetyl subtly encourages the locality of aromatic 

groups to Au25S18 (see figure insets), which is believed to bolster PL (Section 5.3.3). 

The dramatic increase in ASP proximity to Au25S18 for peptide sequences CGGGDD, CHGGDD, 

CHYGDD and CYHGDD (and other non-acetyl capped peptides) results from the electrostatic 

attraction between positively charged NH3+ groups on N-terminal CYS residues and 

negatively charged COO− groups on C-terminal ASP residues. The strong interactions 

between these groups drive the C-terminal region of the peptide chains to embed close to 

the Au25S18 core (Figure 5.8a) and leads to more compressed ligand layers, smaller 

Au25(SP)18 volumes, and a decrease in peptide configurational entropy. For sequences 

CGGGDD, CHGGDD, CHYGDD and CYHGDD, a large proportion of peptides have small C-

terminal to gold distances (0.5–1.0 nm) and acute backbone angles (40–60°) denoting turn-

like peptide conformations, whereas for Ac-CGGGDD, Ac-CHGGDD, Ac-CHYGDD and Ac-

CYHGDD, individual peptide chains assume more diverse and elongated structures (Figure 

5.8b and Appendix Figure D.10). 

Despite all Au25(SP)18 with uncapped sequences having a smaller overall volume compared 

to acetyl capped systems (Figure 5.5a), water has a greater propensity to penetrate into the 

AuNCs’ peptide layers in the absence of acetyl (see Figure 5.9a and Appendix Figure D.11). 

To further explore solvent structuring in the MD simulations, water molecules are 

categorised into 4 mutually exclusive groups: bulk water (outside of the 1st hydration layer), 

hydration water (present at the peptide hydration layer interface), embedded water 

(contained inside the peptide layer) and proximate water (within 0.4 nm of any Au25S18 

atom). In Figure 5.9b and c, the time-averaged distribution and number of proximate, 

embedded, and hydration water are respectively presented for the (Ac-)CYHGDD system. 

From both g(r) and the average number of H2O, it is clear that acetyl capping influences the 

amount of water present within the peptide layer, with significantly less proximate water in 

capped systems assumed to encourage AuNC PL performance (further discussed below).  
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Figure 5.8 | Comparing Au25(SP)18 conformations with and without acetyl. (a) Representative 

structures of Au25(SP)18 where P = CGGGDD (left) and Ac-CGGGDD (right) showing how the presence of 

N-terminal NH3
+ groups (dark blue) encourage more compact peptide structures due to the electrostatic 

attraction with C-terminal COO− groups (red). (b) Density maps of peptide backbone angles as a function 

of C-terminal to AuSnearest distances. Inset figures are representative Au25(SP)18 structures from populated 

“hot-spots” showing only the peptide of interest and Au25S18 for clarity. Angle θ is measured between 

backbone Cα1–Cα3–Cα6 atoms (shown as green spheres and numbered from the N-terminus) and 𝑥-

distances are measured from Cα6–AuSnearest (blue dotted lines). Contour lines are drawn around density 

regions in increments of 1,000 frequency and acetyl groups are shown in pink. For both (a) and (b), gold, 

sulphur and peptide backbones are coloured orange, yellow and black, respectively. 

 

b) 

a) 
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Figure 5.9 | MD obtained water structuring around Au25(SP)18. (a) Representative images of 

Au25(SP)18 for P = CHYGGDD and P = Ac-CHYGDD respectively. H2O molecules are coloured as defined in 

the legends of (b) and (c), the gold-passivating peptide vdW surface and individual chains are drawn 

transparently to show peptide backbones (black) as well as histidine (blue), tyrosine (green) and 

aspartate (red) side-chain atoms. Bulk water molecules and counter ions are not shown for clarity. (b) 

Radial distributions of selected atomic components relative to the central Au25(SP)18 gold atom (Aucentre). 

Plots are normalised by both radial shell volume (dr = 0.05 nm) and by bulk water density far from the 

AuNCs (ρbulk-water = 0.100573). (c) The average number of proximate, embedded and hydration H2O for 

each simulated system. Please note the broken y-axis and that error bars represent standard deviation. 

 

a) 

c) 

b) 
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Hydrogen bond (H-bond) analysis of proximate water is presented in Figure 5.10 to show 

the ensemble-averaged, weighted hydrogen bonds that form between proximate H2O and 

other moieties over the equilibrated MD trajectories. The weighting is such that H-bonds are 

multiplied by their occupancy, i.e. 2 × 20% H-bonds and 1 × 40% H-bond both contribute 

0.4 to the weighted H-bond count (y-axis). Only significant H-bonds with an occupancy > 

20% are assumed contribute to the H-bond count (see Appendix Table D.2 for average 

weighted H-bond counts per system that have a weighting − standard deviation > 0.1). In 

this way the weighted H-bond populations in Figure 5.10 reflect both the number and 

occupancy of significant H-bonds between donor and acceptor groups. 

In uncapped systems, proximate water molecules make a total of 34.4 ± 18.0 weighted H-

bonds with other species throughout the equilibrated MD simulations and of those ~40% ± 

8% are between water (donor) and aspartate carboxylate oxygen atoms (acceptor). H-bonds 

to cysteine molecules make up another ~32% ± 3% (~12% ± 2% with water donating H-

bonds to a backbone cysteine oxygen atom and ~20% ± 2% with water acting as an 

acceptor from NH3
+), and ~13% ± 8% are from water molecules establishing a solvent–

solvent network near the gold core. In contrast, for Au25(SP)18 where P = Ac-CGGGDD, 

Ac-CHGGDD, Ac-CHYGDD and Ac-CYHGDD, the reduction in internalised water (Figure 5.9c) 

leads to two-times less proximate H-bonds (17.1 ± 8.7). H-bonds between solvent and 

cysteine make up ~45% ± 4% (H2O donor = 38% ± 2% and H2O acceptor = 7% ± 4%), 

another ~34% ± 4% are from interactions with carbonyl oxygen atoms on acetyl, and both 

solvent–aspartate and solvent–solvent H-bonds are negligible. 

 

Figure 5.10 | Average weighted number of H-bonds proximate water molecules form. Weighted H-

bonds for acetyl-capped (black) and uncapped (red) systems show differences in proximate water 

molecules’ H-bond preferences. Error bars represent standard deviations and only H-bonds that appear 

in the MD trajectories with an occupancy > 20% are considered for the plot. 
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These differences in H-bond formation (especially the donor/acceptor predisposition of 

water) impact on the orientation of H2O molecules around Au25S18. In N-terminally acetyl 

capped system, water is primarily a H-bond donor to both cysteine and acetyl oxygen atoms 

and therefore the dipole moments (and hydrogen atoms) of H2O molecules are 

predominantly pointing towards Au25S18. For uncapped systems, dipole moments are 

directed away from Au25S18 since water molecules accept H-bonds from cysteine (by 

pointing their oxygen atoms towards Au25S18), and donate H-bonds to aspartate (by 

directing their hydrogen atoms to the peptide–bulk water interface and consequently point 

their oxygen atoms to the gold core). This finding is substantiated by average minimum 

distance distributions of proximate water atoms relative to AuSnearest (Figure 5.11) that 

reveal significant water structuring with oxygen atoms favourably pointed towards Au 25S18 

in uncapped systems. This is also apparent through careful inspection of Figure 5.9a. It 

should be emphasised however that the FF used in these simulations assumes no partial 

charge on the gold atoms and a −0.098 charge on sulphur, in contrast to the positively 

charged gold and more negatively charged sulphur determined from QM calculations 

(discussed below). While there structuring of water is expected to be driven by peptide–

water interactions, currently water only interfaces with Au25 through vdW interactions and 

therefore electrostatic interactions with Au25 are neglected. 

 

 

Figure 5.11 | Average minimum distance distributions of proximate water atoms relative to 

AuSnearest. Solid and dashed lines show the minimum distances of H2O oxygen and hydrogen atoms to 

AuSnearest, respectively. For uncapped systems, the oxygen peak at ~0.34 nm and the hydrogen peak 

at ~0.38 nm indicate that water molecules preferentially orient the oxygen atoms towards Au25S18. 
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Both proximate and embedded water are likely to influence the electronic density 

distribution around Au25S18 and it is suggested that a lower presence of internalised water 

in acetyl systems may be directly related to enhanced fluorescence. For example, studies 

have shown that the electronic (and optical) properties of quantum dot fluorophores are 

strongly influenced by surface-adsorbed water molecules.483 In uncapped systems, the lone 

pair of electrons on H2O oxygen atoms are facing gold and potentially able to donate partial 

charge to Au25S18, however at a distance of ~0.34 nm to the gold core this partial charge 

donation is only marginally expected to enhance fluorescence (if at all). In either case, more 

detailed studies are needed to test these hypotheses and explore solvent effects on Au25S18. 

In addition to differences in the distribution of water molecules around Au 25S18, the dynamic 

movement of water internalised within the Au25(SP)18 NCs is also affected by the presence of 

acetyl (Appendix Section D.5.3). N-terminal acetylation does not drastically alter movement 

of embedded water (except perhaps in double aromatic systems, further discussed in Section 

5.3.3), however, it does consistently impact on proximate water molecules’ migration away 

from Au25S18 (see Appendix Figure D.13). In acetyl-containing systems, the number of water 

molecules in the proximate selection quickly decays as water molecules exchange between 

embedded and proximate groups due to the decreased solvent H-bonding observed in these 

systems. This faster diffusion implies that individual water molecules in acetyl systems are 

less likely to significantly disrupt the electronic properties of the Au core as opposed to 

uncapped systems where the H2O molecule are more tightly bound. 

Partial charge donation from electron-rich N-terminal acetyl groups to the gold core may be 

another mechanism affecting the electronic properties of the nanoclusters. Single-point QM 

calculations of Au25(SP)18, where P = cysteine with N-termini either uncapped (–NH3+) or 

acetylated (–NCOCH3), reveal that electron charge distributes within the systems so that 

partial charges on Au25S18 atoms are collectively almost a full integer more negative (∆𝑞 = –

0.91) when cysteine is acetyl capped versus amine terminated (Table 5.3). This is in line 

with the experimental findings of Wu et al. that suggest the donation of partial charge from 

ligands to core should increase fluorescence.91 Approximately 60% of the charge difference 

is due to a reduction in the positive partial charge on the gold atoms (∆𝑞 = –0.54), with 

~15% from the Au13 core (∆𝑞 = –0.13). Analysis of atomic contributions to molecular 

Table 5.3 | QM derived summed partial atomic charges on selected components of Au25Cys18 (with 

acetylated or protonated amine N-termini). 

N-terminus Au25S18 Au25 S18 Au13 core [S–(Au–S)2]6 staples 
Protonated amine -1.59 3.38 -4.97 2.35 -3.94 

Acetyl -2.50 2.84 -5.33 2.22 -4.72 
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orbitals shows that the HOMO is mostly on the central Au atom of Au 13, while the LUMO is 

primarily distributed across the remaining Au13 atoms. This nicely correlates with previous 

DFT/TDDFT studies establishing that orbitals of the Au13 core are responsible for all 

photoexcited states (and therefore optical properties) of Au 25.204,458 While the interplay 

between atomic coordinates, electron distribution, and PL intensity is complicated and 

difficult to unravel, these results suggest that the majority of electron density increase on 

the Au25S18 atoms of the acetyl-capped systems (relative to the primary amine systems) 

occurs on the Au-S-Au “staple” atoms (~85% or ∆𝑞 = –0.78) and this affects the PL arising 

from excitations involving molecular orbitals centred on the Au 13 core. 

5.3.3 Increasing Peptide Hydrophobicity/Aromaticity 

The hydrophobicity/aromaticity of the peptide sequences empirically impacts on the 

AuNCs’ PL (Figure 5.2). In the MD simulations, peptide sequences with aromatic residues 

promote enlarged AuNC volume (Figure 5.5a), Rg (Appendix Figure D.5) and Dh (Appendix 

Figure D.6) due to steric effects caused by increased numbers of bulky groups close to the 

gold core. For example, the Dh of AuNCs is calculated to be 3.21 nm, 3.48 nm, 3.60 nm, and 

3.68 nm for CGGGDD, CVVGDD, CHYGDD and CYYGDD, where Dh increases as amino acid side 

groups become more hydrophobic and aromatic. This effect is also confirmed by small angle 

X-ray scattering (SAXS), with experimental Rg trends (Appendix Figure D.3) supporting the 

simulation results and indicating a more expanded nature for hydrophobic/aromatic 

peptide layers of CVVGDD (1.13 nm), CYHGDD (1.13 nm), and CYYGDD (1.10 nm) compared 

to that of CGGGDD (1.01 nm). While AuNC polydispersity and peptide-shell valency will 

likely influence the apparent empirical configurations, the expanded peptide structures on 

the Au surface generally indicate longer peptide C-terminal–Au25S18 distances. This however 

does not necessarily mean aspartate residues (that potentially quench PL, see Section 5.3.5) 

are distanced from Au25S18 as peptide hydrophobicity increases (Appendix Table D.1). 

Instead, it is believed that aromatic groups allow for a higher degree of delocalised electron 

density to be provided to the gold core, through the proximity of moieties such as imidazole 

and phenol (Appendix Figure D.9 and Appendix Table D.1), and this is what is expected to 

strengthen the fluorescence intensity, as has been previously proposed.91 

While it is also observed that aromaticity/hydrophobicity slightly increases the number of 

proximate and embedded water molecules (Figure 5.9c), this does not seem to be directly 

related to AuNC PL however water may inadvertently be screening negatively charged 

residues from interacting with Au25S18. From Appendix Figure D.13 it is also noted that 

although the dynamic movement of proximate water in NH3
+ N-terminated systems shows 

no obvious dependence on sequence (within the standard deviation of the decay plots), 
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there does appear to be an emergent trend that as hydrophobicity/aromaticity increases the 

movement of embedded water into and out of the peptide layers is hindered. This is an 

interesting observation that is potentially caused by trapping of water inside hydrophobic 

cages, or may be an artefact related to how the models were built. Curiously, acetyl capping 

of CHYGDD and CYHGDD seems to disrupt this reduced water mobility indicating that 

hydrogen bonding difference in these systems (Appendix Table D.2) may be playing a role in 

causing this. In any case, to properly elucidate the mechanisms for these phenomena and 

the potential consequences they have on AuNC PL further investigations are needed. 

5.3.4 Influence of Histidine Protonation 

It was initially thought that titratable histidine groups may be responsible for the pH 

responsive fluorescence the peptide-coated AuNCs exhibit. Since imidazole has a pKa ~6–7, 

a pH-induced change in HIS protonation state (Figure 5.12) will likely result in a pH 

responsive interaction with Au25S18 that ultimately influences PL. In particular, it was 

hypothesised that at higher pH (> 7) de-protonated HIS may be involved in photoinduced 

electron transfer (PET) with the Au25S18 fluorophore to weaken PL while at low pH (< 6), 

PET inhibition is caused by imidazole protonation and stronger fluorescence emerges. While 

this process is known to quench fluorescence,484 the empirical evidence shows that pH 

responsive AuNC PL can be obtained with capping peptides that do not contain HIS (Figure 

5.3). Although HIS PET may not be a primary PL influencer, the role of HIS protonation onto 

the properties of Au25(SP)18 are still explored through MD. 

The main physical difference between the protonated and deprotonated histidine systems is 

the introduction of an additional positive charge on each peptide ligand (i.e. a further +18 

per system), which affects the properties of the systems in several ways. Supplementary 

electrostatic attractions serve to bring the negatively charged C-termini of the peptides 

closer to the gold core (Appendix Table D.1 and Appendix Figure D.9), resulting in more 

compact (Appendix Figure D.6), less mobile (Appendix Figure D.8) peptide layers. A large 

increase in the number of turn-like peptide conformations is observed in the ensemble of 

MD structures (Appendix Figure D.10) and the increase in charge–charge proximity draws 

 

 

Figure 5.12 | The pH dependent (de)protonation of histidine residues in solution. The standard 

pKa for this process is ~6–7, therefore at pH 7.5 the majority of histidine residues will be 

deprotonated and at pH 5.5 almost all of the residues will be protonated.  
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more water to internalise close to Au25S18, especially when histidine is adjacent to cysteine. 

For example, compare the proximate water peaks (Ac-)CHGGDD and (Ac-)CHYGDD to their 

protonated counterparts in Appendix Figure D.11. In addition to these effects, the location 

of the histidine residues themselves become more distant from the gold core to minimise 

peptide–peptide electrostatic repulsions, particularly between NH3
+ and HIS+ moieties in 

non-acetylated systems (Appendix Table D.1). 

While each of these findings can be postulated to decrease PL when histidine is protonated, 

the empirical evidence is on the contrary. This could imply that if HIS is involved in PET 

when the residues are deprotonated (pH 7.5), the hindrance of PET at low pH may have a 

greater outcome on enhancing the PL than the collective abovementioned effects. More 

detailed investigations are of course needed to confirm/dispute this speculation.  

5.3.5 Hypothesis for Aspartic Acid PL Quenching 

To rationalise the correlation between aspartate residue distance to Au 25S18 and the 

reduction of experimental fluorescence, investigations are pursued to elucidate motivators 

behind this effect. It is hypothesised that PET484 between the carboxylate groups on 

aspartate residues and the AuNC core disrupts the PL of Au25S18 (especially in systems that 

are not acetylated). Previous experimental and computational studies have shown that 

carboxylate groups are capable of photoinduced single-electron transfer to silver485,486 and 

other materials.487-489 As a first step to explore this hypothesis further, the energy required 

to extract single carboxylate electrons from aspartate residues is estimated using a classical 

a posteriori approach (see Appendix Section B.2). 

The removal of an electron charge distributed equally on the two carboxylate oxygen atoms 

of an aspartate is considered to be energetically associated to the electrostatic potential 

acting on the given residue, which is caused by collective contributions from all other 

charges in the system. Although configurations are unable to respond to charge dissociation 

in this approach, the change in total potential energy after electron removal is useful to  

simply estimate how electrostatically and energetically favourable aspartate ionisation is. 

The smaller the energy difference (energetic penalty), the more likely it is assumed that an 

electron can be ejected/transferred. In addition, for charge transfer to occur it is generally 

required for the electron donor (ASP) and electron acceptor (Au 25S18) to be in close contact 

range (< 0.5 nm).482 Consequently, for an electron to migrate from aspartate to gold and 

encourage PL quenching, both energetic and geometric conditions must be met.  

Density maps showing the classical electrostatic potential energy cost for electron removal, 

as a function of minimum carboxylate oxygen distance to Au25S18, are given in Appendix 
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Figure D.14. For analysed systems, i.e. Au25(SP)18 where P = (Ac-)CGGGDD, (Ac-)CH(+)YGDD, 

CYH(+)GDD, CVVGDD, CYYGDD, aspartate residues are found to be ~650 kJ⋅mol-1 more 

stable before their carboxylate partial charges are perturbed (Appendix Table D.3). In other 

words, it costs ~650 kJ⋅mol-1 for an aspartate residue to forfeit an electron regardless of its 

geometric location in the peptide layer. From Figure 5.13 and Appendix Table D.3 it is noted 

that in non-acetyl systems a moderate amount (~2–3%) of aspartate residues are both 

within electron transfer proximity (< 0.5 nm) of Au25S18 and exhibit a lower energy 

requirement (< 600 kJ⋅mol-1) to lose an electron. In contrast, there are no ASP residues in 

this range for acetyl systems, except for Ac-CGGGDD which has a relative population of 

~0.3%. These classical results indicate that the absence of acetyl increases the number of 

states where the local electrostatic environment around aspartate better facilitates electron 

dissociation and this may inadvertently promote electron transfer to the gold core.  

Single-point, spin-polarised, explicit/implicit solvent QM calculations are performed to 

further test the hypothesis that aspartate may be disrupting fluorescence. The linear-scaling 

density function theory code ONETEP is used for this purpose with the aim of estimating the 

 

 

Figure 5.13 | Classical electrostatic potential cost for removal of an aspartate carboxylate electron, 

as a function of ASP–Au25S18 distance. Selected plots are shown with ASP–Au25S18 separations 

< 0.54 nm and energetic penalties < 650 kJ⋅mol-1. Contour lines are drawn around regions > 200 in 

population and highlight that aspartate residues close to the gold core may forfeit an electron with a 

reduced energetic cost (compared to the average 650 kJ⋅mol-1). 
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locations of, and the energy gaps between, the frontier orbitals of the system to verify if 

electron transfer is theoretically viable. Atomistic structures inputted to these calculations 

are equilibrated MD configurations that explicitly contain gold (25 atoms), peptide (1 ,530 

atoms), embedded, and proximate water (~261 atoms), and an implicit solvent continuum is 

also employed to represent hydration and bulk water. 

Converged ONETEP simulations have currently been achieved for three conformers 

(labelled I–III) of Au25(SP)18, where P = CH+YGDD, and preliminary analysis of these results 

is promising. The findings suggest that the majority of HOMO/LUMO orbitals are localised 

on the Au25S18 core (see Appendix D.6.2) in agreement with other theoretical studies490 and 

the calculated density of states remains relatively unchanged between the three conformers 

(Appendix Figure D.15). The Mulliken partial charges on different atomic components of 

Au25S18 (Appendix Table D.4) on the other hand are moderately sensitive to changes in 

peptide conformation and vary quite drastically from the atomic partial charges calculated 

for Au25Cys18 in Table 5.3. This signifies that careful consideration is needed if deducing 

trends from partial charges derived from a single/few calculation(s) and more statistics are 

likely required to draw anything conclusive. 

Given that the peptide-coated AuNCs in this project are designed to be completely water 

soluble and they are intended to undergo their desired biological tasks in an aqueous 

environment, it is necessary to incorporate as much explicit water in the QM calculations as 

feasible to ensure a correct physical description of the system is emulated. To establish if an 

increase in explicitly represented solvent atoms impacts the computed results and therefore 

the escalated computational expense is justified, a single point calculation of conformer III 

was also performed with all hydration water atoms included (denoted as conformer III') 

leading to a total system size of 3,658 atoms. Comparing the results between III and III' 

reveals that more explicit water does not significantly alter the partial charge distribution 

on Au25S18 (Appendix Table D.4), however, there is an obvious shift in the local density of 

states near the HOMO–LUMO gap (Appendix Figure D.15). This indicates that solvent 

molecules (and their interactions) are likely to be essential for the optical properties of the 

system and it is thus advisable to include the first hydration shell of  water (at least) in the 

QM calculations to ensure solvent effects on the system are reasonably approximated.  

While it is acknowledged that ground-state calculations cannot accurately predict optical 

emission and electron transfer characteristics that are inherently excited-state properties, 

ground-state orbital locations (and energies) may still prove useful to infer first-order 

approximations about these phenomena. For example, it can be assumed that 
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photoexcitation of an electron will likely result in a transition from a HOMO to a LUMO, 

therefore knowing the original location of the ground-state orbitals (especially the HOMO 

that is to be excited) is assumed to be beneficial for deducing which atoms are involved in 

this photoinduced transition. Since Au25 fluorescence is produced by Au–Au electron 

interactions,490 processes (such as electron transfer) that disrupt these interactions are 

expected to reduce PL. If an orbital on Au25S18 is at precisely the right energy separation to 

an opposite occupancy orbital not located on the gold core, photoexcitation may cause 

charge transfer to transpire between these two orbitals and lead to a non-radiative, 

fluorescence quenching transition. In particular, if this process competes in energy to the 

peak emission wavelength of the system (i.e. ~675 nm, see Appendix Figure D.2), this could 

hypothetically contend with the natural electron transitions in Au 25. 

Molecular orbital analysis (Appendix Tables D.5–D.8) reveals that while most HOMO (and 

preceding orbitals, abbreviated as HOMO+X) and LUMO (and succeeding orbitals, 

abbreviated as LUMO‒X) pairs with an energy difference corresponding to a wavelength of 

675 ± 15 nm are exclusively on the Au25S18 core, there are some exceptions. Interestingly, 

these excepted orbitals are situated on aspartate residues and their corresponding orbitals 

are localised on the gold core (Figure 5.14). This demonstrates that aspartate quenching 

through electron transfer may indeed be viable, however further QM exploration (especial ly 

with different systems and higher levels of theory, e.g. TDDFT) is needed to verify this.  

5.4 Discussion and Conclusions 

The local chemical environment near the gold core is crucial for quenching or enhancing 

AuNC PL. Through the observed correlations between the PL performance of the peptide-

 

Figure 5.14 | Selected frontier orbitals on different conformers of Au25(SP)18 (where P = 

CH+YGDD) calculated using the ONETEP program. The images suggest that the proposed quenching 

of PL by ASP–Au25S18 electron transfer is conceivable since occupied (red/blue) and unoccupied 

(pink/cyan) orbitals separated by an appropriate energy difference (~1.78–1.89 eV or ~655–695 

nm) consistently appear on the groups of interest (other atoms hidden). Isosurfaces = 0.02. 

 

III' III II 
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functionalised AuNCs and the structure of the peptide layers, enhancement of the AuNC 

fluorescence intensity in these systems is proposed to be achieved through one or more of 

the following approaches. (1) Acetyl capping of N-terminal amine groups synergistically 

enhances AuNC PL performance via a variety of mechanisms (Section 5.3.2) including: 

replacement of electron-withdrawing groups with partial electron density donating 

moieties in the vicinity of Au25S18; removal of the electrostatic attraction between the 

peptide termini, which increases the thickness of the coating layer and distances the 

negative peptide C-termini from gold; and reducing the propensity for water to penetrate 

into the peptide layers, while enabling its free movement to escape proximity of the Au 25S18, 

where PL can be adversely affected. (2) Introduction of hydrophobic/aromatic residues in 

the peptide sequences (Section 5.3.3) provides delocalised electrons for partial charge 

donation from the ligands to the Au core. (3) Lowering solution pH appears to affect the 

protonation state of the N-terminal amine groups, however due to the scope of this work, 

this has not been computationally explored here. 

In relation to point (3), deprotonated amine groups close to the gold surface are considered 

to be associated with weaker natural PL emission from the Au25 clusters in light of the 

empirical evidence. Since HIS replacement does not affect the pH-induced difference in PL 

observed (Figure 5.3), it is suggested that pH sensitivity is due to a change in the 

protonation state of N-terminal amine groups, which have previously been shown to have 

pKa values as high as 9.1 or as low as 6.8, with an average value of ~7.7 ± 0.5. 491 At pH 7.5, 

~50% of N-terminal amines are deprotonated and can transfer electrons to Au through the 

nitrogen lone pair, as has been shown between deprotonated amines and fullerenes. 492 

When solution pH is decreased to 5.5, only ~1% of amines remain deprotonated thus 

eliminating the possibility of NH2 donating electrons to Au. In other words, at pH 7.5 (in the 

absence of acetyl), neutral N-terminal amines can quench PL through PET whereas at pH 

5.5, although electron-withdrawing NH3
+ groups close to Au are unfavorable for 

fluorescence,91 the denial of PET quenching appears to outweigh this. 

Capping with acetyl (at any pH) eliminates PET quenching, removes electron-withdrawing 

positive charges from close proximity to Au, and introduces electron density donating 

groups. The amide group on cysteine (instead of amine) from acetylation stabilises the lone 

pair on nitrogen through electron delocalisation to sufficiently disfavour electron transfer 

from nitrogen to gold. Instead, acetyl promotes partial charge donation through the 

carbonyl oxygen atoms, which is another proposed PL enhancing effect (Figure 5.15). This is 

in line with strategies reported in literature of intensifying Au25 fluorescent yield through 

increasing the direct donation of delocalised electrons (or reducing the electron-
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withdrawing capacity) from the ligands to the metal core.91 In addition, PL enhancement of 

AuNCs can be achieved by “geographic” removal of free amine, i.e. removing it from the 

close proximity to the gold core by modifying the sequence order to change the Au–Cys 

bond location, e.g. DGYCGD (see Table 5.1 and Figure 5.2b). It must also be noted that 

interactions such as π–π, cation–π, and water mediated charge shielding may play a 

significant role in enhancing fluorescence and mitigating quenching.  

In conclusion, this chapter has provided a multiscale theoretical insight into the functional 

physicochemical interface of different peptide coatings on AuNCs intended for cellular 

imaging applications. In conjunction with experiment, key design principles for the general 

enhancement of AuNC photoluminescence are proposed. First, groups that can directly 

electron transfer to the gold core such as carboxylates and deprotonated amines should be 

kept as far from the gold as possible. This can be accomplished by capping amine groups on 

the gold-anchoring cysteine residues with acetyl, by designing the ligand attachment point 

so that amine groups are inherently removed from proximity of the Au core, and/or by 

lowering solution pH to ensure complete protonation of N-terminal amines. Second, groups 

that can donate a partial electron density to the gold core, such as tyrosine and acetyl, 

should be kept as close to the gold as possible. The findings of this work contribute to the 

overall understanding of the molecular mechanisms of PL AuNCs and facilitate a rational 

approach to design biocompatible AuNCs for broad biomedical applications.  

 

 

Figure 5.15 | Peptide–Au25S18 interactions that alter photoluminescence. The proposed 

quenching mechanism (left) can be nullified to generate PL AuNCs via one or m ore of the 

strategies displayed on the right: (top) lowering solution pH to protonate amine at the N-

terminus; (middle) replacing N-terminal amine via acetylation; (bottom) repositioning the 

free amine away from the Au surface by altering the Au–Cys location. 
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Chapter 6:  

Alkanethiol-Functionalised Au25 Nanoclusters 

In this chapter, classical molecular dynamics is used to examine the properties o f 

octanethiol-protected Au25 nanoclusters. These small hydrophobic nanostructures form 

part of a novel gold–silica composite material called a “quantum rattle” that has 

theranostic potential.21 The findings of this work reveal that the gold nanoclusters exhibit 

significant structural and dynamic differences in water and ethanol, which is information 

that assists in explaining performance issues these materials encounter when being used 

for drug delivery applications. This research is conducted in collaboration with the 

biomaterials engineering team of Prof. Molly M. Stevens at Imperial College London to 

whom due acknowledgment is given, especially Dr Mathew Hembury and Dr Ciro 

Chiappini, for all empirical results presented (Section 6.1.1). 

 

 

6.1 Introduction 

Composite nanoparticles are a relatively new class of material that combine multiple 

individual nanostructures into a single multimodal system. The properties of the separate 

constituent components in these assemblies integrate to form efficient, multifunctional, and 

often hierarchical materials that show great promise for theranostic applications. 33,493,494 

Composite nanoparticles based on mesoporous silica495 (MS) are extensively being studied 

since MS has a large surface area, tuneable size and porosity, low cytotoxicity, and is easy to 

functionalise through silane chemistry. These features are attractive for both the loading of 

water-insoluble biomedical agents, and their transport/delivery in vivo.496-500 In addition, 

MS can be synthesised to host gold nanoparticles (AuNPs) and nanoclusters (AuNCs), 

depending on its porosity and internal cavities.501-503 This imparts increased functionality to 

the constructs based on the properties of nano-gold, such as enabling photothermal therapy 

and imaging modalities (see Section 1.4), and it facilitates stimulus responsive releasing of 

drugs trapped inside MS pores by gold “gatekeepers”.504 Furthermore, gold nanostructures 

coated with hydrophobic ligands, such as alkanethiols, enhance the drug-carrying capacity, 

loading efficiency, and prolonged/controlled release of drug payloads in these systems. 505 

Alkanethiol–gold nanomaterials, especially self-assembled monolayers (SAMs) on planar 

gold, have been a subject of intense experimental and theoretical research.54,79,506 As such, 

there is a huge cohort of computational studies focusing on: the formation 359,507-513 and 
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characterisation173,211,514-518 of alkanethiol–gold SAMs, including those with mixed-

monolayers;279,519-522 the mechanisms for alkanethiol–AuNPs to spontaneously 

interact/aggregate,356,380,523-533 or to permeate between different mediums, e.g. from 

aqueous solution to lipid bilayer269,273,275,280-283,534-536 or organic electrolyte;537 the effect of 

radiation on alkanethiol–gold SAMs;245,538-540 the interactions of biomolecules with 

alkanethiol-SAM–gold structures;263,265,266,368,541-550 as well as, other fascinating alkanethiol–

gold systems.551-554 In the interest of brevity these will not be summarised here, however, 

computational research that is directly relevant to this chapter will be mentioned and 

discussed in the context of the presented results. 

6.1.1 Experimental Project Design and Computational Aims 

A novel in vivo and in vitro hybrid theranostic material has recently been realised by 

innovatively incorporating different sized gold nanostructures inside a hollow MS vessel 

(Figure 6.1). This gold–silica “quantum rattle” (QR) exploits the biocompatibility of MS to 

host bioactive molecules (e.g. the chemotherapy drug Doxorubicin, DOX) alongside 

fluorescent AuNCs (< 2 nm diameter) and photothermal AuNPs (~7.3 nm in diameter) in 

order to synergistically provide multimodal imaging and therapy for tumour treatment. 21 

The gold nanomaterials are coated by 1-octanethiol (S(CH2)7CH3 or SC8H17) and contained 

within the MS via an in situ synthesis protocol. It is proposed that the larger AuNPs form in 

the internal cavities whereas the smaller AuNCs nucleate inside the MS pores. The 

dimensions of the compartments within the ~150 nm (total diameter) QRs are well defined, 

with cylindrical-like MS pores being ~25 nm in length and ~2.5 nm in diameter, while the 

internal cavities are ~100 nm in diameter. 

 

 

Figure 6.1 | Schematic depiction of the multimodal “quantum rattles” illustrating the constituent 
components in the constructs. The quantum rattles are composed of hollow mesoporous silica shells 
(grey) that host AuNCs (red) inside their mesopores and gold nanoparticles AuNPs (yellow) inside their 
macrocavity. Adapted with permission.21 2015, National Academy of Sciences. 
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Two interesting experimental observations emerge from these systems that require further 

clarification through molecular-level insight. (1) When the (drug-free) QRs are transferred 

to ethanol solvent, the AuNCs easily and readily evacuate from the silica pores, however, if 

the QRs are in an aqueous solution the escape of the AuNCs is considerably hindered. (2) 

There is a stark difference in the drug loading and release profiles of the QR and MS systems 

(Figure 6.2). The QRs show up to nine-fold increase in the concentration of loaded DOX 

compared to hollow MS (Figure 6.2a) signifying that AuNPs enhance hydrophobic DOX drug-

carrying capacity. Then, when the DOX-loaded constructs are placed in PBS solution, the 

presence of AuNC “gatekeepers” in the QR pores, which are absent in the plain MS, modulate 

the diffusion of DOX and prolong the release of drug over time (Figure 6.2b). 

This chapter is primarily concerned with using MD simulations to explore how different 

solvent environments affect the properties of Au25(SC8H17)18. Section 6.2 outlines the 

computational details employed in this study. The following Section 6.3 presents results 

that highlight the structural variability octanethiol-coated AuNCs exhibit when solvated in 

water and ethanol solutions. AuNC properties such as overall shape, structure, and bonding 

preferences are assessed. These results are then discussed in Section 6.4 to correlate pore 

occupation (abovementioned experimental observation 1) with a proposed steric –kinetic 

driving force. Comments are also made regarding future work, the molecular nature of DOX, 

and DOX–Au25(SC8H17)18 interactions that are likely to control the drug’s loading and release 

kinetics (experimental observation 2). Finally, closing remarks are given.  

 

Figure 6.2 | Hydrophobic drug loading and release profiles comparing nanostructures with and 
without gold constituents. (a) The doxorubicin (DOX) loading efficiencies for the gold-containing 
quantum rattles (QR, red) is up to nine-fold larger compared to the gold-deficient mesoporous silica (MS, 
blue). The amount of DOX uptake (𝑦-axis) is plotted against the DOX concentration in the aqueous loading 
solution (𝑥-axis). (b) Drug release (in PBS) shows that the QRs modulate DOX release over a 12 hr period 
whereas for MS, the DOX release plateaus after ~4 hrs. (Inset) Transmission electron micrographs of QR 
and MS. Scale bars = 50 nm. Adapted with permission.21 2015, National Academy of Sciences. 

 

a) b) 
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6.2 Computational details 

The computational approach taken is analogous to that described in Chapter 5. First, the 

octanethiolate–Au25 clusters, Au25(SC8H17)18, were constructed in the Discovery Studio 3.5 

Visualizer software555 by attaching all ligands in extended conformations and equidistant on 

the crystal structure466 model of Au25(SR)18. The nanoparticle complex was then placed in a 

periodic cubic box of lattice constant ~5.9 nm and solvated with either 6693 water 

molecules (Figure 6.3a) or 1928 ethanol molecules (Figure 6.3b). Energy minimisation was 

carried out using the steepest decent algorithm then followed by 1 ns of position restrained 

MD to equilibrate the solvent around the gold–ligand nanoclusters at a temperature of 300 

K and pressure of 1 atm. Upon removing position restraints, 3 × 100 ns 𝑁𝑃𝑇 simulations 

with different starting velocities were performed in both water and ethanol solvents.  

The Nosé–Hoover394,395 and Parrinello–Rahman399 approaches were applied to control the 

temperature and pressure. A time step of 2 fs was used throughout the computations by 

utilising the LINCS algorithm402 to convert all bonds to constraints, and frames were output 

to a trajectory file every 2 ps. The all-atom AMBER99SB-ILDN force field (FF)467 was used to 

represent the organic thiolate ligands (SC8H17) with atomic partial charges for the ligands 

explicitly parameterised using Gaussian09469 (see Appendix Section A.2). The TIP3P model 

was used for water468 and general amber FF parameters for liquid ethanol.556,557 The Au–

organic Lennard Jones potentials employed are identical to those in Chapter 5 and were 

adopted from a FF221 parameterised for similar monolayer-protected gold nanoclusters that 

assumes no explicit partial charges on the Au. The cutoff for Lennard–Jones interactions and 

the real-space part of the Particle Mesh Ewald electrostatic potential was set to 1 nm. Au–Au 

distance restraints were applied to maintain the Au25(SR)18 crystal structure466 during MD.  

 

     

Figure 6.3 | Initial structures used to perform molecular dynamics on the hydrophobic clusters.  
The Au25(SC8H17)18 NCs are simulated in both (a) water and (b) ethanol solvents. Gold (orange), sulphur 
(yellow), carbon (teal), hydrogen (white), and oxygen (red) atoms are shown in each unit cell (black). 

 

a) b) 
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To clarify how the presence of AuNCs in the QR assemblies affects the loading and releasing 

of the chemotherapy drug DOX, several MD simulations are planned to be conducted (see 

Section 6.4). The ground work for these simulations has been prepared by parameterising 

the DOX molecule in a compatible approach to the AuNCs, i.e. the general amber FF 558 was 

used to assign bonded and van der Waals (vdW) parameters, and Gaussian09 469 was 

consulted to determine partial atomic charges (See Appendix A.3). MD simulations were 

conducted using the GROMACS 4.6.5 software.430 

Analysis Procedures 

GROMACS was primarily used for statistical analysis presented in this chapter, which has 

been performed on structures that are thermally equilibrated. This is verified by monitoring 

root-mean-square deviations (RMSD) of the octanethiol chains over time (Figure 6.4, using 

g_rmsd), and correspond to frames from the MD trajectories that evolved between 

simulation times 10–100 ns. Nanocluster volumes (Table 6.1) were calculated with 

g_principal, g_dist and a custom python script for matrix algebra (see Appendix B.1). Radial 

distributions (Figure 6.6) were calculated with g_rdf and root-mean-square atomic fluctuations 

(Figure 6.7) were calculated with g_rmsf. The VMD 1.9.1 package128 was employed to 

calculate the angles and distances used to create the conformational plots in Figure 6.5, as 

well as for visualisation of all systems. 

6.3 Results 

6.3.1 Effect of Solvent on AuNC properties 

The ensemble of atomistic Au25(SC8H17)18 configurations obtained from MD show obvious 

structural differences when systems are simulated in different solvent environments. 

Density maps presented in Figure 6.5a and b highlight geometric conformations adopted by 

     

Figure 6.4 | Time evolved average root-mean-square deviations for Au25(SC8H17)18. Coloured lines 
represent 3 independent molecular dynamics simulations and the black lines are the average. The plateau 
after ~10ns indicates equilibration. 
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the AuNCs’ organic ligands when solvated in water and in ethanol, respectively. The angle 

(θ) formed between carbon atoms C1–C4–C8 (numbered in an ascending order from sulphur) 

is used to assess if the octanethiol chains assume conformations that are linear ( θ > 160°), 

softly-curved (130° < θ < 160°), or sharply-curved (θ < 130°), while the distance (𝑥) 

between the untethered chain ends (C8) and the nearest Au25S18 atom provides a measure of 

ligand compactness against the AuNC surface. The highly populated region in the top-right 

of Figure 6.5b signifies that ethanol strongly promotes linear chains that are perpendicular 

to the Au25S18 surface. In contrast, Figure 6.5a depicts a moderately more even density 

dispersion, but with an accumulation of ligand states where θ=113–124° and 𝑥=0.45–0.85 

nm implying the formation of curved and compact structures. These discrepancies are 

emphasised by the difference map of the two plots (Figure 6.5d), which shows that going 

from water to ethanol decreases (blue) compact conformations and increases (red) ligand 

extension. Representative snapshots also visually accentuate this (Figure 6.5c and e). 

 

 

Figure 6.5 | Effect of solvent on Au25(SC8H17)18 conformations. (a) and (b) are density maps of 
octanethiol backbone angles as a function of chain-end to AuSnearest distances, with (d) showing the 
difference map of the two plots. Contour lines are drawn at regions of 1,000 frequency and increments 
used for binning the data are: d𝑥 = 0.05 nm (25 bins) and dθ = 1° (180 bins). Representative snapshots of 
the nanocluster complexes in water (c) and ethanol (e) taken from the MD simulations. Gold (orange), 
sulphur (yellow), carbon (teal), and hydrogen (white) atoms are shown while solvent is hidden for clarity. 

 

a) b) 

c) 

d) 

e) 
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These observed conformations are found to be governed by different chain–solvent and 

chain–chain interaction propensities that vary based on the immersing solvent. When water 

surrounds the AuNCs, intermolecular pair correlation functions g(r) show minimal solvent 

structuring and only a single hydrophobic hydration shell emerges around the ligands 

(Figure 6.6a). On the other hand, the well-defined peaks at 0.38 nm, 0.41 nm, and 0.92 nm in 

Figure 6.6b (solid lines) signify that ligands readily interact with ethanol through C –C vdW 

interactions and at least 3 solvation shells form. The C8 carbon on the octanethiol chains is 

solvated by ethanol primarily through interactions with the methyl groups on the ethanol 

solvent molecules, in a similar fashion to the previously reported solvation of 𝑛-octadecane 

by methanol.559 Comparing the 1st solvation shells, terminal carbon atoms are coordinated 

by either ~11.4 water molecules or ~8.7 ethanol molecules (noting the size difference 

between the molecules). Furthermore, while intermolecular octanethiol interactions in both 

solvent systems yield very similar profiles (Figure  6.6c), the g(r) amplitude differences (e.g. 

compare the peak heights at ~0.5 nm) reveal that the ligands in water display a higher 

probability to network through C–C vdW interactions (compared to the aliphatic ligands in 

ethanol) in order to reduce their solvent exposure. The ‘bundling’ of ligands (as shown in 

Figure 6.5e) resulting from C–C interactions on adjacent ligands consistently appears in 

computational research involving small AuNCs.369,376,513 

To approximate the overall size of the AuNCs, the principal moments of inertia for 

Au25(SC8H17)18 are calculated at every simulation frame and used to fit the AuNCs to an 

ellipsoidal model376 (as described in see Appendix B.1). On average, the gold–ligand 

complexes solvated in water exhibit ~20% smaller volumes compared to the structures in 

ethanol (see Table 6.1). This further supports the findings that ligands in water favour self-

interactions by collapsing onto the cluster surface to maximise hydrophobic shielding, while 

in ethanol, octanethiol freely interacts with the solvent to adopt extended conformations. 

Although there is slightly larger standard deviation of the average volume in ethanol (Table 

6.1), it is ascertained through the root-mean-square atomic fluctuations of sulphur and 

carbon atoms on each octanethiol chain that there is minimal difference in aliphatic chain 

flexibility on the gold surface as a consequence of solvent (see Figure 6.7). 

 

Table 6.1 | Average Au25(SC8H17)18 dimensions determined by an ellipsoid model.  

Solvent a (nm) b (nm) c (nm) Volume (nm3) 

Water 1.42 ± 0.09 1.05 ± 0.07 0.87 ± 0.05 5.35 ± 0.22 

Ethanol 1.39 ± 0.07 1.17 ± 0.06 0.96 ± 0.07 6.56 ± 0.36 
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Figure 6.6 | Octanethiol–solvent and octanethiol–octanethiol distribution functions. The plots in (a) 
and (b) are the radial distributions of water (solid=oxygen, dashed=hydrogen) and ethanol solvents 
(solid=methyl carbon, dashed=oxygen) with respect to the terminal carbon atoms on the ligands (C8), 
respectively. The peaks indicate 1 hydrophobic hydration shell formed in water versus at least 3 solvation 
shells in ethanol. (c) Ligand–ligand distribution (all intermolecular carbon pairs). 

 

     

Figure 6.7 | Average carbon and sulphur atomic root-mean-square fluctuations. The black lines are 
ensemble averaged RMSFs (y-axes) with standard deviation error bars, whereas the coloured lines are 
the RMSFs for the 18 octanethiol ligands per system × 3 simulations. 
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6.4 Discussion and Conclusions 

It is proposed from the MD results that the larger volume and conformational differences of 

the octanethiol ligand-layer in ethanol (compared to water) are what encourage the 

evacuation of the AuNCs from the small (~2.5 nm) MS pores in experiments where QRs are 

transferred from aqueous to ethanol solvent. From a strictly geometric perspective, there 

are two ways in which the AuNCs can be situated in the cylindrical pores; with their major 

semi-axis 𝑎 parallel to the pore opening (Figure 6.8a) or perpendicular to it (Figure 6.8b). 

Therefore, if the Au25(SC8H17)18 structures obtained from each MD frame are considered to 

be rigid ellipsoids that do not interact with silica, criteria can be established to approximate 

the likelihood of the AuNCs being an appropriate size to reside in the MS pores. Figure 6.8c 

and d provide two exemplar structures taken from MD to visually show these criteria. It is 

determined that the natural nanocluster sizes observed in ethanol are almost certainly too 

large to adequate fit inside the pores, whereas in aqueous hydration the MS is expected to 

be clogged with AuNCs (Table 6.2). It is therefore probable that a steric–kinetic driving 

force compels the Au25(SC8H17)18 complexes to abandon the narrow confinement of the 

silica pores when the QRs are placed in an ethanol solution and the elongation of the 

octanethiol ligands is also likely to aid this migration process. It is also noted that the 

extension of alkanethiol chains in organic solvents has previously been reported for 

Au25(SC𝑛H2𝑛+1)18 ligands in benzene376 and 𝑛-octadecane molecules in methanol.559 

 

 

Figure 6.8 | Schematic illustration of proposed nanocluster ‘fit’ in silica pores. Cartoon showing an 
ellipsoid situated inside the cylindrical MS pore with its major semi-axis (a) parallel or (b) perpendicular 
to the pore opening. Example frames where the ‘rigid’ AuNC ellipsoid will not fit in the pore (c), or may fit 
in the pore (d) if oriented correctly. 

 

2.5 nm 

2  = 2.68 nm 

2c = 2.15 nm 

2  = 2.54 nm 

2  = 2.95 nm 

2c = 1.85 nm 
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To complement and substantiate these findings, future work includes MD of multiple AuNCs 

in ethanol and water solutions. Simulations of this kind will provide information on the 

tendency for these AuNCs to aggregate in the different solvents.  Furthermore, modelling of 

an amorphous silica pore with single AuNCs and multiple AuNCs in each solvent is expected 

to be even more insightful. Both of these suggested directions are expected to pose 

significant challenges to ensure potentials between components in the systems are 

adequately and correctly represented to describe the molecular level interactions.  

To elucidate how AuNCs in the QR assembly affects DOX drug loading and releasing profiles 

(Figure 6.2), several MD simulations are intended as future work. First, DOX is to be 

simulated free in aqueous and PBS solutions, i.e. in the absence of gold and silica, to explore 

the diffusion process of the drug during loading and delivery. Then, equilibrated structures 

from MD simulations of Au25(SC8H17)18 in water will be used to investigate the spontaneous 

binding of single (and multiple) DOX molecules to the octanethiol-coated AuNCs. Finally, 

DOX–AuNC complexes will be placed in PBS solution to investigate if spontaneous 

desorption occurs during the drug-delivery phase of the experimental protocol.  

While these simulations containing DOX constitute future work, comments can still be made 

regarding the expected molecular interactions and the implications these might have to 

clarify the empirical systems. The anthracycline doxorubicin molecule contains two main 

moieties that are likely to be important for its interactions with the AuNCs, AuNPs, and silica 

surfaces in the QR constructs. The first is the anthracene functional group (the three fused 

benzene rings) that presents a large hydrophobic surface area, and the second is the 

hexosamine sugar group that contains a protonated (positively charged) amine at 

physiological pH (pKa ~8.2). To gain an impression of the size of DOX, Figure 6.9 shows the 

drug molecule placed to scale next to an equilibrated AuNC structure (with water hidden). 

The increase in drug loading for gold-containing QRs is likely due to the anthracene group 

on DOX hydrophobically interacting with the octanethiol-coatings on the AuNCs/AuNPs, and 

the positively charged amine on DOX is expected to contribute to pointed electrostatic 

interactions with the silica surface and probably slow its release from the QRs. These 

hypothesises will be tested through the MD simulation protocols described.  

In conclusion, this chapter has presented classical MD investigations that examine the 

properties of octanethiol-protected Au25 nanoclusters to provide valuable molecular-level 

insight into experimentally relevant systems. Through simulations in different solvents, 

structural properties are obtained that help to explain empirical results and illustrate why 

AuNCs are present in MS pores when the QRs are solvated in water as opposed to ethanol. 
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Table 6.2 | Criteria and evaluated likelihood for AuNC confinement in silica pores.*  

Likelihood of fitting in pore Criteria† Water‡ Ethanol‡ 

Certain (2𝑏 + 0.4 nm) < (2𝑎  + 0.4 nm) < 2.5 nm 0.00 % 0.00 % 

Possible (2𝑏 + 0.4 nm) < 2.5 nm < (2𝑎 + 0.4 nm) 53.53 % 3.31 % 

Impossible 2.5 nm < (2𝑏 + 0.4 nm) < (2𝑎 + 0.4 nm) 46.47 % 96.69 % 

*2.5 nm silica pores. 
†0.4 nm is added to account for vdW overlap, i.e. ~0.2 nm on each wall and ~0.2 nm on semi-axes length 
‡Gathered from 270 ns of data (45,000 frames × 3 independent trajectories). 

 

 

Figure 6.9 | Size comparison of a doxorubicin molecule and Au25(SC8H17)18. (a) The DOX molecule 
with arrows pointing to the hydrophobic anthracene group and the positively charged NH3

+ moiety. (b) 
Representative equilibrated frame taken from the AuNC simulations in water. Gold (orange), sulphur 
(yellow), carbon (teal), nitrogen (blue), oxygen (red), and hydrogen (white) atoms are shown. 
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Chapter 7:  

Conclusions and Perspectives 
 

 

7.1 Research Summary, Limitations, Future Work 

In this thesis, computational modelling techniques have been employed to investigate the 

physicochemical properties of gold nanomaterials interfaced with biological molecules. The 

work presented is motivated and performed in direct collaboration with experimental 

research that aims to develop innovative and superior in vivo and in vitro gold-based 

biomedical devices. These fascinating and advantageous materials constructively exploit the 

unique properties of gold nanomaterials integrated with biological functionalities (Chapter 

1) to create biosensors and drug-delivery vehicles that are controllable, selective, and 

sensitive. However, to successfully design bio-nanomaterials for specific applications, it is 

helpful to accompany careful experimental parameter optimisation with theoretical 

modelling perspectives that are able to complement, clarify, and predict experimental 

findings at spatial and temporal resolutions technologically unattainable in the laboratory. 

Multiscale in silico strategies have been, and will continue to be, invaluable tools for 

exploring interactions at the bio–nano interface2 in order to elucidate how materials and 

their properties adjust in biological media and how the components of biological milieu 

respond to the presence of gold nanomaterials (Chapter 2). This thesis has used molecular 

modelling approaches (Chapter 3) to investigate three distinct functionalised gold 

nanomaterial systems: Au(111) coated by various 16 amino-acid peptide-monolayers; 

Au25(SP)18 nanoclusters (NCs, where P = hexapeptides); and octanethiol-coated Au25 NCs. 

In Chapter 4, classical molecular dynamics (MD) was used to establish the relationship 

between the complex peptide-topographies displayed on gold surfaces and the experimental 

performance of plasmonic gold nanoparticle (AuNP) biosensors, which generate a 

colourimetric signal upon antibody-induced AuNP aggregation. Through characterising the 

peptide–peptide, peptide–gold, and peptide–solvent interactions occurring in the systems, it 

was found that monolayer conformations are intimately related to amino acid composition 

and location within individual peptide sequences. Aromatic tyrosine residues endeavour to 

reduce their solvent exposure and epitaxially interact with the planar gold surface, whereas 

electrostatic effects between charged residues encourage the dispersion of peptide chains, 

and solvent molecules dynamically shield like charges in adjacent peptides. The competition 

of these interactions collectively produces different monolayer conformations and these are 
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then correlated to the empirical capacity each system has to form AuNP aggregates upon 

exposure to peptide-specific antibodies.  

To examine how the epitope-peptide conformations are likely to influence AuNP binding 

with antibody molecules, immuno-dominant residues in each epitope-monolayer were 

predicted from previously published literature and general features that are expected to 

contribute to advantageous epitope–antibody interactions were explored. Two features 

assumed to promote antibody binding are: (1) the solvent exposure of immuno-dominant 

residues to form strong contacts with an antibody’s paratopes; and (2) the elongation and 

dispersion of peptide chains within the monolayers to enable the steric coordination of 

antibodies around the immuno-dominant residues. While MD simulations reveal that the 

best and worst experimentally performing antibody–epitope–gold systems satisfy and fail 

these criteria respectively, in the context of antibody-induced AuNP cross-linking several 

other factors need to be considered. Although epitope–antibody binding may be presumed 

from the equilibrium monolayer structures, immunoglobulin molecules may bind with both 

valences to the same AuNP, they may radically alter the monolayer structure and cause a 

‘butterfly effect’, or they may be fundamentally impaired to bivalent cross-linking. 

Computational limitations also need to be identified, appreciated, and reflected upon. For 

example, improvements in conformational sampling may provide a better description of 

how the monolayers behave, a three-point water model may not be sufficient to describe 

complex water interactions, curvature of the nanoparticles is neglected, and idealised 

(frozen) crystallographic Au(111) facets dominant for the NPs of the size considered are 

employed while other less dominant facets, such as Au(100), are ignored. Even though each 

of these can influence the microstructure of the monolayers, the overall observed trends are 

expected to remain consistent. In addition, the empirical setup is designed to provide a 

proof-of-concept for this type of biosensing material and in reality conditions such as 

temperature, pressure, system size, and realistic physiological environment (e.g. the 

crowded macromolecular milieu of various bodily fluids) need to be better approximated 

from both an experimental and theoretical perspective to assess clinical applicability. Ideas 

for continuation of this research include modelling the monolayer–gold systems interacting 

with antibodies (as their experimental characterisation improves) to better understand 

AuNP cross-linking processes, and investigating the aggregation between multiple AuNPs. 

Chapter 5 utilised MD in conjunction with quantum mechanical (QM) calculations to study 

how peptide-ligand conformations and the photoluminescence (PL) of Au25 NCs are related. 

First, general properties of Au25(SP)18 such as hydrodynamic radii and volumes are obtained 
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with MD and used to describe the overall size of the AuNC systems, in good agreement with 

experimental characterisations. Then, properties of Au25(SP)18 with different hexapeptide-

ligands were systematically investigated to clarify how the distribution of amino acids 

around the gold–sulphur NC cores (Au25S18), peptide conformation, structuring/dynamics of 

water molecules, and the formation of hydrogen bond networks each correlate with the 

experimentally observed AuNC PL. Geometry optimisation of Au25(Cys)18 (with and without 

acetyl caps) using QM shows that N-terminal acetylation redistributes electron charge 

within the systems so that partial atomic charges on Au25S18 are collectively ~1e− more 

negative. Moreover, the hypothesis that aspartate located close to the gold core may result 

in PL quenching is explored using an a posterior classical approach to estimate the energetic 

cost for electron removal from aspartate, and four single-point QM calculations of Au25(SP)18 

in explicit solvent (between ~1800–3600 atoms) are conducted. These analyses reveal to a 

first-order approximation that electron transfer between aspartate and gold may be a 

reasonable mechanism to rationalise quenching in Au25(SP)18 systems, with frontier orbitals 

found at an appropriate energy separation and geometric location to facilitate this.  

Key findings from the chapter suggest that the local chemical environment near the gold 

core is crucial for quenching or enhancing AuNC PL. In particular, the enhancement of AuNC 

fluorescence intensity in these systems is proposed to be achievable through several 

mechanisms. (1) Replacement of electron-withdrawing groups (e.g. NH3+) with partial 

electron density donating moieties (e.g. C=Ö: or aromatic groups) in the vicinity of Au25S18. 

(2) Removal of residues such as aspartate (and possibly histidine) that may be engaged in 

photoinduced electron transfer to gold. (3) Designing of ligands to reduce the propensity of 

water penetrating into the peptide layers where PL can be adversely affected. (4) Lowering 

solution pH to affect the protonation state of titratable groups (empirically suggested).  

Several computational deficiencies are acknowledged with the approaches taken to 

accomplish this work, however the insight provided from these calculations is well 

correlated with experimental results, informative, and non-intuitive. Nonetheless, for the 

MD simulations there are recognised force field (FF) issues such as utilising a neutral partial 

atomic charge description of gold atoms, the inability for the AuNCs to reconstruct, 

neglection of polarisation effects, simplistic water models, and a potentially insufficient van 

der Waals description of Au–peptide interactions that are all expected to affect 

computational accuracy. Furthermore, polydispersity in the experimental samples, different 

gold models (e.g. charge states, shapes, and sizes), supplementary QM sampling with more 

diverse systems, and a better treatment of gold dispersion interactions (for ONETEP) are all 

essential improvements. With recent advances in computational hardware and high-level 
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density functional theory (DFT) methods, a better electronic structure understanding of 

biologically relevant nano–bio systems in realistic environments should become feasible, 

and in turn this will facilitate the improvement of FF models (including reactive FFs).  

Besides some of the abovementioned suggestions, to expand the scope of this work 

simulations can be conducted with multiple nanoclusters in a single cell to look at effects of 

aggregation and a higher levels of QM theory (e.g. time-dependent DFT) should be consulted 

to properly investigate electronic excitation and optical properties. Additionall y, there have 

been recent developments of specific FF for Au25 and other sized clusters (Section 3.3.3) 

that would be ideal to employ for MD of these systems and will likely be a crucial 

advancement for other applications such as investigating AuNC-induced catalysis. 

In the penultimate chapter of this thesis, Chapter 6, MD was used to examine the properties 

of octanethiol-protected Au25 nanoclusters, which are intrinsically hydrophobic and form a 

constituent component of a gold–mesoporous silica (MS) composite material called a 

‘quantum rattle’ (QR). Simulations in this chapter are conducted to explain why AuNCs 

situated inside the cylindrical mesopores of the QRs easily and readily evacuate from the 

silica pores when solvated in ethanol but not water. Results from this study highlight that an 

increase in volume and conformational elongation of the octanethiol ligand-layer in ethanol 

(compared to water) are likely to encourage the evacuation of the AuNCs from the small 

(~2.5 nm) MS pores. It is suggested that these differences lead to a steric–kinetic driving 

force that compels the Au25(SC8H17)18 complexes to abandon the narrow confinement of the 

pores when the aqueously solvated QRs are transferred to an ethanol solution. 

While the gold-passivating ligands in this chapter are shorter and less chemically intricate 

than the peptides used in Chapter 5, similar force field issues and model approximations are 

expected to influence the ability of the MD computations to accurately represent the 

empirical setup. Primarily, the inclusion of partial charges on gold atoms, better solvent 

models, and further simulations of the size, polydispersity, and morphology of the AuNCs 

will be beneficial to improving the quality of the computational findings. The natural 

progression of this project will be testing the hypotheses offered in Section 6.4 regarding 

molecular interactions occurring between Au25(SC8H17)18 and the chemotherapy drug 

doxorubicin (DOX) and future considerations involve simulations with a combination of 

DOX, alkanethiol-AuNCs, and an amorphous silica pore (to represent MS). 

In conclusion, Chapters 4–6 predict AuNP and AuNC behaviours, reveal structure-property 

relationships, and guide the effective engineering of innovative biomedical devices. The 

outcomes of this thesis contribute to the overall understanding of these organic –inorganic 
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materials in targeted applications through exploring the intricate interactions that occur on 

the nanoscale. The approaches used throughout this research are expected to prove broadly 

useful in the future design of novel bioassays. This work also highlights how the synergy 

between theoretical and experimental approaches produces translational research to 

facilitate the development of biocompatible gold nanomaterials for applications in the fields 

of bioimaging, biosensing, drug delivery, and biomedicine in general.  

7.2 Perspective on the Current State of the Au–Bio Simulation Field 

As described in several extensive reviews,2,126,336,345,560-563 computational approaches are 

widely accepted, essential tools that provide in-depth characterisation, non-intuitive 

relationships, and fundamental understandings into nanoscale materials. In the context of 

atomistic modelling techniques, three main challenges are faced on the quest to produce 

accurate and significant Au–bio simulations that are directly relevant to experiment. 

1. The careful development and validation of FFs that are appropriate for specific gold 

nanostructures (e.g. surfaces, AuNPs, and AuNCs) and contain interatomic potentials that 

reasonably capture the interactions gold substrates have with biomolecular species (e.g. 

amino acids, nucleic acids, lipids, water, etc.), including polarisation effects.  

2. Associated to this, the availability of experimentally complex atomic-scale structures of the 

gold substrates and other constituent components in the system are needed. These should 

be physically realistic, well-resolved, and meaningful to the experimental conditions in 

order to build the initial coordinates/models of a simulation. This involves a full molecular 

topology of the system that includes atomic composition, general structural arrangement of 

the substrate (e.g. “staple” motifs in AuNCs), typical pairwise bond and angle distributions, 

protonation states of titratable groups appropriate to the solution pH, and any other 

potential interfacial solvent structuring affects.  

3. Extensive and comprehensive conformational sampling of the system’s potential energy 

landscape is needed to generate statistically relevant structural ensembles that are useful 

for extracting realistic kinetic and thermodynamic quantities from gold–bio interfacial 

simulations. This not only requires an increase in computational power, it also necessitates 

more efficient algorithms and approaches that are able to spontaneously evolve a system to 

biologically relevant timescales. 

Advancement of experimental technologies will also enable molecular simulation progress. 

Despite the hurdles and limitations faced, multiscale molecular modelling is able to probe 

the nano–bio interface in ways that are unachievable through any other techniques, and 

therefore these methods will remain indispensable and relevant for many years to come.  
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Appendix A:  

Force Field Parameterisations 

Dr Andrew Christofferson is acknowledged for the paramertisations in Section A.1. 

 

 

A.1 Parameters for Au–S–C–C Dihedral 

In most force fields (FF), the change in energy associated with rotating four atoms A–B–C–D 

about the dihedral bond B–C is represented by a cosine function of the form: 

 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 =
𝑉𝑛

2(𝑖𝑑𝑖𝑣)
[1 + cos(𝑛𝜃 − 𝛾)] (A.1) 

The parameters that govern the relationship between energy Edihedral and angle θ are: barrier 

height (amplitude) Vn; phase shift (offset) γ; and periodicity n. Additionally, in the AMBER 

FF564 there is an extra “idiv” term, which can be thought of as the ‘multiplicity’ of the 

dihedral, i.e. how many times that dihedral appears. This term is typically set to 1 except for 

generic dihedrals that contain wildcard atoms (e.g. *–C–C–*). The typical parameterisation 

strategy for proper dihedrals is to first perform a potential energy (PE) scan using quantum 

mechanical (QM) calculations at the MP2/6-31G* level, and then attempt to replicate the 

resulting curve using Equation A.1. The missing dihedral for the FF used in Chapters 4 and 5 

is the Au–S–C–C dihedral in Figure A.1. In the FF, gold atom types are defined based on if 

they are form part of the Au13 icosahedral core (AuC) or the Au2S3 dimeric staples (AuS), 

likewise sulphur atoms that are only attached to AuS are termed “staple-suphur” (SS) and 

those attached to AuC are termed “core-sulphur” (SC). Therefore, two dihedrals need to be 

parameterised: AuC–SC–CT–CT and AuS–SS–CT–CT, where CT is any sp3 carbon. 

Since the distance between gold atoms are rigidly maintained during molecular dynamics, 

gold positions are also kept frozen in the dihedral scan. Apart from the gold atom positions 

and the Au–S–C–C dihedral itself, all other coordinates are geometry optimised. QM 

calculations were performed using Gaussian09.469 The first step was a full optimisation 

where all coordinates except the gold atom positions were free to move, then a PE scan was 

performed on the Au–S–C–C dihedral with 36 steps and a step increment of 10°, for a total 

scan of 360°. This procedure was also done for the AuS–SS–AuS and AuC–SC–AuS 

configurations. Once the QM scans were obtained, parameters were determined for 

Equation A.1 to obtain the best fit for the QM data (Figure A.2). 
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Figure A.1 | Au–S–C–C dihedral examined in dihedral scanning.   

 

 

Figure A.2 | Comparison of the quantum mechanical potential energy scan and the derived 

molecular modelling parameters. Closest existing parameters from Amber and dihedral from 

Banerjee et al. are shown for comparison. 



Appendix A: Force Field Parameterisations 

 

158 

Each QM PE scan represents two dihedrals; one for each gold type. Therefore, the molecular 

modelling energy must be a linear combination of these two dihedrals: EAu1 + EAu2
, where 

the dihedral angle for Au2 is offset from Au1 by a fixed amount; 97° for AuS–SS–AuS and 90° 

for AuC–SC–AuS (e.g. if θ1 = 330° then θ2 = 67° for AuS-SS-AuS). Final parameters for AuS-

SS-AuS and AuC-SC-AuS are given in Table A.1. 

Table A.1 | Final parameters for the Au–S–C–C dihedral.  

AuC–SC–CT–CT Vn /2 γ n idiv 

Andy 0.75 3 0 0 

Additional 0.45 1 180 0 

Amber 0.75 3 0 3 

Banerjee 0.16 1 0 0 

AuC–SC–CT–CT Vn /2 γ n idiv 

Andy 0.95 3 0 0 

Additional 0.35 1 180 0 

Amber 0.75 3 0 3 

Banerjee 0.16 1 0 0 

 

To provide a better fit for the QM PE dihedral scan, additional parameters were necessary. 

Therefore, the total equation for the AuS–SS–AuS dihedral would be  

EAuS-S-AuS = EAuS_Andy + EAuS_Additional + EAuS_Andy_(θ+97) + EAuS_Additional_(θ+97) 

The total equation for the AuC-S-AuS dihedral would be  

EAuC-S-AuS = EAuS_Andy + EAuS_Additional + EAuC_Andy_(θ+90) + EAuC_Additional_(θ+90) 

Larger fragments were also constructed (Figure A.3) and the same approach as described 

previously was used for the AuS-S-AuS dihedral. The plot (Figure A.4) indicates a much 

higher rotational barrier, but a similar global minimum. This greater barrier is most likely 

due to other interactions (van der Waals, etc) other than the dihedral itself. 
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Figure A.3 | Larger fragment for dihedral scan.  

 

 

Figure A.4 | Dihedral scan of larger fragment with smaller fragment for comparison.   
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A.2 Partial Atomic Charges on SC8H17 

Two starting structures of H17C8S–SC8H17 were created, one linear (configuration I) and one 

with a kink (configuration II), then Gaussian09469 with B3LYP/6-31* was used to produce 

geometry optimised structures (I' and II', see Figure A.5). A single point HF/6-31* 

calculation was performed on each configuration to produce an electrostatic potential (ESP) 

that was then used to determine atomic partial charges with the restrained electrostatic 

potential energy (RESP), consistent with the parameterisation approach of AMBER.565 Since 

the charges generated from the two conformer structures were similar, the final charges 

used in molecular dynamics were taken from configuration I and are displayed in Figure A.6. 

See Section A.3 for a more comprehensive description of the approach taken to determine 

atomic charges. 

 

 

 
 

Figure A.5 | H17C8S–SC8H17 geometries before and after geometry optimisation .  

 

Figure A.6 | Final SC8H17 partial charges used in molecular dynamics simulations.  

I' I 

II II' 
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A.3 General Amber Force Field Parameterisation of Doxorubicin 

1. Doxorubicin (DOX) structure taken from the Protein Data Bank ligand chemical component 

of 4DX7 (see DOI: 10.1039/c3sm52499j  or 10.1039/c5sm01028d). 

2. Discovery Studio 3.5 Visualiser555 software was used to add hydrogen atoms and ensure 

NH3+ protonation state leaving DOX with a net charge of +1 since amine is protonated at 

physiological pH (see Figure A.7). 

 

Figure A.7 | Chemical schematic of doxorubicin at physiological pH.  

3. GaussView used to add and correct for any missing bonds, and make .gjf file (Figure A.8). 

  

Figure A.8 | Before (left) and after (right) correcting doxorubicin bonds.   

4. Gaussian (.gjf) file is edited to have net charge = 1, multiplicity = 1 and correct file header for 

Gaussian to do geometry optimisation: 

%chk=dox_GeomOpt_B3LYP.chk 

%mem=8000MB 

%NprocShared=16 

# B3LYP/6-31G* geom=connectivity scfcyc=500 opt(maxcycles=500) 

 

5. Geometry optimisation performed. 

6. Checkpoint file (.chk) from geometry optimisation used as input for single-point Hartree–

Fock (HF) calculation. So, new multiplicity, charge, and file header used for .gjf is: 

%chk=dox_SPE_HF.chk 

%mem=8000MB 

http://dx.doi.org/10.1039/c3sm52499j
http://dx.doi.org/10.1039/c5sm01028d
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%NprocShared=16 

# HF/6-31G* geom=checkpoint scfcyc=500 guess=read Pop=MK IOp(6/50=1) 

IOp(6/33=2) IOp(6/42=6) 

 

Title Card Required 

 

1 1 

 

7. Single-point energy calculation performed. 

8. ESP output from HF calculation used as input to determine RESP charges: 

antechamber -i dox_AMBERinp.out -fi gout -o dox_GAFF.prep -fo prepi  

-c resp 

9. Converted prep file to mol2 and opened in DiscoveryStudio (Figure A.9) to visualise and 

check atom types, charges and optimised structure of DOX: 

antechamber -i dox_GAFF.prep -fi prepi -o dox_GAFF.mol2 -fo mol2 -at 

gaff 

 

 

Figure A.9 | Final doxorubicin structure and partial charges.   

10. Used parmchk2 to make sure all bonds are defined assigning anything that may be missing: 

parmchk2 -i dox_GAFF.mol2 -f mol2 -o dox_GAFF.frcmod -a Y 

11. Used tleap to build an AMBER topology. 

tleap 

  source leaprc.gaff 

  DOX = loadmol2 dox_GAFF.mol2 

  list 

  check DOX 

  loadamberparams dox_GAFF.frcmod 

  check DOX 

  set DOX box {30.0 30.0 30.0} 

  saveoff DOX dox.lib 

  saveamberparm DOX dox.prmtop dox.inpcrd 

  quit 
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Appendix B:  

Non-standard Analysis Techniques 

 

 

B.1 Moment of inertia to determine AuNC size/shape 

The moment of inertia (MOI) is a quantitative measure of a body's resistance to rotational 

acceleration about an axis and depends on the distribution of mass in the body with respect 

to that axis. In other words, depending on the axis of rotation defined for a system, the M OI 

will describe how hard it will be to rotate all atoms around that axis. It essentially gives a 

measure of where mass is distributed in three dimensions in reference to an axis. For spatial 

movement of a body, the MOI is defined by a 3 × 3 inertia matrix, or inertia tensor (𝑰): 

𝑰 = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] =∑[

𝑚𝑖(𝑦𝑖
2 + 𝑧𝑖

2) −𝑚𝑖𝑥𝑖𝑦𝑖 −𝑚𝑖𝑥𝑖𝑧𝑖
−𝑚𝑖𝑦𝑖𝑥𝑖 𝑚𝑖(𝑥𝑖

2 + 𝑧𝑖
2) −𝑚𝑖𝑦𝑖𝑧𝑖

−𝑚𝑖𝑧𝑖𝑥𝑖 −𝑚𝑖𝑧𝑖𝑦𝑖 𝑚𝑖(𝑥𝑖
2 + 𝑦𝑖

2)

]

𝑛

𝑖=1

 

where 𝑚𝑖 is the mass of the 𝑖𝑡ℎ particle at position (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) from the axis of rotation and 𝑛 

is all particles in the rigid body.  

For all 𝑰 there is a rotation matrix [𝑄] that will produce a diagonalised tensor �̃�: 

𝑰 = [𝑄][𝐼][𝑄𝑇] 

𝑤ℎ𝑒𝑟𝑒 �̃� = [

𝐼1   

 𝐼2  

  𝐼3

] 

The three columns that make up the rotation matrix [𝑄] are the eigenvectors of the 𝑰 and are 

mutually orthogonal unit vectors that define the directions of the principal axes of the body. 

The important thing about the principal axes is that if the rigid body rotates about any one 

of them, the angular momentum and angular velocity vectors of the body become parallel 

and the inertia tensor can be replaced with a single scalar moment of inertia. These are the 

constants 𝐼1, 𝐼2 and 𝐼3 and are the eigenvalues of 𝑰, called the principal moments of inertia. 

Two of these principal moments are the maximum and minimum moments of inertia of the 

body about any axis and the third is somewhere between the two. 
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Consider the inertia tensor for an ellipsoid of uniform density centred at the origin with its 

axes along the x-, y-, and z-axes shown below: 

𝑰𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 =
𝑀

5
[

(𝑏2 + 𝑐2)   

 (𝑎2 + 𝑐2)  

  (𝑎2 + 𝑏2)

] 

where 𝑀 is the total mass of the ellipsoid and 𝑎, 𝑏 and 𝑐 are the major, intermediate and 

minor semi-axes lengths of the ellipsoid (see Figure 5.5 or 6.8).  

By correlating �̃� to 𝑰𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑  the semi-axes lengths of a representative ellipsoid of the Au–

ligand complexes can be determined: 

�̃�𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 𝑰𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑  

[

𝐼1   

 𝐼2  

  𝐼3

] =
𝑀

5
[

(𝑏2 + 𝑐2)   

 (𝑎2 + 𝑐2)  

  (𝑎2 + 𝑏2)

] 

So, 

𝐼1 =
𝑀

5
(𝑏2 + 𝑐2), 𝐼2 =

𝑀

5
(𝑎2 + 𝑐2), 𝐼3 =

𝑀

5
(𝑎2 + 𝑏2) 

Therefore, 

𝑎 = √
5

2𝑀
(𝐼2 + 𝐼3 − 𝐼1), 𝑏 = √

5

2𝑀
(𝐼3 + 𝐼1 − 𝐼2), 𝑐 = √

5

2𝑀
(𝐼1 + 𝐼2 − 𝐼3) 

However, the Au25(SC8H17)18 and Au25(SP)18 nanoclusters are far from uniform density 

(heavy gold core surrounded by light organic molecules) and hence the representative 

uniform density ellipsoids using all atoms underestimates nanocluster size (Figure B.1). 

Instead the MOI (of the total complex) is deconvoluted into contributions from the gold 

atoms and the ligand molecules separately, leading to two ellipsoids (blue and green, Figure 

B.2) of approximately uniform density. The outer (blue) ellipsoid, only containing ligand 

atoms, is indicative of the apparent AuNC size and comparing against many snapshots from 

MD suggests that the monolayer-protected nanoclusters’ size and shape can be satisfactorily 

described with ellipsoids. 
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Figure B.1 | Example ellipsoid of the whole complex. The ellipsoid surface (red) underrepresents the 
size of the nanocluster because it assumes the complex is uniformly dense. Gold (orange), sulphur 
(yellow), carbon (cyan), hydrogen (white) atoms are shown for Au25(SC8H17)18. 

 

 

 

Figure B.2 | Accurate ellipsoid representation of dynamic nanocluster size. (Left) Au25S18 and ellipsoidgold 
surface (green). (b) Au25(SC8H17)18 and ellipsoidgold. (c) Au25(SC8H17)18, ellipsoidgold, and ellipsoidligands 

(blue). Atoms are coloured as per Figure B.1. 

 

To deconvolute the MOI, the inertia tensors 𝑰, rotation matrices [𝑄], and diagonalised inertia 

tensors �̃� are separately determined for the total gold-ligand complex, just the ligand atoms 

and just the gold atoms.  

𝑰𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = [𝑄𝑐𝑜𝑚𝑝𝑙𝑒𝑥][𝐼𝑐𝑜𝑚𝑝𝑙𝑒𝑥][𝑄𝑐𝑜𝑚𝑝𝑙𝑒𝑥
𝑇] 

𝑰𝑙𝑖𝑔𝑎𝑛𝑑𝑠 = [𝑄𝑙𝑖𝑔𝑎𝑛𝑑𝑠][𝐼𝑙𝑖𝑔𝑎𝑛𝑑𝑠][𝑄𝑙𝑖𝑔𝑎𝑛𝑑𝑠
𝑇] 

𝑰𝑔𝑜𝑙𝑑 = [𝑄𝑔𝑜𝑙𝑑][𝐼𝑔𝑜𝑙𝑑][𝑄𝑔𝑜𝑙𝑑
𝑇] 

Ellipsoid for just ligand atoms (blue) Ellipsoid for just gold atoms (green) 
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Then it is important to note that while the inertia tensors 𝑰 are in parallel inertial reference 

frames for each different set of atoms, the diagonalised matrices �̃� are not, they’ve each 

undergone different rotations [𝑄] (Figure B.3). 

 

Figure B.3 | Schematic example of the inertial reference frames for inertia and diagonalised 
tensors. Note the difference in both position and rotation. 

The parallel axis theorem is then applied to 𝑰𝑙𝑖𝑔𝑎𝑛𝑑𝑠 and 𝑰𝑔𝑜𝑙𝑑 in order to translate them to 

the same location as the inertial reference for 𝑰𝑐𝑜𝑚𝑝𝑙𝑒𝑥. This requires the vectors between 

the two sets of atoms centre of masses, i.e. 𝒅𝑙𝑖𝑔𝑎𝑛𝑑𝑠 and 𝒅𝑔𝑜𝑙𝑑.  

The parallel axis theorem sates that if 𝑰 is the inertia around an object of mass 𝑚 and  𝑰′ is 

the inertia around a parallel axis at distance 𝑑 away then: 

𝑰′ = 𝑰 +𝑚𝒅2 

 So, 

𝑰′𝑙𝑖𝑔𝑎𝑛𝑑𝑠 = 𝑰𝑙𝑖𝑔𝑎𝑛𝑑𝑠 +𝑚𝑙𝑖𝑔𝑎𝑛𝑑𝑠 ∙ 𝒅𝑙𝑖𝑔𝑎𝑛𝑑𝑠
2 

𝑰′𝑔𝑜𝑙𝑑 = 𝑰𝑔𝑜𝑙𝑑 +𝑚𝑔𝑜𝑙𝑑 ∙ 𝒅𝑔𝑜𝑙𝑑
2 

Now that the inertia tensors are all in the same inertial reference frame: 

𝑰𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 𝑰′𝑙𝑖𝑔𝑎𝑛𝑑𝑠 + 𝑰′𝑔𝑜𝑙𝑑 

Finally, �̃�′𝑙𝑖𝑔𝑎𝑛𝑑𝑠 and �̃�′𝑔𝑜𝑙𝑑 need to be at the same rotation as the original �̃�𝑐𝑜𝑚𝑝𝑙𝑒𝑥, i.e.: 

�̃�′𝑙𝑖𝑔𝑎𝑛𝑑𝑠 = [𝑄𝑐𝑜𝑚𝑝𝑙𝑒𝑥
𝑇][𝐼′𝑙𝑖𝑔𝑎𝑛𝑑𝑠][𝑄𝑐𝑜𝑚𝑝𝑙𝑒𝑥] 

�̃�′𝑔𝑜𝑙𝑑 = [𝑄𝑐𝑜𝑚𝑝𝑙𝑒𝑥
𝑇][𝐼′𝑔𝑜𝑙𝑑][𝑄𝑐𝑜𝑚𝑝𝑙𝑒𝑥] 

Finally, from the diagonal terms 𝐼′1, 𝐼′2 and 𝐼′3 of �̃�′𝑙𝑖𝑔𝑎𝑛𝑑𝑠 and �̃�′𝑔𝑜𝑙𝑑 the semi-axes lengths 𝑎, 

𝑏 and 𝑐 can be determined from the representative ellipsoids (just containing ligand atoms) 

𝒅𝑙𝑖𝑔𝑎𝑛𝑑𝑠  

x 

y 

z 𝑰𝑐𝑜𝑚𝑝𝑙𝑒𝑥  

x' y' 

z' 

�̃�𝑐𝑜𝑚𝑝𝑙𝑒𝑥  
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but aligned along the principal axes of the total complex. From this properties such as 

ellipsoid volume and sphericity (c/a) can be determined. 

𝑉𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 =
4

3
𝜋𝑎𝑏𝑐 

B.2 Electrostatic Potential Acting on Subset of Molecular System 

To gain a classical, first-order approximation of the energy needed to remove an electron 

from an aspartate’s carboxylate group, the system’s total potential energy is subtracted 

from an a posteriori calculated total potential energy where a single electron charge has 

been neglected. While configurations are unable to respond to the charge removal in this 

approach and the electrostatic potential around both oxygen atoms is assumed to be 

constant, the energy difference obtained is still useful to crudely and simply evaluate how 

much the potential energy changes upon possible aspartate charge transfer.   

For situations where a smaller energetic penalty is paid, it may be more likely for an 

electron to migrate from aspartate to gold and encourage PL quenching. The aim of this 

analysis is simply to classically explore if it is electrostatically more feasible for aspartate to 

lose an electron in different environments (e.g. close to Au 25S18). Below is a description of 

the approach taken to achieve this. The following nomenclature will be used in this s ection: 

 OLD – input/output files from the original MD run 

 NEW – input/output files from mdrun –rerun 

 MOD – to label input/output files where the charge has been modified 

1. Duplicate the (OLD.top) topology file and remove a total of 1e− charge equally from 

the partial charge of the atoms of interest (NEW_MOD.top). 

In this case, the carbonyl oxygen atoms (OD1, OD2) of a particular ASP residue are perturbed 

by adding 0.5e− to each atom. 

OLD.top 

... 
 [ atoms ] 

;   nr       type  resnr residue  atom   cgnr     charge       mass  t 

... 
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; residue   5 ASP rtp ASP  q -1.0 

934          N      5    ASP      N    934    -0.5163      14.01 

935          H      5    ASP      H    935     0.2936      1.008 

936         CT      5    ASP     CA    936     0.0381      12.01 

937         H1      5    ASP     HA    937      0.088      1.008 

938         CT      5    ASP     CB    938    -0.0303      12.01 

939         HC      5    ASP    HB1    939    -0.0122      1.008 

940         HC      5    ASP    HB2    940    -0.0122      1.008 

941          C      5    ASP     CG    941     0.7994      12.01 

942         O2      5    ASP    OD1    942    -0.8014         16 

943         O2      5    ASP    OD2    943    -0.8014         16 

944          C      5    ASP      C    944     0.5366      12.01 

945          O      5    ASP      O    945    -0.5819         16 
... 

NEW_MOD.top 

... 

 [ atoms ] 

;   nr       type  resnr residue  atom   cgnr     charge       mass  t 

... 

; residue   5 ASP rtp ASP  q -1.0 

934          N      5    ASP      N    934    -0.5163      14.01 

935          H      5    ASP      H    935     0.2936      1.008 

936         CT      5    ASP     CA    936     0.0381      12.01 

937         H1      5    ASP     HA    937      0.088      1.008 

938         CT      5    ASP     CB    938    -0.0303      12.01 

939         HC      5    ASP    HB1    939    -0.0122      1.008 

940         HC      5    ASP    HB2    940    -0.0122      1.008 

941          C      5    ASP     CG    941     0.7994      12.01 

942         O2      5    ASP    OD1    942    -0.3014         16 

943         O2      5    ASP    OD2    943    -0.3014         16 

944          C      5    ASP      C    944     0.5366      12.01 

945          O      5    ASP      O    945    -0.5819         16 

... 

2. Run grompp on the (NEW_MOD.top) topology file to create a binary (NEW_MOD.tpr) 

topology file using the (OLD.mdp) parameter file. 

grompp -f OLD.mdp -c OLD.pdb -n OLD.ndx -p NEW_MOD.top -o NEW_MOD.tpr 

 

3. Run mdrun -rerun using the previously generated trajectory to produce a new 

binary (.edr) energy file. 

mdrun -rerun uses an input trajectory and (re)calculates forces and energies. Neighbor 

searching will be performed for every frame, unless nstlist is zero (see the .mdp file). 

Do this for both the original unmodified OLD.tpr and the newly created NEW_MOD.tpr.  

mdrun -rerun OLD.xtc -s OLD.tpr -e NEW.edr 

mdrun -rerun OLD.xtc -s NEW_MOD.tpr -e NEW_MOD.edr 

Even though NEW_MOD.tpr is built using OLD.mdp, the energies in NEW_MOD.edr can be at a 

lower accuracy than those of OLD.edr because of how they were calculated: 

; freq to calc energies & pressures (steps) 
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nstcalcenergy           = 10 

whereas, the trajectory (which we are now calculating new energies from) have an accuracy 

that's limited from: 

; freq to write coords to output traj (steps) 

nstxout                 = 1000 

; freq to write coords to xtc traj (steps) 

nstxtcout               = 1000 

For this reason, it is best to also recalculate the energies of OLD.tpr to ensure that NEW.edr 

and NEW_MOD.edr are at the same accuracy. 

4. Use g_energy to calculate the potential energy of the entire system at each frame.  

g_energy -f NEW.edr -o NEW.xvg 

g_energy -f NEW_MOD.edr -o NEW_MOD.xvg 

Example outputs: 

NEW.xvg 

... 

@    title "Gromacs Energies" 

@    xaxis  label "Time (ps)" 

@    yaxis  label "(kJ/mol)" 

@TYPE xy 

@ view 0.15, 0.15, 0.75, 0.85 

@ legend on   

@ legend box on 

@ legend loctype view 

@ legend 0.78, 0.8 

@ legend length 2 

@ s0 legend "Potential" 

81000.000000  -772421.750000 

81002.000000  -772128.562500 

81004.000000  -770502.125000 

81006.000000  -771327.250000 

81008.000000  -771929.687500 

... 

NEW_MOD.xvg 

... 

@    title "Gromacs Energies" 

@    xaxis  label "Time (ps)" 

@    yaxis  label "(kJ/mol)" 

@TYPE xy 

@ view 0.15, 0.15, 0.75, 0.85 

@ legend on 

@ legend box on 

@ legend loctype view 

@ legend 0.78, 0.8 

@ legend length 2 

@ s0 legend "Potential" 

81000.000000  -771783.500000 

81002.000000  -771463.187500 

81004.000000  -769868.875000 

81006.000000  -770668.562500 
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81008.000000  -771313.812500 

... 

 

5. (optional) To find the magnitude of the electrostatic potential (𝑽) at the atoms of 

interest (not reported in this thesis), the potential energy difference (Δ𝑼, before and 

after electron removal) is divided by the summed partial charges (Σ𝒒) of the modified 

groups (and divided again by 96.4869 to convert from kJ⋅mol-1 to eV). 

𝑉 = Δ𝑈/Σ𝑞 × 1/96.4869 = (𝑈after − 𝑈before) /-1.6028 × 1/96.4869 

Note that the electrostatic potential energy is the energy resulting from Coulomb forces 

between a configuration of point charges in a defined system. Therefore, by taking the 

difference between the two total potential energies, NEW and NEW_MOD, the contribution that 

a single electron charge (distributed equally on the two ASP oxygen atoms) provides to the 

total electrostatic potential energy can be calculated. Specifically, the magnitude of this 

difference delivers an indication to how the system’s potential energy responds to the 

removal of 1e− charge, e.g. if electron transfered. This is a simple first-order classical 

approximation of the energy required to remove an electron from the system via ASP.  

By dividing this by the original partial charges on the atoms of interest, the electrostatic 

potential, which is a property of the electrostatic field itself, can be obtained. In other 

words, this approach calculates the electrostatic potential acting on a specific group (OD1, 

OD2) as a result of the cumulative electrostatic influence of all other point charges in the 

system, which is assumed to be a constant effect around these atoms. The closer the 

electrostatic potential is to zero, the easier it is for an electron to be donated/removed.  

6. Repeat for the other 31 × ASP residues in the ligand layer. 
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C.1 Progressively Loaded Peptides on Au(111) 

The bio-functionalisation of the gold nanoparticles (AuNPs) with peptides is envisaged as a 

progressive self-assembly process. In solution, the peptides’ approach to the surface 

involves no selectivity and is controlled by diffusion,89 hence contact with the AuNP and 

subsequent partially formed layer occurs at various random times. Structural 

rearrangement of the AuNP passivating layer occurs to facilitate further epitope binding 

until spatial competition for sites is saturated and equilibrium is reached.  

To emulate this scenario, successive simulations were performed wherein the epitope 

density was sequentially increased on the gold surface (Figure C.1). This involved initially 

packing 6 linear peptides onto Au(111) and equilibrating by molecular dynamics (MD) for 

20 ns, which was found to be sufficient time to allow the peptides’ conformations to relax. 

Following this, the final peptide–gold structure was extracted from the trajectory (devoid of 

water and ions) and an additional 6 linear peptides were placed onto the Au(111) surface 

where gaps had formed in the layer to expose gold atoms. A further 20 ns of explicit solvent 

MD was then commenced. This process was repeated for a final time by adding another 4 

linear peptides and the system was simulated for 100 ns of MD. This density of 16 peptides 

per unit cell was determined to be the highest possible number of peptides that can be 

accommodated per AuNP surface area without causing ejection of peptides due to 

steric/electrostatic repulsion. Subsequently, this density has been used to set up the initial 

fully extended systems for equilibration and analysis. While MD was performed for both the 

progressively loaded and initially sterically-saturated setups, only the latter is reported in 

Chapter 4 as similar findings were obtained for both approaches.   
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Figure C.1 | Setup of progressively loaded peptide-gold systems. (a) Initial fully extended 

immobilisation (total of 6 peptides). (b) Intermediate step with 4 more peptides added (total of 10 

peptides). (c) Additional peptides added (total of 13 peptides). The epitopes’ negatively charged (red), 

polar (green) and non-polar (white) residues are displayed in liquorice representation with the terminal 

immobilisation sulphurs presented as yellow spheres. The Au(111) surface (gold), periodic unit cell 

(blue), water molecules, Na+ ions (dark blue) and Cl- ions (cyan) are shown. 
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C.2 Equilibration of Sterically-Saturated Systems 

Energy drifts and root-mean-square deviations (RMSD) of atomic positions are monitored in 

Figure C.2. While the potential energy is very quick to converge (< 1 ns), structural 

rearrangements in the monolayers’ constituent peptide chains continue for quite some time 

(> 100 ns). To ensure thermal and structural equilibration, statistical analysis is only 

conducted on the ensemble of structures collected over the final 5 ns of the trajectories.  

  

  

 
Figure C.2 | Time evolution of peptide monolayer root-mean-square deviations and system 

potential energy. RMSDs (red) of all monolayer atomic coordinates are calculated with reference to the 

initial linearly extended structures. Black lines in the plots show total potential energy. 
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C.3 Peptide Root-Mean-Square Fluctuations 

The flexibility of peptides within the epitope–monolayers is assessed by root-mean-square 

fluctuations (RMSF) of each residue’s 𝛼-carbon (C𝛼) atoms. The RMSFs presented in Figure 

C.3 are the standard deviation of atomic positions with respect to a reference structure – the 

simulations frame at the start of the equilibration period, i.e. after 195 ns of MD.  

  

  

Figure C.3 | Root-mean-square fluctuations of peptide-monolayer amino acids. The black lines are 

ensemble averaged RMSFs (y-axes) with standard deviation error bars, whereas the 16 thin red lines are 

the RMSFs for single peptides. Numbering of residues (x-axes) is from the gold-attachment point 

(cysteine). The plot in the bottom right juxtaposes the average peptide RMSFs for each system. 
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C.4 Single Immobilised Epitopes on Au (111) 

To elucidate how HA and HSV peptide-epitopes interact with Au(111), 50 ns MD simulations 

of individually immobilised peptides on gold were conducted. During MD, sulphur atoms 

were constrained to Au(111) to emulate a covalent Au–S bond and limit lateral movement of 

the peptides. Simulations were independently repeated three times using different initial 

atomic velocities to improve statistics.  

The majority of the MD simulations reveal that the peptides collapse onto Au(111) in a 

sequential manner starting with the adsorption of linker residues, followed by the middle 

residues in the primary sequence, and finally the terminal residues anchor to gold. However, 

in two out of the three HA-CT simulations, tyrosine residues at the untethered N-terminus 

adsorb to Au(111) almost immediately after the initial linker. This aromatic driven peptide 

adsorption appears to be epitaxially motivated with the six-membered phenol rings in 

tyrosine fitting into the hexagonal packing of gold atoms on the Au(111) crystallographic 

facet235 (Figure C.4). For both HA immobilisation directions, peptide conformations remain 

fluid and dynamic as the chains laterally rotate about the sulphur attachment point until 

aromatic binding to gold, thereafter the peptides remain relatively rigid and stationary.  

 

Figure C.4 | Au(111) adsorbed HA-CT peptide highlighting the epitaxial matching of tyrosine 

phenol rings and hexagonal packing of gold atoms. Peptide backbones are shown in ribbon 

representation with residues shown in liquorice and coloured as per Figure C.1. 

In contrast, the HSV epitopes don’t contain any aromatic residues and hence appear to be 

more flexible during the adsorption process and on average take longer to collapse onto the 

surface (data not included). Interestingly, five-membered imidazole rings in proline 

residues occasionally (in two out of six simulations) adsorbed onto the gold edge-to-face 

and prop the negatively charged glutamate and aspartate residues away from the surface 
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(Figure C.5). While this only infrequently appeared, common in all HA and HSV simulations 

is that after peptide adsorption to Au(111), negatively charged residues are manoeuvred to 

be facing away from the surface and as solvent exposed as possible. 

       

Figure C.5 | Side views of HSV peptides adsorbed onto Au(111). Proline residues (circled) bind to 

gold edge-to-face causing the peptide backbone to protrude from Au(111) in a loop to solvent expose 

negatively charged residues. The left image is HSV-CT and the right image is HSV-NT. Peptide backbones 

are shown in ribbon representation with residues shown in liquorice and coloured as per Figure C.1. 

C.5 Density Distribution of Immuno-Dominant HA Residues 

Figure C.6 presents the normalised atomic distribution profiles (technique described in 

Section 4.3.1) for charged and aromatic immuno-dominant residues of the HA-monolayers. 

The aspartate residues in HA-CT (Figure C.6a) cluster in two regions 1.7 nm and 2.3 nm 

above  Au(111) whereas for HA-NT the distribution is more evenly spread but attenuates 

further (> 3.0 nm) from the gold surface. Two-times more hydrophobic Tyr residues are Au-

bound in HA-CT versus HA-NT (Figure C.6a) owing to the primary sequenced location of the 

aromatic amino acids in the peptide chains. 

 

Figure C.6 | Normalised atomic number density of HA immuno-dominant residues as a function of 

height above the Au(111) surface. The distribution of (a) aspartate and (b) tyrosine residues. 

a) b) 
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C.6 Radial Distributions of Solvent Atoms  

Peptide–solvent intermolecular pair correlation functions, g(r), are presented in Figure C.7 

and show that water and Na+ cations both accumulate around the peptide-epitopes however 

Cl− anions do not. The H2O radial distribution functions (RDFs) also reveal that in each 

system, although water interacts with the immuno-dominant sequences (IDS) of the 

peptides through both their hydrogen and oxygen atoms, there is  a prevalence for water to 

orient towards the peptides in a specific direction, i.e. either with their oxygen or hydrogen 

atoms facing the peptide chains. The approximate ratio of the hydrogen to oxygen RDF peak 

amplitudes at the first hydration shell (~0.18 nm in the H2O RDFs Figure C.7) is used to 

estimate the directional orientation of water molecules near the peptides’ IDS. The radial 

distances and amplitudes of both the hydrogen and oxygen peaks are presented in Table C.1 

along with the relative H:O ratios. These results show that while in all systems (except HA-

CT), there is a higher proportion of hydrogen atoms that are spontaneously and 

preferentially directed towards the IDS of the peptide chains. 

Table C.1 | Orientation information of H2O atoms relative to the peptides IDS. 

System Hydrogen g(r) maxima* Oxygen g(r) maxima* H:O Ratio† H--IDS‡  O--IDS‡ 

HA-CT 0.258 (0.180 nm) 0.175 (0.180 nm) 2.00:1.36 42% 57% 

HA-NT 
0.363 (0.174 nm) 
0.310 (0.182 nm) 

0.088 (0.174 nm) 
0.109 (0.182 nm) 

2.00:0.58 63% 37% 

HSV-CT 0.389 (0.172 nm) 
0.309 (0.182 nm) 

0.107 (0.172 nm) 
0.129 (0.182 nm) 

2.00:0.67 60% 40% 

HSV-NT 
0.435 (0.169 nm) 
0.268 (0.188 nm) 

0.036 (0.169 nm) 
0.097 (0.188 nm) 

2.00:0.30 77% 23% 

Myc-CT 
0.332 (0.171 nm) 
0.283 (0.180 nm) 

0.105 (0.171 nm) 
0.129 (0.180 nm) 

2.00:0.75 57% 43% 

*The amplitude of the first hydrogen and oxygen peak is bolded and the radial distance this occurs at is in brackets. 
†The H:O ratio is attained by averaging the ratio of all 1st hydration shell amplitudes at different distances. For 
example, the HA-NT H:O ratio is calculated as: (0.363/0.088 + 0.363/0.109 + 0.310/0.088 + 0.310/0.109)/4 
‡The percentage of water molecules with either H or O atoms facing the IDS is calculated by weighting the hydrogen 
atoms as half (since there is two per H2O molecule). For example, O--IDS in HA-NT is: 0.58/(2 × 0.5 + 0.58) × 100% 
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Figure C.7 | Radial distribution of solvent atoms relative to peptide IDS. (Left) The radial 

distribution of Na+ (blue) and Cl− (green) ions relative to the IDS in each peptide monolayer. (Right) 

The RDF of hydrogen (blue) and oxygen (red) atoms of water molecules around the IDS show (at 

least) two prominent solvation shells. 
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Dr Yiyang Lin (Imperial College London) is acknowledged for the experimental synthesis, 

analysis, and interpretation of results presented in Section D.1.1. Dr Michael Thomas 

(Imperial College London) and Dr James Doutch (ISIS Neutron and Muon Source, U.K.) 

conducted the work in Section D.1.2. All other results were solely contributed by the 

author of this thesis, with guidance and recommendations from external parties 

recognised in the opening outline for Chapter 5. 

 

 

D.1 Experimental Characterisations for Au25(SP)18 

Figure D.1 shows experimental characterisations performed on an exemplar Au 25(SP)18 

system (where P = peptide = CHYGDD). The resultant gold nanocluster (AuNC) solution 

displays a brown appearance (Figure D.1a, inset), which signifies the formation of small 

metallic NCs.566 Unlike the UV–Vis absorption spectra of larger Au nanoparticles which 

display a strong surface plasmon resonance around 520 nm,567 the as-synthesised AuNCs do 

not exhibit a strong UV-Vis absorbance peak over the range of 350–700 nm (Figure D.1a). 

Intense luminescence from the clusters is observable to the naked eye and by exciting with a 

400 nm laser, the photoluminescence (PL) spectrum is recorded to display an emission peak 

located at 680 nm (Figure D.1b), similar to the spectra of peptide-protected Au25 clusters.568 

X-ray photoelectron spectroscopy (XPS) confirms the binding energy of Au 4 f5/2 and Au 4f7/2 

at 88.1 eV and 84.2 eV, respectively (Figure D.1c). It is noted that the binding energy of Au 

4f7/2 falls between the Au(0) BE (84 eV) of a metallic gold film and the Au(I) BE (86 eV) of 

gold thiolate, suggesting the coexistence of Au(0) and Au(I) in the clusters as had been 

previously reported for similar small AuNCs.569 Dynamic light scattering (DLS) suggests a 

hydrodynamic diameter (Dh) of ~3.1 nm (Figure D.1c). Similar characterisations are also 

obtained for all AuNCs prepared with other peptide sequences (Figure D.2). 

Size differences between various Au25(SP)18 nanoclusters are confirmed by small angle X-

ray scattering (SAXS), where scattered functions of the clusters are fitted using a 

generalised global model. This function, as explained by Beaucage, 570 is appropriate for 

systems with multiple-levels of structurally related features such as polymers that present 

both a radius of gyration (Rg) and a polymer persistence length. The Rg indicates the size of 
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the system, whilst the power law decay slope can indicate the dimensionality of the 

structure being probed. Flexibility in conformations of the peptides will act to smear out the 

features of the scattering function expected from the monodisperse AuNC core. Figure D.3 

shows plots of the unified power law function fitted to the scattered intensity data. T he 

AuNC Rg is found to be larger for Ac-CGGGDD (~1.08 nm) and Ac-CYHGDD (~1.18 nm) 

versus the uncapped CGGGDD (~1.01 nm), in agreement with molecular dynamics (MD).  

D.1.1 Absorbance, Emission and Light Scattering Properties 

 

Figure D.1 | Experimental characterisation of an exemplar peptide-protected AuNC (where the 

coating peptides are CHYGDD). (a) No specific absorbance peak is observed in the UV–Vis spectrum. 

Inset shows the formation of a brown solution (in ambient light) indicative of small AuNC synthesis. (b) 

The photoluminescence emission peak of the AuNCs is found to be located at ~670–680 nm. (c) XPS is 

used to show the binding energy of the Au(4f) band. (d) The hydrodynamic diameter of as-synthesised 

AuNCs is determined to be ~3.1 nm by DLS. 

 

a) b) 

c) d) 
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Figure D.2 | UV–Vis absorbance and photoluminescence spectra of peptide-protected Au clusters. 

Both UV-Vis (black) and fluorescence emission (blue, Ex = 400 nm) spectra are normalised, with peak 

emission occurring between 684 nm – 704 nm. In order of appearance:  

CGGGDD (704 nm);     CKGGDD (694 nm);     CNGGDD (699 nm);     CTGGDD (695 nm); 

CQGGDD (697 nm);     CSGGDD (703 nm);     CHGGDD (687 nm);     CVVGDD (688 nm); 

CGYGDD (688 nm);     CHYGDD (689 nm);     CVGGDD (686 nm);     CYHGDD (688 nm); 

CFGGDD (687 nm);     CYGGDD (691 nm);     CFFGDD (691 nm);     CYYGDD (684 nm); 

Ac-CGGGDD (704 nm);     Ac-CHGGDD (689 nm);     Ac-CHYGDD (686 nm);     Ac-CYHGDD (696 nm); 

CDGGGD (690 nm);     DGYCGD (693 nm). 
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D.1.2 Small Angle X-Ray Scattering 

 

Figure D.3 | Findings from small angle X-ray scattering. Plots of scattered X-ray intensity with Q (blue) 

as well as unified power law simulation fits (red traces). Plot of the value of Rg obtained for computational 

simulations (blue) and from the unified power law fits to the scattering data (pink) as a function of 

peptide sequence. Kratky plots of scattered intensity highlighting the plateau formation of these systems 

which indicates flexible, extended peptide configurations. 

D.2 Equilibration of MD Models 

In the initial configurations (Rg = 1.5 nm – 1.6 nm), all peptides are fully extended and 

uniformly distributed. During the first ∼10 ns of dynamics, the overall Rg of the AuNCs 

quickly decreases while the RMSD concurrently increases (Figures D.4 and D.5). These 

changes result from initial structural rearrangements and symmetry breaking in the peptide 

layers. Over the remaining 80 ns, both the RMSD and Rg of the AuNCs asymptote with minor 

fluctuations indicative of the small configurational diversity and disorder the peptide layers 

experience due to their dense packing and short chain lengths (6 amino acids). To allow 

ample time for the thermodynamic and structural equilibration of the AuNCs, only the final 

20 ns of each simulation, unless otherwise stated, has been utilised for further analysis.  

Sequence Rg Rg(Er) P P(Er)

CGGGDD 10.1 0.2 1.81 0.15

CVVGDD 11.3 0.2 1.73 0.08

CYHGDDk 11.3 0.1 1.46 0.07

CYYGDD 11.0 0.1 1.60 0.10

AcCGGGDD 10.8 0.2 1.85 0.13

AcCHYGDD 11.8 0.1 1.69 0.07
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D.2.1 Root-Mean-Square Deviations (RMSD) 

Varying Sequence: (Ac-)CXXGDD, where X = G, V, H, or Y 
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Arginine C-terminus: CYYGRR and Ac-CGGGRR 
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Protonated Histidine: (Ac-)CXXGDD, where one X = G, or Y and the other X = H+ 

  

  

   

Figure D.4 | Time evolved average root-mean-square deviations for each Au25(SP)18. RMSD is 

performed on backbone atoms of the peptide-ligands. 
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D.2.2 Radius of Gyration (Rg) 

Varying Sequence: (Ac-)CXXGDD, where X = G, V, H, or Y 
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Arginine C-terminus: CYYGRR and Ac-CGGGRR 
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Protonated Histidine: (Ac-)CXXGDD, where one X = G, or Y and the other X = H+ 

  

  

   

Figure D.5 | Time-evolution of the radius of gyration for each Au25(SP)18.  
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D.3 Overall Au25(SP)18 Structure and Peptide Flexibility 

D.3.1 Hydrodynamic Diameter (Dh) 

Varying Sequence: (Ac-)CXXGDD, where X = G, V, H, or Y 
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Arginine C-terminus: CYYGRR and Ac-CGGGRR 
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Protonated Histidine: (Ac-)CXXGDD, where one X = G, or Y and the other X = H+ 

   

  

   

Figure D.6 | Hydrodynamic diameter calculated from the equilibrated trajectories. (Left panels) 

Hydrodynamic diameter (Dh) computed for 2×104 configurations using the ZENO471 path-integration 

program. It should be noted that configurations within consecutive blocks of 2×103 are correlated since 

they are taken from independent equilibrated trajectories and only every 50th data point is plotted for 

clarity. (Right panels) Probability density function (P.D.F.) of the ensemble shown with the modal DH and 

one standard deviation (shaded region). 
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D.3.2 Ligand Radius of Gyration (Rg) 

 

Figure D.7 | Density map comparing average ligand radius of gyration against standard deviation. 

Note that fully extended peptides have a Rg of 0.67–0.86 nm and that a large standard deviation implies 

that peptides fluctuate between compact and extended conformations. 
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D.3.3 Atomic Root-Mean-Square Fluctuations (RMSF) 

Varying Sequence: (Ac-)CXXGDD, where X = G, V, H, or Y 
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Arginine C-terminus: CYYGRR and Ac-CGGGRR 
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Protonated Histidine: (Ac-)CXXGDD, where one X = G, or Y and the other X = H+ 

  

  

   

Figure D.8 | Average Cα root-mean-square fluctuations for each residue. The black line is the 

ensemble averaged RMSF with standard deviation error bars, whereas coloured lines are the RMSFs for 

single ligands (18 ligands per system × 10 simulations) with colours based on Table 4.2. Even though 

protonated histidine plots are expected to have similar PL as their neutral counterparts, they are coloured 

grey in the plots because the PL cannot be directly compared from the empirical results. 
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D.4 Location of Specific Residues and Peptide Configurational Entropy 

D.4.1 Residue Minimum Distances to the Gold Core 

 

Table D.1 | Number of residues within 0.5 nm to any Au25S18 atom.*  

System ASP TYR HIS 

CGGGDD 6.74    (0.35 nm) - - 

CVGGDD 6.65    (0.36 nm) - - 

CVVGDD 6.26    (0.36 nm) - - 

CHGGDD 6.85    (0.36 nm) - 0.15    (0.65 nm) 

CHYGDD 6.58    (0.36 nm) 0.21    (0.80 nm) 0.49    (0.59 nm) 

CYHGDD 6.31    (0.37 nm) 0.50    (0.72 nm) 0.12    (0.70 nm) 

CGYGDD 6.52    (0.37 nm) 0.01    (0.81 nm) - 

CYGGDD 7.14    (0.35 nm) 0.44    (0.70 nm) - 

CYYGDD 6.57    (0.36 nm) 0.71    (0.55 nm) - 

Ac-CGGGDD 0.22    (0.66 nm) - - 

Ac-CHGGDD 0.05    (0.83 nm) - 1.44    (0.47 nm) 

Ac-CHYGDD 0.00    (0.97 nm) 0.44    (0.58 nm) 1.08    (0.50 nm) 

Ac-CYHGDD 0.00    (0.98 nm) 0.91    (0.51 nm) 0.26    (0.65 nm) 

CH+GGDD 7.96    (0.37 nm) - 0.00    (0.71 nm) 

CH+YGDD 7.87    (0.36 nm) 0.12    (0.88 nm) 0.00    (0.76 nm) 

CYH+GDD 7.04    (0.36 nm) 0.68    (0.56 nm) 0.00    (0.86 nm) 

Ac-CH+GGDD 0.19    (0.64 nm) - 0.24    (0.62 nm) 

Ac-CH+YGDD 0.08    (0.72 nm) 0.47    (0.56 nm) 0.10    (0.66 nm) 

Ac-CYH+GDD 0.00    (0.79 nm) 1.18    (0.49 nm) 0.00    (0.71 nm) 

System ARG TYR - 

CYYGRR 0.00    (0.94 nm) 0.45    (0.61 nm) - 

Ac-CGGGRR 0.23    (0.63 nm) - - 

*Values in brackets denote the nearest integer residues (ASP, TYR, HIS, and ARG) residues within 0.5 nm to Au25S18. 
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Varying Sequence: (Ac-)CXXGDD, where X = G, V, H, or Y 
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Arginine C-terminus: CYYGRR and Ac-CGGGRR 
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Protonated Histidine: (Ac-)CXXGDD, where one X = G, or Y and the other X = H+ 

  

  

   

Figure D.9 | Average minimum distance distributions between residues and Au25S18. Pairwise 

distribution functions, g(r), for each sequence showing the minimum distances from ASP (red), TYR 

(green), HIS (blue), and ARG (orange) residues to the closest Au25S18 atom. The insets show enlarged 

regions to better illustrate the probability of residues being within close proximity to the gold core. 
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D.4.2 Peptide Backbone Angle vs. C-terminal–Au25S18 Distances 

Varying Sequence: (Ac-)CXXGDD, where X = G, V, H, or Y 
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Arginine C-terminus: CYYGRR and Ac-CGGGRR 

   



Appendix D: Supplementary Results (Chapter 5) 

 

202 

Protonated Histidine: (Ac-)CXXGDD, where one X = G, or Y and the other X = H+ 

  

  

   

Figure D.10 | Density maps of peptide backbone angle as a function of C-terminal to AuSnearest 

distance. Angle θ is measured between backbone alpha carbon atoms 1, 3 and 6 (Cα1–Cα3–Cα6, where 

numbering starts from the N-terminus) and peptide C-terminal locations are taken as Cα6 atom positions. 

Contour lines are drawn around density regions in increments of 1,000 frequency. 
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D.5 Water Structuring 

D.5.1 Radial Distribution Functions 

Varying Sequence: (Ac-)CXXGDD, where X = G, V, H, or Y 
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Arginine C-terminus: CYYGRR and Ac-CGGGRR 
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Protonated Histidine: (Ac-)CXXGDD, where one X = G, or Y and the other X = H+ 

  

  

   

Figure D.11 | Average radial distributions of selected atomic components relative to the central 

Au25(SP)18 gold atom (Aucentre). The plots highlight differences in the amount of water that internalises 

(light blue lines) in the varoius peptide sequences. g(r) has been normalised by volume in each radial 

shell (dr = 0.05 nm) by the density of bulk water far from the AuNCs (ρbulk-water = 0.100573). Explicitly, g(r) 

= ( Natoms in Vshell / Vshell ) / (ρbulk-water) = [N(r+dr) – Nr] / [(4π/3) ((r+dr)3 – r3) (ρbulk-water)]. Note that standard 

deviation is shown as the shaded region around each line. 
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D.5.2 Hydrogen Bonding 

Table D.2 | Hydrogen bonds involving water within 0.4 nm of Au25S18.  

System Donor Acceptor H-bonds* Occupancy Weighting† 

CGGGDD 

CYS1 (Main_N) SOLx (Side_OW) 12.2 ± 1.7 45.5 ± 18.1 5.6 ± 3.0 

SOLx (Side_OW) CYS1 (Main_O) 9.2 ± 1.9 46.0 ± 15.8 4.2 ± 2.4 

SOLx (Side_OW) ASP6  (Side_OD) 11.8 ± 3.2 63.4 ± 33.3 7.5 ± 6.0 

GLY2 (Main_N) SOLx (Side_OW) 6.2 ± 1.4 36.8 ± 11.0 2.3 ± 1.2 

SOLx (Side_OW) ASP5 (Side_OD) 8.4 ± 2.7 61.8 ± 32.3 5.2 ± 4.4 

SOLx (Side_OW) GLY2 (Main_O) 4.0 ± 1.7 44.9 ± 22.5 1.8 ± 1.7 

    51.8 ± 8.9 50.6 ± 26.2 26.5 ± 15.2 

CHGGDD 

CYS1 (Main_N) SOLx (Side_OW) 12.9 ± 1.9 48.8 ± 18.3 6.3 ± 3.3 

SOLx (Side_OW) ASP6  (Side_OD) 13.7 ± 3.9 70.9 ± 35.1 9.7 ± 7.6 

SOLx (Side_OW) SOLx (Side_OW) 14.2 ± 3.1 42.3 ± 21.7 6.0 ± 4.4 

SOLx (Side_OW) CYS1 (Main_O) 8.0 ± 2.3 47.6 ± 14.5 3.8 ± 2.3 

SOLx (Side_OW) ASP5 (Side_OD) 9.8 ± 3.0 67.0 ± 32.3 6.6 ± 5.2 

HIS2 (Main_N) SOLx (Side_OW) 7.0 ± 1.9 44.7 ± 13.9 3.1 ± 1.9 

SOLx (Side_OW) HIS2 (Main_O) 5.6 ± 1.3 47.8 ± 23.5 2.7 ± 1.9 

    71.2 ± 6.3 53.8 ± 27.3 38.2 ± 19.8 

CHYGDD 

CYS1 (Main_N) SOLx (Side_OW) 14.7 ± 0.9 50.2 ± 20.7 7.4 ± 3.5 

SOLx (Side_OW) ASP6  (Side_OD) 14.4 ± 3.0 69.7 ± 30.5 10.0 ± 6.5 

SOLx (Side_OW) CYS1 (Main_O) 8.1 ± 1.6 45.6 ± 16.4 3.7 ± 2.1 

HIS2 (Main_N) SOLx (Side_OW) 5.5 ± 1.1 41.6 ± 14.4 2.3 ± 1.3 

SOLx (Side_OW) SOLx (Side_OW) 16.9 ± 5.3 38.6 ± 21.9 6.5 ± 5.8 

SOLx (Side_OW) HIS2 (Main_O) 5.3 ± 1.9 47.1 ± 20.2 2.5 ± 2.0 

SOLx (Side_OW) ASP5 (Side_OD) 7.9 ± 3.5 61.2 ± 30.1 4.8 ± 4.5 

    72.8 ± 6.2 51.3 ± 26.1 37.5 ± 19.5 

CYHGDD 

CYS1 (Main_N) SOLx (Side_OW) 14.8 ± 1.7 53.7 ± 20.3 8.0 ± 3.9 

SOLx (Side_OW) ASP6  (Side_OD) 15.7 ± 3.4 64.2 ± 27.5 10.1 ± 6.5 

SOLx (Side_OW) CYS1 (Main_O) 9.7 ± 1.7 45.9 ± 14.1 4.5 ± 2.1 

SOLx (Side_OW) SOLx (Side_OW) 17.8 ± 3.5 40.6 ± 24.3 7.2 ± 5.8 

SOLx (Side_OW) TYR2  (Main_O) 6.3 ± 1.7 52.3 ± 23.0 3.3 ± 2.4 

TYR2 (Main_N) SOLx (Side_OW) 6.0 ± 1.8 41.9 ± 14.5 2.5 ± 1.6 

    70.3 ± 7.9 50.7 ± 24.0 35.5 ± 17.4 

CGYGDD 

CYS1 (Main_N) SOLx (Side_OW) 13.9 ± 1.0 49.7 ± 18.0 6.9 ± 3.0 

SOLx (Side_OW) ASP6  (Side_OD) 14.7 ± 1.8 61.4 ± 30.7 9.0 ± 5.6 

SOLx (Side_OW) CYS1 (Main_O) 8.0 ± 2.0 44.9 ± 15.0 3.6 ± 2.1 

GLY2 (Main_N) SOLx (Side_OW) 5.9 ± 1.6 39.3 ± 12.7 2.3 ± 1.4 

SOLx (Side_OW) SOLx (Side_OW) 7.2 ± 2.8 39.1 ± 17.9 2.8 ± 2.4 

SOLx (Side_OW) ASP6  (Main_O) 2.5 ± 1.1 33.1 ± 10.6 0.8 ± 0.6 

SOLx (Side_OW) ASP5 (Side_OD) 8.4 ± 4.1 57.2 ± 27.6 4.8 ± 4.7 

    60.6 ± 6.2 50.4 ± 24.0 30.3 ± 14.4 

CYGGDD 

CYS1 (Main_N) SOLx (Side_OW) 14.0 ± 1.3 50.5 ± 19.8 7.1 ± 3.4 

SOLx (Side_OW) ASP6  (Side_OD) 13.0 ± 2.9 72.3 ± 34.1 9.4 ± 6.5 

SOLx (Side_OW) CYS1 (Main_O) 9.5 ± 2.3 51.4 ± 19.4 4.9 ± 3.0 

SOLx (Side_OW) ASP5 (Side_OD) 9.6 ± 2.1 68.3 ± 38.8 6.6 ± 5.2 

TYR2 (Main_N) SOLx (Side_OW) 5.7 ± 1.2 43.2 ± 10.0 2.5 ± 1.1 

SOLx (Side_OW) SOLx (Side_OW) 12.8 ± 3.6 48.5 ± 26.5 6.2 ± 5.2 
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System Donor Acceptor H-bonds* Occupancy Weighting† 

SOLx (Side_OW) TYR2  (Main_O) 6.1 ± 2.1 47.7 ± 24.2 2.9 ± 2.5 

    70.7 ± 6.8 56.0 ± 29.0 39.5 ± 20.7 

CYYGDD 

SOLx (Side_OW) ASP6  (Side_OD) 17.3 ± 2.3 69.4 ± 34.5 12.0 ± 7.6 

CYS1 (Main_N) SOLx (Side_OW) 14.4 ± 2.5 52.0 ± 21.2 7.5 ± 4.4 

SOLx (Side_OW) CYS1 (Main_O) 10.1 ± 2.0 54.2 ± 17.5 5.5 ± 2.8 

TYR2 (Main_N) SOLx (Side_OW) 6.3 ± 1.3 41.5 ± 14.4 2.6 ± 1.4 

SOLx (Side_OW) SOLx (Side_OW) 18.3 ± 4.4 40.8 ± 24.4 7.5 ± 6.3 

SOLx (Side_OW) TYR2  (Main_O) 5.6 ± 1.7 50.0 ± 21.8 2.8 ± 2.1 

    72.0 ± 7.7 52.6 ± 27.2 37.9 ± 20.2 

CVGGDD 

CYS1 (Main_N) SOLx (Side_OW) 14.3 ± 1.1 48.5 ± 18.8 6.9 ± 3.2 

SOLx (Side_OW) CYS1 (Main_O) 9.4 ± 1.5 53.9 ± 16.2 5.1 ± 2.3 

SOLx (Side_OW) VAL2 (Main_O) 7.6 ± 1.4 54.5 ± 23.0 4.1 ± 2.5 

SOLx (Side_OW) ASP6  (Side_OD) 12.4 ± 3.3 69.3 ± 38.6 8.6 ± 7.1 

SOLx (Side_OW) ASP5 (Side_OD) 12.0 ± 4.0 66.5 ± 32.6 8.0 ± 6.6 

VAL2 (Main_N) SOLx (Side_OW) 6.0 ± 1.4 44.8 ± 14.6 2.7 ± 1.5 

SOLx (Side_OW) SOLx (Side_OW) 13.4 ± 4.5 48.8 ± 28.8 6.5 ± 6.1 

    75.1 ± 8.0 55.9 ± 28.5 41.9 ± 22.0 

CVVGDD 

CYS1 (Main_N) SOLx (Side_OW) 15.3 ± 1.4 50.8 ± 19.7 7.8 ± 3.7 

SOLx (Side_OW) ASP6  (Side_OD) 15.9 ± 1.8 67.3 ± 37.1 10.7 ± 7.1 

SOLx (Side_OW) CYS1 (Main_O) 11.3 ± 2.1 48.5 ± 17.5 5.5 ± 3.0 

SOLx (Side_OW) VAL2 (Main_O) 8.7 ± 2.0 52.0 ± 21.6 4.5 ± 2.9 

SOLx (Side_OW) SOLx (Side_OW) 16.7 ± 4.3 42.2 ± 22.0 7.0 ± 5.5 

SOLx (Side_OW) ASP5 (Side_OD) 6.5 ± 2.5 70.5 ± 29.4 4.6 ± 3.6 

VAL2 (Main_N) SOLx (Side_OW) 5.4 ± 1.4 43.7 ± 15.8 2.4 ± 1.5 

    79.8 ± 5.3 53.0 ± 27.0 42.5 ± 21.9 

Ac-CGGGDD 

SOLx (Side_OW) CYS1 (Main_O) 11.6 ± 3.8 55.0 ± 20.9 6.4 ± 4.5 

SOLx (Side_OW) ACE0 (Main_O) 10.5 ± 4.4 55.4 ± 24.1 5.8 ± 5.0 

GLY2 (Main_N) SOLx (Side_OW) 5.5 ± 1.9 41.0 ± 12.3 2.3 ± 1.4 

SOLx (Side_OW) GLY2 (Main_O) 2.1 ± 0.9 42.4 ± 15.1 0.9 ± 0.7 

    29.7 ± 8.0 50.2 ± 21.4 15.3 ± 8.6 

Ac-CHGGDD 

SOLx (Side_OW) CYS1 (Main_O) 11.0 ± 4.6 52.1 ± 18.1 5.7 ± 4.4 

SOLx (Side_OW) ACE0 (Main_O) 10.1 ± 4.4 55.3 ± 22.7 5.6 ± 4.7 

HIS2 (Main_N) SOLx (Side_OW) 5.9 ± 2.2 44.0 ± 15.3 2.6 ± 1.9 

CYS1 (Main_N) SOLx (Side_OW) 3.3 ± 1.6 39.8 ± 12.2 1.3 ± 1.1 

    30.3 ± 11.4 48.0 ± 19.7 15.2 ± 8.9 

Ac-CHYGDD 

SOLx (Side_OW) CYS1 (Main_O) 12.2 ± 3.2 54.1 ± 16.0 6.6 ± 3.7 

SOLx (Side_OW) ACE0 (Main_O) 11.2 ± 3.9 52.8 ± 21.0 5.9 ± 4.4 

HIS2 (Main_N) SOLx (Side_OW) 5.7 ± 2.0 44.3 ± 16.9 2.5 ± 1.9 

CYS1 (Main_N) SOLx (Side_OW) 4.6 ± 2.0 39.7 ± 14.6 1.8 ± 1.5 

SOLx (Side_OW) HIS2 (Main_O) 2.7 ± 1.2 39.3 ± 11.3 1.1 ± 0.8 

    36.4 ± 9.8 48.7 ± 18.4 17.9 ± 8.8 

Ac-CYHGDD 

SOLx (Side_OW) CYS1 (Main_O) 14.3 ± 3.7 52.1 ± 17.1 7.5 ± 3.1 

SOLx (Side_OW) ACE0 (Main_O) 10.7 ± 3.1 54.4 ± 21.7 5.8 ± 1.8 

TYR2 (Main_N) SOLx (Side_OW) 6.8 ± 1.7 51.0 ± 15.6 3.5 ± 1.6 

CYS1 (Main_N) SOLx (Side_OW) 3.8 ± 1.2 39.8 ± 12.7 1.5 ± 0.6 

SOLx (Side_OW) TYR2 (Main_O) 3.8 ± 1.9 47.6 ± 18.1 1.8 ± 0.2 
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System Donor Acceptor H-bonds* Occupancy Weighting† 

    39.4 ± 8.7 50.4 ± 18.5 20.1 ± 8.6 

CH+GGDD 

CYS1 (Main_N) SOLx (Side_OW) 13.5 ± 1.3 51.1 ± 20.9 6.9 ± 3.5 

SOLx (Side_OW) ASP6  (Side_OD) 18.9 ± 3.8 68.7 ± 37.5 13.0 ± 9.7 

SOLx (Side_OW) ASP5 (Side_OD) 10.8 ± 2.2 64.3 ± 32.3 7.0 ± 4.9 

SOLx (Side_OW) CYS1 (Main_O) 8.6 ± 2.3 50.1 ± 18.2 4.3 ± 2.7 

SOLx (Side_OW) SOLx (Side_OW) 16.6 ± 4.0 44.0 ± 26.1 7.3 ± 6.1 

SOLx (Side_OW) HIS2  (Main_O) 5.3 ± 1.3 49.8 ± 18.9 2.6 ± 1.6 

HIS2 (Main_N) SOLx (Side_OW) 4.8 ± 1.4 43.7 ± 15.0 2.1 ± 1.3 

SOLx (Side_OW) GLY3 (Main_O) 3.7 ± 1.3 48.3 ± 23.1 1.8 ± 1.5 

    82.2 ± 8.3 54.8 ± 29.3 45.0 ± 24.6 

CH+YGDD 

SOLx (Side_OW) ASP6  (Side_OD) 18.7 ± 3.7 71.1 ± 31.5 13.3 ± 8.5 

CYS1 (Main_N) SOLx (Side_OW) 14.8 ± 1.5 51.6 ± 20.3 7.6 ± 3.8 

SOLx (Side_OW) CYS1 (Main_O) 11.4 ± 2.1 50.3 ± 16.8 5.7 ± 3.0 

SOLx (Side_OW) SOLx (Side_OW) 25.2 ± 6.3 42.2 ± 23.6 10.6 ± 8.6 

SOLx (Side_OW) ASP5 (Side_OD) 9.4 ± 3.2 66.8 ± 33.0 6.3 ± 5.2 

HIS2 (Main_N) SOLx (Side_OW) 4.7 ± 1.6 43.4 ± 15.3 2.0 ± 1.4 

    84.2 ± 8.8 54.3 ± 27.7 45.6 ± 24.1 

CYH+GDD 

CYS1 (Main_N) SOLx (Side_OW) 15.0 ± 1.0 51.9 ± 20.8 7.8 ± 3.6 

SOLx (Side_OW) CYS1 (Main_O) 11.3 ± 1.4 55.6 ± 19.4 6.3 ± 3.0 

SOLx (Side_OW) ASP6  (Side_OD) 15.3 ± 3.6 67.1 ± 35.0 10.3 ± 7.8 

SOLx (Side_OW) ASP5 (Side_OD) 9.1 ± 2.1 69.3 ± 32.9 6.3 ± 4.4 

SOLx (Side_OW) SOLx (Side_OW) 21.4 ± 6.2 42.3 ± 23.7 9.1 ± 7.7 

TYR2 (Main_N) SOLx (Side_OW) 4.7 ± 1.2 39.6 ± 15.0 1.9 ± 1.2 

SOLx (Side_OW) TYR2 (Main_O) 3.7 ± 1.7 45.9 ± 20.1 1.7 ± 1.5 

    80.5 ± 7.4 53.9 ± 28.0 43.2 ± 22.8 

Ac-CH+GGDD 

SOLx (Side_OW) CYS1 (Main_O) 13.2 ± 1.5 48.7 ± 15.1 6.4 ± 2.7 

HIS2 (Main_N) SOLx (Side_OW) 8.0 ± 1.3 52.8 ± 15.1 4.2 ± 1.9 

SOLx (Side_OW) ACE0  (Main_O) 9.3 ± 2.1 54.4 ± 18.0 5.1 ± 2.8 

SOLx (Side_OW) HIS2 (Main_O) 4.2 ± 2.1 45.1 ± 14.9 1.9 ± 1.6 

CYS1 (Main_N) SOLx (Side_OW) 4.2 ± 2.4 42.2 ± 14.5 1.8 ± 1.6 

SOLx (Side_OW) SOLx (Side_OW) 6.0 ± 2.6 40.9 ± 20.6 2.5 ± 2.3 

    44.9 ± 6.4 48.6 ± 17.2 21.8 ± 8.5 

Ac-CH+YGDD 

SOLx (Side_OW) CYS1 (Main_O) 13.5 ± 2.1 50.4 ± 16.3 6.8 ± 3.3 

SOLx (Side_OW) ACE0 (Main_O) 9.9 ± 2.1 52.7 ± 16.9 5.2 ± 2.8 

HIS2 (Main_N) SOLx (Side_OW) 7.9 ± 0.9 48.8 ± 17.4 3.9 ± 1.8 

CYS1 (Main_N) SOLx (Side_OW) 5.0 ± 1.6 39.7 ± 14.6 2.0 ± 1.4 

    36.3 ± 4.6 49.4 ± 17.0 17.9 ± 6.5 

Ac-CYH+GDD 

SOLx (Side_OW) CYS1 (Main_O) 12.6 ± 2.4 56.0 ± 16.7 7.1 ± 3.4 

SOLx (Side_OW) ACE0 (Main_O) 11.8 ± 3.0 55.5 ± 23.0 6.5 ± 2.2 

TYR2 (Main_N) SOLx (Side_OW) 6.1 ± 2.4 50.3 ± 14.9 3.1 ± 1.0 

CYS1 (Main_N) SOLx (Side_OW) 4.8 ± 1.4 42.1 ± 13.6 2.0 ± 0.8 

    35.3 ± 6.6 52.5 ± 19.0 18.7 ± 7.7 
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System Donor Acceptor H-bonds* Occupancy Weighting† 

CYYGRR 

CYS1 (Main_N) SOLx (Side_OW) 15.9 ± 3.6 49.6 ± 16.7 7.9 ± 4.4 

SOLx (Side_OW) CYS1 (Main_O) 11.6 ± 2.5 46.4 ± 13.9 5.4 ± 2.8 

TYR2 (Main_N) SOLx (Side_OW) 7.3 ± 3.7 37.1 ± 11.1 2.7 ± 2.2 

    34.8 ± 8.7 45.2 ± 15.5 16.0 ± 7.1 

Ac-CGGGRR 

SOLx (Side_OW) CYS1 (Main_O) 11.5 ± 4.6 49.7 ± 16.3 5.7 ± 4.2 

SOLx (Side_OW) ACE0 (Main_O) 10.4 ± 3.4 49.0 ± 19.6 5.1 ± 3.7 

GLY2 (Main_N) SOLx (Side_OW) 6.7 ± 1.8 45.0 ± 14.3 3.0 ± 1.8 

CYS1 (Main_N) SOLx (Side_OW) 4.7 ± 1.0 37.0 ± 12.4 1.7 ± 1.0 

    33.3 ± 9.2 45.9 ± 17.1 15.6 ± 7.6 

*Only proximal solvent H-bonds with an occupancy > 20 % are reported. 
†Weighting = no. H-bonds × Occupancy/100. Only H-bonds with a weighting – standard deviation > 0.1 are reported. 
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D.5.3 Water Mobility 

Varying Sequence: (Ac-)CXXGDD, where X = G, V, H, or Y 
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Arginine C-terminus: CYYGRR and Ac-CGGGRR 
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Protonated Histidine: (Ac-)CXXGDD, where one X = G, or Y and the other X = H+ 

  

  

   

Figure D.12 | Decay of water out of dynamic water selections. Water atom indices are determined for 

each selection (e.g. Bulk, Hydration¸ etc.) then updated at each frame only maintaining a count of the 

water atoms whose indices were initially present in the initial selection. Selections are updated for 99 ps, 

then to avoid correlated data, a break of 99 ps is allowed before the next selection is made. In other 

words, 1–100 ps data is collected, 101–200 ps no data is collected, 201–300 ps data is collect and so on. At 

the end of data collection, all decays are averaged and presented with their standard deviation (shaded 

region). To obtain a decay of bulk water, a shell of bulk water 0.6 nm out from hydration water was used. 
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Figure D.13 | Comparison of water decay for acetylated and non-acetylated systems.  
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D.6 Suggestion for Aspartate Electron Transfer to Au and PL Quenching 

D.6.1 Classical Electrostatic Potential Energy 

Varying Sequence: (Ac-)CXXGDD, where X = G, V, H, or Y 
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Protonated Histidine: (Ac-)CXXGDD, where one X = G, or Y and the other X = H+ 

 

 

Figure D.14 | Aspartate classical electrostatic potential energy versus Au25S18 distance. Note the 

last three plots are close-ups. 
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Table D.3 | Electrostatic energy difference before electron removal and after.  

System ∆U (kJ⋅mol-1) 
Percentage of states with 

distance < 0.51 nm and ∆U < 
600 kJ⋅mol-1) 

CGGGDD 650.4 ± 42.4 3.1 

CHYGDD 651.3 ± 43.0 2.8 

CYHGDD 652.6 ± 42.6 2.0 

CVVGDD 650.1 ± 42.2 2.5 

CYYGDD 652.9 ± 43.1 2.4 

Ac-CGGGDD 650.8 ± 42.3 0.3 

Ac-CHYGDD 651.4 ± 41.9 0.0 

Ac-CYHGDD 651.1 ± 42.0 0.0 

CH+YGDD 663.9 ± 44.5 1.7 

CYH+GDD 660.9 ± 42.7 1.8 

Ac-CH+YGDD 653.6 ± 42.0 0.0 

Ac-CYH+GDD 654.2 ± 42.0 0.0 

*Total population = 3,600,000 (36 ASP residues × 10,000 frames × 10 independent trajectories) 

D.6.2 Quantum Mechanical (ONETEP) Results 

 

 

Figure D.15 | Density of states for Au25(SP)18 conformers, where P = CH+YGDD. Note the shift in the 

density of states for conformer III', especially near the HOMO–LUMO gap, implying the importance of 

including hydration water in the single-point calculations. 

Table D.4 | Mulliken atomic partial charges.  

Conformer Au25S18 Au25 S18 Au13 core [S–(Au–S)2]6 staples 

I 0.747 1.095 -0.348 0.237 -0.111 

II 0.781 1.166 -0.385 0.319 -0.066 

III 0.881 1.242 -0.361 0.234 -0.127 

III' 0.950 1.268 -0.318 0.205 -0.113 
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Table D.5 | Kohn–Sham orbitals of Au25(SP)18 (conformer I). *  

  eV (nm) 

 
HOMO-2 (↑) 

 
LUMO+2 (↑) 

1.81127 
(684.5) 

 
HOMO (↑) 

 
LUMO+3 (↑) 

1.88012 
(659.4) 

 
HOMO-1 (↓) 

 
LUMO+3 (↓) 

1.80577 
(686.6) 

*(where P = CH+YGDD) and energy gaps = 655–695 nm. 
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Table D.6 | Kohn–Sham orbitals of Au25(SP)18 (conformer II).*  

HOMO LUMO eV (nm) 

 
HOMO-5 (↑) 

 
LUMO+1 (↑) 

1.79206 
(691.9) 

 
HOMO (↑) 

 
LUMO+3 (↑) 

1.79476 
(690.8) 

 
HOMO-1 (↑) 

 
LUMO+3 (↑) 

1.83397 
(676.0) 

 
HOMO-3 (↓) 

 
LUMO+2 (↓) 

1.79509 
(690.7) 
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HOMO LUMO eV (nm) 

 
HOMO-4 (↓) 

 
LUMO+2 (↓) 

1.81909 
(681.6) 

 
HOMO-5 (↓) 

 
LUMO+2 (↓) 

1.83249 
(676.6) 

 
HOMO (↓) 

 
LUMO+4 (↓) 

1.82618 
(678.9) 

*(where P = CH+YGDD) and energy gaps = 655–695 nm. 
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Table D.7 | Kohn–Sham orbitals of Au25(SP)18 (conformer III).*  

HOMO LUMO eV (nm) 

 
HOMO-1 (↑) 

 
LUMO+2 (↑) 

1.79710 
(689.9) 

 
HOMO (↑) 

 
LUMO+3 (↑) 

1.84388 
(672.4) 

 
HOMO-2 (↑) 

 
LUMO+2 (↑) 

1.87503 
(661.2) 

 
HOMO-5 (↓) 

 
LUMO+2 (↓) 

1.85418 
(668.7) 
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HOMO LUMO eV (nm) 

 
HOMO-1 (↓) 

 
LUMO+3 (↓) 

1.87247 
(662.1) 

*(where P = CH+YGDD) and energy gaps = 655–695 nm. 

 

Table D.8 | Kohn–Sham orbitals of Au25(SP)18 (conformer III').* 

HOMO LUMO eV (nm) 

 
HOMO-1 (↑) 

 
LUMO+5 (↑) 

1.80908 
(685.3) 

 
HOMO-5 (↑) 

 
LUMO (↑) 

1.81977 
(681.3) 
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HOMO LUMO eV (nm) 

 
HOMO-2 (↑) 

 
LUMO+4 (↑) 

1.85461 
(668.5) 

 
HOMO-5 (↑) 

 
LUMO+1 (↑) 

1.88633 
(657.3) 

 
HOMO-4 (↓) 

 
LUMO+1 (↓) 

1.82018 
(681.2) 
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HOMO LUMO eV (nm) 

 
HOMO-4 (↓) 

 
LUMO+2 (↓) 

1.87821 
(660.1) 

 
HOMO-1 (↓) 

 
LUMO+5 (↓) 

1.86434 
(665.0) 

*(where P = CH+YGDD) and energy gaps = 655–695 nm. 
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