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Abstract 

Animal data indicate that greater intake of fats and sugars prevalent in a Western diet impairs 

hippocampal memory and tests of behavioral inhibition known to be related to hippocampal 

function (e.g., feature negative discrimination tasks).  It has been argued that such high fat 

high sugar diets (HFS) impair the hippocampus, which then becomes less sensitive to 

modulation by physiological state.  Thus retrieval of motivationally salient memories (e.g., 

when seeing or smelling food) occurs irrespective of state.  Here we examine whether 

evidence of similar effects can be observed in humans using a correlational design.  Healthy 

human participants (N =  94), who varied in their habitual consumption of a HFS diet, 

completed the verbal paired associate (VPA) test, a known hippocampal-dependent process, 

as well as liking and wanting ratings of palatable snack foods, assessed both hungry and 

sated.  Greater intake of a HFS diet was significantly associated with a slower VPA learning 

rate, as predicted.  Importantly, for those who regularly consumed a HFS diet, while 

reductions in liking and wanting occurred between hungry and sated states, the reduction in 

wanting was far smaller relative to liking.  The latter effect was strongly related to VPA 

learning rate, suggestive of hippocampal mediation.  In agreement with the animal literature, 

human subjects with a greater intake of a HFS diet show deficits in hippocampal-dependent 

learning and memory, and their desire to consume palatable food is less affected by 

physiological state – a process we suggest that is also hippocampal related. 

Keywords: hippocampus, diet, wanting, Western diet, memory, liking, sugar, fat 
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A high-fat high-sugar diet predicts poorer hippocampal-related memory and a reduced 

ability to suppress wanting under satiety 

The rise in obesity in many countries has been linked to the increased consumption of 

a Western-style diet, one rich in saturated fats and refined sugars, and low in fiber, fruit and 

vegetables (Drewnowski, 2007).  While this type of diet may contribute to weight gain via its 

palatability and energy density, it may have other effects as well.  A recent animal-based 

model of obesity proposes that such a diet adversely impacts certain centrally controlled 

aspects of food intake regulation via memory and inhibition processes, which then directly 

contribute to weight gain (Davidson, Kanoski, Walls & Jarrard, 2005).  Specifically, diets rich 

in saturated fat and refined sugar impair the ability of the hippocampus to appropriately 

inhibit food-related memories under a sated physiological state, which subsequently promotes 

energy regulation and thus obesity (Davidson et al., 2005).  Animals consistently show robust 

impairments in hippocampal-related learning and memory following a shift from standard lab 

chow to a diet high in fat (e.g., Morrison et al. 2010; Greenwood & Winocur, 1996), sucrose 

(e.g., Jurdak & Kanarek, 2009; Kendig, Boakes, Rooney & Corbit, 2013), and both saturated 

fat and refined sugars (e.g., Beilharz, Maniam & Morris, 2013; Molteni, Barnard, Ying, 

Roberts, & Gomez-Pinilla, 2002; Tran & Westbrook, 2015).  While the animal data are 

substantial, there has been relatively little translation into human research.  So far, it has been 

established that greater consumption of a saturated fats and refined sugars – a HFS diet – is 

associated with poorer performance on hippocampal-related measures of learning and 

memory in children (Baym et al., 2014) and adults (Brannigan, Stevenson & Francis, 2015; 

Francis & Stevenson, 2011) and with smaller hippocampal volume in the elderly (Jacka, 

Cherbuin, Anstey, Sachdev & Butterworth, 2015).  These correlational findings suggest that 

as in animals, such a diet may impair hippocampal function across the lifespan.  

The hippocampus may mediate several different regulatory functions in respect of 

food intake.  These include: (1) explicit retrieval of what has been eaten to aid conscious 
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modulation of food intake (Higgs, 2002; Robinson et al., 2013); (2) integration of 

physiological signals of hunger, fullness and thirst, with memory for what has recently been 

eaten and drunk, to generate interoceptive states (Brannigan, Stevenson & Francis, 2015; 

Brunstrom et al., 2012); and (3) state-dependent retrieval and inhibition of pleasant food-

related memories (Davidson et al., 2005; Davidson, Sample & Swithers, 2014).  It is this last 

proposed mechanism that is of principal interest here, because of its apparent importance in 

modulating appetite according to hunger state.   

It has been suggested, again on the basis of animal data, that upon encountering food 

cues when hungry, pleasant food-related memories associated with the cue are excited or 

retrieved, thereby motivating the animal to eat that food.  However, when sated, such 

associations are inhibited, thus reducing the incentive to consume. The regulation of 

appetitive behaviour is therefore based on the ability of satiety cues to inhibit this association, 

and this ability depends on the functional integrity of the hippocampus (Davidson et al., 2005; 

Davidson, Sample & Swithers, 2014).  It follows then that successful long-term energy 

regulation involves integrating physiological states (hunger/satiety) with these memory-

driven motivational states, so as to facilitate or retard energy intake when encountering food 

cues in the environment.  According to Davidson et al. (2005), diets high in fats and refined 

sugars disrupt this process by impairing hippocampal function.  The latter would then impair 

the ability of satiety to inhibit pleasant food-related memories in the presence of palatable 

food cues, and hence the ability to modulate the incentive salience of food based upon 

physiological state.  While animal data supports this type of model (e.g., Davidson et al., 

2012; Murray et al., 2009), there is as yet no test of it in humans.  The main focus of this 

current study is to provide such a test.  

Liking a food when eating it (i.e., palatability) and wanting a food on seeing it (i.e., 

incentive salience) are key drivers of human eating behavior (Finlayson, King & Blundell, 

2007).  Wanting is hypothesized to be the consequence of an active process whereby internal 
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cues to bodily state and external cues to food are transformed into representations with an 

assigned motivational value (Berridge, 1996).  Generating a ‘want’ is therefore highly 

dependent upon memory, with each food cue leading to the retrieval of its own particular 

sensory and hedonic attributes.  While wanting may be heavily dependent upon memory, 

liking is likely to be far less dependent, because here consumption directly activates sensory-

driven pleasure circuits (i.e., for sweetness, saltiness, fatty mouthfeel).  Accordingly, wanting 

for a food should be strongly linked to hippocampal-related memory processes, while liking 

should not.   

Another important consequence of this definition of wanting by Berridge (1996) is 

that the motivational value of a food should vary as a function of physiological state – a 

phenomenon termed ‘alliesthesia’ (Cabanac, 1971).  While Cabanac (1971) defined this 

phenomenon using pleasantness (i.e., liking), others have since shown that changes in internal 

state induce greater decreases in wanting than liking when exposed to olfactory stimuli (Jiang 

et al., 2008) and visual stimuli (Finlayson, King & Blundell, 2007b).  According to Davidson 

et al., (2005), the presence a food cue activates the stored representation of that food when 

hungry, but is inhibited when sated.  Therefore, wanting should be more sensitive than liking 

to changes in physiological state, since wanting is driven by the integration of physiological 

state and by the activation of a food-related memory (Berridge, 1996), while liking involves 

only the former. To see then if wanting is less effectively modulated by state in habitual 

consumers of a HFS diet (and changes in liking are not), we asked participants to evaluate 

their desire to consume and their liking for palatable snack foods (Palatable food cue task) 

when hungry and later, after an experimental lunch, when sated.  Our major prediction was 

that changes in wanting from a hungry to a sated state would be smaller in habitual consumers 

of a HFS diet than comparable changes in liking.  In addition to ratings of liking and wanting, 

we also obtained salivary responses to these foods, which we expected to mirror changes in 

wanting. 
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To see if state-dependent effects on wanting and liking in the Palatable food cue task 

were associated with performance on a hippocampal-related task, participants were also given 

a second test.  This involved learning pairs of words - verbal paired associates (VPA) – a task 

that is known to be dependent upon an intact hippocampus (Baxendale, 1995; Eichenbaum & 

Bunsey, 1995; Karantzoulis, Scorpio, Borod & Bender, 2012).  Not only did we expect VPA 

performance to be poorer in frequent consumers of a HFS diet as predicted by our earlier 

work (Brannigan, Stevenson & Francis, 2015; Francis & Stevenson, 2011), we also expected 

that VPA performance would correlate with size of the state-dependent change in wanting but 

not liking. 

Following VPA training and testing, participants were asked to engage in a series of 

further learning trials which involved either explicit inhibition of some verbal paired 

associates and explicit rehearsal of others - the ‘Think/No think’ task.  It has been claimed 

that performance on the ‘Think/No-Think’ task is also related to the hippocampus (Anderson 

& Green, 2001; Anderson et al., 2004).  We thus predicted that performance on this task 

should also be poorer in frequent consumers of a HFS diet. 

A further feature of this study was our attempt to recruit participants of normal BMI 

(≤25kg/m2), as well as controlling for variation in BMI, since increased BMI may affect 

memory recall (De Wit et al., 2016).  Several other factors can affect hippocampal function.  

These include age (e.g., Bouchard et al., 2008), gender (e.g., Cosgrove, Mazure, & Staley, 

2007), physical activity (e.g., Erickson et al., 2011), sleep quality (e.g., Reimann et al., 2007), 

and depression and stress (e.g., Videbach & Ravnkilde, 2004). Furthermore, diet quality, food 

intake and attitudes to food and eating have been linked with gender (e.g., Northstone, 2012), 

sleep quality (e.g., Chaput, 2013), physical activity (e.g., Drewnowski & Evans, 2001), and 

depression and stress (e.g., Appelhans et al., 2012).  These possibly confounding factors were 

also measured in this study. 



HIGH FAT AND SUGAR DIET AND HIPPOCAMPAL INHIBITION 8 

Assessment of participants’ diets used a validated food frequency questionnaire, 

designed to indicate differences in intake of saturated fat and refined sugar, the Dietary Fat 

and Sugar questionnaire (DFS: Francis & Stevenson, 2013).  In addition, we also assessed 

skin carotenoid levels using a spectrophotometer to determine fruit and vegetable intake 

(Stephen, Coetzee & Perrett, 2011).  This measure was expected to be negatively correlated 

with scores on the DFS.  It also allowed us to test whether the absence of fruit and vegetables 

(rather than the presence of saturated fat and refined sugar) was associated with any 

hippocampal-related effects, on the grounds that a healthy diet may be protective.  

In sum, the primary aims of the current study were to determine if more frequent 

consumption of a HFS diet impairs state-dependent changes in wanting but not liking, and to 

see if this effect is linked to hippocampal-related processes.  Secondary aims were to 

determine whether a hippocampal-related measure of learning and memory (VPA) was 

acquired more slowly in frequent consumers of a HFS diet and whether this also extended to 

the Think/No-Think task. 

Method 

Participants  

People differ in the degree to which they eat a HFS diet.  As we wished to use a 

correlational approach in our analyses, we needed to ensure that we had sufficient numbers of 

people who rarely or frequently consumed a HFS diet.  To this end we screened a large 

sample and recruited people only from the upper and lower quartiles of a measure designed to 

assess dietary intake of fats and refined sugars (more below).  Having sampled in this way - 

and knowing that there would be some regression to the mean when peoples dietary habits 

were measured again during the study – we treated the dietary data as a continuous variable 

(i.e., a correlational approach) rather than grouping participants into ‘highs’ and ‘lows’.  This 

decision was made because the continuous approach under these circumstances is 
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considerably more powerful than the grouping approach (MacCallum et al., 2002; Preacher et 

al., 2005), as it uses all of the available information.  

Participants were recruited via two routes.  The first involved screening the participant 

pool maintained by the Department of Psychology at Macquarie University using the DFS, 

which is a 26-item food frequency questionnaire (score range from 26 to 130) designed to 

identify variability in intake of saturated fat and refined sugar.  The DFS has good test-retest 

reliability (r = .84 over 22 weeks), and has been validated against a full-length food frequency 

questionnaire and a 4-day diet diary, for both saturated fat and refined sugar intake (Francis & 

Stevenson, 2013).  Cut-offs for the DFS were similar to Francis and Stevenson (2011), with 

scores above 70 and below 55 being used to identify potential participants.  A total of 651 

undergraduates completed the DFS.  Of these 267 remained as potentially eligible 

participants, since they met all of the following criteria: (a) fell above or below the cut-offs; 

(b) reported a BMI between 17 and 26 (broader than the conventional criteria because this 

was a self-estimate and as we included people of both Caucasian and Asian descent); (c) were 

aged between 17 and 35; and (d) consented to be approached. 

The second recruitment route drew upon the broader university community.  Two 

types of advertisement were routinely placed around campus, with one featuring fruits and 

vegetables and the other highly palatable snack foods.  When a potential participant phoned to 

enquire about the advertisements, they were asked to report consumption frequencies for the 

seven items from the DFS that had the highest item-total correlations (Soft drinks; Cakes & 

Cookies; Pizza; Fried chicken, or chicken burgers; Doughnuts, pastries, croissants; Corn 

chips, potato chips, popcorn with butter; French fries, fried potatoes).  Participants who met 

age and BMI criteria, and who scored below 16 or above 21 on this short-form DFS were 

potentially eligible to take part. 

To determine whether a potentially eligible person was actually able to participate 

required a telephone-screening interview.  This assessed any current health issues (physical or 
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mental illness; chronic conditions; recent hospitalizations; any history of eating disorders; any 

head injuries; food allergies), any past health issues, and spoken English ability (i.e., for 

participants recruited via adverts this included leaving a voicemail message and undertaking 

the screening interview).  Participants who reported anything beyond minor health complaints 

(which included asthma) or who could not adequately comprehend the interview were 

excluded.  Eligible participants were instructed to breakfast as normal, and then refrain from 

eating in the 3 h before testing so as to arrive hungry for lunch, with sessions being booked to 

start at either 1100 for a 1200 lunch or 1300 for a 1400 lunch.  Participants were also told that 

they could drink water in this period but not caloric beverages and that they were not to 

exercise beyond their normal pattern. 

In total 97 participants completed the study.  Of these 56 were from the psychology 

subject pool and 41 from the broader community.  Data from three participants were 

excluded.  One male participant revealed that they were diabetic and epileptic on the health-

screening questionnaire administered at the start of the study.  Two female participants had 

BMI’s < 17 - one of 16.2 and the other of 15.2.  Although neither reported having an eating 

disorder during telephone screening (nor to having a BMI under 17) nor on the health 

screening questionnaire, we were concerned that this BMI might point to significant under-

nutrition, with unpredictable impacts on food-related behavior.  The same pattern of 

significant findings was obtained even when these three participants were included.  

Demographic and other information about the 94 participants whose data were included in the 

reported analyses are given in Table 1. 

Materials 

The experimental lunch served during the study was either 350g of Beef Lasagne 

(Woolworths select brand: total energy 1930KJ [5.5% protein, 5.5% fat, 15.0% carbohydrate, 

by weight]) or if they disliked lasagne (prior to consumption), 350g of Spinach and Ricotta 

Ravioli (Woolworths select brand; 1640KJ [4.6% protein, 3.7% fat, 14.9% carbohydrate, by 
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weight]).  Alongside this hot meal, participants were also presented with a plate of cookies, 

consisting of four chocolate Tim Tam biscuits (total energy 1596KJ [4.6% protein, 26.9% fat, 

63.9% carbohydrate, by weight]) and eight Woolworths chocolate chip cookies (total energy 

1744KJ [5.0% protein, 22.7% fat, 66.7% carbohydrate, by weight]). 

The Palatable Food Cue task used eight snack-food items, four savory and four sweet.  

These were: (1) a cheese and bacon ball (Fritolay); (2) a 0.5 cm3 piece of cheddar cheese 

(Mainland); (3) a BBQ Pringles chip; (4) a salt and vinegar Pringles chip; (5) a piece of Flake 

chocolate (Cadbury Flake bites); (6) a mini Tim-Tam chocolate biscuit (Arnotts); (7) a mini 

chocolate chip cookie (Arnotts); and (8) a Malteser (Mars).  

The 52 words for the paired associate tasks were selected from the lists in Nørby et al., 

(2010).  All of the selected words were nouns with between 5 and 9 letters, emotionally 

neutral and occurring in the medium to high frequency range of the Corpus of Contemporary 

American English.  From these 52 words, 26 pairs were formed that were not obviously 

related, which was achieved by randomly generating word pairs and then having the 

experimenters check for relatedness (see Appendix 1 for selected word pairs). 

Procedure 

The study protocol was approved by the Macquarie University Human Research 

Ethics Committee and written consent was provided by each participant.  The study started 

with the completion of: (1) a questionnaire to check adherence to the pre-experimental 

instructions; (2) a health questionnaire to confirm the screening interview and to check for 

any common chronic diseases, current health, and basic medical history; (3) a brief sleep scale 

(the Pittsburgh Insomnia Rating Scale 2; Moul et al., 2002); (4) a depression, anxiety and 

stress scale (DASS-21; Lovibond & Lovibond, 1995); and (5) a physical activity measure 

(IPAQ-SF; Papathanasiou et al., 2010).  To assess skin yellowness and thus carotenoid levels, 

two readings from the palm of each hand were obtained with a CM-700D Konica-Minolta 

Spectrophotometer, using the b* axis measure (Stephen, Coetzee & Perrett, 2011).  
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Participants were then given the major study tasks in the following sequence: (1) The 

Palatable Food Cue task while hungry; (2) Verbal Paired Associates training followed by the 

Think/No-Think task, and then lunch; and (3) the Palatable Food Cue task while sated.  Each 

of these tasks, and the lunch meal, were accompanied by additional measures (detailed 

below), most notably ratings of how hungry, thirsty, full, happy, sad, relaxed and alert they 

were - in that order - on 120mm line rating scales (anchors Not at all and Very).  These 

ratings were repeated at various intervals throughout the session and are referred to as the 

hunger/mood ratings set.  

Palatable Food Cue task (hungry).   After completing the hunger/mood rating set, 

participants were instructed to place two pieces of sterile dental wadding around their 

submaxillary and sublingual salivary ducts (under the tongue), as well as placing one piece 

around each parotid duct (one each side of the upper jaw).  The time elapsed from when the 

final piece of wadding was inserted until the time the last piece was removed was recorded.  

With the dental wadding in place, participants were then asked to touch, sniff and lick (in that 

order) each of eight snack food items presented in randomized order.  Once participants had 

completed their interaction with all items they removed the wadding from their mouth and 

placed it into a bag for weighing.    

After participants had rinsed their mouth with water they were presented with a fresh 

set of the eight snack food items, again in randomized order.  Starting with the first item, 

participants were asked to look at it and judge how much they wanted to eat it using a 120mm 

line rating scale (anchors Not at all and A lot).  This formed our measure of food wanting 

based solely upon viewing the sample.  

They were then asked to taste the sample after which they made two further ratings, 

both on 120mm line rating scales: (1) How much did you like this food? (anchors Not at all 

and A lot); and (2) How much more of this food would you like to eat now? (anchors None 

and A lot).  The first of these two ratings formed our measure of liking.  The second rating 
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assessed immediate desire for more based upon sensory experience (in contrast to the wanting 

measure obtained prior to sampling the food that must be based upon memory).  Following a 

water rinse, participants then repeated this process for each of the remaining snack food items. 

Verbal Paired Associates (VPA).  Before participants started this phase they were 

asked to complete a second set of hunger/mood ratings.  The VPA task started with an initial 

presentation block composed of 26 trials.  In each trial a word pair was presented on the 

computer screen for 5 s (e.g., table legend).  Participants were instructed to read each word 

pair out loud and try to learn it.  In the subsequent four training blocks only the first word of 

each pair was presented for 5 s (e.g., table), and participants were instructed to say out loud 

the (not shown) associated word.  If they failed to respond within 5 s or their response was 

incorrect, the correct associate was presented (i.e., legend) and participants were instructed to 

say the pair out loud.  The number of errors was recorded for each training block.  The 

presentation order of the 26 trials was randomized in the initial presentation block and in each 

of the training blocks. 

Think/No-think task.  Following completion of the VPA task, the Think/No-Think 

training started.  The 26 pairs used in the VPA task were randomly allocated to four sets: 2 

‘Practice’ pairs, 8 ‘Baseline’ pairs, 8 ‘Think’ pairs, and 8 ‘No-Think’ pairs.  The two practice 

pairs were used to familiarize participants with the procedure.  Participants were instructed 

that when they saw an initial word in green, they were to think of its associated word and to 

say it out loud (Think word).  However, if they saw an initial word in red, they were 

instructed to suppress thinking of the associated word and to remain silent (No-Think word). 

No feedback was provided.  The 8 Think and 8 No-Think initial words were then presented 7 

times each (i.e., 112 trials).  These 112 trials was organized into 7 blocks each composed of 

16 trials, with each block composed of the 8 Think and 8 No-Think initial words, presented in 

randomized order.  On each trial the initial word was displayed for 5 s, with a 1-s inter-trial 

interval.  Participants then immediately undertook the first think/no-think test phase.  The first 
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word of each of the 26 pairs was presented for 5 s, all in standard black font.  Participants 

were told to recall out loud its associated word (including the ‘No-Think’ words). Order of 

presentation was random and no feedback was given.  A second test occurred at the end of the 

study, as described later. 

 Lunch.  Participants started by completing the third hunger/mood ratings set.  They 

were then instructed to eat as much of the presented food as they wished and to ask for more 

if they were still hungry.  They were also told that all uneaten food would be thrown away. Ad 

libitum access to cold water was provided throughout lunch.   

 During the lunch period participants were told not to use electronic devices (all 

belongings etc., being left in the laboratory vestibule), but were allowed to read magazines 

provided in the test room while eating.  The content of these magazines had been screened to 

avoid any eating-related or upsetting material.  After giving participants their food, the 

experimenter left the test room, returning 10 min later to see if they would like any more food 

and to ask the participant to call out when they had finished or if they wanted more.  Uneaten 

food was then removed for later weighing.  

 Palatable Food Cue task (sated).  After completing the fourth hunger/mood ratings set, 

participants undertook the Palatable Food Cue task again.  This was identical to the first test 

in all respects, with salivation to the 8 snack food items measured first, followed by 

evaluation (want on looking), consumption, and evaluation (like and want on tasting), of each 

of the 8 snack food items. 

 Final measures.  Participants started by completing the fifth and final set of the 

hunger/mood ratings.  They were then given a delayed test for the 26 pairs learned earlier in 

the experiment.  The test format was identical to that described above, except that a different 

randomized presentation order was used. 

Participants then completed two questionnaires.  The first was the 26-item DFS 

(Francis & Stevenson, 2013), so that a current measure of dietary saturated fat and refined 
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sugar intake was available for the analysis.  The second was the 51-item Three-factor Eating 

Questionnaire, which has established reliability and validity (Stunkard & Messick, 1985), and 

which was used to collect data on participants’ eating-related behaviors and attitudes.  Finally, 

participants’ height and weight were measured to assess BMI. 

Analysis 

 Four sets of variables required square-root transformations so as to enable parametric 

analysis – the DASS scores (and the total score), participant age, the energy intake measures 

(and total energy intake), and the activity measure from the IPAQ. 

 On the VPA task, each participant had a percent correct score for each block and a 

learning rate score, calculated as percent correct on Block 4 minus percent correct on Block 1 

(VPA Learning rate).   

On the Think/No-Think task scores were derived from the two test phases, the initial 

and the delayed test, which took place at the end of the study.  On each test, three scores were 

computed by calculating the percent correct responses for the 8 Think items, the 8 No-Think 

items and the 8 Baseline items.   A further score was also derived, reflecting the overall 

magnitude of Think/No-Think related inhibition (collapsing across both tests; [[Think + 

Baseline]/2] – No-Think]). 

 Two sets of scores were computed for the Palatable Food Cue task, one for when the 

test was completed hungry and one when it was completed sated.  On both occasions four 

measures were derived: (1) mean wanting on looking; (2) mean food liking after tasting; (3) 

mean want more scores after tasting; and (4) salivation rate (in grams per sec).  For the first 

three scores, these were all averaged across the 8 snack food items, and for the fourth, only an 

aggregate score for all items was available. 

 Three approaches were taken to analyze these data.  The first involved descriptive 

statistics and zero order correlations between the diet-related variables (i.e., DFS score and 

the spectrophotometer measure) and the demographic, control, interoceptive and eating-
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related measures.  The second approach was to analyze VPA, Think/No-Think, and Palatable 

Food Cue task data, with repeated measures ANOVA, to test for changes over time in 

outcome measures (i.e., VPA learning, Think/No-Think related inhibition, change in 

wanting/liking ratings with state).  The third approach was to examine sources of variability 

in the VPA, Think/No-Think, and the Palatable Food Cue Task using stepwise regression 

analyses.  It is this third approach that directly addresses the primary and secondary aims 

identified in the Introduction.   

The selection of predictor variables for each regression model was based upon the 

following criteria.  First, all models contained the main predictor of interest, the DFS diet 

score, along with basic demographic and control variables.  Thus all models started with the 

following predictors: [1] age; [2] gender; [3] DASS total score (as the three sub-components 

were highly correlated); [4] PIRS sleep score; [5] activity score from the IPAQ; [6] Restraint 

score from the TFEQ; [7] Hunger score from the TFEQ; [8] Disinhibition score from the 

TFEQ; [9] BMI; and [10] DFS (diet) score.  Second, this initial set of predictors was then 

included in a further regression analysis alongside the spectrophotometer measure, to 

establish whether this displaced the DFS (diet) score, indicating whether it was the absence of 

fruit and vegetables in the diet, rather than the presence of saturated fat and refined sugar, that 

might be predictive of performance.  Third, for the Palatable Food Cue task regressions, 

amount of lunch consumed (total in kJ) and the change in hunger across lunch were added 

into all models, as participants varied in how much they ate and in how much hunger ratings 

changed across the meal.  Fourth, on the two regression analyses establishing links between 

performance on the Palatable Food Cue Task and measures of hippocampal-related learning 

and memory, we included both our primary measure of hippocampal-related functioning, 

VPA Learning rate, as well as a secondary measure, namely the Think/No-Think related 

inhibition score.  Finally, we note that it is generally advisable in regression to have at least 5-
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10 cases per predictor variable, and while all our models fell above the lower bound, a higher 

ratio would have been more desirable. 

Results 

Participant characteristics, lunch, interoceptive and mood measures 

Participant characteristics are presented in Table 1.  There was a significant 

association between the DFS dietary score and the spectrophotometry measure.  Participants 

reporting diets richer in saturated fat and refined sugar tended to have less yellow skin (beta 

values), indicative of lower fruit and vegetable intakes.  There were some significant 

associations between participant characteristics, and the diet and spectrophotometry measures.  

Female participants tended to have lower DFS scores than men, and greater dietary restraint, 

as measured by the TFEQ.  For females the latter was associated with lower DFS score and 

yellower skin. 

Hunger, fullness and the lunch-related measures are detailed in Table 2.  Both hunger 

and fullness ratings significantly changed across Time, F(4,372) = 239.40, MSE = 361.32, p 

< .001, partial eta-squared = .72, and F(4,372) = 276.52, MSE = 380.30, p < .001, partial eta-

squared = .75, respectively.  In both cases, there were highly significant linear trends across 

Time for decreasing hunger, p < .001 and for increasing fullness, p < .001.  There were a 

number of significant associations between hunger and DFS score, and one with fullness, but 

none involving the spectrophotometer measure.   Hunger ratings tended to be higher and 

fullness ratings lower in participants reporting a higher DFS score (i.e., more refined sugar 

and saturated fat). 

For energy consumed at lunch, both overall, and for each food-type, there was a 

tendency for this to be higher in participants reporting a higher DFS score (p’s from .061 for 

total energy intake, .078 for biscuits and .42 for lasagne/ravioli intake). 

We also assessed changes in thirst and mood across the study.  For thirst, ratings 

changed across the study, F(4,372) = 61.36, MSE = 492.80, p < .001, partial eta-squared 
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= .40, with progressively decreasing thirst (linear trend, p < .001).  For mood ratings, 

happiness ratings significantly increased across the study (linear trend, p < .001), sadness 

ratings decreased (linear trend, p < .001), and participants also reported feeling more relaxed 

(linear trend, p < .01).  There were no significant changes in alertness ratings. 

Verbal Paired Associates (VPA) 

A one-way repeated measures ANOVA, with Block (first, second, third and fourth 

training block), entered as the within factor, revealed a significant main effect of Block, 

F(3,279) = 327.22, MSE = 6.07, p < .001, partial eta-squared = .78, with mean percent correct 

score increasing linearly across blocks (significant linear trend, p < .001; also noting a small 

cubic component, p < .01) – see Figure 1.   

 To determine whether VPA learning rate (percent correct on Block 4 minus percent 

correct on Block 1) was related to diet, we conducted a stepwise regression analysis.  The 

dependent variable VPA learning rate, with predictor variables, DFS (diet) score, BMI, age, 

gender, IPAQ total activity score, DASS total score, PIRS sleep score, and Restraint, Hunger 

and Disinhibition scores from the TFEQ.  The final model was significant and is presented in 

Table 3, with DFS (diet) score, TFEQ Disinhibition score, and DASS total score, as 

predictors.  We then repeated this model, but now adding in the spectrophotometer score as a 

further predictor, but the same regression model emerged again (i.e., the spectrophotometer 

score was not predictive).  Overall, these findings suggest a slower VPA learning rate is 

associated with higher reported intake of saturated fat and refined sugar (see Figure 1). 

Think/No-Think task   

A repeated measures ANOVA was conducted with Measure (Baseline vs. Think vs. 

No-Think) and Time (Immediate test vs. Delayed test) as within factors.  The analysis 

revealed two significant effects.  First, Measure, F(2,186) = 6.59, MSE = 0.25, p < .005, 

partial eta-squared = .07, with poorest recall in the No-Think condition, relative to the equally 

trained Think condition, and to the Baseline condition – see Table 4.  Simple contrasts 
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revealed that the No-Think condition had the poorest recall, relative to the other two 

conditions (p’s < .002), which did not differ.  Second, Time, F(1,90) = 9.22, MSE = 0.34, p 

< .005, partial eta-squared = .09, with percent correct recall improving slightly from the initial 

to the delayed test (see Table 4). 

We then tested whether performance on the Think/No-Think task (see Table 4 – but 

collapsing across the initial and delayed test), could be predicted by participants dietary self-

reports and other variables, again using stepwise regression.  The dependent variable was the 

memory inhibition score derived from the Think/No-Think task, with predictor variables as 

described above.  The final model was significant with just one predictor remaining in the 

model, IPAQ total activity score – see Table 5.  Repeating this model by adding in 

spectrophotometer scores did not change the outcome, which indicated that larger inhibition 

scores were observed in participants who reported greater levels of physical activity.  Finally, 

we note that participants varied in how much they had learned the word pairs (on the VPA 

task) before starting the think/no-think task.  However, we could find no evidence that this 

affected participants’ memory inhibition effect. 

Palatable Food Cue task 

Self-report measures.  Participant evaluations of the palatable foods were analyzed 

using a two-way repeated measures ANOVA, with State as one factor (Tested hungry vs. 

Tested sated) and Measure as the other (Want to eat [on looking] vs. Liking [after tasting] vs. 

Want more [after tasting]), with the data illustrated in Figure 2.  The ANOVA revealed main 

effects of State, F(1,93) = 175.96, MSE = 546.03, p < .001, partial eta-squared = .65, and 

Measure, F(2,186) = 143.65, MSE = 109.58, p < .001, partial eta-squared = .61, which were 

qualified by an interaction between State and Measure, F(2,186) = 54.08, MSE = 46.72, p 

< .001, partial eta-squared = .37.  To determine the source of the interaction effect, the three 

difference scores across State (Tested hungry minus Tested full) for each Measure (Want to 

eat [on looking] vs. Liking [after tasting] vs. Want more [after tasting]) were compared.  As 
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suggested in the Introduction, want to eat scores on looking at the food fell significantly more 

with the change of State than liking scores, p < .001.  Want more scores after tasting the snack 

also decreased more across State, than liking scores, p < .001.  Finally, want more after 

tasting scores fell further across State than want to eat on looking scores, p < .05.  So while all 

evaluations declined when tested sated, this decrease was greater for both wanting ratings 

than for the liking rating. 

We then tested our primary aim, namely whether the state-dependent difference in 

wanting ratings made when looking at the food, relative to the liking rating made after tasting 

it, could be predicted by dietary variables.  In addition to the predictor variables used before, 

two further predictors were now included: Change in hunger across lunch, and the amount of 

energy consumed at that meal.  The final significant model, which included the DFS (diet) 

score, is presented in Table 6.  Repeating this model by adding in spectrophotometer scores 

led to the same outcome, and this variable was not included in the final model.  As illustrated 

in Figure 2, want to eat ratings - relative to liking ratings after tasting - were less affected by 

state in participants who consumed diets richer in saturated fat and refined sugar.  To make 

this effect more vivid, in Figure 3 we present data (liking and wanting ratings made when 

hungry and replete) from just the dietary extremes of our sample – the top and bottom 20% on 

DFS (diet) score.  As can be seen, want to eat on looking scores, relative to liking, change less 

across state in those who routinely eat the most saturated fat and added sugar.  Thus state may 

be less able to moderate retrieval of pleasant food-related memories in participants who 

frequently consume diets rich in saturated fat and refined sugar. 

Finally, we examined the sources of variability in the other major component of the 

Time by Measure interaction, namely the relatively larger decline in wanting more after 

tasting, relative to liking.  The same stepwise regression approach was used with the same 

predictor variables.  The final model was significant, F(2,91) = 14.10, p < .001, adjusted R2 

= .22, with two predictors remaining in the model.  These were change in hunger, Sr = .42, 
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Sr2% = 18.1%, p < .001 and sleep quality score, Sr = .24, Sr2% = 5.5%, p < .02.  Repeating 

this model by adding in spectrophotometer scores led to the same outcome, and this variable 

was not included in the final model. 

Saliva measure.  Salivation rate significantly increased between the hungry and sated 

tests from a M = 0.038 g/sec (SD = 0.009) to M = 0.049 g/sec (SD = 0.011), t(93) = 12.21, p 

< .001, r2 = .61.  We tested to see if change in salivation rate between the hungry and sated 

states could be explained by any of the predictor variables used in the preceding regression 

analyses, but there were no significant models. 

We then checked to see if change in salivation rate across states was associated with 

the aggregate self-report measures (i.e., main effect of Time), after partialling out the amount 

of energy consumed at lunch and changes in hunger across the meal.  Greater salivation in the 

sated state (relative to the hungry state) was associated with smaller reductions in liking and 

wanting (i.e., main effect of Time), r12.34(90) = -.22, p < .05, providing some validation for the 

self-report ratings.  The three parts of the interaction effect for the self-report data were not 

significantly associated with change in salivation rate between internal states (r’s < .14). 

Relationship between VPA and Think/No-Think tasks and the Palatable Food Cue task 

 If hippocampal-related processes contribute to participants’ desire to consume food 

via state-dependent inhibition of food-related memories, then performance measures from the 

VPA and Think/No-Think tasks should explain individual variability in changes in wanting 

and liking between the hungry and sated states.  In addition, to the extent that such measures 

tap hippocampal process more directly than diet, they should displace diet-related predictors 

on the Palatable Food Cue task findings.  To test this, we conducted two further regression 

analyses, examining each major component of the Time by Measure interaction from the 

Palatable Food Cue task.  The primary hippocampal related predictor was VPA learning rate 

and the secondary predictor being Think/No-Think inhibition score, noting that these two 

variables did not significantly correlate, r = -.05. 
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The dependent variable for the first regression was the difference across states 

between the wanting rating made when looking at the food, relative to the liking rating made 

when eating it.  As can be seen in Table 7, VPA learning rate during training was the best 

predictor, displacing DFS diet score from the model (contrast with Table 6).  Repeating this 

model by adding in spectrophotometer scores led to the same outcome.  Overall, this suggests 

that state-dependent changes in wanting scores when just looking at palatable food - relative 

to liking scores when that food is actually consumed – are strongly predicted by how quickly 

participants learned the verbal paired associates, which in turn was shown earlier to be 

associated with reported dietary intake of saturated fat and refined sugar.  

Finally, we examined sources of variability in the other major component of the Time 

by Measure interaction, namely the relatively larger state-dependent decline in wanting more 

after tasting, relative to liking.  This regression analysis produced the same outcome as the 

one described earlier (an identical model – predictors change in hunger and sleep quality), 

with no significant involvement of either hippocampal related performance measure. 

Discussion 

The primary question addressed by this study was whether state-dependent reductions 

in wanting for palatable snack foods (relative to state-dependent reductions in liking for 

palatable snack foods) were: (1) less affected in consumers of a HFS diet; and (2) mediated by 

hippocampal-related processes.  Consistent with expectation, the difference between wanting 

and liking responses between the hungry and sated states was smaller for habitual consumers 

of a HFS diet.  We also found, again as predicted, that these diet-related impairments in 

wanting according to state were significantly predicted by VPA learning rate but not by the 

memory inhibition score from the Think/No-Think task.   

There were several important ancillary findings:  (1) VPA learning rate was associated 

with greater consumption of a HFS diet, replicating previous findings of associations between 

tests sensitive to hippocampal-related function and diet in healthy young people (Brannigan, 
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Stevenson & Francis, 2015; Francis & Stevenson, 2011); (2) greater consumption of a HFS 

diet was associated with smaller changes in hunger and fullness, that is reduced interoceptive 

sensitivity also as observed before (Brannigan, Stevenson & Francis, 2015; Francis & 

Stevenson, 2011); (3) greater energy intake on test lunch tended to be linked with greater HFS 

dietary intake (Francis & Stevenson, 2011); (4) reduced skin yellowness, indicating lower 

intake of fruits and vegetables, was associated with greater consumption of a HFS diet; and 

(5) skin yellowness was not a significant predictor of hippocampal-related processes, 

suggesting that the absence of fruits and vegetables was not a driving factor in diet-related 

cognitive performance.  Finally, while we found that salivation rate was related to overall 

changes in wanting and liking between the hungry and sated state, it was not associated with 

diet or hippocampal-related processes.  

While the present findings are consistent with evidence linking diet to hippocampal 

function in humans (e.g., Brannigan, Stevenson & Francis, 2015; Francis & Stevenson, 2011; 

Jacka et al. 2015), it is the links between diet, hippocampal memory performance and wanting 

that are of central importance.  Specifically, those with a diet richer in saturated fats and 

refined sugars reported smaller changes in wanting scores across state relative to liking 

scores.  Since wanting (i.e., incentive salience) has a memorial component and should vary as 

a function of physiological state, it is plausible that it is an impairment in this process, which 

is driving these smaller changes in wanting relative to liking across state in HFS diet 

consumers.  We therefore suggest that, in line with the model proposed by Davidson et al. 

(2005), this finding reflects poorer inhibition of pleasant food-related memories when sated.  

We also predicted earlier that state-dependent changes in liking should be less affected by any 

adverse impacts to hippocampal-related learning and memory, as liking is driven more by the 

direct sensory experience of the food (Robinson & Berridge, 2000) rather than by any 

memories of it.  Importantly, the change between states was significantly larger in wanting 

relative to liking, and this interaction was predicted by dietary intake of fats and sugars (see 
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Table 6) and performance on the VPA task (see Table 7) – suggesting hippocampal 

mediation. 

One potential implication of the wanting and liking findings is that in habitual 

consumers of a HFS diet physiological state should have less regulatory importance, resulting 

in desire-driven eating whenever palatable food cues are encountered (e.g., Lowe & Butryn, 

2007).  Another potential implication of these findings relates to the ‘vicious-circle’ model of 

obesity (Davidson et al., 2005).  Here, disruption of hippocampal inhibitory control over 

food-related behaviors can heighten the risk of further overconsumption of the same foods 

that initially contributed to hippocampal dysfunction, promoting weight gain.  Findings from 

animals provide support for this model (Davidson et al., 2010; Kanoski, Meisel, Mullins & 

Davidson, 2007; Kanoski & Davidson, 2010).  The present results are consistent with the 

vicious circle model of obesity and may aid understanding of appetite control and 

overconsumption.  Nonetheless, while we argue here that a diet rich in saturated fat and added 

sugar impairs, via hippocampal processes, the ability to use satiety to inhibit pleasant food 

related memories, an alternative interpretation is also plausible.  Individuals more prone to 

palatable food intake may be more likely to eat when sated and to choose high fat high sugar 

foods.  While we suggest this latter possibility is plausible due to the correlational nature of 

our study, the former interpretation seems more likely given what is known from animal data. 

An unexpected finding was that performance on the Think/No-Think task was 

unrelated to HFS diet intake and to VPA learning rate.  Moreover, there was also no 

relationship between the changes in wanting/liking across state and memory inhibition score 

from the Think/No-Think test.  If these processes are all mediated by the same brain area – 

and fMRI data suggests that memory inhibition on the Think/No-Think task is (Anderson et 

al., 2004) – we would expect performance on these measures to be related.  Since such 

relationships were not observed, one possibility is that other neural processes may be 

important in the Think/No-Think task.  There are two reasons for this assertion.  First, while 
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state-dependent changes in wanting/liking do not require explicit instruction to occur, the 

Think/No-Think task involves explicit (i.e., strategic) direction to inhibit or rehearse stimuli.  

Second, the strategic nature of the Think/No-Think task has been illustrated experimentally, 

as substituting an associated word instead of suppressing it, leads to markedly different 

memory recall when tested later (Racsmany, Conway, Keresztes & Krajcsi, 2012; del Prete, 

Hanczakowski, Bajo & Mazzoni, 2015).  Nonetheless, a further alternative explanation also 

needs to be considered in light of the fact that fMRI data indicates that performance on the 

Think/No-Think task is associated with hippocampal activation (Anderson et al., 2004).  It is 

possible that the Think/No-think task may be insensitive to diet-induced affects relative to 

other hippocampal-related tasks (i.e., VPA).  Indeed, this could be potentially important as it 

would imply that not all hippocampal-related measures are equally sensitive to diet-induced 

change.  

The spectrophotometer findings suggest that the hippocampal-related memory 

performance is not linked to reduced intake of fruit and vegetables, but rather to greater 

consumption of a HFS diet.  There are several implications from this finding.  First, the 

inverse association between skin yellowness and scores on the DFS scale provide further 

external validity, as greater saturated fat and sugar intake is usually associated with reduced 

fruit and vegetable intake (Cordain et al., 2005; Kearney, 2010).  While further research is 

required, this points to the potential utility of the spectrophotometer as a simple indirect 

measure of diet quality. Second, it suggests that it is the presence of saturated fat and added 

sugar – as in animals – that is problematic, rather than the absence of fruit and vegetables.  

This implies that a diet containing significant amounts of fruit and vegetables may not be 

protective against a diet that is also high in saturated fat and added sugar. 

Several control variables emerged as significant predictors of either VPA learning 

rate, the Think/No-Think memory inhibition score or for the Food Memory Inhibition effect. 

While depression, stress, and anxiety have all been found before to be associated with 
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hippocampal volume and/or function (e.g., Videbach & Ravnkilde, 2004), four associations 

were more surprising.  First, physical activity was associated with the Think/No-Think 

memory inhibition score.  We included a measure of physical activity because this is known 

to increase hippocampal volume and function (Erickson et al., 2011; Pereira et al., 2007).  

This in turn would suggest that memory inhibition performance on the Think/No-Think task 

was in fact supported by the hippocampus, something we argued earlier was not in fact the 

case.  However, physical activity is in fact associated with improvements across many 

cognitive domains and brain areas, and the largest effects (on meta-analysis) are seen for tasks 

that involve executive function (Hillman, Erickson & Kramer, 2008).   

A second association was observed between TFEQ Disinhibition score and VPA 

learning rate.  TFEQ Disinhibition was positively associated with BMI, TFEQ Restraint and 

TFEQ Hunger, all of which have been found before to relate to measures sensitive to 

hippocampal related measures of learning and memory (Brannigan, Stevenson & Francis, 

2015; Francis & Stevenson, 2011).  Third, we found that both increasing age and poorer sleep 

were associated with larger reductions in wanting (relative to liking) across state, effects that 

were unlikely to be related to hippocampal-related processes, since VPA learning rate was 

also included in this model.  Thus older age and poorer sleep - in the context of a young and 

healthy sample - reflect some other as yet unknown factors associated with better food-related 

memory inhibition. 

We have shown here that HFS dietary intake is not only associated with poorer 

hippocampal-related memory performance as indexed by VPA learning rate, but also with 

poorer inhibition of food-related wanting when sated.  Our findings suggest that hippocampal 

related processes are involved in energy regulation apparently in much the same way as 

suggested by animal models (Davidson et al., 2005; Davidson et al., 2014), irrespective or not 

of whether habitual consumption of a HFS diet causes (or is a consequence of) poorer 

hippocampal function. While causality cannot be inferred here, the results from this study 
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provide the first piece of evidence in humans to parallel those from animals linking a HFS 

diet, impaired hippocampal function, less efficient state-dependent inhibition of food-seeking 

behaviors and hence enhanced susceptibility to excess energy intake. 
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Table 1: Descriptive statistics and Pearson correlations between participant characteristics, 

DFS (diet) score and the spectrophotometer measure 

 

Variable  Descriptive statistics   Variable’s correlation with: 

        DFS (Diet) Spectrophotometry 

 

DFS (diet) score M = 62.0, SD = 12.8, range 34-88     

Spectrophotometer M = 15.8, SD = 1.8, range 11.3-20.2  -.21*   

   
Gender    40 men/54 women    .22*  -.17 

Age   M = 20.3, SD = 3.6, range 17-34  -.19  .13 

BMI   M = 22.3, SD = 2.6, range 17.2-27.9  -.15  -.02 

DASS 

 Depression M = 3.5, SD = 3.6, range 0-18  -.14  .14 

 Anxiety M = 2.9, SD = 2.6, range 0-10  -.01  .17 

 Stress  M = 4.8, SD = 3.6, range 0-16   -.02  .14 

 Total score M = 11.2, SD = 8.1, range 0-35  -.05  .19 

PIRS (Sleep quality) M = 4.7, SD = 1.3, range 2-8   -.04  .13 

Activity (Mins/day) M = 79.1, SD = 87.5, range 0-573  .14  .04 

TFEQ 

 Restraint M = 7.4, SD = 5.4, range 0-20  -.35*  .23* 

 Disinhibition M = 6.5, SD = 3.0, range 1-14  -.06  .19 

 Hunger M = 6.6, SD = 3.5, range 0-14  .16  .14 

 

* p < .05 
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Table 2: Descriptive statistics for hunger and fullness ratings across the study and for eating-

related variables from the study lunch 

 

Time    Descriptive statistics  Variable’s correlation with: 

 Variable  Mean (SD)   DFS (Diet) Spectrophotometry 

 

Start of the study 

Hunger 1  68.1 (29.3)    .16  .14 

Fullness 1  29.9 (25.5)    -.01  -.05 

Prior to memory inhibition testing 

Hunger 2  64.2 (25.9)    .32*  -.07 

Fullness 2  44.9 (24.9)    -.28*  .08 

Prior to lunch 

Hunger 3  74.4 (26.4)    .31*  .00 

Fullness 3  38.1 (22.8)    -.09  .11 

Lunch consumption 

Lasagne/Ravioli kJ 1799.5 (506.5)    .09  .02 

Biscuits kJ  772.3 (800.2)    .20*  -.06 

Total kJ  2571.8 (974.0)    .21*  -.02 

Post-lunch 

Change in hunger across meal (Hunger 3 – Hunger 4)    

    60.0 (30.9)    .19  .00 

Hunger 4  14.4 (17.7)    .13  -.01  

Fullness 4  95.7 (22.5)    -.13  .07 

End of the study 

Hunger 5  13.5 (16.7)    .15  -.14 

Fullness 5  100.0 (21.9)    -.15  .08 

 

* p < .05 
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Table 3: Final stepwise regression model predicting Verbal Paired Associates learning rate 

(final training Block [4] percent correct minus initial training Block [1] percent correct) 

 

Model 

 Predictor variables   r =  Sr =  Sr2% =  p < 

 

1. (Spectrophotometer included) F(3,90) = 7.89, p < .001, adjusted R2 = .18 

 DFS (diet) score   -.29  -.28  8.1  .005 

DASS total    -.21  -.28  7.8  .005 

 TFEQ Disinhibition score  .23  .28  7.6  .005 
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Table 4: Think/No-Think task testing scores  

 

Measure    Initial test   Delayed test 

   Mean % correct (SD)   Mean % correct (SD) 

 

Think     65.0 (26.3)   66.3 (26.3) 

No-think    58.8 (26.3)   61.3 (28.8) 

Baseline    65.0 (27.5)   67.5 (27.5) 

 
Inhibition effect*   6.2 (14.5)   5.6 (15.7)  

 

* Calculated as ((Think + Baseline)/2) – No-Think 
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Table 5: Final stepwise regression model predicting the inhibition effect (collapsing across 

the initial and delayed tests) from the Think/No-Think task 

 

Model 

 Predictor variables   r =  Sr =  Sr2% =  p < 

 

1. (Spectrophotometer included) F(1,92) = 4.25, p < .05, adjusted R2 = .03 

 Activity    .21  .21  4.4  .05 
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Table 6:  Final stepwise regression model predicting the change in liking relative to the 

change in wanting to eat ratings across state (hungry minus full), on the Palatable Food Cue 

Task 

 

Model 

 Predictor variables   r =  Sr =  Sr2% =  p < 

 

1. (Spectrophotometer included) F(3,90) = 15.41, p < .001, adjusted R2 = .32 

Change in hunger   .38  .43  18.5  .001 

PIRS (Sleep quality)   .35  .34  11.7  .001 

DFS (diet) score   -.19  -.26  6.7  .005 
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Table 7:  Final stepwise regression model predicting the change in liking relative to the 

change in wanting to eat ratings across state (hungry minus full), on the Palatable Food Cue 

Task, now including VPA learning rate and the inhibition score from the Think/No-Think 

task 

 

Model 

 Predictor variables   r =  Sr =  Sr2% =  p < 

 

1. (Spectrophotometer included) F(4,89) = 16.10, p < .001, adjusted R2 = .39 

VPA learning rate    .41  .36  13.0  .001 

Change in hunger   .38  .36  13.0  .001 

PIRS (Sleep quality)   .35  .35  12.0  .001 

Age     .07  .17  2.9  .05 
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Figure 1: Top panel – Mean (and SE) learning rate on the VPA task for all participants (as 

percent correct) for each of the four training blocks; Bottom panel – Scatter plot of 

standardized DFS (diet) score and standardized VPA learning rate (Block 4 % correct minus 

Block 1 % correct) for all participants. 
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Figure 2: Top panel – Mean (and SE) wanting (on seeing), and liking and want more ratings 

(after tasting) in all participants obtained before and after lunch; Bottom panel – scatter plot 

of standardized DFS (diet) score and standardized change in wanting relative to liking across 

state (i.e., food memory inhibition effect) for all participants. 
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Figure 3: Top panel – Mean (and SE) wanting (on seeing), liking, and want more ratings 

(after tasting) in the 20% of participants with the lowest reported intake of saturated fat and 

sugar, obtained before and after lunch; Bottom panel – Mean (and SE) wanting (on seeing), 

liking, and want more ratings (after tasting) in the 20% of participants with the highest 

reported intake of saturated fat and sugar, obtained before and after lunch. 
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Appendix 1 – Word pairs used in the Memory Inhibition Task 

1. Realism Entrance 

2. Ruler Contrast 

3. Juice Prelude 

4. Curtain Subject 

5. Precision Elephant 

6. Leather Thicket 

7. Handle Cabin 

8. Summit Keyword 

9. Bodywork Index 

10. Business Piano 

11. Fusion Storage 

12. Trilogy Grant 

13. Separate Penguin 

14. Rider Capacity 

15. Shower Patent 

16. Prototype Freckle 

17. Terrain Lecture 

18. Counting Luggage 

19. Table Legend 

20. Briefcase Layout 

21. Import Boarding 

22. Compass Hearing 

23. Habit Window 

24. Stream Balcony 

25. Bedding Elbow 

26. Forecast Porridge 

 

 

 

 

 

 


