
B U L K - R O B U S T A S S I G N M E N T P R O B L E M S : H A R D N E S S ,
A P P R O X I M A B I L I T Y A N D A L G O R I T H M S

Dissertation

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

Der Fakultät für Mathematik der
Technischen Universität Dortmund

vorgelegt von

Viktor Bindewald

im Oktober 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/161264008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dissertation

Bulk-Robust Assignment Problems: Hardness, Approximability and
Algorithms

Fakultät für Mathematik
Technische Universität Dortmund

Erstgutachter: JP Dr. Dennis Michaels

Zweitgutachter: Prof. Dr. Volker Kaibel

Tag der mündlichen Prüfung: 18. Dezember 2017

A B S T R A C T

This thesis studies robust assignment problems with focus on com-
putational complexity. Assignment problems are well-studied combi-
natorial optimization problems with numerous practical applications,
for instance in production planning.

Classical approaches to optimization expect the input data for a
problem to be given precisely. In contrast, real-life optimization prob-
lems are modeled using forecasts resulting in uncertain problem pa-
rameters. This fact can be taken into account using the framework of
robust optimization.

An instance of the classical assignment problem is represented us-
ing a bipartite graph accompanied by a cost function. The goal is
to find a minimum-cost assignment, i.e., a set of resources (edges or
nodes in the graph) defining a maximum matching. Most models for
robust assignment problems suggested in the literature capture only
uncertainty in the costs, i.e., the task is to find an assignment minimiz-
ing the cost in a worst-case scenario. The contribution of this thesis
is the introduction and investigation of the Robust Assignment Prob-
lem (RAP) which models edge and node failures while the costs are
deterministic. A scenario is defined by a set of resources that may fail
simultaneously. If a scenario emerges, the corresponding resources
are deleted from the graph. RAP seeks to find a set of resources of
minimal cost which is robust against all possible incidents, i.e., a set
of resources containing an assignment for all scenarios. In production
planning for example, lack of materials needed to complete an order
can be encoded as an edge failure and production line maintenance
corresponds to a node failure.

The main findings of this thesis are hardness of approximation and
NP-hardness results for both versions of RAP, even in case of single
edge (or node) failures. These results are complemented by approxi-
mation algorithms matching the theoretical lower bounds asymptot-
ically. Additionally, we study a new related problem concerning k-
robust matchings. A perfect matching in a graph is k-robust if the
graph remains perfectly matchable after the deletion of any k match-
ing edges from the graph. We address the following question: How
many edges have to be added to a graph to make a fixed perfect
matching k-robust? We show that, in general, this problem is as hard
as both aforementioned variants of RAP. From an application point
of view, this result implies that robustification of an existent infras-
tructure is not easier than designing a new one from scratch.

iii

Z U S A M M E N FA S S U N G

Diese Dissertation behandelt robuste Zuordnungsprobleme mit dem
Schwerpunkt auf deren komlexitätstheoretischen Eigenschaften. Zu-
ordnungsprobleme sind gut untersuchte kombinatorische Optimie-
rungsprobleme mit vielen praktischen Anwendungen, z. B. in der Pro-
duktionsplanung.

Klassische Ansätze der Optimierung gehen davon aus, dass die
Inputdaten eines Problems exakt gegeben sind, wohingegen Optimie-
rungsprobleme aus der Praxis mit Hilfe von Voraussagen modelliert
werden. Daraus folgen unsichere Problemparameter, woran die Ro-
buste Optimierung ansetzt. Die Unsicherheit wird mit Hilfe einer Sze-
narienmenge modelliert, die alle möglichen Ausprägungen der Pro-
blemparameter beschreibt.

Eine Instanz des klassischen Zordnungsproblems wird mit Hilfe
eines Graphen und einer Kostenfunktion beschrieben. Die Aufgabe
besteht darin, eine Zuordnung mit minimalen Kosten zu finden. Eine
Zuordnung ist eine Teilmenge an Ressourcen (Kanten oder Knoten
des Graphen), die ein kardinalitätsmaximales Matching induziert. In
der Literatur sind überwiegend robuste Zuordnungsprobleme unter-
sucht, die Unsicherheit in den Kosten behandeln, in diesem Fall be-
steht die Aufgabe darin, eine Zuordnung mit minimalen Kosten im
Worst-Case-Szenario zu finden. Diese Dissertation dient der Einfüh-
rung und Untersuchung des Robust Assignment Problem (RAP) wel-
ches Kanten- und Knotenausfälle modelliert; wobei die Kosten deter-
minisitsch sind. Ein Szenario ist durch jene Teilmenge an Ressourcen
definiert, welche gleichzeitig ausfallen können. Wenn ein Szenario
eintritt, werden die jeweils ausfallenden Ressourcen aus dem Gra-
phen entfernt. In RAP besteht das Ziel darin, eine Menge an Res-
sourcen mit minimalen Kosten zu finden, die robust gegenüber allen
möglichen Ereignissen ist, d. h. eine Ressourcenmenge die für alle
Szenarien eine gültige Zuordnung enthält. So kann beispielsweise in
der Produktionsplanung der Mangel an Materialien, die für einen
Auftrag benötigt werden, als Kantenausfall und die wartungsbeding-
te Abschaltung einer Produktionslinie als Knotenausfall modelliert
werden.

Die Hauptergebnisse dieser Arbeit sind Nichtapproximierbarkeits-
und NP-Schwierigkeitsresultate beider RAP-Versionen, die bereits für
die Einschränkung zutreffen, dass nur einzelne Kanten oder Knoten
ausfallen können. Diese Ergebnisse werden durch Approximationsal-
gorithmen ergänzt, die die theoretischen Approximationsschranken
asymptotisch erreichen. Zusätzlich wird ein neues, verwandtes Opti-
mierungsproblem untersucht, welches sich mit k-robusten Matchings

v

beschäftigt. Ein perfektes Matching in einem Graphen ist k-robust,
wenn der Graph nach dem Löschen von k Matchingkanten weiter-
hin ein perfektes Matching besitzt. Es wird der Frage nachgegangen,
wie viele Kanten zum Graphen hinzugefügt werden müssen, um ein
gegebenes Matching k-robust zu machen. Dabei wird gezeigt, dass
dieses Problem im Allgemeinen aus komplexitätstheoretischer Sicht
genauso schwierig ist, wie die zuvor erwähnten RAP-Varianten. Aus
der Anwendungsperspektive bedeutet dieses Resultat, dass die Robu-
stifikation einer bestehender Infrastruktur nicht einfacher ist, als sie
von Grund auf neu zu entwerfen.

vi

PA RT I A L P U B L I C AT I O N S A N D C O L L A B O R AT I O N
PA RT N E R S

The majority of the results in Chapter 3 and 4 were developed together
with David Adjiashvili and my supervisor Dennis Michaels and can
be found in [ABM16a], [ABM16b] and [ABM17]. Most of the results in
Chapter 5 were developed together with Moritz Mühlenthaler and were
partially published in [BM17].

[ABM16a] David Adjiashvili, Viktor Bindewald, and Dennis Michaels.
“Robust Assignments via Ear Decompositions and Ran-
domized Rounding.” Proceedings of the 43rd International Col-
loquium on Automata, Languages, and Programming (ICALP).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016,
71:1–71:14. doi: 10.4230/LIPIcs.ICALP.2016.71.

[ABM16b] David Adjiashvili, Viktor Bindewald, and Dennis Michaels.
“Robust Assignments via Ear Decompositions and Ran-
domized Rounding.” arXiv preprint, 2016. Full version of
[ABM16a]. url: http://arxiv.org/abs/1607.02437.

[ABM17] David Adjiashvili, Viktor Bindewald, and Dennis Michaels.
“Robust Assignments with Vulnerable Nodes.” arXiv pre-
print, 2017. url: http://arxiv.org/abs/1703.06074.

[BM17] Viktor Bindewald and Moritz Mühlenthaler. “Robust Bipar-
tite Matching Augmentation.” 15th Cologne-Twente Workshop
on Graphs and Combinatorial Optimization (CTW). Extended
abstract. 2017, pp. 11–14.

vii

https://doi.org/10.4230/LIPIcs.ICALP.2016.71
http://arxiv.org/abs/1607.02437
http://arxiv.org/abs/1703.06074

A C K N O W L E D G M E N T S

First of all I like to thank my supervisor Dennis Michaels for his scien-
tific guidance and advice. I owe a lot to all my colleagues I have met
during my time at TU Dortmund for their help and numerous fruit-
ful discussions. I am also very grateful to Christoph Buchheim for
creating a fantastic working atmosphere in the group. Special thanks
go to Sabine Willrich for always helping with administrative issues.
Moreover, I owe many thanks to David Adjiashvili and Moritz Müh-
lenthaler for productive cooperation.

The support of my work by the German Research Foundation (DFG)
within the Research Training Group "Discrete Optimization of Technical
Systems under Uncertainty" is gratefully acknowledged. Parts of this
work were carried out while I was visiting the Institute for Operations
Research (IFOR) at ETH Zurich. The hospitality is highly appreciated.

Many thanks go to my friends for accompanying and encouraging
me during my PhD. Finally, I like to thank my family and Nele for
their absolute support.

ix

C O N T E N T S

List of Algorithms xiii

List of Computational Problems xiii

1 introduction 1

2 preliminaries and related work 5

2.1 Basic Notions from Graph Theory 5

2.2 Concepts and Notions from Complexity Theory 7

2.2.1 Optimization Problems 8

2.2.2 Approximation-Preserving Reductions 10

2.2.3 Parameterized Complexity 12

2.3 Matchings in Bipartite Graphs 13

2.3.1 The Matching Polytope 14

2.3.2 Matching-Covered Graphs 15

2.4 A Brief Introduction to Set Cover 19

2.5 Robust Combinatorial Optimization 22

2.5.1 Cost Robustness 23

2.5.2 Redundancy-Based Robustness 24

2.6 Related Work . 26

2.6.1 Robust Matching Problems 26

2.6.2 Interdiction Problems 28

2.6.3 Matching Preclusion 29

2.6.4 Graphs with Extendable Matchings 30

2.6.5 Augmentation Problems 31

2.6.6 Miscellaneous . 32

3 robust assignments with vulnerable edges 33

3.1 Formal Description and Basic Properties 34

3.2 Deciding Feasibility . 38

3.3 Card-E-RAP with Two Vulnerable Edges 39

3.4 Complexity of E-RAP . 45

3.5 O(logn)-Approximation for E-RAP 49

3.6 Complexity of Card-E-RAP 56

3.7 Constant-Factor Approximation for Card-E-RAP 59

4 robust assignments with vulnerable nodes 65

4.1 Formal Description and Basic Properties 66

4.2 Deciding Feasibility . 68

4.3 Complexity of V-RAP . 70

4.4 An (lnn+ 2)-Approximation for V-RAP 73

4.5 Complexity of Card-V-RAP 77

xi

xii contents

4.6 Constant-Factor Approximation for Card-V-RAP 80

4.7 Card-V-RAP with Two Scenarios 82

4.8 Polyhedral Description for Uniform V-RAP 84

5 robust matching augmentation 89

5.1 Formal Description and Basic Properties 89

5.2 Determining Robustness of a Fixed Matching 91

5.3 Complexity of Robust Matching Augmentation 94

5.4 Augmenting Robust Recoverable Matchings 101

Appendices 105

a np-completeness of bpafpp 107

b notes on e-rap in non-bipartite graphs 111

b.1 Optimal Solutions and k-Factors 111

b.2 General Ear-Decompositions and Trivial Ears 111

bibliography 115

L I S T O F A L G O R I T H M S

1 Bipartite Ear Decomposition Algorithm 18

2 Classical greedy algorithm for WSCP 20

3 Randomized O(logn)-approximation for E-RAP 51

4 An O(1)-approximation for Card-E-RAP 59

5 An (lnn+ 2)-approximation for V-RAP 74

L I S T O F C O M P U TAT I O N A L P R O B L E M S

RAP Robust Assignment (general version) 2

RMAP Robust Matching Augmentation (general ver-
sion) 2

MWMP Maximum-Weight Matching 13

SCP Set Cover 19, 48, 72, 94

WSCP Weighted Set Cover 19, 74

NCP Node Cover 21, 57, 79

MCPMP Min-Cost Perfect Matching 34

E-RAP Edge-Robust Assignment 34

Card-E-RAP Min-Card Edge-Robust Assignment 34

MPNP Matching Preclusion Number 38

SNPP Shortest Nice Path 39

PAFPP Path Avoiding Forbidden Pairs 41

BPAFPP Path Avoiding Forbidden Pairs in Bipartite

Graphs 42, 107

NIAP Node-Induced Assignment 66

V-RAP Node-Robust Assignment 67

Card-V-RAP Min-Card Node-Robust Assignment 67

k-s-RRMAP k-Robust s-Recoverable Matching Augmenta-
tion 91

FMPNP Fixed Matching Preclusion Number 92

HSP Hall Set 92

1-RMAP 1-Robust Matching Augmentation 94

ECP Min-Cost Edge Cover 103

3-SAT 3-Satisfiability 108

xiii

1
I N T R O D U C T I O N

In our everyday life we perform numerous tasks which can be clas-
sified as combinatorial optimization problems. Typical examples are
finding a fast route to work, packing bags or scheduling appoint-
ments. In real life, the information describing a particular task is un-
certain in nature. For example, the journey time to your workplace
heavily depends on the traffic conditions and can be disrupted by
single events such as road accidents. However, this fact is often ne-
glected by the classical optimization theory. One possibility to inte-
grate uncertainty into decision making processes is given by the ro-
bust optimization framework.

In this thesis we study robust assignment problems. In practice,
assignment problems can be encountered in various contexts. An
evident example is the allocation of orders to production lines in
production planning. But assignment problems can also occur, in a
less obvious way, as subproblems of other optimization problems
such as the Traveling Salesperson Problem [Chr76] or vehicle rout-
ing [BDM12, pp. 65-66]. For more examples of combinatorial prob-
lems with assignment-like structure the reader is referred to [Woe07].
The goal of the classical assignment problem (AP) is to pair up objects
from two different classes while maximizing the number of pairs or
minimizing the costs.

The input data for an assignment problem is usually represented
by a bipartite graph G = (U ∪̇W,E) and a linear cost function c on
the edge set E. In general, both the graph and the costs can be af-
fected by uncertainty. Most of the robust assignment problems stud-
ied in the literature treat uncertainty in the cost structure only (see the
overview in Section 2.6.1). In this thesis, we study assignment prob-
lems with edge and node failures, i.e., the graph’s structure is subject
to uncertainty. We implement the recently introduced bulk robust-
ness concept [ASZ15], where a deterministic optimization problem
is accompanied by a finite set S of failure scenarios. Each scenario is
specified by a subset of resources R, where the choice of R depends on
the nominal problem. Here, we consider a variant of AP that seeks to
find a minimum-cost assignment covering all nodes in U as the nom-
inal problem and distinguish two natural versions. The goal is either
to select a U-perfect matching or a subset of the node set W such that

1

2 introduction

each node in U can be matched to one of the nodes selected from W.
This means that the set of resources is either E or W. After the real-
ization of a scenario F ⊆ R, the corresponding resources are removed
from the graph. The resulting Robust Assignment Problem reads as

min c(X)

s.t. ∀ F ∈ S: G[X] − F contains a U-perfect matching,

X ⊆ R.

(RAP)

Depending on the type of resources R we differentiate between two
variants of RAP. If R = E, then we call the resulting problem E-RAP
and if R = V we call it V-RAP. In general, solutions to RAP include
resources that are part of some failure scenario and are not feasible to
the underlying deterministic problem. This means RAP fits into the
class of redundancy-based robust optimization problems. We present
some potential applications by the end of this section.

In both variants of RAP the goal is to design a fault-tolerant struc-
ture. In practice, however, it may be more preferable to make an exis-
tent infrastructure robust against incidents rather then redesigning it
entirely. The notion of robustness for a fixed matching is formalized
as follows. Given a bipartite graph G = (U ∪̇W,E) and a fixed per-
fect matching M in G, we require G to remain perfectly matchable
after the removal of k arbitrary M-edges from G. A matching with
this property is called k-robust. Expecting an adversary to remove k
edges from M, we seek to robustify M by adding new edges to the
graph G. This motivational question leads to the Robust Matching
Augmentation Problem defined as

min c(L)

s.t. M is a k-robust matching in G+ L,

L ⊆
{
{u,w} : u ∈ U, w ∈W

}
\ E.

(RMAP)

Additionally, we may prescribe that the two matchings, M and its
replacement after the edge removal, do not differ too much by speci-
fying a recovery budget.

Before outlining the structure of this thesis we provide motivational
application examples for each of the three problems described above.

Continuity of Service (E-RAP). In the service sector stable client-
provider relationships are favorable for both, the customers and the
businesses. Patients of a hospital for example feel more secure if the
nursing staff do not change frequently. The employers in the con-
sulting industries benefit from increased turnover due to improved
customer experience. Uncertainty can be caused by a change of shifts
or lack of necessary equipment or information, needed for the task
at hand. Modeling the assignment of personnel to clients as E-RAP

introduction 3

with unit costs ensures that the number of reassignments after edge
failures is as small as possible.

Reservation Systems (V-RAP). Hotel managers try to operate at
full capacity, while bookings are never immutable. People often can-
cel their trips due to change of personal plans or professional obli-
gations. The common strategy to cope with reservation changes is
overbooking. In this way it can be ensured that even after some of the
arrangements are canceled, most or even all rooms are occupied. On
the downside, this may result in providing accommodation for the
overbooked clients elsewhere, causing additional expenses. Deciding
on possible client-room assignments in the overbooking process while
taking the overbooking costs into account can be modeled as V-RAP.

Infrastructure Hardening (RMAP). In production planning an al-
location of orders to specific production lines is determined to be
used in day-to-day business for a particular time horizon. Naturally,
during operation this allocation is subject to uncertainty, e.g., the
properties of the ordered product may be modified or maintenance
can reduce the operational capability of a production line. In order to
be resilient against possible incidents while meeting the obligations
committed to the clients, it can be required to robustify the estab-
lished setup without major interruptions. Robustification means to
upgrade a production line in order to increase its versatility in terms
of number of products that can be manufactured using this specific
production line. The current setup corresponds to a fixed matching
in a bipartite graph and this question can be modeled as RMAP pro-
viding the decision maker with guidance during the upgrading pro-
cess. An additional constraint on the number of modifications after
an incident can be imposed, reflecting the necessity not to perturb the
running operation too much.

contribution and outline

This thesis is organized around the three aforementioned optimiza-
tion problems. Each of them is treated in a virtually self-contained
chapter, which provides a detailed outline at the beginning. Cross-
references are given where it might be helpful. We highlight the
most important results here. The three main chapters are preceded by
Chapter 2, where we present terminology, concepts and results from
graph theory, complexity theory and robust optimization, which are
used throughout this thesis. The chapter is concluded by giving an
overview of related work from the literature.

Chapters 3 and 4 deal with the two variants of RAP. Unlike the
majority of robust assignment problems treated in the literature (see
Section 2.6.1), both problems studied here, capture structural uncer-
tainty and thus provide novel insights for this classical combinatorial
problem from the robust optimization point of view.

4 introduction

For both problems, E-RAP and V-RAP, we prove NP-hardness even
in the case where failure scenarios are restricted to contain only one
edge or node from the underlying bipartite graph. Moreover, both
variants are as hard to approximate as Set Cover in this setting (Theo-
rem 3.4.3). In particular this means an (lnn)-approximation is the best
we can hope for. Most characteristics are the same for both variants,
but in two aspects E-RAP differs from V-RAP. First, deciding feasi-
bility of an E-RAP instance where the scenario set is given implicitly
is an NP-hard problem (see Section 3.2). Second, E-RAP remains NP-
hard with only two singleton scenarios (see Theorem 3.3.3). This is
quite surprising and makes E-RAP one of the few examples that a
robust counterpart of a tractable nominal problem with a constant
number of uncertain resources is NP-hard. For V-RAP both questions
can be answered efficiently. The complexity results are completed by
proving APX-hardness for both problems in the unit cost setting.

On the algorithmic side both optimization problems admit approx-
imation algorithms matching the logarithmic lower bound asymptot-
ically. The algorithm for E-RAP relies on randomized rounding tech-
niques and the connection of feasible solutions to matching-covered
graphs (see Section 3.5). The analog algorithm for V-RAP uses the
classical greedy approximation for Set Cover applied to a subprob-
lem.

Both chapters combined, provide a full coverage of bulk-robust as-
signment problems and complement the results in [ASZ15], where
the authors studied bulk-robust counterparts of two other classical
combinatorial problems, namely Shortest Path and Spanning Tree.

Chapter 5 deals with RMAP and focuses on computational com-
plexity. In Section 5.2 a new, specialized version of the Matching
Preclusion Number Problem is introduced to prove NP-hardness of
the question of determining the robustness level of a fixed perfect
matching. The main result of Chapter 5 is the proof, that RMAP is
Set Cover-hard, even with single edge failures (see Theorem 5.3.3).
Notably, the restriction of the recovery budget to very small numbers
leads to a tractable problem via a reduction to Min-Cost Edge Cover
(see Theorem 5.4.2).

Some supplementary results and examples were deferred to two
appendices. In Appendix A an NP-completeness result used in Sec-
tion 3.3 is proven and Appendix B contains some notes on issues
arising when extending E-RAP to non-bipartite graphs.

2
P R E L I M I N A R I E S A N D R E L AT E D W O R K

In this section, we first provide basic notation and concepts widely
used throughout this document (Sections 2.1 to 2.5). Subsequently, in
Section 2.6 we review results from the literature related to the opti-
mization problems studied in this thesis.

2.1 basic notions from graph theory

In this section we follow [Die00].

graphs , adjacency and incidence

For a set S and an integer k ∈ Z+ we define [S]k := {S ′ ⊆ S : |S ′| = k}
and [k] := {1, . . . ,k}. For a finite set V the tuple G = (V ,E) is called
a simple graph if E ⊆ [V]2 and V ∩ E = ∅. We call the elements in V
nodes and the elements in E edges. The node set of G is referred to
as V(G) and its cardinality as n. The edge set of G is referred to as
E(G) and its cardinality as m. All graphs in this document are simple
unless stated otherwise and we just write graph.
Two nodes v,w are adjacent if e = {v,w} is an edge of G. We say e
connects v with w or e covers v and w. Two edges are adjacent if they
share one node. The neighborhood of a set of nodes V ′ in G is defined
as NG(V ′) := {v ∈ V(G) \ V ′ : v is adjacent to a node v ′ ∈ V ′}. A node
v is incident with an edge e and vice versa if v ∈ e. For a subset
V ′ ⊆ V we denote by E(V ′) the set of all edges in E connecting two
nodes in V ′. For subsets X, Y ⊆ V we denote by E(X, Y) the set of all
edges connecting a node in X with a node in Y in G. For an edge set
E ′ ⊆ E the set of all nodes incident with some edge in E ′ is denoted
by V(E ′). For a node vwe denote by δG(v) the set of all edges incident
with v in G. The degree of a node v is defined as degG(v) := |δG(v)|.
A degree-zero node is called isolated. A graph is called k-regular if
each node has degree k. A 3-regular graph is called cubic. In case the
graph G is unambiguous the subscript is omitted.

subgraphs

A graph H is a subgraph of a graph G if V(H) ⊆ V(G) and E(H) ⊆
E(G). We then write H ⊆ G. If V(H) = V(G) we say H spans G. A
set V ′ ⊆ V(G) induces the subgraph (V ′,E(V ′)) denoted by G[V ′].

5

6 preliminaries and related work

A set E ′ ⊆ E(G) induces the subgraph (V(E ′),E ′) denoted by G[E ′].
Given a graph G = (V ,E) and a node set V ′ we write G− V ′ for the
subgraph G[V \ V ′]. Given a set E ′ ⊆ [V]2 we write G − E ′ for the
subgraph (V ,E \ E ′). The union of two graphs G and H is defined
as the pairwise union of their node and edge sets and is denoted by
G+H.

paths , cycles and connectivity

A subgraph P of a graph G defined by a sequence (e1, . . . , ek) of
distinct edges in G such that each two subsequent edges are adjacent
and only subsequent edges share nodes is called a path in G. Note
that paths, as defined here, are always node-disjoint. Paths can also
be defined by an appropriate sequence of nodes. We write tail(P) for
the first and head(P) for the last node in the sequence. The nodes
in V(P) \ {tail(P), head(P)} are called internal nodes. We say the end
nodes are connected by P. An edge sharing exactly one node with a
path P is said to be incident with P. If P = (e1, . . . , ek) is a path and
k > 2 then the sequence (e1, . . . , ek, {tail(P), head(P)}) is called a cycle.
The number of edges in a path P or a cycle C determines its length,
i.e., length(P) = |E(P)| and length(C) = |E(C)|. An edge connecting
two non-adjacent nodes of a cycle is called a chord. We say a cycle or
a path is odd if it has an odd number of edges and even otherwise.
A graph G is k-node-connected if G contains k node-disjoint paths
connecting any two of its nodes. Maximal connected subgraphs of G
are called components.

bipartite graphs

A graph G = (V ,E) is called bipartite if its node set V can be parti-
tioned in two sets U,W with U ∪̇W = V and E ⊆ E(U,W). The tuple
(U,W) is called the bipartition of G and is not unique in general.
Hence, the bipartition is usually provided explicitly and we write
G = (U ∪̇W,E). A bipartite graph is called balanced if |U| = |W|. A
graph G is bipartite if and only if G has no odd cycles.

directed graphs

For a finite set V the tuple D = (V ,A) is called directed graph or di-
graph if A ⊆ V × V and V ∩A = ∅. We call elements in V nodes and
elements in A directed edges or arcs. For an arc a = (v,w) we say a
is directed from v to w. We refer to v as tail(a) and to w as head(a).
A digraph is connected if the corresponding undirected graph is con-
nected. A digraph is strongly connected if any two of its nodes are
connected by a directed path. The remaining terms introduced for
graphs can be defined accordingly for digraphs.

miscellaneous

A graph is called complete if every node is adjacent to every other

2.2 concepts and notions from complexity theory 7

node in the graph. We write Kn for the complete graph on n nodes.
In a bipartite graph G = (U ∪̇W,E) by completeness we mean that
every node u ∈ U is adjacent to everyw ∈W. We denote the complete
graph on n+m nodes by Kn,m.
An edge-weighted graph is a graph G = (V ,E) accompanied by a
cost (or weight) function c : E → R. Given F ⊆ E, we write c(F) or∑
e∈F c(e) for the cost of F. We write ce instead of c(e) and c ∈ RE

for brevity. Node-weighted graphs are defined analogously.

2.2 concepts and notions from complexity theory

In this thesis we are interested in the analysis of optimization prob-
lems in terms of computational complexity. Thus, in this section we
briefly introduce the necessary definitions and concepts from com-
plexity theory. For a more thorough introduction we refer to [GJ79]
and [Aus+12].

A decision problem Π is specified by the set of legal inputs and a
question, e.g., does a given graph have a node with degree at least 3?
All legal inputs constitute the set of instances of Π. An algorithm A

for Π is a finite sequence of instructions that performs operations on
a given instance of Π and outputs either Yes or No correctly. We say
A is a polynomial-time algorithm if, according to a computer model
(usually a so-called Turing machine), its output is computed in time
polynomially bounded by the size of the input. Such algorithms are
called efficient.

Here we define the input size of a problem using the traditional
binary encoding. This means for an integer z we have size(z) = 1+

dlog(|z| + 1)e. For a rational number we encode the numerator and
denominator separately. For a vector or a matrix, the input size is the
sum of the sizes of its elements. For a weighted graphG = (V ,G) with
c ∈ QE the input size is |V |+ |E|+ size(c) = n+m+

∑
e∈E size(ce).

We denote P as the set of all decision problems admitting an efficient
algorithm. Problems in P are called tractable.

There are problems not known to be tractable, some are even known
to be undecidable. Natural candidates for tractable decision problems
are problems with efficient certifiers for instances with a positive an-
swer. An efficient certifier A for a problem Π is a polynomial-time
algorithm that takes two arguments: an instance I of Π and a string
c. Additionally A has the following property. The instance I is a Yes-
instance if and only if there exists a certificate c with size bounded by
size(I) and A outputs Yes for the input (I, c). The string c is called a
short certificate for I. We denote the set of such problems by NP. For
any tractable problem Π we can use an empty string as the certificate
and any polynomial-time algorithm for Π as a certifier, consequently

8 preliminaries and related work

P ⊆ NP. However, it is not known if P = NP but the assumption
P 6= NP is widely expected to be true.

A complement of a decision problem results from swapping roles
of Yes and No answers. Complements of problems in NP form the
complexity class coNP. In other words, problems in coNP admit effi-
cient certifiers for No-instances.

To classify problems concerning their tractability we use the con-
cept of reductions. Reductions are functions that transform a given
instance I of a problem Π into an instance I ′ of a different problem
Π ′. We call a reduction f an NP-reduction if it is polynomial-time
computable and answer-preserving, i.e., I is a Yes-instance of Π if
and only if f(I) = I ′ is a Yes-instance of Π ′. NP-reductions are also
called many-to-one reductions in the literature. The definition above
immediately implies that if Π ′ is tractable so is Π.

We say a problem Π is NP-hard if each problem in NP is NP-
reducible to Π. In other words, NP-hard problems are at least as
hard as any other problem in NP. We say a problem is NP-complete
if it is NP-hard and it is contained in the class NP. NP-hardness
provides strong evidence that a problem is intractable. Because NP-
reductions are transitive we can prove NP-hardness by providing an
NP-reduction from an NP-complete problem.

2.2.1 Optimization Problems

However, most problems encountered in real life can not be reduced
to a yes or no question because they have several acceptable answers
that can be measured according to their quality. The mathematical
equivalent of such problems are optimization problems, which we
define next.

Definition 2.2.1. An optimization problem Π is defined by a tuple
(I, sol, val, type), where:

(a) I is the set of instances of Π;

(b) sol(I) denotes the set of feasible solutions to an instance I ∈ I;

(c) the function val defines, given I ∈ I and X ∈ sol(I), the non-
negative rational objective value1 of X with respect to I;

(d) type ∈ {min, max} describes whether Π is a minimization or a
maximization problem.

If the referenced problem Π is not evident from the context, we write
IΠ and so forth.

1 It is more natural to use real numbers when describing problems, but there is no
finite binary encoding for arbitrary reals. Hence, when dealing with irrational values
we have to approximate them using rationals. This can be done within any given
error specified by a rational ε > 0 [GLS93, pp. 33-36].

2.2 concepts and notions from complexity theory 9

The goal of an optimization problem Π, given an instance I of Π, is
to determine the best possible value

type {val(I,X) : X ∈ sol(I)}

and a corresponding solution X. We denote the optimal value by
val∗(I). For an optimal solution for an instance I we write OPT(I).
We denote by PO the set of optimization problems such that OPT(I)
and val∗(I) can be computed efficiently, i.e., by an algorithm with
polynomially bounded running time. Such algorithms are called effi-
cient or exact.

We can derive a decision problem from an optimization problem
Π by providing a bound on the objective and asking whether this
bound is exceeded by any feasible solution. We denote the resulting
decision problem by ΠD. In order to relate optimization problems
to decision problems in NP we impose additional requirements: For
every (not necessarily legal) input I, X it is possible to check efficiently
if X ∈ sol(I) and if it is the case, to efficiently compute val(I,X).
Optimization problems satisfying these extra requirements form the
class NPO. By definition, for every optimization problem Π ∈ NPO,
its decision variant ΠD is contained in NP.

We can show NP-hardness of an NPO problem Π ′ by providing an
NP-reduction from an NP-complete problem to ΠD. The other possi-
bility to prove NP-hardness of an NPO problem Π ′ is the provision
of a polynomial-time reduction f : IΠ → IΠ ′ from some NP-hard de-
cision or optimization problem Π such that f can be used to define
an exact algorithm for Π using a Π ′-oracle on f(I). A Π ′-oracle is a
function that returns an optimal solution and the optimal objective
value of a given instance I ′ ∈ IΠ ′ in constant time. Reductions of this
type are called Turing reductions.

The classification of solutions to an optimization problem into op-
timal and non-optimal solutions is sufficient, but too coarse for many
purposes. In the latter case we also could be comfortable with solu-
tions that are acceptable in terms of its objective value. The concept of
reasonably good solutions is formalized in the next definition. From
now on we restrict ourselves to NPO minimization problems, the def-
initions for maximization case are analogously.

Definition 2.2.2. Let Π be an NPO minimization problem with a non-
negative objective function. An approximation algorithm A for Π is
a finite sequence of instructions that performs operations on a given
instance I ∈ IΠ and terminates after a number of steps polynomially
bounded by size(I). Its output A(I) is a solution to I and there exists
a function r : Z+ → [1,∞) such that

val(A(I)) 6 r(size(I)) · val∗(I)

holds for all I ∈ IΠ. The function r is the approximation ratio of A.

10 preliminaries and related work

Usually we simply write approximation. An efficient (exact) algo-
rithm is an approximation with r = 1.

An approximation has an arbitrary precision if for any fixed ε > 0
the approximation ratio is (1 + ε). We distinguish two major cases
concerning the behavior of a approximation with respect to the ad-
ditional precision parameter ε. An approximation with running time
O(size(I)f(1/ε)) for some function f is called a PTAS. For every fixed
ε a PTAS has polynomial running time but the exponent can be very
large for small ε (e.g., f = exp satisfies the definition). In contrast,
an FPTAS is required to have running time O((1/ε)O(1) · size(I)O(1)).
Hence the difference is how we trade time for accuracy. The classes
of all optimization problems admitting a PTAS or FPTAS are denoted
by the same name.

The set of optimization problems admitting a constant factor ap-
proximation is denoted by APX, i.e., these problems have approxima-
tions such that the ratio function r is constant. The prevailing assump-
tion P 6= NP implies

PO (FPTAS (PTAS (APX (NPO.

From now on we usually refer to NPO optimization problems as prob-
lems.

2.2.2 Approximation-Preserving Reductions

Reductions described in the previous section are not powerful enough
to derive positive or negative approximability results for problems in
NPO. NP-reductions are not required to be constructive, hence it is
not always possible to provide an actual solution to the instance the
reduction was applied to. The problem with Turing reductions is that
we do not have any control of the cost of approximate solutions.

The property of a reduction to be constructive is formalized next.
Then we define two specialized approximation-preserving reductions
that are used in this thesis.

Definition 2.2.3 (basic reduction). Given two NPO optimization prob-
lems Π and Π ′, the tuple (f,g) is called a basic reduction from Π to
Π ′ if:

(B1) Function fmaps instances of problem Π to instances of problem
Π ′, i.e., f : IΠ → IΠ ′ ;

(B2) Function f upholds feasibility, i.e., if I ∈ IΠ is feasible then
f(I) ∈ IΠ ′ is feasible as well;

(B3) Given I ∈ IΠ, function g maps solutions to f(I) to solutions to
I, i.e., for each X ′ ∈ sol(f(I)) : g(I,X ′) ∈ sol(I);

(B4) Both functions f,g are polynomial-time computable.

2.2 concepts and notions from complexity theory 11

A basic reduction is still not powerful enough because we do not
know anything about the objective values of solutions to f(I) and
its counterparts constructed by g. What we need is a guarantee that
"good" solutions to Π ′ are mapped to "good" solutions to Π.

Definition 2.2.4 ([PY91]). Let (f,g) be a basic reduction from Π to Π ′.
If two positive constant parameters α and β exist such that

(L1) For any I ∈ IΠ : val∗Π ′(f(I)) 6 α val∗Π(I),

(L2) For any I ∈ IΠ and for any X ′ ∈ sol(f(I)) there holds∣∣val∗Π(I) − valΠ(I,g(I,X ′))
∣∣ 6 β ∣∣val∗Π ′(f(I)) − valΠ ′(f(I),X ′)

∣∣ ,
then the tuple (f,g,α,β) is called an L-reduction.

L-reductions relate the optimal values as well as the absolute er-
rors of approximate solutions to the two problems linearly. Given an
approximation algorithm A ′ for Π ′ we can deduce an approximation
A(I) := g(I,A ′(f(I))) for Π. Combining (L1) and (L2) gives

valΠ(I,g(I,X ′)) − val∗Π(I)

val∗Π(I)
6 αβ

(
valΠ ′(f(I),X ′) − val∗Π ′(f(I))

val∗Π ′(f(I))

)
.

Plugging the definition of A into the latter inequality implies that if
A ′ is a r ′-approximation for Π ′, then A is a (1+ αβ(r ′ − 1))-approxi-
mation for Π. Hence if A ′ is a PTAS, so is A. On the other hand if
we know that Π cannot be approximated to within a certain bound
the same is certainly true for Π ′. We use L-reductions to prove APX-
hardness of problems using the following property: If a problem Π

is APX-complete and L-reducible to a problem Π ′, then Π ′ is APX-
hard [Aus+12, Lem. 8.2]2. APX-hard problems are the analog of NP-
hard problems for the class APX, i.e., these problems are the hardest
ones in APX.

To conclude this subsection we present a second type of an appro-
ximation-preserving reduction used in this document.

Definition 2.2.5 ([CFS91]). A basic reduction (f,g) from Π to Π ′ is an
S-reduction3 if the following two properties hold.

(S1) For every I ∈ IΠ and for any X ′ ∈ sol(f(I)) there holds

valΠ(I,g(I,X ′)) = valΠ ′(f(I),X ′).

(S2) For every I ∈ IΠ : val∗Π(I) = val∗Π ′(f(I)).

Every S-reduction is an L-reduction with α = β = 1. S-reductions
transfer all inapproximability results from Π to Π ′. Because of this
they are sometimes referred to as "strong" reductions.

2 This implies that Π ′ is APX-hard with respect to the AP-reducibility (see [Aus+12,
Def. 8.3]) which is commonly used to define APX-hardness (see [Aus+12, Def. 8.5]).
Since L-reductions are easier to handle, we omit further details here and do not use
AP-reductions explicitly.

3 The concept of S-reducibility is different from the notion of strict reducibility intro-
duced in [OM87]. Every S-reduction is a strict reduction, but not vice versa.

12 preliminaries and related work

2.2.3 Parameterized Complexity

As discussed in the beginning of this chapter NP-hard problems are
unlikely to have polynomial-time exact algorithms. For optimization
problems one approach dealing with this issue is to relax the con-
dition on the quality of the returned solution. This approach leads
to approximation algorithms and was presented in the previous sub-
section. Here we introduce a different concept. The core idea is to
loosen the polynomiality condition on the running time while still
demanding exact solutions. For a detailed introduction to parameter-
ized complexity consult [Cyg+15].

We are going back to decision problems and address the question
which structural properties make a problem hard. For this reason we
introduce the notion of parameterization. Let Π ∈ NP. In addition
to the input size n we introduce a function k : IΠ → Z+ called the
parameter of Π. The tuple (Π,k) is called a parameterized decision
problem. The parameter k reflects some structural properties of Π. A
natural choice is k = val∗Π and we then call (Π,k) the standard param-
eterization of Π. For graph problems maximum degree or treewidth,
a measure of a graph’s similarity to a tree, could be of interest.

A parameterized algorithm A for a problem (Π,k) is an exact algo-
rithm with running time f(k) · ng(k), where f,g : Z+ → Z+ are com-
putable functions. The class of problems admitting such algorithms
is called XP. Algorithms of this kind are called slice-wise polynomial
or simply XP-algorithms. If g = O(1), i.e., it is a constant indepen-
dent of k and n, we say the algorithm is a fixed-parameter algorithm.
Parameterized problems admitting a fixed-parameter algorithm are
called fixed-parameter tractable and constitute the class FPT. Hence
FPT can be seen as the analog of P in the world of parameterized
problems.

The classification of problems is again obtained using reductions.
We can use NP-reductions as a starting point, but they are not strong
enough4. A parameterized reduction from (Π,k) to (Π ′,k ′) is answer-
preserving and runs in time f(k) ·nO(1). Additionally there is a com-
putable function b such that k ′ 6 b(k), that is b controls the growth
of the parameter k ′. The S-reduction as presented in Definition 2.2.5
is parameterized reduction with respect to the standard parameter
solution size. Unlike for decision problems there is a hierarchy of
classes of parameterized decision problems. The definition is based
on Boolean circuit complexity and these classes are denoted by W[t],
t > 0 [Cyg+15, Sec. 13.3]. The class corresponding to NP is W[1]. As-
suming the exponential time hypothesis5 we have that

FPT =W[0] (W[1] (W[2] (· · · (XP.

4 The classical reduction from Stable Set to Node Cover (see p. 21) is not a parame-
terized reduction. Moreover, Stable Set is W[1]-complete but Node Cover ∈ FPT.

5 The ETH states that 3-SAT can not be solved in subexponential time, i.e., O(2o(n)).

2.3 matchings in bipartite graphs 13

If a problem admits an FPTAS, then its standard parameterization
belongs to FPT [DF99, Thm. 4.3]. An example of a parameterized
problem that is W[t]-complete for some t > 1 is the standard param-
eterization of Set Cover (see Section 2.4).

2.3 matchings in bipartite graphs

We focus on matchings in bipartite graphs here, for more details con-
sult [LP86].

Two edges in a graph G are independent if they are non-adjacent.
A matching M in G is a set of independent edges. We say a node v is
covered or saturated by M if v is incident with one of the edges in M.
Nodes that are not covered are called exposed or free. A matching
with no exposed nodes is a perfect matching. For a set S of nodes
we say M is an S-perfect matching if all nodes in S are covered. The
number of perfect matchings can be very large. Moreover, counting
perfect matchings in bipartite graphs is an NP-hard problem [Val79].
Fukuda and Matsui [FM94] provided an algorithm to compute all
perfect matchings in a bipartite graph G in time O(N(n+m) +n2.5),
where N is the number of perfect matchings in G.

Bipartite graphs with U-perfect matchings can be characterized in
the following way.

Theorem 2.3.1 (Hall). A bipartite graph G = (U ∪̇W) contains a U-
perfect matching if and only if

∀ T ⊆ U : |T | 6 |N(T)|.

Matchings of maximum cardinality in G are called maximum match-
ings and their size is denoted by ν(G).

The general matching problem is defined as follows.

Problem 2.3.2 (MWMP).
Maximum-Weight Matching

Instance: 〈G,w〉, where G is a graph and w ∈ RE(G) weights.

Solution: A matching M ⊆ E(G).

Task: Find M maximizing w(M).

In case w = 1, solutions to MWMP are maximum matchings. Hall’s
theorem cannot be exploited algorithmically directly, instead match-
ings can be constructed iteratively as we describe next.

Let G be a graph and M a matching in G. A path P in G is called
M-alternating if E(P) \M is a matching. The path P is called M-
augmenting if both of its end nodes are exposed by M. Analogously,

14 preliminaries and related work

a cycle C is M-alternating if E(C) \M is a matching. Instead of M-
alternating path or cycle we sometimes just say M-path or M-cycle.

If M is a matching in G and P an M-augmenting path, then the
symmetric difference M4P := (M \ E(P)) ∪ (E(P) \M) is a match-
ing of size |M| + 1. M-alternating paths can be found using depth-
first search (DFS). The following characterization is fundamental in
matching theory.

Theorem 2.3.3 (Berge). Let G be a graph andM a matching in G. ThenM
is a maximum matching if and only if the graph G has no M-augmenting
path.

Berge’s Theorem is exploited successfully by several algorithms. The
Hungarian Method [Kuh55] is the oldest matching algorithm. It de-
termines a minimum-cost perfect bipartite matching in time O(n4).
Hopcroft and Karp [HK73] provided an O(

√
n(n +m)) algorithm

to find a maximum matching in a bipartite graph. In non-bipartite
graphs maximum matchings can be found using the famous Blossom
Algorithm [Edm65]. All three algorithms can be improved in terms
of running time using more sophisticated data structures and subrou-
tines.

The notion of perfect matchings can be generalized in the follow-
ing manner. An edge set F of a graph G is a k-factor if the subgraph
G[F] is spanning and k-regular. A perfect matching is a 1-factor. If
G[F] is spanning and each node v in V(G) has degG[F] = f(v), where
f : V(G)→ Z+, then F is called an f-factor. Finding f-factors can be re-
duced to finding perfect matchings in a transformed graph [Tut54]. In
bipartite graphs a k-factor can be decomposed into k disjoint perfect
matchings.

2.3.1 The Matching Polytope

In this section we derive a description of the matching polytope. For
an introduction to linear and integer programming theory we refer
the reader to [Sch98].

Consider a graph G. For a set S ⊆ E(G) the incidence vector of S is
defined as

χSe :=

1, e ∈ S,

0, e /∈ S.

The matching polytope for a graph G is defined as

M(G) := conv{χM : M is a matching in G},

where conv denotes the convex hull of a set of vectors. Using M(G)

we can restate Problem 2.3.2 as max {w>χM : M ∈ M(G)}. Observe

2.3 matchings in bipartite graphs 15

that for a graph G = (V ,E) this problem is equivalent to the following
integer linear program

max w>x

s.t. x(δ(v)) 6 1 for each v ∈ V ,

x ∈ {0, 1}V .

This ILP can be described using the node-edge incidence matrix A
of graph G. The matrix A is indexed by nodes and edges of G and
defined as

Ave :=

1, v ∈ e,

0, v /∈ e.

For a bipartite graph the incidence matrix A is totally unimodular
(TU) and we can drop the integrality constraints and use the LP re-
laxation, i.e.,

M(G) = conv{x ∈ ZE+ : Ax 6 1} = {x ∈ RE+ : Ax 6 1}.

Thus we can restate Problem 2.3.2 as the following LP

max {w>x : Ax 6 1, x ∈ RE+}. (1)

Linear programs can be solved in time polynomial in the input size
of A and w using the ellipsoid method [Kha80]. Unlike the simplex
algorithm the ellipsoid method does not necessarily return an opti-
mal vertex solution to a linear program. Fortunately this issue can be
overcome, for details see [GLS93, Rem. 6.5.2]. Khachiyan’s result can
be strengthened by removing the ellipsoid method’s dependence on
the cost function and the right hand side vector [Tar86]. This means,
we can solve the LP in (1) in strongly polynomial time.

2.3.2 Matching-Covered Graphs

An edge of a graph G is called allowed if it is contained in some
perfect matching of G. We say an edge that is not part of any per-
fect matching is dispensable. A graph G is matching-covered if each
of its edges is allowed. Note that here, unlike in standard literature,
we do not impose any connectivity requirements on the graph. In
[LP86] matching-covered graphs are always connected and called el-
ementary. We will see later, in Chapter 3, that solutions to E-RAP can
be described in terms of matching-covered graphs and repeatedly ex-
ploit this property algorithmically.

Matching-covered graphs are well-studied in graph theory and have
plenty of characterizations as the following theorem indicates.

16 preliminaries and related work

Theorem 2.3.4 ([LP86, Thm. 4.1.1]6). For a bipartite graphG = (U ∪̇W,E)
the following statements are equivalent.

(a) G is connected and matching-covered.

(b) Either G = K2 or |V(G)| > 4 and for any u ∈ U and w ∈ W the
subgraph G− {u,w} has a perfect matching.

(c) For each ∅ 6= T (U there holds |T |+ 1 6 |NG(T)|.

Whitney [Whi32] provided a characterization of 2-node-connected
graphs based on path decompositions. Matching-covered graphs have
similar properties. In order to describe these decompositions we need
some new vocabulary.

Let G = (U ∪̇W,E) be a bipartite graph, and let H ⊆ G be a sub-
graph. An ear in G with respect to H is an odd path P in G that
connects a node in U with a node in W. Additionally the internal
nodes of P are contained in V(G) \ V(H).

Definition 2.3.5. An ear decomposition of a connected bipartite graph
G is a sequence P0,P1, . . . ,Pq of paths in G with the following prop-
erties.

• The path P0 has length one, i.e., it is a single edge.

• For every j ∈ [q], the path Pj is an ear with respect to the graph
Hj−1 := P0 + . . .+ Pj−1;

• There holds G = P0 + . . .+ Pq.

An example of an ear decomposition can be found in Fig. 1. An ear

5

3

1

6

4

2

5

3

1

6

4

2
P0

P1

P2P2

Figure 1: A bipartite graph (left) and its ear decomposition (right).

decomposition is by far not unique, but the number of ears for a
connected graph G is always q = |E(G)| − |V(G)| + 1. This is the
cyclomatic number of G, i.e., the minimum number of edges to be
removed from G in order to destroy every cycle in G. Ear decomposi-
tions gives us an additional characterization of connected matching-
covered graphs as we see next.

6 According to [LP86], this result is due to Hetyei [Het64].

2.3 matchings in bipartite graphs 17

Theorem 2.3.6 ([LP86, Thm. 4.1.6]7). LetG be a connected bipartite graph.
Then, G is matching-covered if and only if G has an ear decomposition.

This result implies that connected matching-covered graphs can be
constructed from any edge e ∈ E by a sequence of ear additions.
Moreover, we can deduce that adding an edge from U to W to G
yields again a matching-covered graph. Theorem 2.3.6 also implies
that matching-covered graphs are always 2-node-connected.

Note that the graphs Hj−1 from Definition 2.3.5 have the prop-
erty that the nodes V(G) \ V(Hj−1) are perfectly matchable. We call
subgraphs possessing this property nice. The graphs Hj−1 are nice
because an ear decomposition uniquely defines a perfect matching
M such that all ears are M-alternating. In Fig. 1 the matching M is
formed by the vertical edges.

In order to explain how to compute an ear decomposition effi-
ciently, we need the following auxiliary graph.

Definition 2.3.7. Let M be a perfect-matching in G = (U ∪̇W,E). We
denote by D(M,G) a digraph on the node set V(G) that is defined
as follows. We orient the edges of M from U to W and the edges
E(G) \M from W to U (see Fig. 2).

a

b

c

d

e

1

2

3

4

5

a

b

c

d

e

1

2

3

4

5

Figure 2: A graph with a perfect matching M (blue) and the corresponding
digraph D(G,M).

The digraph D(G,M) has several useful properties. First observe that
directed paths in D(G,M) are M-alternating. Hence, we can use this
digraph to compute an ear decomposition of G using a folklore algo-
rithm stated in Algorithm 1. Note that the most expensive step of
Algorithm 1 is the computation of a perfect matching.

The digraph D(G,M) has additional useful properties. Directed cy-
cles in D(G,M) are M-alternating and nice. Moreover, D(G,M) is
acyclic if and only if the perfect matching M is unique. Furthermore

7 According to [LP86], this result is due to Hartfiel [Har70] and was presented in the
context of decomposition of matrices.

18 preliminaries and related work

Algorithm 1: Bipartite Ear Decomposition Algorithm

Input: Connected matching-covered graph G = (U ∪̇W,E)
Output: An ear decomposition of G

1 M← a perfect matching in G
2 D← D(G,M) as defined in Definition 2.3.7
3 P0 ← an edge in G
4 H← P0
5 for i ∈ [q] do
6 U ′,W ′ ← the bipartition of H induced by U,W
7 P̂i ← a directed path from W ′ to U ′ in D with internal

nodes in V(D) \ V(H)

8 Pi ← undirected version of P̂i
9 H← H+ Pi

10 end
11 return (P0, . . . ,Pq)

the digraph D(G,M) is strongly connected if and only if G is con-
nected and matching-covered [LP86, p. 123], which leads to the fol-
lowing observation.

Observation 2.3.8. Let M be a perfect-matching in G = (U ∪̇W,E), D :=

D(G,M) and ~M the arcs in D corresponding to M. Then, the graph G is
matching-covered if and only if all arcs in A(D) \ ~M are contained in the
strongly connected components of the digraph D.

Hence we can use the digraph D(G,M) to identify all dispensable
edges in G. For example in the graph presented in Fig. 2 the edges
{b, 3} and {e, 4} are dispensable. This algorithmic idea is formalized
and analyzed in [Rég94, Alg. 2]. The running time of the algorithm is
dominated by the time needed to compute a perfect matching because
detecting strongly connected components is essentially a pass of DFS,
which has running time O(n+m). Note that the removal of dispens-
able edges disconnects the graph. Identifying edges belonging to any
minimum-cost perfect matching is possible using dual optimal solu-
tions to Maximum-Weight Matching [VV16].

The notion of matching-covered graphs can be generalized: A graph
is called k-extendable if every matching of size k is contained in a
perfect matching. Matching-covered graphs are hence 1-extendable.
A characterization of n-extendable graphs similar to Theorem 2.3.4 is
possible.

Theorem 2.3.9 ([Plu86, Thm. 2.2]8). Let G = (U ∪̇W,E) be a bipartite
connected graph and k 6 |V(G)|−2

2 . Then the graph G is k-extendable if and
only if |U| = |W| and

∀ ∅ 6= T (U : |T |+ k 6 |NG(T)|.

8 According to [Plu86] this result is due to Brualdi and Perfect [BP71].

2.4 a brief introduction to set cover 19

We will encounter this condition again when we will discuss feasibil-
ity of V-RAP (see p. 69). Lakhal and Litzler [LL98] provided an algo-
rithm to determine the maximal extendability k̄ of a graph G in time
O(m ·min{k̄3 +n, k̄ ·n}). For an overview on results for n-extendable
graphs we refer to the survey of Plummer [Plu94].

It is worth mentioning that the notion of matching-covered graphs
can also be defined for non-bipartite graphs but the situation is more
complicated. One of the highlights is the Two Ear Theorem [LP86,
Thm. 5.4.6]. The best known algorithm for computing non-bipartite
ear decompositions can be found in [CC05].

2.4 a brief introduction to set cover

Set Cover is one of the 21 NP-complete decision problems from
Karp’s seminal paper [Kar72]. We use its inapproximability and al-
gorithmic results throughout this document and for this reason re-
peat the most important results here. The problem is defined in Prob-
lem 2.4.1 and an example is illustrated in Fig. 3.

Problem 2.4.1 (SCP).
Set Cover

Instance: 〈[k], S〉, where [k], k ∈ Z+, is a ground set and S a
collection of nonempty subsets of [k].

Solution: Cover C, i.e., C ⊆ S with [k] =
⋃
S∈C S.

Task: Find a cover minimizing |C| or decide that no cover
exists.

Throughout this document we follow the standard assumption that
the size of the collection |S| = ` is bounded by a polynomial in k.
Hence, we usually refer to k as the size of a Set Cover instance.

We can neglect infeasible instances of SCP in our analysis. For an
instance 〈[k], S〉 we can efficiently verify if S itself is a cover by check-
ing

⋃
S∈S S = [k]. In case of success, we call S a trivial cover. The

weighted version of SCP, where an instance additionally provides a
cost function c ∈ RS

+, is denoted by Weighted Set Cover (WSCP).

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

5 6 7 8

9 10 11 12

Figure 3: An instance of SCP (left) and an optimal solution (right).

20 preliminaries and related work

Both variants of Set Cover are notoriously hard to approximate. A
common approach is to use the greedy algorithm described in Algo-
rithm 2.
Algorithm 2: Classical greedy algorithm for WSCP

Input: A feasible Weighted Set Cover instance 〈[k], S, c〉
Output: A cover for [k]

1 C← ∅
2 U← [k] // uncovered elements
3 while U 6= ∅ do

4 S∗ ← arg max
{

|S∩U|

c(S) : S ∈ S \ C
}

5 C← C∪ {S∗}
6 U← U \ S∗

7 end
8 return C

For unweighted Set Cover the greedy algorithm was first pre-
sented and analyzed by Johnson [Joh74] and Lovász [Lov75] inde-
pendently. Both authors argued that the approximation guarantee of
the greedy algorithm is 1+ 1

2 + · · ·+
1
r , where r := maxS∈S |S| and is

obviously bounded by k. This expression is also known as the r-th
harmonic number, which is bounded by ln r + 1. Chvátal extended
these results to Weighted Set Cover.

Theorem 2.4.2 ([Chv79]). Algorithm 2 is an (lnk+ 1)-approximation for
WSCP.

Later, Slavík [Sla96] provided a tight analysis for the greedy algo-
rithm. He proved that its approximation ratio is in fact lnk− ln lnk+
Θ(1).

The first lower bound on the approximation quality was proved
by Lund and Yannakakis [LY94]. They showed that, unless NP ⊆
DTIME(npoly logn), SCP does not admit an approximation with bet-
ter performance than 1

4 logk.9 The next big step was the celebrated
quasi-NP-hardness result by Feige.

Theorem 2.4.3 ([Fei98]). For every ε > 0, Set Cover admits no polyno-
mial time (1− ε) lnk-approximation unless NP ⊆ DTIME(nlog logn).

Recently the condition in Feige’s result was weakened to P 6= NP
by Dinur and Steurer.

Theorem 2.4.4 ([DS14]). For every ε > 0, it is NP-hard to approximate
Set Cover to within (1− ε) lnk.

9 A polylogarithmic function has running time of O((logn)c) for some constant c. The
statement NP ⊆ DTIME(npoly logn) would imply the existence of quasi-polynomial
time algorithms for NP-complete problems.

2.4 a brief introduction to set cover 21

Their contribution was the last in a series of works on the techniques
used in Feige’s proof. For more details on other publications in this
series consult [DS14]. This result means that the greedy algorithm is
essentially the best we can hope for.

What are the structural properties that make Set Cover a hard
problem? We introduce two parameters to describe the structure of
an SCP instance 〈[k], S〉. Assume that every element i ∈ [k] occurs in
the sets of the collection S the same number of times. This defines the
first parameter, which we call a. If the size of each set in the collection
coincide, then this number is our second parameter b. Class of SCP
instances with parameters a and b is denoted by (a,b)-SCP. The set
of instances parameterized only by a is denoted as (a, ∗)-SCP. An
instance with a = 1 is trivially solvable because there is no choice to
make. To discuss the case a = 2 we use a graph problem related to
Set Cover.

Problem 2.4.5 (NCP).
Node Cover

Instance: 〈G〉, where G is a graph.

Solution: Node cover V ′, i.e., V ′ ⊆ V(G) such that every
edge in G is incident with at least one node in V ′.

Task: Find a node cover minimizing |V ′|.

The relationship between (2, ∗)-SCP and NCP is presented in the
next observation.

Observation 2.4.6. We can equivalently reformulate (2, ∗)-SCP as Node

Cover and vice versa. Given an (2, ∗)-SCP instance 〈[k], S〉, the graph G
for NCP is defined as follows. We set

V := S and E := {{S,S ′} : S∩ S ′ 6= ∅, S 6= S ′}.

The parameter b acts as the bound on the maximum degree of G.

Node Cover is a classical combinatorial problem and is known to be
NP-hard [Kar72]. The threshold on tractability for (a,b)-SCP can be
derived from results for Node Cover in regular graphs.

Theorem 2.4.7 ([AK00],[CC03]). Node Cover in cubic graphs is APX-
complete and NP-hard to approximate to within 100

99 .

For Node Cover in cubic graphs we write 3-NCP. Note that if
the degree is at most 2, then Node Cover can be solved in polyno-
mial time. This means (2,3)-SCP is the most restricted subclass of Set

Cover instances remaining NP-hard.
We finish this subsection with a well-known result from parameter-

ized complexity.

Theorem 2.4.8 (see, e.g., [Cyg+15, Thm. 13.28]). Set Cover is W[2]-
complete when parameterized by solution size.

22 preliminaries and related work

2.5 robust combinatorial optimization

In practice the input data for optimization problems is often not
known precisely. One reason is that the data is based on prediction of
future prices, demands or requirements. A different source for uncer-
tainty are measurement errors. Robust optimization is one approach
to dealing with these issues.

In this section we first explain the basic idea behind robust opti-
mization using the example of linear programming and present some
classical results. Then in the next two subsections we will describe
two of the fundamental approaches to robust combinatorial optimiza-
tion. For more details and historic development of robust optimiza-
tion in general we refer the reader to the comprehensive survey by
Bertsimas, Brown and Caramanis [BBC11].

To the best of the author’s knowledge, the investigation of uncer-
tain linear programs was initiated by Soyster in the 70s. In [Soy73]
the author considered an LP with column-wise uncertainty, i.e., the
j-th column of the constraint matrix is part of a convex set Sj ⊆ Rn.
Each vector in Sj defines a possible scenario. A robust solution to an
uncertain LP is a solution that is feasible for each possible scenario.
Soyster proved that under mild assumptions an optimal robust solu-
tion to uncertain linear programs of this type can be found by solving
a related LP in the original space.

Ben-Tal and Nemirovski [BTN99] studied uncertain linear programs
with row-wise uncertainty. The nominal, deterministic problem con-
sidered in the article is

min {c>x : Ax > b, x ∈ Rn+}, (2)

where A ∈ Rm×n. The corresponding uncertain problem, called ro-
bust counterpart, has the form

min c>x

s.t.
m∑
i=1

a>i xi > bi for each ai ∈ Si, i ∈ [m],

x > 0,

(3)

where Si are again closed convex sets, e.g., polyhedra. We can rewrite
(3) in a more compact way

min {c>x : Ax > b, x ∈ Rn+, A ∈ S}, (4)

where S := S1×· · ·×Sm. A matrix A ∈ S represents one realization
of the data and is again referred to as a scenario. The row-wise uncer-
tainty model has a very natural property. If there is a compact convex
set C ⊆ Rn such that C contains feasible solutions for each scenario
A ∈ S, then the robust counterpart (4) is infeasible if and only if
there exists an A ∈ S such that {x ∈ Rn+ : Ax > b} is empty [BTN99,

2.5 robust combinatorial optimization 23

Prop. 2.1]. If the robust problem (4) is feasible, then its robust optimal
value coincides with

sup
A∈S

{c>x : Ax > b, x ∈ Rn+},

i.e., a robust optimal solution corresponds to a solution of a worst-
case scenario. The robust counterpart (3) can be reformulated as a
convex problem and is tractable if there is a an efficient separation
algorithm for S [BTN99, Sec. 2.3]. It is worth to remark that this
model can also incorporate uncertainty in the cost function c and
the right hand side vector b. In both cases the uncertainty can be
integrated into the constraints.

The solutions to (3) can be very conservative in terms of the ob-
jective value if compared to the nominal problem (2). One counter-
measure is to use uncertainty sets that control the deviation from a
nominal scenario, thus reducing the impact of "extreme" scenarios on
optimal robust solutions. Examples for scenario sets with this prop-
erties is the ellipsoidal uncertainty or Γ -uncertainty by Bertsimas and
Sim [BS04]. Of course the choice of the uncertainty set class can not
be made completely independent of the application in mind.

2.5.1 Cost Robustness

A classical approach to robust combinatorial optimization is to as-
sume that only the cost function is subject to uncertainty and to seek
a minimum-cost worst-case solution. We summarize the robustness
paradigms sharing this characteristic under the name cost robustness.
The basic model is the so-called min-max model popularized by Kou-
velis and Yu [KY97] that we illustrate by the robust counterpart of
the classical assignment problem. The input for the robust problem
consists of a graph G and an uncertainty set S ⊆ RE(G). The set S
defines all possible cost functions c and each cost function defines a
scenario. The optimizer’s task is to find a perfect matching in G min-
imizing the worst-case cost over all scenarios in S, i.e., the task is to
solve the following problem

min max
c∈S

c(X)

s.t. X is a perfect matching in G.
(MM-AP)

A modification of the min-max model is the introduction of the re-
gret function. Given a scenario c, the regret function measures the
deviation of the objective value of a selected solution to the cost of an
optimal solution c(OPTc) for the realized scenario c. In the min-max-
regret model, the task is to find a solution minimizing the maximum
regret over all scenarios. The regret version of (MM-AP) is

min max
c∈S

c(X) − c(OPTc)

s.t. X is a perfect matching in G.
(MMR-AP)

24 preliminaries and related work

As for uncertain linear programs, the choice of the uncertainty set
affects the tractability of the resulting robust problem and the con-
servatism level of the corresponding robust optimal solutions. Dis-
crete scenario sets S usually lead to NP-hard robust problems, where
some convex uncertainty sets S (e.g., if S is a product of intervals)
lead to tractable robust problems. Bertsimas’ and Sim’s Γ -uncertainty
addresses both issues. In this approach a reference cost function c̄

is given and the deviation from c̄ is controlled by a parameter Γ , re-
sulting in a convex uncertainty set S. This uncertainty model, if ap-
plied to a tractable 0-1-discrete optimization problem Π, results in a
tractable robust counterpart of Π [BS03]. To solve the robust problem,
we need to solve at most n+ 1 instances of the nominal problem Π,
where n is the number of variables.

Various different cost-robustness concepts were proposed in the
literature. One widely-used paradigm is given by two-stage robust
optimization problems, where the decision maker has to select a par-
tial solution in the first stage and then augments this partial solution
in the second stage when the emerged scenario has been revealed.
Examples for two-stage robustness concepts are recoverable robust-
ness [Lie+09], adjustable robustness [BT+04], K-adaptability [BC10]
and its special case min-max-min robustness [BK17a].

A survey on min-max and min-max-regret versions of several com-
binatorial optimization problems is given by Aissi, Bazgan and Van-
derpooten [ABV09]. Kasperski and Zieliński [KZ16] summarized
more recent results on the classical min-max model and also provided
an exposition of different two-stage models. In [BK17b] Buchheim
and Kurtz survey different results with focus on the uncertainty sets
and their influence on the tractability of the corresponding robust
combinatorial problems.

Results for cost-robust variants of matching problems from the lit-
erature will be presented in Section 2.6.1.

2.5.2 Redundancy-Based Robustness

Redundancy-based robustness is a fundamentally different concept
compared to cost-robustness. The costs are (usually) certain and the
uncertainty affects the constraints of the optimization problem under
consideration. Because of that, robust solutions here are not necessar-
ily feasible to the underlying nominal problem as it is the case for
cost-robust problems. For a graph problem this typically means that
the structure of the graph changes in different scenarios. An exem-
plary representative of a redundancy-based robust problem is the fol-
lowing. Given a graph G, the optimizer seeks a connected subgraph
of G that is fault-tolerant against deletion of up to k edges from the
graph. In other words the optimizer has to solve the minimum (k+ 1)-
edge connected spanning subgraph problem ((k+ 1)-ECSS), which is

2.5 robust combinatorial optimization 25

a famous problem in network design (see Cheriyan, Sebő and Szigeti
[CSS01], and Gabow et al. [Gab+09]).

Several robust models described in the literature fit into the cat-
egory of redundancy-based robustness. Dhamdhere et al. [Dha+05]
proposed a two-stage model named demand-robustness. We illustrate
this concept using Set Cover as an example. A demand-robust SCP
instance is defined by a ground set [k], a collection S ⊆ 2[k] and a set
of m scenarios, where each scenario is specified by a subset Ui ⊆ [k].
Those are the elements that must be covered in i-th scenario. In the
first stage the optimizer has to select a set of subsets from S anticipa-
torily, without knowing which scenario is going to be realized. This
information is revealed in the second stage by presenting Ui for some
i ∈ [m]. In the second-stage the costs, i.e., the cardinality of the sets
in S, are inflated by a parameter σ > 1. The problem is summarized
as follows

min |C0|+ σ|Ci|

s.t. C0 ∪ Ci covers Ui for each i ∈ [m],

C0 ∪ Ci ⊆ S for each i ∈ [m].

(DR-SCP)

Note that depending on the realized scenario Ui the sets selected
from S in one of the two stages may be of no use. In the general ver-
sion of this model, each scenario also has a different cost function.
Thus, demand robustness can be seen as a hybrid robustness concept.
In [Dha+05] the authors provided approximation algorithms for sev-
eral classical optimization problems including minimum cut, shortest
paths, Steiner trees, node cover and uncapacitated facility location. A
variant of this concept, where the scenarios are given implicitly was
applied to covering problems in [Fei+07].

A new approach to redundancy-based robustness is bulk robust-
ness, a concept introduced recently by Adjiashvili, Stiller and Zen-
klusen [ASZ15]. As for demand robustness, the uncertainty set is
given as a list of possible failure scenarios. But unlike the latter model,
bulk robustness is a single-stage model. We describe the concept next.
Let Π be a combinatorial optimization problem, where the optimizer
has to select a subset of resources R minimizing the cost with respect
to a function c ∈ RR+. We call Π the nominal problem. Given a sce-
nario list S ⊆ 2R the robust counterpart of Π is defined as

min c(X)

s.t. ∀F ∈ S: X \ F contains a feasible solution to Π,

X ⊆ R.

(BR-Π)

We call an element in R, which is part of some scenario F vulnerable.
Observe that there is no obligation to use the resources in X once a
particular scenario has emerged. The uncertainty can be uniformly
distributed, i.e., S = {F ⊆ R : |F| = k} resulting in problems similar

26 preliminaries and related work

to the aforementioned (k+ 1)-ECSS. But this model is more general
and allows to incorporate settings where the underlying structure
R is only partially vulnerable. The robust assignment problems from
Chapter 3 and 4 fall into this category. In [ASZ15] the authors applied
the concept of bulk-robustness to the problem of finding an s-t-path
and the minimum matroid basis problem.

Various combinatorial problems following a redundancy-based ro-
bustness concept can be found in literature: facility location problems
(Jain and Vazirani [JV00], Swamy and Shmoys [SS03], and Chechik
and Peleg [CP10]), network design problems (Jain [Jai01], Chekuri
et al. [Che+02], and Hajiaghayi, Immorlica and Mirrokni [HIM03]),
spanner problems (Chechik et al. [Che+09a], and Dinitz and Krauth-
gamer [DK11]), flow problems (Bertsimas, Nasrabadi and Stiller
[BNS13], and Matuschke, McCormick and Oriolo [MMO17]) as well
as many others.

2.6 related work

In this section we survey results from works on uncertain matchings
within the field of robust optimization and related problems from
graph theory.

2.6.1 Robust Matching Problems

Kouvelis and Yu [KY97] showed that the min-max assignment prob-
lem (MM-AP), p. 23, is NP-hard even if the uncertainty set S con-
sists only of two scenarios. Deineko and Woeginger [DW06] showed
that (MM-AP) with a fixed number of discrete scenarios is equivalent
to the exact perfect matching problem, a problem not known to be
strongly NP-hard at that point. The latter problem asks whether a
graph has a perfect matching of a given weight. Later Zhu, Luo and
Miao [ZLM08] proved that the exact matching problem is strongly
NP-hard. If the number of scenarios |S| is constant, then (MM-AP)
can be interpreted as a multi-objective problem. For this class of prob-
lems Grandoni et al. [Gra+14] presented an (1 + ε)-approximation
algorithm. For the case, where the number of discrete scenarios is
unbounded, Aissi, Bazgan and Vanderpooten [ABV05] showed that
(MM-AP) is strongly NP-hard. For the same setting the authors pro-
vided a |S|-approximation in [ABV09]. Kasperski and Zieliński [KZ09]
proved a lower appoximation bound of log1−ε |S|, for any ε > 0 un-
less NP ⊆ DTIME(npoly logn). All above statements also hold for the
min-max regret assignment problem defined in (MMR-AP).

Kasperski, Kurpisz and Zieliński [KKZ14] studied a variant of the
two-stage robust perfect matching problem under the name rent-re-
coverable assignment. In this problem, we are given a graph G, a set
of scenarios S and two numbers α ∈ (0, 1) and β > 0. Each scenario

2.6 related work 27

s ∈ S defines a cost function cs ∈ RE(G). We denote the set of all
perfect matchings in G by X(G). In the first stage a perfect matching
X ∈ X(G) is chosen for rent. In the second stage the optimizer has to
decide whether he implements X or switches to a different solution
Y ∈ X(G). The costs in the first stage, i.e., the rent costs, are defined
as c1s(X) = αcs(X) for a scenario s ∈ S. The implementation costs in
the second stage are defined as c2s(X) := minY∈X(G){(1− α)cs(Y) +

(α+β)cs(Y \X)}. The task is to minimize the worst-case costs, which
leads to the following problem

min
X∈X(G)

max
s∈S

c1s(X) + c
2
s(X). (RR-AP)

In [KKZ14] the authors proved that (RR-AP) is NP-hard with discrete
scenario set S and cannot be approximated to within log1−ε |S| for
any ε > 0 unless NP ⊆ DTIME(npoly logn).

[Kut+08] studied a version of the assignment problem defined on
a family of graphs that fall into the category of demand-robust prob-
lems. Given a bipartite graph G = (U ∪̇W,E) and a collection C of
subsets of U (i.e., constraints on the node set U) the task is to find a
maximum-weight set of independent edges in G such that each sub-
set of the collection C is covered as best as possible.

Laroche et al. [Lar+14] investigated the Nurse Rostering Problem,
a problem arising in health care, which is closely related to the feasi-
bility version of V-RAP. The authors provided a measure of a roster’s
sensitivity concerning the absence of staff members. We will come
back to this paper in Section 4.2 in more detail.

Hassin and Rubinstein [HR02] introduced the following notion of
an α-robust matching. A perfect matching M in a weighted graph is
α-robust (for α ∈ (0, 1]), if for every p 6 |M|, the p heaviest edges
of the matching have a total weight at least α times the weight of a
maximum-weight matching of size p. In [HR02] the authors proved
that the complete graph Kn contains a 1√

2
-robust matching and that

the latter bound is tight in general. Additionally, the authors provide
a polynomial-time algorithm to find such a matching. Building upon
these results, Fujita, Kobayashi and Makino [FKM10] proved that the
problem to decide whether a graph has an α-robust matching with
α ∈ (1√

2
, 1) is NP-complete, and extend the original algorithm to the

matroid intersection problem. Matuschke, Skutella and Soto [MSS14]
improved the bound of Hassin and Rubinstein to 1

ln4 when instead
of a deterministic matching M, a probability distribution on the set
of matchings in the graph is specified.

Arulselvan et al. [Aru+16] analyzed the following modification of
the assignment problem. Consider an edge-weighted bipartite graph
G = (U ∪̇W,E) with lower and upper quotas l,u ∈ ZW+ on the node
set W. The goal is to find a maximum-weight edge set M such that
each node in U is incident with at most one edge inMwhile all nodes
in W must either respect the bounds given by the quota functions or

28 preliminaries and related work

are not to be used at all. This problem is the generalization of the
bipartite many-to-one matching with a dynamically adjustable node
set W. The main results provide a classification of several variants of
the problem in terms of complexity and an approximation algorithm
for the general case.

Katriel et al. [KKMU08] studied a two-stage stochastic optimization
problem on an edge-weighted bipartite graph G = (U ∪̇W,E), that is
of slight resemblance to RAP. The first stage is certain. In the second
stage, uncertainty comes into play in two variants: either the edge
costs are uncertain, or some of the nodes from W are deactivated.
For both variants, the goal is to select edges in the first stage and in
the second stage in such a way that their union is as cheap as pos-
sible and contains a perfect matching in G. The main results include
the derivation of lower bounds on approximation guarantees as well
as provision of approximation algorithms for the different variants
of the presented stochastic problems. Additionally the authors pro-
vide a randomized approximation algorithm for the robust version of
their stochastic optimization problem with uncertain edge costs. The
algorithm returns, with high probability, a solution that contains a
matching covering at least (1− β)|U| nodes in every scenario for any
β ∈ (0, 1). All three problems considered in [KKMU08] are different
from those studied in this thesis. E-RAP seeks to find a superset of
a perfect matching while some edges may fail but the edge costs are
certain. In V-RAP the task is, knowing the cost, to select a subset of
nodes in W such that the induced subgraph has a U-perfect matching
while nodes in W are subject to uncertainty.

Dourado et al. [Dou+15] studied the question of existence of a ro-
bust recoverable matching. That is, given a graph G, a set F of edges,
and two integers r and s, does the graph G have a perfect matching
M such that, for every choice F ′ of r edges from F, the graph G− F ′

contains a perfect matching M ′ and |M4M ′| 6 s? Such a matching
M is called r-robust and s-recoverable. The authors proved hardness
of several related problems and present some tractable cases. We will
study an augmentation problem related to robust recoverable match-
ings in Chapter 5.

2.6.2 Interdiction Problems

An interdiction problem is a two-player game on a graph. In the first
step an interdictor destroys some parts of the graph according to
some set of rules. In a second step the optimizer selects a solution
to the underlying optimization problem in the remaining graph.

Hung, Hsu and Sung [HHS93] considered the so-called most vi-
tal edges in the context of weighted bipartite matchings. In an edge-
weighted graph G, an edge e ∈ E(G) is called most vital if its removal
from G minimizes the objective value of a maximum-weight match-

2.6 related work 29

ing in G− {e}. The authors provided an O(n3) algorithm to find most
vital edges.

Zenklusen [Zen10] considered the following matching interdiction
problem. The input is a graph G = (V ,E) with edge-weights w, an
interdiction cost function c on the edge or the node set and an inter-
diction budget B. Then the interdictor has to find a subset R of edges
or nodes that solve the following problem

min{w(M) : M is a maximum matching in G− R, c(R) 6 B}.

Several NP-hardness results are presented in the paper: for graph con-
sisting of isolated edges as well as for general graphs with unit edge
weights and unit interdiction costs. For bipartite graphs the edge
interdiction problem remains NP-hard for unit weights and costs,
which was already shown in [Zen+09]. However, the node interdic-
tion problem with the same costs setting is proven to be tractable. Fur-
thermore the author provided a constant-factor approximations for
both versions of the problem in general graphs with unit interdiction
costs. Additionally a pseudo-polynomial algorithm for graphs with
bounded treewidth and the edge interdiction setting is presented. The
paper is concluded by describing how to turn the latter algorithm into
an FPTAS using a scaling and rounding technique.

Haney et al. [Han+17] proposed a symmetric interdiction approach
that restricts both, the interdictor and the optimizer, to feasible solu-
tions to the underlying optimization problem. The authors applied
the model to the matching problem yielding the interdiction problem

min {ν(G−M) : M is a matching in G},

where G is a given (non-bipartite) graph. Their results include a gen-
eral approximation algorithm if the underlying optimization problem
is a packing problem and a specialized one for the matching setting
which has an approximation guarantee of 1.5. Furthermore they pro-
vided APX-hardness proof for the matching interdiction and an poly-
nomial algorithm based on polyhedral techniques if the interdictor is
allowed to select his matching randomly.

Kamalian and Mkrtchyan [KM08] investigated a similar decision
problem. Given a bipartite graph G and an integer k, the question
is whether there is a maximum matching M in G such that ν(G −

M) 6 k (or > k). The difference to the work of Haney et al. is that
in [Han+17] the matching M can be of arbitrary size. The authors
proved NP-completeness of this problem using a reduction from Max-
2-SAT.

2.6.3 Matching Preclusion

Plesník [Ple72] proved that for any integer r > 0, an (r − 1)-edge-
connected and r-regular graph G remains perfectly matchable after

30 preliminaries and related work

removing r− 1 arbitrary edges from G. Thus, this result provides a
sufficient condition for a (non-bipartite) graph with a r-factor to have
a robust assignment in case r− 1 edges can fail simultaneously.

Brigham et al. [Bri+05] studied the minimum number of edges to
be removed from a graph G to arrive at a graph without a perfect
matching. This quantity is called matching preclusion number mp(G).
The authors determined mp(G) for hypercubes, Petersen graphs and
complete graphs. We will come back to mp(G) in Section 3.2 in the
context of feasibility testing for E-RAP. For further results and gen-
eralizations of mp(G) see the works of Cheng et al. [Che+09b], Park
and Ihm [PI11] and references therein.

The connection between a graph’s matching number ν(G) and node
deletion was investigated by Favaron [Fav96]. The author character-
ized the class of so-called k-factor-critical graphs, i.e., graphs on n
nodes such that every subgraph on n− k nodes is perfectly match-
able. Those graphs can not be bipartite, hence those insights can not
be applied here. Aldred et al. [AAL07] studied the conditions under
which grid graphs and k-fold product graphs remain perfectly match-
able after non-trivial node deletions. For more recent results in this
line of research we refer to an article by Lou and Yu [LY04].

2.6.4 Graphs with Extendable Matchings

In Section 2.3.2 we introduced matching-covered graphs which are a
special case of n-extendable graphs. A graph is called n-extendable
if any matching of size n is contained in a perfect matching. Thus,
matching-covered graphs form the class of 1-extendable graphs. Sev-
eral generalizations of n-extendable graphs are presented in the liter-
ature.

Liu and Yu [LY93] introduced the notion of (m,n)-extendability. In
an (m,n)-extendable graph G, for every choice of a matching M of
size m and n nodes that are not incident with any of the edges in M,
the graph G has a perfect matching M̄ containing M and M̄ does not
contain any edge connecting two of the selected n nodes. Using this
terminology an n-extendable graph is (n, 0)-extendable. The authors
provided different properties of (m,n)-extendable graphs.

Porteous and Aldred [PA96] suggested a different extendability
property. A graph maintains the E(m,n)-property if, for any pair
(M,N) of disjoint matchings with |M| = m and |N| = n, the graph
has a perfect matching that contains N and does not contain any
element of M. The authors deduce several properties of graphs satis-
fying E(m,n)-property.

Wang, Yuan and Zhou [WYZ09] examined the so-called k-edge-
deletable IM-extendable graphs that are characterized as follows. Af-
ter removing any set F of k edges from a graph G, every induced

2.6 related work 31

matching M in G − F (i.e., a matching satisfying E(V(M)) = M) is
contained in a perfect matching of G− F.

2.6.5 Augmentation Problems

A general graph augmentation problem asks the following question:
How many edges have to be added to a graph to satisfy a particular
property? A typical representative is the Two-Edge-Connectivity Aug-
mentation Problem (2-ECAP). Given an edge-weighted graph G =

(V ,E) and a set of edges E0 ⊆ E, 2-ECAP asks to find a minimum-
cost subset of edges E ′ ⊆ E such that the graph G ′ = (V ,E0 ∪ E ′) is
2-edge-connected [GJ79, ND18]. In other words, unlike G0 = (V ,E0),
the graph G ′ is fault-tolerant against single edge failures. Thus, from
robust point of view, the initial graph G0 is a 0-robust solution with
respect to the requirement of connectivity and the resulting graph
G ′ is a 1-robust solution. Eswaran and Tarjan [ET76] proved that the
problem is NP-hard if the weights are either 1 or 2 via a reduction
from Hamiltonian Cycle. The authors also provide a polynomial-time
algorithm for graphs with unit weights. A 2-approximation for the
general case was given by Frederickson and JáJá [FJ81].

A famous special case of 2-ECAP is the so-called Weighted Tree
Augmentation Problem (WTAP) where the initial graph (V ,E0) is a
tree, i.e., an undirected, connected and acyclic graph. WTAP is NP-
hard even if the input tree has constant diameter [FJ81]. Until re-
cently the best known algorithm for general WTAP was the afore-
mentioned 2-approximation from [FJ81]. Then, for the case, where
the edge weights are bounded by a constant, Adjiashvili [Adj17] pre-
sented a new LP-based approximation with performance guarantee
of roughly 1.96+ ε. Later his result was improved to 1.5+ ε by Fiorini
et al. [Fio+17] essentially closing the gap to the best known bound of
1.5 for the unit-cost WTAP by Kortsarz and Nutov [KN16].

To the best of the author’s knowledge, there are no works dealing
with augmenting robust matchings using any of the models described
in Section 2.5.

Şeref, Ahuja and Orlin [ŞAO09] studied network problems within
the following framework: Given a feasible solution to an optimization
problem, the task is to find an incremental change of this solution
resulting in the best possible improvement of the objective value. Sev-
eral problems including spanning tree, max flow and shortest path
were studied in [ŞAO09]. The incremental variant of the assignment
problem was proved to be a special case of the exact matching prob-
lem which is strongly NP-hard (see p. 26) and solvable in random
pseudopolynomial time.

32 preliminaries and related work

2.6.6 Miscellaneous

Sha and Steiglitz [SS93] provided a distributed reconfiguration algo-
rithm for bipartite matching with node failures that is motivated by
an application in very-large-scale integration (VLSI). The setting is
the following: In a bipartite graph G = (U ∪̇W,E) with a maximum
matching M, the task is to react to removal of k nodes from M. The
algorithm finds a new maximum matching (if possible) in reconfigu-
ration time O(k ·min {|U|, |W|}). In the process, a matching of size at
least |M|− k is maintained.

Darmann et al. [Dar+11] studied the hardness of the Maximum
Matching Problem (among other problems) with the additional struc-
ture of conflict (forcing) graphs. A conflict (forcing) graph describe
pairs of edges such that at most (at least) one of the two can be part
of a feasible solution. The problem is shown to be NP-hard even if
the conflict (forcing) graph has only isolated edges. Öncan, Zhang
and Punnen [OZP13] use these ideas to present further complexity
results and heuristics for the Perfect Matching Problem with conflict
constraints.

3
R O B U S T A S S I G N M E N T S W I T H V U L N E R A B L E
E D G E S

This chapter deals with the variant of Robust Assignment capturing
uncertainty in the edge structure of the underlying bipartite graph.
We call this variant Edge-Robust Assignment or E-RAP for short.

We repeat the setting here briefly. Given a balanced bipartite graph
G = (U ∪̇W,E), where we refer to the nodes in U as jobs and to
those in W as machines. An edge e ∈ E encodes the property that
a particular job can be performed on a specific machine. In E-RAP
we seek to find a subset of edges such that all jobs can be performed
simultaneously, i.e., the selected edges contain a perfect matching in
G. Additionally the edge set E is subject to uncertainty, e.g., an edge
can fail because equipment or additional information needed to ex-
ecute a job is not available. All expected incidents are modeled via
failure scenarios, each describing a subset of edges in E that may fail
at the same time. We call the edges contained in a scenario vulnerable.
When a scenario emerges, then the corresponding subset of edges is
removed from the graph. A robust solution has to be feasible in every
scenario. Before giving a formal description in Section 3.1 we present
an outline of this chapter next.

outline

In Section 3.1 we formally introduce Edge-Robust Assignment

and prove some basic properties. The most important one is the strong
connection between feasible solutions to E-RAP and matching-cov-
ered graphs which will be exploited repeatedly in this chapter to de-
sign approximation algorithms. In Section 3.2 we will discuss whether
a given instance can be tested for feasibility efficiently. We will also
show that in the case where the uncertainty set is given implicitly
by specifying the number of edges that can fail simultaneously, de-
ciding feasibility is an NP-hard problem. In Section 3.3 we study E-
RAP with constant number of vulnerable edges and show that E-
RAP is already NP-hard with only two vulnerable edges. Our main
result of this chapter, hardness of approximation of E-RAP with sin-
gle edge failures, will be presented in Section 3.4. The key ingredient
is an S-reduction from Set Cover implying that E-RAP is not only

33

34 robust assignments with vulnerable edges

NP-hard to solve exactly but also NP-hard to approximate with an
approximation ratio of sublogarithmic order. Subsequently we focus
on scenario sets with single edge failures for the rest of the chapter.
The major algorithmic result of this thesis, a randomized approxi-
mation algorithm for E-RAP, is presented in Section 3.5. In expecta-
tion, this algorithm has an approximation guarantee of logarithmic
order, hence it is asymptotically tight. The algorithm relies on prop-
erties of matching-covered graphs as well as the compact polyhedral
description of the perfect matching polytope. Thereafter we address
the minimum-cardinality version of E-RAP, which we call Min-Card

Edge-Robust Assignment or Card-E-RAP for short. In Section 3.6
we derive APX-hardness of Card-E-RAP, which implies that there is
no PTAS, unless P = NP. We conclude this chapter presenting an
O(1)-approximation algorithm for Card-E-RAP in Section 3.7. The al-
gorithm uses ear-decompositions of matching-covered graphs to con-
struct approximate solutions to Card-E-RAP. Combined, the two last-
named results imply that Card-E-RAP is APX-complete.

3.1 formal description and basic properties

Unless stated otherwise, every graph G = (U ∪̇W,E) considered in
this chapter is bipartite, simple and balanced, i.e., |U| = |W|. To avoid
trivially infeasible cases we assume that G has no isolated nodes. The
nominal problem considered in this chapter is Min-Cost Perfect

Matching (MCPMP).
In E-RAP, a bulk-robust counterpart of MCPMP, the edge set E

is subject to uncertainty that is modeled via a list of edge subsets
S ⊆ 2E. Each F ∈ S describes a failure scenario that leads to the
removal of all edges in F from the graph G. A robust assignment in
G is defined as a set of edges X ⊆ E such that X contains a perfect
matching for every scenario. E-RAP is formalized as Problem 3.1.1.

Problem 3.1.1 (E-RAP).
Edge-Robust Assignment

Instance: 〈G,S, c〉, where G = (U ∪̇W,E) is a balanced bi-
partite graph, S ⊆ 2E a failure scenario set and
c ∈ RE

+ a cost function.

Solution: A S-robust assignment X in G, i.e., X ⊆ E such that
for each F ∈ S the subset X \ F contains a perfect
matching of G.

Task: Find X minimizing c(X) or decide that G has no
S-robust assignment.

The minimum-cardinality version, i.e., where c = 1 is denoted by
Min-Card Edge-Robust Assignment or Card-E-RAP for short. If S
consists of singletons, then we just write S ⊆ E. An example of a

3.1 formal description and basic properties 35

Card-E-RAP instance and an optimal solution is illustrated in Fig. 4.

We make the following distinction for uncertainty sets. The sce-
nario sets S of the first type are given explicitly as a list of sub-
sets of E. The second type is described implicitly by an integer k as
Sk := [E]k = {F ⊆ E : |F| = k}. We call the corresponding instances k-
uniform. In the latter case an instance is then usually given as 〈G,k, c〉.
Consequently we call the associated feasible solutions Sk-robust or
just k-robust. In this sense, a perfect matching is a 0-robust solution.
In the case k = 1 we just write S = E and refer to the instances as
uniform.

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

Figure 4: From left to right: a Card-E-RAP instance with S =
{
{a, 1}, {d, 3},

{d, 4}
}

(orange); three scenario graphs induced by the removal of
a vulnerable edge (red, dashed); an optimal solution (blue).

The restriction to balanced bipartite graphs is not limiting in the
case of E-RAP with arbitrary cost functions as is shown in the next
proposition.

Proposition 3.1.2. An unbalanced E-RAP instance can be efficiently trans-
formed to an equivalent balanced E-RAP instance while preserving the cost.

Proof. Consider an unbalanced E-RAP instance 〈G,S, c〉, where G :=

(U ∪̇W,E) with |U| < |W| and c ∈ RE+. According to our motivation
we want to match all jobs, i.e., nodes in U. For this reason, an instance
with |U| > |W| is infeasible.

To convert G into a balanced bipartite graph a set D of dummy
job nodes of cardinality |D| = |W| − |U| is introduced. Each d ∈ D
is connected with every machine node w ∈ W and we denote the
corresponding edges by ED. We define a balanced graph G ′ by setting
W′ := W, U′ := U ∪D and E′ := E ∪ ED. The new cost vector c′ ∈
RE

′
+ coincide with c on the original edge set E. The new edges have

cost zero, i.e., c′e = 0 for each e ∈ ED. Ultimately, the set of failure
scenarios is unaffected, i.e., S′ := S. Evidently, this transformation
can be performed in polynomial time and results in a balanced E-
RAP instance 〈G ′,S ′, c ′〉.

Now observe that whenever X is an assignment in G we can ex-
tend a U-perfect matching M ⊆ X to a perfect matching in G ′ by
adding suited edges from ED. Conversely, because U ∩ V(ED) = ∅,

36 robust assignments with vulnerable edges

any perfect matching in G ′ contains a U-perfect matching using orig-
inal edges only. Hence for an assignment X ′ in G ′, X ′ ∩ E is an as-
signment in G. As the new edges have zero cost, it follows that
c(X) = c′(X′). �

This procedure can not be applied to Min-Card Edge-Robust As-
signment in the way presented above, because it is not approxima-
tion preserving in that case.

The next proposition establishes the connection between feasible so-
lutions to E-RAP and matching-covered graphs. A matching-covered
graph, is a graph with the property that each of its edges is contained
in a perfect matching (see Section 2.3.2).

Proposition 3.1.3. Let I = 〈G,S, c〉 be an E-RAP instance with S ⊆
E(G). Then, X ⊆ E(G) is an inclusion-wise minimal feasible solution to I if
and only if the induced subgraph G[X] spans G, is inclusion-wise minimal
with the properties of being matching-covered and that isolated edges inG[X]
are not contained in S.

Proof. Let X ⊆ E(G) be an inclusion-wise minimal feasible solution
to I, and let e ∈ X be an edge. If e is dispensable, i.e., it does not
appear in any perfect matching of G, then X \ {e} remains feasible to
I. Thus, due to inclusion-wise minimality of X the induced subgraph
G[X] is matching-covered. Now assume e is vulnerable and is isolated
in G[X], then X \ {f} cannot contain a perfect matching in G. This
contradicts the feasibility of X. Lastly, assume that there is a spanning
subgraph G[X ′] (G[X] induced by X′ (X and G[X ′] is matching-
covered and that does not share any of its isolated edges with S.
Consider an arbitrary vulnerable edge f ∈ X′ ∩S. As f is not isolated
in G[X′], there is an e′ ∈ X′ adjacent to f. Since G[X′] spans G and
is matching-covered, there is a perfect matching M in G with e ′ ∈
M and f /∈ M. However, this implies that X′ is feasible to I as well
contradicting the inclusion-wise minimality of X.

Conversely, let X be a subset of E(G) such that its induced sub-
graph G[X] spans G and is inclusion-wise minimal with respect to
both stated properties. Showing that X is feasible to I is similar to
the proof of the feasibility of X′ above. Assume now that there is an
X̄ ⊆ X, X̄ 6= X, feasible to I. This implies that the induced subgraph
G[X̄] spans G and a vulnerable edge f ∈ X̄ ∩S cannot be isolated in
G[X̄]. Moreover, G[X̄] can be assumed to be matching-covered. Other-
wise each dispensable edge e ∈ X̄ can be removed from X̄ decreasing
its cardinality. Hence, X̄ is a proper subset of X which contradicts the
minimality of X concluding the proof. �

Consequently (inclusion-wise minimal) matching-covered graphs
are natural candidates for solutions to E-RAP. Recap that dispensable

3.1 formal description and basic properties 37

edges can be identified using the digraph D(G,M) defined in Defini-
tion 2.3.7. A necessary condition for a matching-covered graph G on
more than four nodes to be inclusion-wise minimal is the absence of
4-cycles [LP86, Thm. 4.2.2]. This condition can be verified efficiently.
The full characterization is given by the following theorem.

Theorem 3.1.4 ([LP86, Thm. 4.2.16]). Let G be a bipartite matching-
covered graph. Then G is inclusion-wise minimal matching-covered if and
only if no nice cycle in G has a chord.

Although nice cycles can be recognized using the digraph D(G,M)

(see Definition 2.3.7) efficiently, a matching-covered graph can have
an exponential number of nice cycles.

Concluding this section, we present a class of Card-E-RAP instances
with a good characterization of optimal solutions.

Proposition 3.1.5. Let 〈G = (U ∪̇W,E), [E]k−1〉 be a Card-E-RAP in-
stance. If the graph G admits a k-factor, then X ⊆ E is optimal if and only if
X is a k-factor.

Proof. "if" part:
Let X ⊆ E be a k-factor in G. First we show the feasibility of X using
Hall’s Theorem 2.3.1. Consider any F ∈ S, we have to show that
X contains a perfect matching in G − F. To do so we apply Hall’s
Theorem to the graph H := G[X] − F. Consider a subset T ⊆ U, we
have

|NH(T)| >

⌈
k|T |− |F|

k

⌉
=

⌈
|T |−

k− 1

k

⌉
= |T |,

hence X is a k-robust assignment.
Now assume, there is a feasible solution X′ 6= X with |X′| < |X| =

k
2 |V(G)|. Then, there is a node v ∈ V(G) with |δ(v) ∩ X ′| 6 k − 1.
Choosing a failure scenario F′ ∈ S that is a superset of δ(v) ∩ X ′
contradicts the feasibility of X ′ because v is isolated in G− F ′.

"only if" part:
Let OPT be an optimal solution to the E-RAP instance at hand. By the
arguments presented above we know that |OPT ∩ δ(v)| > k holds for
each v ∈ V(G). Now assume there is a node v ′ with |OPT∩ δ(v ′)| > k
implying |OPT| > k

2 |V(G)|. This contradicts the optimality of OPT
because G has a k-factor. �

Finding k-factors in bipartite graphs is a tractable problem. We can
either use combinatorial algorithms or polyhedral methods as de-
scribed in Section 2.3.

Plesník [Ple72] showed that for a non-bipartite graph G a k-factor
X is feasible for (k− 1)-uniform E-RAP if the induced subgraph G[X]
is (k− 1)-edge-connected (see p. 29). An example that this additional
requirement is necessary is presented in Appendix B.

38 robust assignments with vulnerable edges

3.2 deciding feasibility

In this section we discuss how to decide feasibility of a given E-RAP
instance I = 〈G = (U ∪̇W),S, c〉. Note that the cost function c does
not influence the feasibility.

Observe that E-RAP is a monotonic problem: Every superset of a
feasible solution is feasible itself. Thus, the instance I is feasible if and
only if the entire edge set E is a feasible solution. Furthermore, note
that as a decision problem, the question whether I at hand is feasible
is contained in the complexity class coNP. If I is infeasible, then there
is a failure set F ⊆ E of size k as a short certificate.

There are two easy cases. If S is given explicitly as a list of vulnera-
ble edge sets then we can check if for every scenario F ∈ S the graph
G− F has a perfect matching using any efficient matching algorithm.
Same holds if S = [E]`, where ` is a constant. Hence in both cases
testing feasibility can be performed in time polynomially bounded
by the size of the input.

Hence the interesting case appears if the scenario set S is specified
implicitly by an integer k, i.e., the instance is given as 〈G,k, c〉. Then
the naive approach described above does not yield an algorithm poly-
nomial in k, because we have to compute

(
|E|
k

)
= O(|E|k) matchings.

The naive approach yields just an XP-algorithm with k as the param-
eter. In the remainder of this section we focus on k-uniform instances
where the scenario set S = [E]k is given implicitly by providing the
integer k as input.

Brigham et al. [Bri+05] investigated when the removal of edges
leads to a graph that is not perfectly matchable. For this the authors
introduced the matching preclusion number. For a graph G, it is de-
fined as

mp(G) := min{|F| : F ⊆ E(G), G− F has no perfect matching}.

The matching preclusion number measures a graph’s edge deletion
resilience with respect to property of being perfectly matchable. The
definition of mp(G) naturally leads the following decision problem.

Matching Preclusion Number (MPNP)

Instance: 〈G, s〉, where G is a graph and s ∈ Z+.

Question: Is mp(G) 6 s?

The decision problem MPNP is known to be NP-complete for bi-
partite graphs [Lac+12, Thm. 6] (see [Dou+15, Thm. 2] for a different
proof). We use this problem to derive hardness for the question of
feasibility of E-RAP.

Proposition 3.2.1. Deciding feasibility of a given k-uniform E-RAP in-
stance 〈G,k, c〉 is NP-hard.

3.3 card-e-rap with two vulnerable edges 39

Proof. We provide a Turing reduction from Matching Preclusion

Number. Let 〈G, s〉 be an instance of MPNP. Then, with any choice
of c ∈ R

E(G)
+ , the tuple 〈G, [E(G)]s, c〉 is a feasible E-RAP instance if

and only if mp(G) > s. Thus we can decide whether 〈G, s〉 is a Yes-
instance of MPNP using a feasibility oracle for k-uniform E-RAP. �

Note that Proposition 3.2.1 rules out the existence of approximation
algorithms in the k-uniform setting with k as part of the input.

3.3 card-e-rap with two vulnerable edges

In this section we study Card-E-RAP with a constant number of vul-
nerable edges. If only one edge is uncertain, we can just remove it
from the graph. Thus the simplest non-trivial variant is Card-E-RAP
has two singleton scenarios. In Theorem 3.3.3 we prove that even for
this very restricted setting Card-E-RAP is already NP-hard.

In the remainder of this section we consider instances of Card-E-
RAP of the form 〈G = (U ∪̇W,E), {f1, f2}〉, where f1 and f2 are dis-
tinct edges in G. If the graph G− {f1, f2} is perfectly matchable, then
any perfect matching not using f1 and f2 is optimal. Hence, while in-
vestigating hardness, we neglect the instances where the vulnerable
edges are not part of an optimal solution. This means that we assume
both edges, f1 and f2, to be part of every feasible solution. We can ver-
ify if an instance I is feasible by computing a maximum matching Mi

in G− {fi}, i ∈ {1, 2}. The union X := M1 ∪M2 is a feasible solution
to I and gives us a 2-approximation. Moreover, the set X contains a
cycle C including both f1 and f2 and a perfect matching on the nodes
not covered by C. Borrowing a term from theory of matching-covered
graphs, we call such cycles nice. This observation is formalized next.

Observation 3.3.1. Let 〈G, {f1, f2}〉 be an instance of Card-E-RAP such
that G− {f1, f2} has no perfect matching. Then every inclusion-wise mini-
mal solution X has the form C∪M, where C is a cycle containing f1 and f2
and M a perfect matching in G− V(C). If C spans G, then M is empty.

For the complexity analysis of Card-E-RAP with two singleton sce-
narios we use a reduction from the following optimization problem.

Problem 3.3.2 (SNPP).
Shortest Nice Path

Instance: 〈G, s, t〉, where G = (U ∪̇W,E) is a balanced bipar-
tite graph, s ∈ U and t ∈W.

Solution: A nice s-t-path P in G, i.e., an s-t-path such that
all nodes not in V(P) are perfectly matchable in G.

Task: Find P minimizing length(P) or decide that no
such path exists.

40 robust assignments with vulnerable edges

In other words in SNPP we seek to partition the graph into an s-t-
path and a subgraph with a perfect matching. This problem is NP-
hard (see Theorem 3.3.6), the proof is postponed to the end of this
section. We are now ready to prove the main result of this section.

Theorem 3.3.3. Min-Card Edge-Robust Assignment is NP-hard with
two singleton scenarios.

Proof. Let I = 〈G, s, t〉 be an instance of SNPP, i.e., G = (U∪̇W,E) is
a balanced bipartite graph with s ∈ U and t ∈ W. We first introduce
two new nodes x,y, where x is added to W and y to U. We then add
new edges f1 := {s, x}, f2 := {x,y} and f3 := {y, t} to G (see Fig. 5).
The construction yields a new balanced bipartite graph G ′ = (V ′,E ′)

s x

y t

f1

f2

f3

Figure 5: Reduction from Theorem 3.3.3: the new nodes and edges in G ′.

with V ′ := (U ∪ {y}) ∪̇ (W ∪ {x}). Next, we define the set S of failure
scenarios as {f1, f2}. Then, I ′ := 〈G ′,S〉 is an instance of Card-E-RAP,
which can be obtained in polynomial time.

Note that for any feasible s-t-path P for I there exists a perfect
matching M in G[(U ∪̇W) \V(P)]. As the path P connects nodes from
different sides of the bipartition, P is of odd length. Now we interpret
P as a path in G ′. Then, C := P+ {f1, f2, f3} is a cycle of even length in
G ′. By Observation 3.3.1, the union X = M ∪C is a feasible solution
to the Card-E-RAP instance I ′.

Since the node x is only incident with the vulnerable edges f1 and
f2, every feasible solution to I ′ has to contain a cycle covering f1 and
f2. Thus, a nice s-t-path in G of minimal length leads to a cycle C in
G ′ of minimal length, and vice versa.

Now we claim that a shortest nice s-t-path P for instance I has
length L if and only if an optimal solution X to I ′ consists of a cycle
C with length L+ 3.

Let P be a shortest nice s-t-path for I. Using the aforementioned ar-
guments, we obtain a feasible solution X := M ∪C with length(C) =
length(P) + 3. Since P is an optimal solution, a smaller cycle contain-
ing the vulnerable edges f1 and f2 does not exist. Therefore, M∪C is
optimal to I ′.

Conversely, consider now an optimal solution X ′ to I ′. Since x and
y are incident only with edges f1, f2 and f3, the solution X ′ contains
a cycle C ′ that covers the nodes s, t, x,y. Moreover, the remaining
nodes V(G ′) \V(C ′) are perfectly matched, i.e., the cycle C ′ is nice in

3.3 card-e-rap with two vulnerable edges 41

G ′. Because X ′ is optimal, the cycle C ′ is a shortest nice cycle of this
type. By removing the edges fi, i = 1, 2, 3, from C ′ we get a path P
from s to t which is feasible to I, i.e., P is a nice path in G. Evidently,
length(P) = length(C ′) − 3.

The NP-hardness of Shortest Nice Path stated in Theorem 3.3.6
concludes the proof. �

A natural parameter choice for a parameterized algorithm for E-
RAP is the number of scenarios |S|. Unfortunately the question for
an FPT-algorithm in |S| is unlikely to have an affirmative answer.

Corollary 3.3.4. Unless P = NP, Edge-Robust Assignment is not fixed-
parameter tractable when parameterized by the number of failure scenarios.

Proof. Assume there is an FPT-algorithm for E-RAP with running
time f(k) · nc, where k is the number of scenarios, n the size of the
input and c some constant. Then for E-RAP with two scenarios we
have k = 2 and we can solve the problem in O(nc) contradicting the
NP-hardness established by Theorem 3.3.3. �

In fact Theorem 3.3.3 even rules out the existence of XP-algorithms
for E-RAP when parameterized by the size of the scenario set S un-
less P = NP.

In the remainder of this section we prove the NP-hardness of Short-
est Nice Path via a reduction from a restricted variant of the follow-
ing decision problem.

Problem 3.3.5 (PAFPP).
Path Avoiding Forbidden Pairs

Instance: 〈D, s, t,FP〉, where D = (V ,A) is a digraph, FP ⊆
[V]2 set of forbidden pairs and s, t two nodes in V .

Question: Is there a directed s-t-path P in D such that for
each pair (a,b) ∈ FP at most one of the two nodes
is covered by P?

Problem PAFPP is known to be NP-complete [GJ79, GT54]. We use
a bipartite version of this problem suited for our needs, which we call
Path Avoiding Forbidden Pairs in Bipartite Graphs (BPAFPP). An
instance of BPAFPP is a tuple 〈H, s, t,FP〉, where H = (U ∪̇W,E) is
an undirected balanced bipartite graph, and s,t as well as FP are de-
fined as in Problem 3.3.5. Additionally the set FP satisfy the following
properties

(P1) |FP| = k is even,

(P2) for each (ai,bi) ∈ FP : either ai,bi ∈ U or ai,bi ∈W,

42 robust assignments with vulnerable edges

(P3)
∣∣{(ai,bi) ∈ FP : ai,bi ∈ U

}∣∣ = ∣∣{(ai,bi) ∈ FP : ai,bi ∈W
}∣∣,

(P4) s ∈ U and t ∈W.

The hardness of BPAFPP is proven in Appendix A. We are now ready
to show the following result.

Theorem 3.3.6. Shortest Nice Path (Problem 3.3.2) is NP-hard.

Proof. We provide a Turing reduction from BPAFPP to SNPP. Let
H = (U ∪̇W,EH) be a balanced bipartite graph, s ∈ U, t ∈ W, and
let FP =

{
(ai,bi), . . . , (ak,bk)

}
be a collection of forbidden pairs,

all together comprising an instance I = 〈H, s, t,FP〉 of BPAFPP. To
obtain a corresponding SNPP instance I′ the following five steps are
performed on H and illustrated in Fig. 6.

(T1) Set L := |U ∪̇W|+ 1 (that is an odd number as H is balanced).

(T2) For every i ∈ [k], introduce new nodes sij, j ∈ [L], as well as a
new path Qi := (ai, si1, si2, . . . , siL,bi) connecting the two nodes
of the corresponding forbidden pair (ai,bi) through the new
nodes sij, j ∈ [L], and add both, the new nodes and the edges of
Qi, i ∈ [k], to H.

(T3) For every node v ∈ (U ∪̇W) \ {s, t}, introduce a new path Rv :=

(v,pv1,pv2, . . . ,pvL), and add the new nodes pvq, q ∈ [L] and the
edges of Rv to H.

(T4) Define K := {pvL : v ∈ (U ∪̇W) \ {s, t}}, and add the edge set

EK :=
{
{pv1L ,pv2L } : v1 ∈ U \ {s}, v2 ∈W \ {t}

}
to H. This yields a complete balanced bipartite subgraph HK :=

(K,EK) ⊆ H.

(T5) Set s′ = s and t′ = t.

Let H′ := (V ′,EH′) be the graph after performing steps T1 – T5 on
the input graph H. Note that every newly introduced edge in H ′ is
incident with at least one node in V ′ \ V(H). The bipartiteness of H′

holds because the parameter L that controls the length of the new
paths Qi and Rv is odd and due to the fact that, for each forbidden
pair (ai,bi), both ai and bi belong to the same node partition of H
(Property P2). By Property P3 of BPAFPP, the number of forbidden
pairs contained in each bipartition is the same implying H′ is also
balanced. Moreover, H′ contains H as a subgraph, and a bipartition
U ′ ∪̇W ′ of H ′ can be chosen such that U ⊆ U′ and W ⊆ W′, i.e.,
s′ ∈ U′ and t′ ∈ W′. Hence I′ := 〈H′, s′, t′〉 is an instance of SNPP
constructed from I in polynomial time.

Note further that the internal nodes {si1, si2, . . . , siL} of each path
Qi, i ∈ [k], introduced in Step T2 are odd in number. Thus, all the

3.3 card-e-rap with two vulnerable edges 43

s ′

u1

u2

u3

w1

w2

w3

t ′
HK = (K,EK)

Q1

Q2

Ru1

Ru2

Ru3

Rw1

Rw2

Rw3

Figure 6: Reduction from Theorem 3.3.6 sketched for the BPAFPP in-
stance 〈H, s, t,FP〉 on the graph H = (U ∪̇W,EH), where U =

{s,u1,u2,u3}, W = {w1,w2,w3, t} and FP =
{
{u1,u2}, {w2,w3}

}
.

For sake of clarity the internal nodes of the paths Qi and Rw, as
well as the edge set EH from the original graph H are omitted.

node sets of the form {si1, si2, . . . , siL} cannot be perfectly matched
among themselves in H′. The same is true for the internal nodes
{pv1,pv2, . . . ,pvL} of any path Rv introduced in Step T3. Observe also
that, for each v ∈ K, the nodes pvL and v are in different parts of the
bipartition, which is due to the fact that L is odd.

We conclude the proof by showing the following claim and using
the NP-completeness of BPAFPP.

Claim. The SNPP instance I′ contains a nice s-t-path of length ` < L
if and only if the BPAFPP instance I is feasible .

"only if" part:
Let P be a nice s-t-path of length ` < L in H′. We show that P is
feasible to I. Since P has at most L− 1 edges, it neither contains an
edge from one of the pathsQi, i ∈ [k], nor from Rv, v ∈ (U ∪̇W)\ {s, t},
as otherwise all L + 1 edges from Qi or Rv are contained in P (see
steps T2 and T3). Furthermore, since P contains no edge from any
path Rv, P is also disjoint from the subgraphHK introduced in Step T4.
It follows that P is completely contained in the subgraph H of H′, i.e.,
P is already a path in the graph H.
Next, we show that P is feasible to I, i.e., for every i ∈ [k], at least
one of the nodes ai,bi is avoided by P. For this, we fix a forbidden
pair (ai,bi). Since P is a nice s-t-path in H′, there exists a matching
M in H′ covering all nodes in H′ that are not contained in V(P). As
the internal nodes si1, si2, . . . , siL of any path Qi do not belong to P,
it follows that they are covered by M. Recap moreover that L is odd.
This, in particularly, means that either {ai, si1} ∈ M or {siL,bi} ∈ M.
Thus, at most one of the nodes from the forbidden pair (ai,bi) is
incident with P.

"if" part:
Let P be a feasible solution to the BPAFPP instance I, i.e., P is in

44 robust assignments with vulnerable edges

particular an s-t-path in H. To show that P is a nice s-t-path in H′

we provide a matching M in H′ that covers all nodes not in V(P). For
this we assume w.l.o.g. that for each forbidden pair (ai,bi) at most
the nodes ai are part of the path P and define the following index set

J := {i ∈ [k] : ai ∈ V(P)}.

The matching M is constructed as follows. Start with M := ∅, and
consider first the nodes on the paths Qi, i ∈ [k]. To cover all nodes
of Qi not belonging to V(P), a suitable set of independent edges (i.e.,
every second edge) from the path Qi is chosen. If i ∈ J, then add
the set of independent edges covering si1, . . . , siL,bi to M. Otherwise,
i.e., if i ∈ [k] \ J, then add the set of alternating edges that match
ai, si1, . . . , siL to M. Observe that M already covers either node ai
or bi, for each forbidden pair (ai,bi). By properties of BPAFPP, it
further follows that the number of nodes in U that are covered by
M and that belong to a forbidden pair is the same as the number of
nodes in W covered by M and belonging to a forbidden pair.
Second, consider all nodes in the subgraph H that do not belong to
V(P) and that are not yet covered byM. Let Ũ ∪̇ W̃ denote these nodes
where Ũ ⊆ U and W̃ ⊆W. Then, |Ũ| = |W̃| holds, which follows from
the fact that |Ũ| = n

2 − q− k = |W̃|, where

• n
2 = |U| = |W| is the number of nodes on each side of the
bipartition of H,

• q = 1
2 |V(P)|. More precisely, |V(P)∩U| = |V(P)∩W| (because P

connects s ∈ U with t ∈W, we know that |V(P)| is even),

• and k is the number of pairs in FP (recap that M covers exactly
one node of each pair by now).

To extend M to a matching in H′ also covering Ũ ∪̇ W̃, the following
edges are added to M. For each v ∈ Ũ ∪̇ W̃, choose the set of indepen-
dent edges from path Rv that cover v,pv1,pv2, . . . ,pvL.
Now observe that the only nodes in V(H′) \ V(P) still unmatched by
M are the internal nodes {pv1,pv2, . . . ,pvL} of a path Rv that is associ-
ated with a node v ∈ (U ∪̇W) \ (Ũ ∪̇ W̃ ∪ {s, t}). Such a node v is either
contained in V(P) or v is part of a forbidden pair and is covered by an
edge added to M in the first step. Most of these nodes can be covered
by adding, for each v ∈ (U ∪̇W) \ (Ũ ∪̇ W̃ ∪ {s, t}), the edges {pv1,pv2},
{pv3,pv4}, . . . , {p

v
L−2,pvL−1} from E(Rv) to M.

This still leaves all nodes pvL = tail(Rv) with a node v ∈ (U ∪̇W) \

(Ũ ∪̇ W̃ ∪ {s, t}) to be unmatched by M. Let

K′ :=
{
pvL : v ∈ (U ∪̇W) \ (Ũ ∪̇ W̃ ∪ {s, t})

}
⊆ K

be the set of all these end nodes. It remains to extendM to a matching
also covering K′. Recap that K′ is, as a subset ofU, part of the balanced

3.4 complexity of e-rap 45

bipartite subgraph HK = (K,EK) constructed in Step T4. Furthermore,
we have |K′ ∩U| = 1

2 |K
′| = |K′ ∩W| and the subgraph HK contains a

matching only covering nodes from K′. After adding one such match-
ing on K′ to M, the set M becomes a matching in H′ that covers all
nodes of H′ not contained in V(P). This shows that P is a nice s-t-path
in H′. As P is completely contained in the subgraph H, its node set
V(P) can only consists of at most |U ∪̇W| < |U ∪̇W|+ 1 = L nodes,
proving that the length ` of P is strictly less than L.
Thus the claim is proven. The statement of the theorem now follows
from NP-completeness of BPAFPP. �

3.4 complexity of e-rap

In this section we prove that Edge-Robust Assignment is as hard
as Set Cover even if the failure scenarios are determined by single
edges. This is the main complexity result of Chapter 3.

We first provide the description of a basic reduction from Set Cover

to E-RAP and then, in Theorem 3.4.3, show that it is an S-reduction.

Lemma 3.4.1. There is a basic reduction (f,g) from Set Cover to Edge-
Robust Assignment with S ⊆ E.

Proof. We prove the four properties in Definition 2.2.3 step by step.
Let I := 〈[k], S〉 be an arbitrary feasible instance of Set Cover and
` := |S|.

(B1): We start the construction of the E-RAP instance I ′ := f(I)

= 〈G,S, c〉 with the definition of the graph G. The graph is obtained
by performing four transformation steps described next. An example
of an E-RAP instance obtained this way is illustrated in Fig. 7.

(T1) For each i ∈ [k] we introduce a new node ui and we define
U[k] := {ui : i ∈ [k]}. For each Sj ∈ S we introduce a node wSj
and set WS := {wSj : Sj ∈ S}. Furthermore, the edge set ESC :={
{ui,wSj} : s ∈ Sj, j ∈ [`]

}
is added to G. These edges and nodes

encode the structure of the Set Cover instance I.

(T2) For each i ∈ [k], a copy wi of the node ui is introduced and we
define W[k] := {wi : i ∈ [k]}. Furthermore, the edge set E[k] :={
{ui,wi} : i ∈ [k]

}
is added to G. These edges are declared as

vulnerable to ensure that every robust assignment in the graph
induces a feasible cover for I.

(T3) For each S ∈ S, three copies uS, ūS and w̄S of the node wS are
introduced. We define the sets US, ŪS and W̄S correspondingly.
Furthermore the edge set ES :=

{
{uS,wS} : S ∈ S

}
is introduced.

We use the edges in ES to indicate the SCP solution within the
robust assignment. Finally two matchings on the node sets WS

46 robust assignments with vulnerable edges

and US as well as ŪS and W̄S are added to G. We denote all
of these 2` edges by EC. Edges in EC are in some sense comple-
mentary, they do not represent any structure but establish the
feasibility of the E-RAP instance.

(T4) For each edge {ui,wSj} in ESC, i ∈ [k], j ∈ [`], we introduce a
twin edge {ūSj ,wi}. These edges comprise the edge set ĒSC.

Note that the node set ŪS and its incident edges are merely needed
to ensure that the resulting graph is balanced. Applying the four steps
above yields a bipartite graph G = (U ∪̇W,E), where U := U[k] ∪
US ∪ ŪS, W := W[k] ∪WS ∪ W̄S and E := E[k] ∪ ESC ∪ EC ∪ ES ∪ ĒSC.
We finish the construction of I′ by defining the scenario set S := E[k]
and the weights c ∈ RE+, where

ce :=

1 if e ∈ ES,

0 if e ∈ E \ ES.
(C)

Observe that the presented construction leads to a well-defined
function f : ISCP → IE-RAP.

wk

w2

w1

uk

u2

u1

wS`

wS2

wS1

uS`

uS2

uS1

w̄S`

w̄S2

w̄S1

ūS`

ūS2

ūS1

wk

w2

w1

ĒSC

W[k] U[k] WS US W̄S ŪS W[k]

ESCE[k] = S EC ES EC

ce = 1

ce = 1

ce = 1

Figure 7: An E-RAP instance 〈G,S, c〉 constructed by the basic reduction
(f,g) from an SCP instance 〈[k], {S1, . . . ,S`}〉 (see Lemma 3.4.1). For
the sake of clarity the node set W[k] appears twice.

(B2): Let C ⊆ S be a cover for I. We claim that

XC := (E \ ES)∪
{
{uS, w̄S} : S ∈ C

}
is a robust assignment for I ′. Recap that XC ⊆ E is feasible to I′

if and only if XC \ {fi} contains a perfect matching of G, for every
fi = {wi,ui} ∈ S = E[k]. Let fi ∈ S. Observe that M := E[k] ∪ EC
is a perfect matching in G with M ⊆ XC. The matching M con-
tains the vulnerable edge fi but it can be adjusted appropriately
as we see next. As C is a cover for I, there is a set Sj ∈ C such

3.4 complexity of e-rap 47

that i ∈ Sj implying {uSj , w̄Sj} ∈ XC. Now consider the cycle Ci =

(wi,ui,wSj ,uSj , w̄Sj , ūSj ,wi) containing the vulnerable edge fi. Note
that E(Ci) ⊆ XC and Ci is an M-alternating cycle. Hence M4Ci is a
perfect matching in G[XC \ {fi}].

(B3): Let X ′ ∈ sol(I ′) be an arbitrary robust assignment. We
claim that

CX ′ := {S ∈ S : {uS, w̄S} ∈ X ′}

is a cover for I. Let i ∈ [k]. We have to show that i is covered by some
set S ∈ CX ′ . Consider scenario fi ∈ S. As X ′ is a robust assignment,
there is a perfect matching M ⊆ X ′ in G with fi /∈ M. Since fi 6∈ M,
node ui must be matched to a node in WS via an edge in ESC, i.e.,
{ui, vS} ∈M, for some S ∈ S. By definition of ESC we know that i ∈ S.
Because the node wS is already matched, its neighbor uS is saturated
using an edge in ES, implying S ∈ CX ′ . Hence CX ′ is a cover and we
define g(I,X ′) := CX ′ .

(B4): By construction of G, we have that |V(G)| = 2k + 4` and
|E(G)| = k + 3` + 2

∑`
j=1 |Sj| 6 k + 3` + 2k`, i.e., the input size of

G is polynomially bounded by the size of I. Because S = E[k] and
c ∈ {0, 1}E, the function f can be computed in time polynomial in
size(I). Since the function g has simply to go through every edge in
X ′, g is polynomial-time computable as well.

�

Lemma 3.4.1 can be adjusted to obtain a reduction to uniform E-
RAP in the following way. Recap that the matching E[k] ∪ EC is unaf-
fected by failure of edges in ESC ∪ ES ∪ ĒSC. Thus, the main obstacle
is that if an edge in EC fails, then an edge in ES has to be included
into the robust assignment. But this fact destroys any approximation
preserving properties of the reduction because then feasible assign-
ments always correspond to trivial covers. We can eliminate this issue
by performing an additional transformation step on the graph G as
constructed by the reduction from Lemma 3.4.1.

(T5) Each edge e ∈ EC is replaced by a cycle Ce of length six. We
denote the new edges

⋃
e∈EC E(Ce) by E ′C (see Fig. 8).

This procedure yields a new, slightly larger, bipartite graph that we
denote by G ′ := (U ′ ∪̇W ′,E ′). The graph G as obtained via function
f share most edges with G ′, i.e., E ′ = (E(G) \ EC)∪ E ′C.

wS uS 7→ wS uS

u ′S w ′S

u ′′S w ′′S

Figure 8: Replacing an edge {uS,wS} ∈ EC by a cycle of length six.

48 robust assignments with vulnerable edges

Now if one of the edges in Ce fails and is hence removed from
G ′, its absence can be compensated within the cycle Ce. Hereby we
maintain the property that the edges in ES indicate the SCP solution
encoded by the robust assignment. On the other hand a matching
that uses e in G can use three independent edges from Ce instead,
implying the feasibility of the robust assignment corresponding to XC

as defined in proof of Lemma 3.4.1. We omit further, rather tedious,
details and summarize the result in the next lemma.

Lemma 3.4.2. There is a basic reduction (f,g) from Set Cover to Edge-
Robust Assignment with S = E.

We will now show that (f,g) is an S-reduction, proving the an-
nounced hardness result.

Theorem 3.4.3. For every ε > 0, it is NP-hard to approximate Edge-
Robust Assignment with S = E to within (1− ε) lnn, where n is the
number of nodes in the underlying bipartite graph.

Proof. We prove the claim by showing that the basic reduction (f,g)
defined in Lemma 3.4.2 satisfies the two properties of an S-reduction
(see Definition 2.2.5). Let I be a feasible instance of Set Cover and
I ′ := f(I) = 〈G,S, c〉 the corresponding E-RAP instance with S = E.

(S1): Let X ′ be a feasible solution to I ′ and CX ′ := g(I,X ′) = {S ∈
S : {uS, w̄S} ∈ X ′}. Recap the definition of the cost function in (C). It
follows immediately that c(X ′) = c(X ′ ∩ ES) = |CX ′ |.

(S2): Observe that by construction of f and g, an optimal E-RAP
solution OPT(I ′) is mapped to an optimal cover OPT(I) implying that
both optimal objective values coincide.

Hence, E-RAP inherits all inapproximability properties of Set Cover

stated in Theorem 2.4.4. �

Recap that S-reductions can be also used to deduce parameterized
hardness with respect to the standard parameterization as well as
APX-hardness. Hence using the results for (2,3)-SCP stated in Theo-
rem 2.4.7 and parameterized hardness for general SCP stated in The-
orem 2.4.8 we immediately obtain the following consequences.

Corollary 3.4.4. E-RAP is APX-hard and NP-hard to approximate to within
100
99 even if the maximum degree of the underlying graph is at most five.

Furthermore, the standard parameterization of E-RAP in general graphs is
W[2]-hard.

3.5 O(logn)-approximation for e-rap 49

3.5 O(logn)-approximation for e-rap

In this section we present a randomized approximation algorithm
for E-RAP with uncertainty set S ⊆ E, which is the main algorith-
mic result of this thesis. The algorithm uses a randomized rounding
technique based on a decomposition of a fractional matching. The
expected approximation ratio is O(logn), where n is the number of
nodes in the underlying graph. This means, the algorithm matches
the lower approximation bound established in Theorem 3.4.3 up to
multiplicative constants.

All instances of E-RAP in this section are feasible. Consider an in-
stance I = 〈G = (U ∪̇W,E),S, c〉. We first discuss the case where I

is a uniform instance, i.e., S = E and later extend the algorithm to
handle non-uniform instances. We denote the number of nodes and
edges in G by n and m, respectively. The basic idea of the algorithm
is the following. We start with a perfect matching in G and include
it to an intermediate solution X. Then in each iteration we choose a
scenario f ∈ X∩S, such that X \ {f} does not contain a perfect match-
ing for G and add a perfect matching M in G− {f} to X. Every edge
f ∈ S is considered at most once and the selected edges X induce a
matching-covered graph implying that X is indeed a feasible solution
to I (see Proposition 3.1.3). Of course, in order to obtain any bounds
on the cost of X, we have to be careful while selecting the matchings
for inclusion into the solution. In addition, the final algorithm will
include only a part of a perfect matching.

In order to succeed with the selection process, we use an optimal
fractional solution to the linear relaxation of the natural ILP formula-
tion for E-RAP. We describe this ILP model next. For each vulnerable
edge f ∈ S we introduce a vector y−f ∈ {0, 1}E representing a perfect
matching in the corresponding scenario graph G− {f}. Additionally
a variable x ∈ {0, 1}E encodes a feasible solution to E-RAP. Using
these m2 +m variables, E-RAP can be modeled as an integer linear
program as follows

min c>x

s.t. y−f ∈ PM(G) for each f ∈ S,

y−ff = 0 for each f ∈ S,

x > y−f for each f ∈ S,

y−f ∈ {0, 1}E for each f ∈ S,

x ∈ {0, 1}E,

(E-RAP-ILP)

where PM(G) is the perfect matching polytope associated with G,
i.e., PM(G) = conv{χM : M is a perfect matching in G}. Recap that
PM(G) can be described by the node-edge incidence matrix of G,
hence the constraints on y−f are described by a TU matrix and there-
fore we can optimize over PM(G) efficiently via the ellipsoid method.

50 robust assignments with vulnerable edges

But due to the coupling constraints x > y−f the constraint matrix of
(E-RAP-ILP) loses this useful property. It is straightforward to verify
that solutions to (E-RAP-ILP) coincide with feasible solutions to I and
vice versa. The LP-relaxation (LP) results from relaxing all integrality
constraints in (E-RAP-ILP).

We are now ready to outline the algorithm which is formalized
as Algorithm 3. The algorithm begins by computing a (fractional)
solution (x,y) to (LP), where y is the concatenation of the vectors
y−f ∈ {0, 1}E, f ∈ S. Then an empty edge set X is defined, which
is augmented in each iteration until X is a feasible solution to I.
In Lemma 3.5.1 we prove that this is exactly the case when there
are no isolated edges left in the induced subgraph G[X] and G[X] is
matching-covered.

We now describe the augmentation process in more detail. In each
iteration a vulnerable edge f is detected in Step 4 such that X \ {f}

contains no perfect matching. Then the algorithm randomly selects a
matching in G− {f} with sufficiently small cost using the fractional
optimal solution (x,y). As a component of y, the vector y−f is con-
tained in PM(G− {f}), hence y−f can be represented as a convex com-
bination of the vertices of the latter polytope. Recap that since G is
bipartite the matching polytope PM(G − {f}) is integral, which im-
plies that its vertices are incidence vectors of perfect matchings. This
means there exists a convex combination of y−f of the following form

y−f =
∑
i∈[k]

λ−fi χ
M−f
i ,

whereM−f
1 , . . . ,M−f

k are perfect matchings inG− {f} and λ−f1 , . . . , λ−fk
positive scalars with

∑
i∈[k] λ

−f
i = 1. By Caratheodory’s theorem, we

can bound k, the number of vectors in the convex combination, by
m + 1. Furthermore given y−f, such a decomposition with rational
scalars λ−fi can be computed in polynomial time using linear pro-
gramming techniques [GLS93, Thm. 6.5.11]. The algorithm computes
a convex combination of the latter type in Step 5.

The scalars λ−fi induce a probability distribution on the set of match-
ings M−f := {M−f

i : i ∈ [k]} and the algorithm selects a matching M̄
from M−1 with probability λ−fi in Step 6. Subsequently the algorithm
determines the subset S ⊆ M̄ of edges connecting different compo-
nents in G[X] (see Fig. 9 for an illustration, note that the edge {d, 2} is
not included into the solution). After augmenting X with the edges
in S, the algorithm proceeds to the next iteration. Note that both end
nodes of the edge f chosen at the beginning of the iteration are cov-
ered by the edge set S, because S ⊆ M̄ and M̄ is a perfect matching
in G− {f}.

Before proving the correctness of the algorithm in Lemma 3.5.1, we
want to remark why we do not add the entire matching M̄ selected
in Step 6 to the solution in each iteration. The latter approach could

3.5 O(logn)-approximation for e-rap 51

Algorithm 3: Randomized O(logn)-approximation for E-RAP
Input: A feasible E-RAP instance I = 〈G,S = E(G), c〉.
Output: A robust assignment in G.

1 (x,y)← optimal solution to the relaxation (LP)
2 X← ∅
3 while X is infeasible do
4 Select f ∈ S such that X \ {f} contains no perfect matching
5 Compute a convex combination

∑k
i=1 λ

−f
i χ

M−f
i of y−f

6 Select M̄ ∈ {M−f
i : i ∈ [k]} with P

[
M̄ =M−f

i

]
= λ−fi ,

i ∈ [k]

7 Detect edges S ⊆ M̄ connecting distinct components in
G[X]

8 X← X∪ S
9 end

10 return X

lead to a bad performance on particular instances. In case the graph
G has a node v with high degree, adding a matching for each f ∈ δ(v)
could lead to a solution with value Ω(n) times the optimal cost.

We now prove that Algorithm 3 computes a feasible solution after a
polynomial number of steps using structural results from the theory
of matching-covered graphs.

Lemma 3.5.1. Algorithm 3 returns a feasible solution X to a uniform E-
RAP instance I in polynomial time. Moreover, for every set of edges X̄ se-
lected by the end of any iteration of the algorithm, the induced subgraph
G[X̄] is matching-covered.

Proof. Let I be a uniform instance defined on the bipartite graph G =

(U ∪̇W,E), X ⊆ E an edge set returned by Algorithm 3 and Xi ⊆ E the
edges selected by the algorithm in the first i− 1 iterations. First, we
show the second property, i.e., that the subgraph G[Xi] is matching-
covered. Then the feasibility of X follows by Proposition 3.1.3.

We prove the second property by induction on the number of itera-
tions. Let S1 be the set of edges selected in Step 7 in the first iteration.
Since the algorithm starts with an empty set of edges X, every node
in G is a component in G[X]. Thus, the edge set S1 is the entire match-
ing M̄ chosen randomly in Step 6 in the first iteration and G[S1] is
matching-covered by definition. Thus, the claim holds for the first
iteration. Since the algorithm never deletes edges that have been al-
ready chosen, we have S1 ⊆ Xi, for each iteration i. We denote S1 by
M for the sake of clarity.

Now consider iteration i for a fixed i > 1. Let Si ⊆ M̄ be the set
of edges selected in Step 7 in iteration i and Gi := G[Xi ∪ Si] the
graph induced by the edges Xi ∪ Si selected by the end of iteration
i. We have to show that Gi is matching-covered. By the induction

52 robust assignments with vulnerable edges

hypothesis the graph Gi−1 := G[Xi] is matching-covered. Hence we
only have to show that each edge in Si is contained in some perfect
matching in Gi.

Fix e ∈ Si. We will construct a perfect matching containing e. Let
C be a cycle in Gi containing e and minimizing |E(C) ∩ M̄|. Such a
cycle exists because M and M̄ are both perfect matchings in G. In
Fig. 9, for e = {a, 3}, the cycle C is (a, 1,b, 2, c, 3). Let H1, . . . ,H` be
the components in Gi−1 that are connected by edges in E(C) ∩ Si.
Because the edges in Si come from a perfect matching M̄, each Hj
shares an even number of nodes with Si. Now assume there is an
Hj, j ∈ [`], such that |V(Si)∩ V(Hj)| > 4. By the induction hypothesis
we know that Hj is matching-covered and hence 2-node-connected.
Consequently we can take a shortcut within Hj, thus decreasing the
size of C and contradicting the minimality of C. This means, for all
j ∈ [`] we have |V(Si)∩V(Hj)| = 2. Let uj,wj be the two unique nodes
in V(Si)∩ V(Hj), for a fixed j ∈ [`]. If Hj has only two nodes, namely
uj and wj, then we define Nj := ∅. Observe that in this case uj and
wj are incident with some edges in Si ∩ E(C). Otherwise let Nj be a
perfect matching in Hj − {uj,wj}. Such a matching exists because Hj
is matching-covered by assumption (see Theorem 2.3.4). Then L :=

(E(C) ∩ Si) ∪N1 ∪ · · · ∪Nj is a matching in Gi covering all nodes in
the components H1, . . . ,H`. In Fig. 9, for e = {a, 3}, the matching L
is
{
{a, 3}, {b, 1}, {c, 2}, {d, 4}

}
. The matching L is not perfect, the nodes

not matched by L are those contained in components of Gi−1 that
are disjoint to the cycle C. Let V ′ := V(G) \ V(L). Nodes in V ′ can
be matched using edges in M. Hence L ∪ (M ∩ E(V ′)) is a perfect
matching in Gi.

a

b

c

d

e

1

2

3

4

5

a

b

c

d

e

1

2

3

4

5

f a

b

c

d

e

1

2

3

4

5

Figure 9: Transition from iteration i− 1 to iteration i in Algorithm 3. From
left to right: edges selected in the first i − 1 iterations and the
matching M selected in the first iteration (blue); a vulnerable edge
f and the matching M̄ (gray) selected in iteration i; edges con-
tained in X by the end of iteration i.

Because G[Xi] is matching-covered, every edge f ∈ S selected at the
beginning of each iteration is isolated in G[Xi]. By the end of the same
iteration f is part of a matching-covered component of size at least
four and can not chosen again. Hence the algorithm terminates after

3.5 O(logn)-approximation for e-rap 53

at most |M| =
|V(G)|
2 iterations. Because each step in the algorithm

can be performed in time polynomial in size(I), the running time of
the algorithm is polynomially bounded by size(I) as well. �

We still have to analyze the cost of the computed solution. This is
carried out with the help of a charging procedure assigning the cost
of the edges selected in each iteration to some nodes in the graph.

Lemma 3.5.2. The expected approximation guarantee of Algorithm 3 is
O(logn), where n is the number of nodes in the underlying bipartite graph.

Proof. Let I = 〈G = (U ∪̇W,E),S = E, c〉 be an instance of E-RAP
with V := U∪W. Let X ⊆ E be the solution returned by Algorithm 3,
(x,y) an optimal fractional solution to the relaxation (LP) computed
in Step 1 and OPT an optimal solution to I. For a subset E ′ ⊆ E of
edges, we denote the contribution of E ′ to the optimal cost of the
relaxation (LP) by cLP(E

′) :=
∑
e∈E ′ cexe.

To obtain the desired bound on the expected approximation guar-
antee, a scheme charging every edge in X to one of its end points is de-
veloped. We then show that the expected cost charged to a node v ∈ V
is bounded by O(logn) times the fractional cost cLP(δ(v)). Hence we
have

E [c(X)] 6 O(logn)
∑
v∈V

cLP(δ(v)) 6 O(logn)cLP(E), (5)

where the second inequality holds due to linearity of expectation and
the fact cLP(E) = 1

2

∑
v∈V cLP(δ(v)). Recap that because (LP) is a re-

laxation of (E-RAP-ILP) we have c(OPT) > c>x = cLP(E). Combined
with (5) this proves the claim E [c(X)] 6 O(logn)c(OPT).

Next, we describe how the cost of the selected edges is charged to
the nodes of the graph. For each node v in G, this procedure formally
defines a collection of edges Xv ⊆ X such that

⋃
v∈V Xv = X holds.

We first explain the construction of the edge sets Xv, v ∈ V , and then
prove the required bound on E [c(Xv)].

The algorithm starts with Xv = ∅ for each v ∈ V . Assume we are
in iteration i of the algorithm. Let X̄ be the set of edges selected by
the algorithm in the first i− 1 iterations. Let S ⊆ E \ X̄ be the set of
edges chosen in Step 7 of the current iteration to augment X. At this
stage, the sets Xv might already contain some edges that were added
in preceding iterations. Now fix an edge e = {u,w} ∈ S. Recap that
in order to be included into S by the algorithm, the edges in S have
to connect different connected components in the subgraph G[X̄] =
(U ∪̇W, X̄). Let Cu and Cw be the components with u ∈ Cu and
w ∈ Cw. We assume without loss of generality that |V(Cu)| 6 |V(Cw)|

holds. Then, the edge e is included in Xu. In other words, every edge
added by the algorithm is charged to the end node contained in the
smaller connected component, with ties broken arbitrarily. Evidently,

54 robust assignments with vulnerable edges

all edges in X are charged to some node in the course of the algorithm,
such that

⋃
v∈V Xv = X holds when the algorithm terminates.

It remains to analyze E [c(Xv)] for a node v ∈ V . The bound on
E [c(X)] then follows from linearity of expectation. To obtain the de-
sired logarithmic bound it suffices to prove the following two prop-
erties. First, for an edge e charged to v, its expected cost is at most
cLP(δ(v)). Second, edges can be charged to the same node v at most
log |V | times, i.e., |Xv| 6 log |V | for every v ∈ V .

Let e be an edge selected at random in some iteration by the al-
gorithm and charged to the node v, i.e., e ∈ Xv. The contribution of
the edge e to the cost c(Xv) defines a random variable Zev. We show
E [Zev] 6 cLP(δ(v)) next. Recap that any edge e selected by the algo-
rithm was part of a perfect matching M̄ chosen in Step 6 at random
from a convex combination y−f =

∑
i∈[k] λ

−f
i χ

M−f
i of a fractional

perfect matching y−f. The scalars in the convex combinations define
a distribution over the integral matchings M−f

i and also induce a
distribution over the edge set of the graph G. Hence, an edge e is
contained in the perfect matching M̄ with probability

P
[
e ∈ M̄

]
=

∑
i∈[k] :e∈M−f

i

λ−fi = y−fe .

Then, for any edge e the expected value of Zev is bounded as follows

E [Zev] =
∑

e ′∈δ(v)

ce ′ ·P
[
e ′ ∈ M̄

]
=
∑

e ′∈δ(v)

ce ′y
−f
e ′

6
∑

e ′∈δ(v)

ce ′xe ′ = cLP(δ(v)),

where the first inequality holds because y−fe 6 xe, for all e ∈ E by the
definition of (E-RAP-ILP). This shows the first property.

To show the logarithmic bound on the number of times an edge
is charged to a node v in the course of the algorithm, consider any
iteration in which some edge was charged to the node v. Let Cv be
the component containing v at the beginning of the iteration. Since
an edge is only charged to its end node with the smaller component,
and because selected edges always merge components, the size of the
component containing v by the end of the iteration is at least 2|V(Cv)|.
Evidently, this duplication can happen at most log |V | = logn times.
Hence we have

E [c(Xv)] 6 logn · cLP(δ(v)).

Then the identity 2cLP(E) =
∑
v∈V cLP(δ(v)) and linearity of expecta-

tion imply

E [c(X)] 6 O(logn)
∑
v∈V

cLP(δ(v)) 6 O(logn)cLP(E),

which in combination with c(OPT) > cLP(E) concludes the proof. �

3.5 O(logn)-approximation for e-rap 55

We can now prove the main result of this section, which states
that E-RAP with arbitrary single edge failures admits an O(logn)-
approximation.

Theorem 3.5.3. Algorithm 3 is a randomized O(logn)-approximation for
Edge-Robust Assignment with S ⊆ E.

Proof. In the uniform case the claim follows from Lemma 3.5.1 and
3.5.2. Thus, it remains to show how to treat non-uniform instances
S (E. We provide a reduction to the uniform setting.

Given a non-uniform instance I = 〈G = (U ∪̇W,E),S, c〉, we first
double each non-vulnerable edge e ∈ E \S by introducing a par-
allel copy ē. These edges form the set Ē and we have E ′ := E ∪ Ē.
This procedure specifies a graph G ′ := (U ∪̇W,E ′). The edge costs
c are carried over, i.e., the cost vector c ′ ∈ RE

′
+ satisfies c ′e = ce, for

each e ∈ E and c ′ē = ce, for each ē ∈ Ē. Defining S ′ := E ′ com-
pletes the construction of the new uniform instance I ′ := 〈G ′,S ′, c ′〉.
Now let ALG ′ be a solution to I ′ returned by the algorithm. Then
ALG := ALG ′ ∩ E is a solution to I and we have c(ALG) 6 c(ALG ′).
Conversely for any solution X to the non-uniform instance I, the edge
set X ′ := X∪ {ē : e ∈ X \S} is a solution to I ′ with cost c ′(X ′) 6 2c(X).
Hence we have c(ALG) = O(logn)c(OPT), where OPT is an optimal
solution to I. �

In fact the constant in the O(logn) term is at most 4. In the proof of
Lemma 3.5.2, we lose a factor of 2 in (5). For non-uniform instances
we obtain an additional factor of 2 by doubling of edges in the proof
of Theorem 3.5.3.

We conclude the section by arguing that Algorithm 3 can be mod-
ified to return a solution to a given E-RAP instance I with similar
approximation quality with high probability, i.e., with probability
1 − (size(I))−K for some constant K > 0. This can be achieved us-
ing the standard repetition technique (see, e.g., [WS11, Sec. 13.2]). Let
r be the approximation ratio function associated with Algorithm 3.
Due to Theorem 3.5.3 we know that for all instances I

E [r(I)] 6 4 logn.

Then for any ε > 0, Markov’s inequality yields

P
[
r(I) > (1+ ε)4 logn

]
6

1

1+ ε
.

The new algorithm for E-RAP is denoted by A(ε, t) and defined as
follows: We execute Algorithm 3 t times on an instance I and return
Xt, the solution of minimum cost among the t computed solutions.
The solution Xt satisfies

P

[
c(Xt)

c(OPT)
> (1+ ε)4 logn

]
6

(
1

1+ ε

)t
.

56 robust assignments with vulnerable edges

This means the algorithm A(ε, t) has an approximation guarantee
of (1 + ε)4 logn with probability 1 − (1 + ε)−t. Then, for any fixed
ε > 0 and t := K log1+ε(size(I)) the algorithm A(ε, t) is an O(logn)-
approximation with high probability. The running time of A(ε, t) is
O(log size(I)) times the running time of Algorithm 3.

3.6 complexity of card-e-rap

In this section we prove that Min-Card Edge-Robust Assignment

is APX-hard. This is shown via an extension of the reduction from
Section 3.4. The previous reduction is turned into an L-reduction in
order to exploit the APX-hardness results for Node Cover in cubic
graphs stated in Theorem 2.4.7.

Lemma 3.6.1. There is a basic reduction (f̄, ḡ) from Set Cover to Min-
Card Edge-Robust Assignment with S = E.

Proof. We show the four properties of a basic reduction (see Defini-
tion 2.2.3) step by step. Let I := 〈[k], S〉 be an arbitrary feasible in-
stance of Set Cover and ` := |S|. We adjust the basic reduction (f,g)
from Lemma 3.4.2 to derive a reduction (f̄, ḡ) tailored for the new
context.

(B1): We start the construction of the Card-E-RAP instance I ′ :=

f̄(I) = 〈Ḡ, S̄〉 with the graph Ḡ. First we use f to obtain the graph
G ′ = (U ′ ∪̇W ′,E ′).

In order to be able to control the cost of a solution later on, we
need to ensure that all edges in E[k] are contained in any robust
assignment for I ′. Subsequently, we apply the following additional
transformation step.

(T6) We subdivide edges in E[k] into three edges, i.e., an edge e =

{wi,ui} is replaced by a path Pe := (wi,u ′i,w
′
i,ui). See Fig. 10

for an example. The new edges
⋃
e∈E[k]

E(Pe) form the set Ē[k].

wi uiu ′i w ′i7→wi ui

Figure 10: Replacing an edge {wi,ui} ∈ E[k] by a path of length three.

Applying Step T6 to G ′ yields a bipartite graph Ḡ = (Ū ∪̇ W̄, Ē),
where Ē := Ē[k] ∪ ESC ∪ E ′C ∪ ES ∪ ĒSC and the node set Ū ∪̇ W̄ is de-
fined accordingly. We finish the construction of I′ by specifying the
scenario set S̄ := Ē.

Observe that the presented construction leads to a well-defined
function f̄ : ISCP → ICard-E-RAP.

3.6 complexity of card-e-rap 57

(B2): Let C be a feasible cover for I. We claim that

XC := (Ē \ ES)∪
{
{uS, w̄S} : S ∈ C

}
is feasible for I ′. We follow the proof of 3.4.1 and whenever a perfect
matching contains an edge in E[k] or EC we replace it by two or three
independent edges from Ē[k] or E ′C.

(B3): Let X ′ ∈ sol(I ′) be a robust assignment. Here no changes
are necessary. The set

CX ′ := {S ∈ S : {uS, w̄S} ∈ X ′}

is a cover for I. We can repeat the arguments from the proof of
Lemma 3.4.1 for the scenario determined by the edge {w ′i,ui} instead
of {wi,ui} (see Fig. 10). Hence ḡ(I,X ′) := CX ′ .

(B4): The number of edges in the graph Ḡ compared to |E(G ′)|

increased by 2k and the function ḡ is not changed at all. Hence f̄, ḡ
are polynomial-time computable functions.

�

In fact, the basic reduction (f̄, ḡ) is an L-reduction, a fact we use to
show the APX-hardness of Card-E-RAP.

Theorem 3.6.2. Card-E-RAP with S = E is APX-complete and NP-hard
to approximate to within 3961

3960 ≈ 1.0003, even in graphs with maximum
degree five.

Proof. We show the claim via a reduction from Node Cover in cubic
graphs. Because 3-NCP is APX-complete (see Theorem 2.4.7) it suf-
fices to provide an L-reduction to prove APX-hardness of Card-E-RAP.
Recap that by Observation 2.4.6, 3-NCP can be restated equivalently
as (2,3)-SCP. Next, we show that the basic reduction (f̄, ḡ) defined in
Lemma 3.6.1 is an L-reduction when restricted to (2,3)-SCP.

Let I = 〈[k], {S1, . . . ,S`}〉 be a feasible instance of (2,3)-SCP and
I ′ := f̄(I) = 〈Ḡ, S̄〉 the corresponding Card-E-RAP instance. Note
that the maximum degree in Ḡ is bounded by five because each S ∈ S

has size three (the degree is five after applying Step T5 to the graph
constructed in Lemma 3.4.1 and illustrated in Fig. 7). To simplify the
analysis we introduce the notion of efficient solutions. A solution X
to I is called efficient if it satisfies

|X∩ ESC| = |X∩ ĒSC| = k. (eff)

In other words an efficient Card-E-RAP solution X contains only the
edges in ESC ∪ ĒSC that are absolutely necessary for the feasibility of
X. Note that any robust assignment X can be modified in polynomial
time in order to satisfy (eff) and without breaking feasibility. First, for

58 robust assignments with vulnerable edges

each node ui, i ∈ [k], we fix a set Sj ∈ {S ∈ S : {uS, w̄S} ∈ X} with
i ∈ Sj. Then,

Xeff :=
(
X \ (ESC ∪ ĒSC)

)
∪
{
{ui,wSi}, {ūSi ,wi} : i ∈ [k]

}
is feasible to I ′ and complies with (eff). Evidently, |Xeff| 6 |X|.

Let X ′eff be a feasible assignment for I ′ complying with (eff) and
CX ′eff = ḡ(I,X ′eff) the associated cover. Because edges in Ē[k] and E ′C
are incident with nodes of degree two and every edge can fail, these
edge sets are contained entirely in any feasible assignment. Addition-
ally we have 2k = 3` because I is an (2,3)-SCP instance. Hence we
have

|X ′eff| = 5k+ 12`+ |CX ′eff | = 13k+ |CX ′eff |. (6)

We can prove the two properties of an L-reduction now.

(L1): The function ḡ maps an optimal assignment OPT(I ′) to an
optimal cover OPT(I). Because we have |Sj| = 3, any cover of [k] is of
size at least k3 , i.e., k 6 3val∗(I). Since any optimal solution to I ′ is
efficient we can use (6) obtaining

val∗(I ′) = 13k+ val∗(I) 6 40val∗(I).

This means that the first parameter is α = 40.

(L2): Let X ′ be an arbitrary robust assignment for I ′. We trans-
form X ′ into an efficient solution X ′eff as described above. Recap
|X ′eff| 6 |X ′|. Furthermore, because the edge set ES is not affected by
the transformation we have CX ′ = CX ′eff (see Step B3 in Lemma 3.6.1).
For both absolute errors then holds:

|CX ′ |− val∗(I) = |CX ′eff |− val∗(I)

= |X ′eff|− 13k− (val∗(I ′) − 13k)

= |X ′eff|− val∗(I ′) 6 |X ′|− val∗(I ′).

Hence the second parameter of the L-reduction is β = 1.

Consequently, the reduction (f̄, ḡ) is an L-reduction with α = 40

and β = 1. Let r ′ be the approximation ratio for some E-RAP ap-
proximation and r the ratio of the approximation for 3-NCP induced
by (f̄, ḡ). We know that r 6 (1+αβ(r ′ − 1)). Plugging the best known
lower bound for 3-NCP of 10099 into the latter inequality yields a lower
bound on the approximation ratio for Card-E-RAP of 39613960 . Conclu-
sively, the membership in APX follows by Theorem 3.7.2, which we
show in the next section. �

3.7 constant-factor approximation for card-e-rap 59

3.7 constant-factor approximation for card-e-rap

In this section we present a constant-factor approximation for Card-
E-RAP with S ⊆ E(G). The algorithm uses properties of matching-
covered graphs and derives an approximate solution from an ear de-
composition of the given graph. Note that ear-decomposition based
approaches were successfully exploited to derive approximation algo-
rithms for other hard combinatorial problems (e.g., 2-edge-connected
spanning subgraph [CSS01] and TSP [SV14]).

Now consider an instance I = 〈G,S〉 of Card-E-RAP with scenario
set S ⊆ E(G). We assume that I is feasible which can be verified
efficiently (see Section 3.2). The algorithm is outlined next and for-
malized as Algorithm 4. In the first step, the graph is preprocessed
and all edges in G that are not contained in some matching are re-
moved. These are the so-called dispensable edges and by definition
these edges cannot be part of any feasible solution anyway. Dispens-
able edges can be identified efficiently using DFS by Observation 2.3.8.
If there are dispensable edges in G, then the resulting graph G ′ is dis-
connected (see p. 18). Hence in Step 3 the connected components Hj,
j ∈ [`], of G ′ are determined using DFS and we treat each compo-
nent separately. Then in Step 5 we compute an ear decomposition of
the current component H using Algorithm 1. Recap that such a de-
composition exists by Theorem 2.3.6 because G ′ is matching-covered.
Further, recall from Definition 2.3.5 that an ear decomposition con-
sists of odd paths P0, . . . ,Pq such that H = P0 + · · · + Pq. For our
analysis the starting edge P0 can be chosen arbitrarily. Note also that
even after fixing the first edge an ear decomposition is not unique in
general. Ears that consist of a single edge are called trivial, except for
P0. These ears do not cover any new nodes and hence are not crucial
for the feasibility of the emerging solution. Thus, we ignore the trivial
ears and include the edges from the remaining ears to the intermedi-
ate solution in Step 6 of the loop. Afterwards, the algorithm proceeds
with the next component of G ′. An illustration of a solution obtained
this way is provided in Fig. 11.

Algorithm 4: An O(1)-approximation for Card-E-RAP
Input: A Card-E-RAP instance 〈G,S〉 with S ⊆ E(G).
Output: A feasible solution X for 〈G,S〉.

1 Obtain the subgraph G ′ by removing dispensable ears from G

2 X← ∅
3 Determine the connected components H1, . . . ,H` of G ′

4 foreach j ∈ [`] do
5 Compute an ear decomposition (P0, . . . ,Pq) of Hj
6 X← X∪ E(P0)∪ {E(Pi) : |E(Pi)| > 3, i ∈ [q]}

7 end
8 return X

60 robust assignments with vulnerable edges

Note that this algorithm can be seen as a primal one. Essentially it
starts with E(G ′) which is a feasible solution because G ′ is matching-
covered and then arrives at a solution X ⊆ E(G ′) with smaller size by
deleting trivial ears.

The correctness, the bound on the size of the computed solution
as well as running time of Algorithm 4 are proven in Lemma 3.7.1.
By the end of this section we explain how to extend the algorithm
in order to handle non-balanced graphs. The discussion about the
approximation guarantee is deferred to Theorem 3.7.2.

Lemma 3.7.1. Let I = 〈G = (U ∪̇W,E),S〉 be a feasible Card-E-RAP
instance with S ⊆ E. Algorithm 4 returns a feasible solution X ⊆ E for I in
polynomial time and |X| is bounded by 3|U|.

Proof. Each step of the algorithm can be performed in polynomial
time as discussed above. Since the number of iterations equals the
number of components `, which is polynomial in the input size, the
algorithm terminates after a polynomial number of steps. Let G ′ be
the subgraph obtained from G in Step 1 by removing dispensable ears
and X the solution returned by the algorithm. Evidently, both, G ′ and
G[X] span G because the algorithm deletes only edges not nodes. Let
H be any component of G ′. Omitting trivial ears in Step 6 from the ear
decomposition of H results in a valid ear decomposition for the graph
induced by X ∩ E(H). Hence, by Proposition 3.1.3 the edge set X is a
feasible solution because the graph G[X∩ E(H)] is matching-covered.

It remains to bound the number of edges in X. Let H be again a
component of G ′ and XH := X ∩ E(H). Observe that H has at least
2 nodes (4 in the uniform case S = E) because I is assumed to be
feasible. Let (Q0, . . . ,Qp) be the ear decomposition of G[XH] resulting
from the one computed in Step 5 of the algorithm by skipping trivial
ears. Note that if H is just one edge, then p = 0 and we have H = P0.
Thus the bound is valid because H contains only one job node. Now
consider the size of H is at least 4, i.e., p > 1 and we have a substantial
ear decomposition. We denote by nj the number of job nodes in U
that are internal nodes of the ear Qj for each j ∈ [p]. Since the ears Qj
are non-trivial we have nj > 1, i.e., each earQj covers at least one new
job node. Furthermore, we have p 6 |UH|− 1 and

∑p
j=1 nj = |UH|− 1,

where UH := U∩ V(H). Then we have

|XH| 6 1+
p∑
j=1

(2nj + 1) = 1+ 2(|UH|− 1) + p 6 3|UH|.

Because X is the union of all XH, where H is a component of G ′, the
latter inequality yields the desired upper bound for |X|. �

We can now prove that Algorithm 4 is a constant-factor approxima-
tion for Card-E-RAP with singleton scenarios.

3.7 constant-factor approximation for card-e-rap 61

5

3

1

6

4

2

5

3

1

6

4

2
P0

P1

P2P2

5

3

1

6

4

2
P0

P1

P2P2

Figure 11: Illustration of Algorithm 4. From left to right: Input graph, its ear
decomposition and a solution computed by the algorithm.

Theorem 3.7.2. Algorithm 4 is a 1.5-approximation when applied to uni-
form Card-E-RAP instances. In general its approximation ratio is 3.

Proof. Let X be a solution returned by the algorithm and OPT an
optimal solution to the instance under consideration. By Lemma 3.7.1
X is feasible and its size is bounded by 3|U|. Moreover, the algorithm
terminates in polynomial time.

In the uniform case S = E, every node in U must have at least two
incident edges in every feasible solution. Hence, |OPT| > 2|U| and the
approximation ratio is

|X|

|OPT|
6
3|U|

2|U|
=
3

2
.

In the general case S ⊆ E an optimal solution OPT can be much
smaller, even just a perfect matching. As a result we have |OPT| > |U|,
implying an approximation guarantee of 3. �

The algorithm does not produce inclusion-wise minimal solutions.
A computed solution is likely to contain nice cycles with chords
which is by Theorem 3.1.4 equivalent to not being inclusion-wise min-
imal.

Remark 3.7.3. The size of the solution computed by Algorithm 4 de-
pends on the number of trivial ears in the ear decomposition: the
larger the number, the smaller the solution’s size. Unfortunately find-
ing an ear decomposition with a maximal number of trivial ears is
NP-hard.

We sketch the proof here, for details see [Dah16, Thm. 5.1]. Hamil-
tonian Cycle is known to be NP-complete in connected bipartite
graphs [Kri75]. The problem remains intractable in matching-covered
bipartite graphs because dispensable ears can not be used in a Hamil-
tonian cycle and thus can be removed safely. Now let (P0, . . . ,Pq) be
an ear decomposition of G with minimal number of trivial ears and
X the edges contained in the non-trivial ears of this decomposition.
Then G has a Hamiltonian cycle if and only if |X| = |V(G)|.

62 robust assignments with vulnerable edges

We claim that the bound 1.5 for the approximation ratio for uni-
form instances established in Theorem 3.7.2 is sharp. To illustrate this
we provide a family of graphs, for which the algorithm may produce
solutions of size arbitrary close to 1.5|OPT|.

Example 3.7.4. For k > 3, let Gk be a bipartite graph with node set
{0, 1, . . . , 2k+ 1}. The edge set of Gk is defined as follows: Gk contains
the paths Pi, i ∈ {2z : z ∈ [k]}, from 0 to 1 through nodes i and i+ 1.
Additionally, Gk contains the cycles Cj = (j, j+ 1, j+ 2, j+ 3, j), j ∈{
2z : z ∈ {2, . . . ,k− 1}

}
. Fig. 12 shows the graph G3 on the left.

0

6

4

2

7

5

3

1 0

6

4

2

7

5

3

1 0

6

4

2

7

5

3

1

Figure 12: From left to right: Graph G3, a worst-case solution found by Al-
gorithm 4 and an optimal solution for S = E.

In the uniform case, an optimal solution OPT is a 2-factor, e.g., the
Hamiltonian cycle as depicted in Fig. 12 on the right. A 2-factor has
a size of 2k + 2, while a worst case solution that can be found by
Algorithm 4 is given by the union of all paths Pi, i ∈ {2z : z ∈ [k]} (the
dashed graph in Fig. 12), since this is an ear decomposition of G. We
denote the latter solution by ALG. This yields

|ALG|

|OPT|
=

3k

2k+ 2

k−→∞ 3

2
.

We further remark, that the subgraph of Gk depicted second in
Fig. 12 is well-known in the literature. It illustrates the sharpness of
the bound |E(G)| 6 3|V(G)|−6

2 on the number of edges in an inclusion-
wise minimal matching-covered graph G [LP77, Thm. 2].

To conclude this section we show how to use Algorithm 4 if the
underlying graph is unbalanced.

Corollary 3.7.5. Algorithm 4 can be adapted for unbalanced Card-E-RAP
yielding the same approximation bound.

Proof. Consider a Card-E-RAP instance I defined on an unbalanced
bipartite graph G = (U ∪̇W,E) with |U| < |W| and scenario set S ⊆ E.
We can transform G to a balanced bipartite graph G ′ = (U ′ ∪̇W,E ′)
by adding a set of dummy job nodes D of size |W|− |U| and connect-
ing each of them to all nodes in W (see Proposition 3.1.2 for details).

3.7 constant-factor approximation for card-e-rap 63

The set of vulnerable edges S ′ is the union of S and the newly intro-
duced edges.

Now consider X ′ ⊆ E ′ the set of edges returned by Algorithm 4.
Because edges in E ′ \ E are only incident with dummy jobs in D,
the set X := X ′ ∩ E is feasible to I. Let Qj be a non-trivial ear in
the decomposition of G ′ as in Lemma 3.7.1. The ear Qj may contain a
node d ∈ D, but since the two edges incident with d are not contained
in X the above analysis from the proof of Theorem 3.7.2 carries over
to the new setting. The arguments in Theorem 3.7.2 remain also valid
and hence Algorithm 4 has an approximation guarantee of 1.5 or 3
depending whether the instance I is uniform or not. �

4
R O B U S T A S S I G N M E N T S W I T H V U L N E R A B L E
N O D E S

In this chapter we study a different type of Robust Assignment cap-
turing uncertainty in the node structure of the underlying bipartite
graph. This variant is called Node-Robust Assignment or V-RAP for
short.

We briefly sketch the setting first. Given a bipartite graph G =

(U ∪̇W,E), we refer to the nodes in U as jobs and to those inW as ma-
chines. The edge set E is defined as follows: the edge {u,w} is present
in E if and only if the job u can be executed on machine w. The task
is to find a subset of machines such that all jobs can be performed
simultaneously, i.e., no pair of jobs share a machine. Additionally the
set W is subject to uncertainty, e.g., a machine can become unavail-
able due to hardware failure or maintenance downtime. All expected
incidents are modeled via failure scenarios, each describing a subset
of W that may fail at the same time. When a scenario emerges, then
the corresponding subset of machine nodes is removed from the bi-
partite graph G. A robust solution has to be feasible in every scenario.
Before giving a formal description in Section 4.1 we present an out-
line of this chapter next.

outline

In Section 4.1 we formally introduce Node-Robust Assignment.
Then in the subsequent section we describe that the feasibility of a
given instance can be tested efficiently. Our main result, the hard-
ness of approximation of V-RAP with singleton uncertainty scenar-
ios, will be presented in Section 4.3. The key ingredient is a reduction
from Set Cover that transfers all inapproximability properties from
SCP to V-RAP. In Section 4.4 an approximation algorithm matching
the theoretical lower bound (up to a constant additive factor) is pro-
vided. Thereafter we will address the minimum-cardinality version
of V-RAP, which we call Card-V-RAP. In Section 4.5 a proof for APX-
hardness is presented, implying that there is no PTAS, unless P = NP.
Then in Section 4.6 we will refine the analysis of the previously de-
scribed algorithm when restricted to Card-V-RAP and prove that it
is a constant factor approximation. The two last-named results imply

65

66 robust assignments with vulnerable nodes

the APX-completeness of Card-V-RAP. Afterwards the polynomiality
of Card-V-RAP with two singleton scenarios will be shown, which
distinguishes Card-V-RAP from Card-E-RAP, where two edge fail-
ures already lead to an NP-hard problem (see Section 3.3). Finally in
Section 4.8 we will present a compact polyhedral description for V-
RAP with uniform failure scenarios that is based on a supermodular
function.

4.1 formal description and basic properties

Every graph G = (U ∪̇W,E) considered in this chapter is bipartite,
simple and satisfies |U| < |W|. We call the elements in U jobs and
those in W machines. To avoid trivial infeasible cases we assume that
every graph G has no isolated nodes.

The deterministic problem considered in this chapter is the follow-
ing node-version of Min-Cost Perfect Matching. Given a bipartite
graph G = (U ∪̇W,E) we want to select a set of machines X such
that all jobs can be performed simultaneously on these machines. If a
machine is included into a solution, then all of its incident edges can
be used. In other words we are looking for a set of machines X ⊆ W
such that the induced subgraph G[U ∪̇X] has a U-perfect matching
M, i.e., M ⊆ E(U,X). We call such a set X ⊆ W an assignment in G.
The problem is formalized as follows.

Node-Induced Assignment (NIAP)

Instance: 〈G, c〉, where G = (U ∪̇W,E) is a bipartite graph
with |U| < |W| and c ∈ RW

+ a cost function.

Solution: An assignment X in G, i.e., a node set X ⊆ W

such that the induced graph G[U ∪̇X] contains a
U-perfect matching.

Task: Find X minimizing c(X) or decide that G has no
assignment.

Node-Induced Assignment is a slight variation of the usual match-
ing problem and can be described by the following ILP.

min
∑
w∈W

cwxw

s.t. z(δ(w)) 6 xw for each w ∈W,

z(δ(u)) = 1 for each w ∈ U,

x ∈ {0, 1}W ,

z ∈ {0, 1}E.

(NIAP-ILP)

4.1 formal description and basic properties 67

The convex hull P of the feasible solutions to (NIAP-ILP) is described
by the following matrix Ā :=

(
A

−IW×W
OU×W

)
, where A is the node-edge

incidence matrix of the graph G. Since G is bipartite, we have that A
is totally unimodular and hence Ā is TU as well. Consequently P is
integral and we can solve (NIAP-ILP) via its LP relaxation using the
ellipsoid method (see p. 15).

In the robust version of Node-Induced Assignment, the set of ma-
chines W is subject to uncertainty that is given via failure scenarios.
A robust assignment in G is a set X ⊆ W such that X contains an
assignment for every scenario. The formal definition is presented in
Problem 4.1.1.

Problem 4.1.1 (V-RAP).
Node-Robust Assignment

Instance: 〈G,S, c〉, where G = (U ∪̇W,E) is a bipartite
graph, S ⊆ 2W a failure scenario set and c ∈ RW

+ a
cost function.

Solution: A S-robust assignment X in G, i.e., X ⊆ W such
that for each F ∈ S the graph G[U ∪̇X] − F contains
a U-perfect matching.

Task: Find X minimizing c(X) or decide that G has no
S-robust assignment.

The cardinality version of V-RAP, i.e., where c = 1 is called Min-
Card Node-Robust Assignment or Card-V-RAP for short. If S con-
sists of single nodes, then we just write S ⊆W.

An example of a Card-V-RAP instance and an optimal solution is
illustrated in Fig. 13. We differentiate between two cases of failure
scenario sets. The scenario set S can be given explicitly as a list of
subsets of W. The second type is described implicitly by an integer
k as Sk := [W]k = {F ⊆ W : |F| = k}. We call the corresponding
V-RAP instances k-uniform. A k-uniform instance can be also given
as 〈G,k, c〉. Consequently we call the associated feasible solutions k-
robust. In this sense, a U-perfect matching is a 0-robust solution. In
the case k = 1 we just write S = W and refer to the instances as
uniform. Evidently, a feasible k-uniform solution X satisfies |U|+ k 6
|X|.

We conclude this section by characterizing inclusion-wise minimal
S1-robust solutions to V-RAP, which can be seen as an analog of
Proposition 3.1.3 for E-RAP, where the connection between feasible
solutions and matching-covered graphs is established. Consider the
following generalization of Hall’s Theorem

∀ T ⊆ U : |T |+ 1 6 |NG(T)|.

68 robust assignments with vulnerable nodes

a

b

c

1

2

3

4

5

6

1

2

3

4

5

6

a

b

c

1

2

3

4

5

6

3

4

6

1

Figure 13: On the left: A non-uniform Card-V-RAP instance with four failure
scenarios given by the uncertainty set S = {1, 2, 4, 6} (orange). On
the right: A S-robust solution (blue).

Laroche et al. [Lar+14, Thm. 2] proved that X ⊆ W is feasible for V-
RAP with S = W if and only if the extended Hall condition holds
for the graph G[U ∪̇X] (see next section for details). This fact leads
immediately to the following observation.

Observation 4.1.2. Let 〈G = (U ∪̇W),S〉 be a uniform instance of Card-
V-RAP. Then a set X ⊆ W is inclusion-wise minimal feasible if and only if
X is inclusion-wise minimal according to the following properties:

1. The induced graph H := G[U ∪̇X] has a U-perfect matching;

2. Every node in U has degree at least two in H;

3. Every connected component of H is odd.

Unfortunately these properties are not directly useful for develop-
ment of algorithms, hence the algorithm for V-RAP presented in Sec-
tion 4.4 uses a different approach.

4.2 deciding feasibility

In this section we discuss how to decide feasibility of a given V-RAP
instance I = 〈G = (U ∪̇W,E),S, c〉. Of the course the feasibility of I
does not depend on the cost vector c. In case I is not feasible there is
a scenario F ∈ S such that the graph G− F has no U-perfect matching.
This node set F is a short certificate for the infeasibility of I. Thus, test-
ing feasibility of V-RAP is a problem in coNP. In this section we prove
that for V-RAP the feasibility problem is tractable, which is a differ-
ence to E-RAP, where the feasibility problem is NP-hard (see Propo-
sition 3.2.1).

Observe that V-RAP is a monotonic problem: Every superset of a
feasible solution is feasible itself. Thus, the instance I is feasible if
and only if the entire node set W is a feasible solution. There are two
easy cases. If S is given explicitly as a list of vulnerable node sets,
then we can check if for each scenario F ∈ S the graph G − F has
a U-perfect matching using any efficient matching algorithm. Same

4.2 deciding feasibility 69

holds if S = [W]`, where ` is a constant. Hence, in both cases testing
feasibility can be performed in time polynomially bounded by the
size of the input.

Hence the interesting case appears when the V-RAP instance under
consideration is uniform and given as 〈G,k, c〉, i.e., the scenario set
S = [W]k is specified implicitly. Then the naive approach described
above does not yield an algorithm polynomial in k, because we have
to compute

(
|W|
k

)
= O(|W|k) matchings. The naive algorithm is just

an XP-algorithm with k as parameter.

In the remainder of this section we focus on uniform scenario sets
S = [W]k given implicitly by providing an integer k as input. We use
a result from [Lar+14] for a problem similar to V-RAP that is based
on LP techniques. Observe that the ILP formulation (NIAP-ILP) can
be extended to V-RAP by introducing a new set of variables for each
scenario (cf. the ILP for E-RAP, p. 49). However, it is not obvious
how to decide whether the associated polytope has no integer points,
i.e., the corresponding instance is feasible.

Laroche et al. [Lar+14] considered a problem related to V-RAP. For
a given bipartite graph G = (U ∪̇W,E) they consider the following
interdiction problem that is motivated by the Nurse Rostering Prob-
lem arising in health care: Does the removal of k arbitrary nodes from
W results in a graph without a U-perfect matching? In the context of
health care management this question restates as follows: How many
nurses can be absent at most such that all patients can be still treated
adequately? Especially, the authors are interested in computing

kmax := max{|F| : F ⊆W, G− F has a U-perfect matching},

i.e., the answer to the second question above [Lar+14, Def. 3]. The pa-
rameter kmax can be interpreted as a measure of health care provider’s
resilience concerning staff unavailability. In particular, this means that
unlike V-RAP, their problem is not a design problem.

To tackle their problem the authors exploit the so-called k-extended
Hall’s condition:

∀ ∅ 6= T ⊆ U : |T |+ k 6 |NG(T)|. (k-Hall)

This condition is the natural generalization of the classical Hall’s con-
dition (see Theorem 2.3.1) and is for example known in context of
k-extendable graphs (see Theorem 2.3.9). It is useful here, as it pro-
vides a characterization of k-robust solutions to V-RAP.

Lemma 4.2.1 ([Lar+14, Thm. 2]). Given a bipartite graphG = (U ∪̇W,E).
A set X ⊆W is k-robust if and only if the k-extended Hall condition is valid
for the graph H := G[U ∪̇X].

Laroche et al. derived the following identity

kmax = min {|NG(T)|− |T | : ∅ 6= T ⊆ U} ,

70 robust assignments with vulnerable nodes

from (k-Hall). The minimization problem on the right hand side can
be formulated as the following ILP.

min
∑
w∈W

xw −
∑
u∈U

xu

s.t. xu 6 xw for each {u,w} ∈ E,∑
u∈U

xu > 1,

x ∈ {0, 1}V .

(kmax-ILP)

The constraint∑
u∈U xu > 1 (7)

ensures that at least one of the nodes in U is chosen by a solution
of (kmax-ILP). The constraints xu 6 xw of this ILP can be described
by the arc-node incidence matrix of the graph G with edges directed
from U to W. Thus, the constraint matrix of (kmax-ILP) without In-
equality (7) is totally unimodular.

The key idea from [Lar+14] is to replace (7) by xu = 1 for each
u ∈ U and solve the resulting ILP, which is then defined over an
integral polytope, via its LP relaxation. The optimal value for the
original problem is the minimum of the resulting |U| values. Hence
(kmax-ILP) can be solved in polynomial time [Lar+14, Cor. 2]. This
leads immediately to the following result.

Corollary 4.2.2. Feasibility testing for k-uniform V-RAP 〈G,k, c〉 can be
performed efficiently.

Proof. Given an k-uniform instance I := 〈G,k, c〉 for V-RAP, we can
determine kmax by solving (kmax-ILP). The instance I is feasible if and
only if kmax > k. �

4.3 complexity of v-rap

In this section we show the hardness of V-RAP even if the failure
scenarios are restricted to singletons. First, we provide the description
of a basic reduction from Set Cover to V-RAP and then show that it
is an S-reduction.

Lemma 4.3.1. There is a basic reduction (f,g) from Set Cover to Node-
Robust Assignment with S =W.

Proof. We prove the four properties in Definition 2.2.3 step by step.
Let I := 〈[k], S〉 be an arbitrary feasible instance of Set Cover and
` := |S|.

4.3 complexity of v-rap 71

(B1): We start the construction of the V-RAP instance I ′ := f(I)

= 〈G,S, c〉 with the graph G. The graph is obtained by performing
two transformation steps.

(T1) For each i ∈ [k] we introduce a new node ui and we set U[k] :=

{ui : i ∈ [k]}. For each Sj ∈ S we introduce a node wSj and set
WS := {wSj : Sj ∈ S}. Furthermore, the nodes ui and WSj are
connected via the edge set ESC :=

{
{ui,wSj} : i ∈ Sj, j ∈ [`]

}
.

(T2) For each i ∈ [k], a copy wi of node ui is introduced and we
set W[k] := {wi : i ∈ [k]}. Furthermore, the nodes ui and wi are
connected via the edge set E[k] :=

{
{ui,wi} : i ∈ [k]

}
.

In Step T1 we encode the structure of the Set Cover instance I.
Step T2 ensures the feasibility of the emerging V-RAP instance. The
nodes in WS indicate which sets Sj, j ∈ [`], are chosen from S to cover
the ground set [k] and are used to define the function g.

Applying the two steps yields a graph G = (U ∪̇W,E), where U :=

U[k], W := WS ∪W[k] and E := ESC ∪ E[k]. We finish the construction
of I′ by declaring the scenario set S :=W and the weights

c ∈ RW+ with cw :=

1 if w ∈WS,

0 if w ∈W[k].
(C)

Observe that the presented construction leads to a well-defined
function f : ISCP → IV-RAP. An example of an instance of V-RAP con-
structed this way is illustrated in Fig. 14.

wk

w2

w1

uk

u2

u1

wS`

wS2

wS1

W[k] ⊆ S U[k] WS ⊆ S

cw = 1

cw = 1

cw = 1

E[k] ESC

Figure 14: A V-RAP instance 〈G,W, c〉 constructed by the basic reduction
(f,g) from an SCP instance 〈[k], {S1, . . . ,S`}〉 (see Lemma 4.3.1).
The nodes in W[k] and U[k] have zero cost.

(B2): Let C be a feasible cover for I. We claim

XC :=W[k] ∪ {wSj : Sj ∈ C, j ∈ [`]}

72 robust assignments with vulnerable nodes

is feasible for I ′. Recap that X is feasible to I′ if and only if H :=

G[U ∪̇X] − {w} contains a U-perfect matching, for each w ∈ S =

W[k] ∪WS. To verify the latter condition, consider wSj ∈ WS ∩S

for some j ∈ [`]. Because W[k] ⊆ H, we can select the edge set
E[k] = {{ui,wi} : i ∈ [k]} as a U-perfect matching in H. Secondly, let
wi ∈ S∩W[k]. Since C is a feasible cover, the edge {ui,wSj} is part of
E(H). Observe now that

{ui,wSj}∪ E[k] \
{
{wi,ui}

}
is a U-perfect matching in H.

(B3): Let X ′ ∈ sol(I ′) be an arbitrary solution to V-RAP. We
define g(I,X ′) as

CX ′ := {Sj ∈ S : wSj ∈ X
′}.

We now have to prove that CX ′ is feasible for I. Let i ∈ [k]. Consider
the scenario in S defined by node wi ∈ W[k]. As X ′ is feasible to I′,
there must exist a U-perfect matching M in G[U ∪̇X ′] − {wi}. Since
wi /∈ V(M), node ui is matched to some node in {wS1 , . . . ,wS`} via
edges in ESC. Therefore, for some Sj ∈ S with i ∈ Sj we have wSj ∈ X ′.
This implies Sj ∈ CX ′ , i.e., the element i is covered by CX ′ . Hence, CX ′
is a feasible cover for I.

(B4): By construction of G, we have that |V(G)| = 2k + ` and
|E(G)| = k+

∑
Sj∈S |Sj| 6 k+ k`, i.e., the input size of G is polynomi-

ally bounded by the size of I. Because S = W and c ∈ {0, 1}W , the
function f can be computed in time polynomially bounded by size(I).
Since the function g has simply to go through every node in X ′, g is
also polynomial-time computable as well.

�

We are now ready to prove the main result of this chapter, the
hardness of approximation for V-RAP with single edge failures.

Theorem 4.3.2. For every ε > 0, it is NP-hard to approximate Node-
Robust Assignment with S = W to within (1− ε) lnn, where n is the
number of nodes in the underlying bipartite graph.

Proof. We prove the claim by showing that the basic reduction (f,g)
as defined in Lemma 4.3.1 satisfies the two properties of an S-reduc-
tion (see Definition 2.2.5). Let I be a feasible instance of Set Cover

and I ′ := f(I) = 〈G,S, c〉 the corresponding V-RAP instance.

(S1): Let X ′ be a feasible solution to I ′ and CX ′ := g(I,X ′). Recap
the definition of the cost function in (C). It follows immediately that
c(X ′) = c(X ′ ∩WS) = |CX ′ |.

4.4 an (lnn+ 2)-approximation for v-rap 73

(S2): Note that by definition of the reduction (f,g), an optimal V-
RAP solution OPT(I ′) is mapped to an optimal cover OPT(I) which
implies that both optimal objective values coincide.

Hence, V-RAP inherits all inapproximability properties of Set Cover

stated in Theorem 2.4.4. �

Recap that S-reductions can be also used to deduce parameterized
hardness with respect to the standard parameter as well as
APX-hardness. Hence using the results for (2,3)-SCP stated in The-
orem 2.4.7 and parameterized hardness for general Set Cover stated
in Theorem 2.4.8 we immediately obtain the following consequences.

Corollary 4.3.3. V-RAP is APX-hard and NP-hard to approximate to with-
in 100

99 even if the maximum degree of the underlying graph is at most three.
Furthermore, the standard parameterization of V-RAP in general graphs is
W[2]-hard.

4.4 an (lnn+ 2)-approximation for v-rap

In this section, we present an (lnn+ 2)-approximation algorithm for
V-RAP with S ⊆ W, where n := |U| is the number of jobs in the un-
derlying bipartite graph. Because of Theorem 4.3.2 and Theorem 2.4.4
this algorithm is asymptotically tight, i.e., it matches the theoretical
bound up to constant additive factors.

To simplify argumentation we assume that every V-RAP instance
I := 〈G = (U ∪̇W,E),S, c〉, S ⊆ W, considered in this section is
feasible. This can be verified efficiently as described in Section 4.2.

The basic idea of the algorithm is to start with a U-perfect matching
M and then extend M to a feasible solution by solving a Set Cover

subproblem approximately. The SCP instance is defined as follows.
First identify the jobs in G matched to vulnerable machines. We de-
note this set by Urisk. If a scenario is realized, i.e., w ∈ S is deleted
from graph, then some job node u ∈ Urisk matched to w becomes un-
saturated. The size of the initial matching M decreases and we know,
because the instance is feasible, that there is at least one augmenting
path starting at u and ending in the residual pool of machine nodes
Wres =W \V(M). Such a path may include other "risky" nodes beside
u and hence covers some subset of Urisk. An example is illustrated in
Fig. 15. The node a is "risky" and is covered by two machines. The
machine 1 covers only job a and the machine 4 covers two jobs, a and
b. Iterating over all nodes in Urisk yields instance of the Set Cover

subproblem.
The algorithm is specified as Algorithm 5 and outlined in more

details next. The initial U-perfect matching M is computed in Step 4.
Then the algorithm identifies all job nodes that are matched by M

74 robust assignments with vulnerable nodes

a

b

1

2

3

4

a

b

1

2

3

4

Figure 15: Key idea behind Algorithm 5. Input graph with S = W and the
initial matching M (blue, on the left) and M-alternating paths
from the "risky" job a to the remaining machines 1 and 2 after the
failure of the machine 2 (on the right).

with a vulnerable machine node, yielding the set Urisk. These nodes
are the only nodes to be taken care of, since for all other nodes the
matching M already provides an assignment. For each residual ma-
chine node w, the algorithm next determines a subset Rw of "risky"
job nodes that can be robustified by adding w to the solution (Step 9).
Thereafter, a weighted Set Cover instance J with ground set Urisk the
collection {Rw : w ∈Wres} is defined and solved by the greedy approx-
imation algorithm. Finally the algorithm returns the machines deter-
mined by the matching M and a solution to the SCP subproblem as a
solution to the V-RAP instance I.
Algorithm 5: An (lnn+ 2)-approximation for V-RAP

Input: Feas. V-RAP-instance I = 〈G = (U ∪̇W,E),S ⊆W, c〉.
Output: A robust solution X for I.
/* Transfer costs from the nodes to the edges */

1 foreach w ∈W do
2 foreach e ∈ δ(w) do de ← cw
3 end
4 M← min-cost U-perfect matching w.r.t. the costs d ∈ RE+
5 Urisk ← {u ∈ U : u is matched to a vulnerable node in M}

6 WM ←W ∩ V(M)

7 Wres ←W \ V(M)

8 foreach w ∈Wres do
/* Find risky nodes that can be robustified by w */

9 Rw ←
{
u ∈ Urisk : w is connected to u via an

M-alternating path in G[U ∪̇(WM ∪ {w})]
}

10 end
11 J← weighted SCP instance with the ground set Urisk,

collection S := {Rw : w ∈Wres} and weights c ′(Rw) := cw
12 ALG(J)← output of the greedy SCP algorithm (Alg. 2)
13 WSC ← {w : Rw ∈ ALG(J)}

14 return X =WM ∪̇WSC

Two properties of the algorithm needed for the analysis are estab-
lished by the next two lemmas.

4.4 an (lnn+ 2)-approximation for v-rap 75

Lemma 4.4.1. Algorithm 5 outputs a feasible solution and runs in polyno-
mial time.

Proof. We show the efficiency of the algorithm first. The only part
potentially in question is the computation of the paths in Step 9, all
other operations can be performed in polynomial time. In order to
accomplish that, we need the digraph D induced by the matching M
as defined in Definition 2.3.7 for perfect matchings. Observe that a
path from w ∈ Wres to some node in U in the digraph D induces an
M-alternating path in G. Hence, with D at hand we need to perform
a DFS for each w ∈ Wres and scan the resulting tree for the nodes in
Urisk. Note that these M-alternating paths just need to be computed
once, the nodes from Wres, once added to the intermediate solution
by the algorithm, can not act as internal nodes of these paths because
they are not matched by M.

We now address feasibility. Let X be the solution returned by Algo-
rithm 5. We have to show that X is feasible to I, i.e., for each vulner-
able machine node f ∈ S, there is a U-perfect matching not using f
in the graph G[U ∪̇X]. Note that the matching M computed in Step
4 is contained in G[U ∪̇X], by construction. Let f ∈ S. If f /∈ V(M)

then we can use M. In case f ∈ S ∩ V(M), we denote by u the job
node matched to f in M. By definition, u is a "risky" job node, i.e.,
u ∈ Urisk. From the fact that ALG(J) forms a cover of Urisk, it follows
that u ∈ Rw, for some w ∈ X \WM. By construction of Rw, there ex-
ists an odd M-alternating u-w-path P in G[U ∪̇(WM ∪ {w})]. As w is
not covered by M, the path P ends with an edge incident with w that
does not belong to M. Because of this and since P is M-alternating it
has an odd number of edges and the first edge of P incident with u
is also not contained in M, i.e., {u, f} /∈ P. Thus, M4 (P + {u, f}) is a
U-perfect matching in G[U ∪̇X] − {f}. �

It is not obvious that we can relate the cost of an optimal cover
OPT(J) to the cost of V-RAP’s optimum OPT(I). The machine nodes
in OPT(I) may be very different from the set WM chosen by the al-
gorithm. For this reason we provide a connection between feasible
solutions to V-RAP and Set Cover solutions to J in the next lemma.

Lemma 4.4.2. Any feasible solution X for the V-RAP instance I induces a
feasible cover CX for the instance J as defined in Step 11 in Algorithm 5, i.e.,
c ′(OPT(J)) 6 c ′(CX).

Proof. Let X ⊆ W be a feasible solution to I. We have to show that
CX := {Rw : w ∈ X∩Wres} is a cover for J. Recap that,Wres was defined
as W \WM, where M is the U-perfect matching computed by the
algorithm.

76 robust assignments with vulnerable nodes

Given an arbitrary u ∈ Urisk we have to show that CX covers u. Let
f be the vulnerable node such that {u, f} ∈M. We consider the match-
ing M̂ := M \ {{u, f}} of size |U| − 1. As X is feasible, the subgraph
H := G[U ∪̇X] − {f} contains a U-perfect matching. We denote this
matching byN. BecauseM 6⊆ E(H), we knowN 6=M. Let L := M̂4N.
Because u is only matched by N there is an M̂-alternating path P in
L that begins at u. Since |M̂| < |N|, the path P ends with a node
w̄ ∈ Wres. Note that all internal nodes of P (if existent) are matched
by M̂, hence P is a path in the graph H (see Fig. 16). Note that the
path P may have length one, i.e., it is just the edge {u, w̄} from N. As
M̂ ⊆M, P is also an M-alternating path, concluding that u ∈ Rw̄ and
CX is a cover.

a

b

u

c

1

2

f

3

w̄

Figure 16: Illustration of the situation in Lemma 4.4.2 after the failure of
machine f : the set X = {1, 2, 3, w̄}, matching M̂ (blue) and N

(black).

�

We are now equipped to analyze the Algorithm 5 with respect to
its approximation quality proving the main algorithmic result of this
chapter.

Theorem 4.4.3. Algorithm 5 is an (ln |U| + 2)-approximation for
V-RAP with S ⊆W.

Proof. The question of feasibility and efficiency is already resolved
by Lemma 4.4.1. It remains to prove that the computed solution X
satisfies the desired quality, i.e., c(X) 6 (ln |U|+ 2) · c(OPT(I)). The
cost associated with X are given by

c(X) = c(WM) + c(WSC). (8)

As M is chosen in Step 4 as a min-cost U-perfect matching, the asso-
ciate cost of all covered machine nodes WM is minimized. Every fea-
sible solution and, hence, every optimal solution contains a U-perfect
matching. This implies |OPT(I)| > n and we obtain that

c(WM) 6 c(OPT(I)). (9)

4.5 complexity of card-v-rap 77

The classical approximability result for the greedy algorithm (see
Theorem 2.4.2) implies that

c(WSC) = c ′(ALG(J)) 6 (ln |Urisk|+ 1) · c ′(OPT(J)). (10)

As OPT(I) is feasible by definition, Lemma 4.4.2 implies that the asso-
ciated collection C := {Rw : w ∈ OPT(I) \WM} is a cover for J. Thus,
we can bound c ′(OPT(J)) and obtain

c ′(OPT(J)) 6 c ′(C) =
∑
Rw∈C

cw = c(OPT(I)\WM) 6 c(OPT(I)). (11)

Combining the results from Equations (8)–(11) and exploiting that
US ⊆ U, we can finally derive that

c(X) 6 (ln |Urisk|+ 2) · c(OPT(I)) 6 (ln |U|+ 2) · c(OPT(I)),

showing the desired approximation ratio. �

Note that the approximation ratio we obtain is actually ln |Urisk|+ 2.
But this expression depends on the choice of the matching M in the
course of the algorithm. But we also know, that |Urisk| 6 min{|U|, |S|}

leading to an approximation guarantee of

ln(min{|U|, |S|}) + 2.

We hence obtain a better approximation ratio if the number of vulner-
able nodes is significantly smaller than |U|.

4.5 complexity of card-v-rap

In this section we prove the APX-hardness of Min-Card Node-Robust

Assignment.
The unweighted version of V-RAP is substantially easier than the

general one. Using Algorithm 5 we immediately obtain a 2-approxi-
mation: select one machine node for each job node covering it. Com-
bining these nodes with the n machine nodes from the initial match-
ing gives an upper bound of 2n for a solution determined this way.

Corollary 4.5.1. Min-Card Node-Robust Assignment admits a con-
stant factor approximation, i.e., Card-V-RAP ∈ APX.

We prove APX-hardness by exploiting the results for Node Cover

in cubic graphs stated in Theorem 2.4.7. This rules out the existence
of a PTAS, unless P = NP. To obtain an L-reduction from NCP we
adjust the reduction from Section 4.3.

Lemma 4.5.2. There is a basic reduction (f̄, ḡ) from Set Cover to Min-
Card Node-Robust Assignment with S =W.

78 robust assignments with vulnerable nodes

Proof. We prove the four properties in Definition 2.2.3 step by step.
Let I := 〈[k], S〉 be an arbitrary feasible instance of Set Cover and
` := |S|. We adjust the basic reduction (f,g) from Lemma 4.3.1 to
derive a reduction (f̄, ḡ) tailored for the new context.

(B1): We start with the construction of the Card-V-RAP instance
I ′ := f̄(I) = 〈Ḡ, S̄〉with the graphG. First we use f to obtain the graph
G = (U ∪̇W,E), where U := U[k], W :=WS ∪W[k] and E := ESC ∪E[k].

In order to be able to control the cost of a solution later on, we need
to ensure that the nodes in W[k] are contained in any solution to V-
RAP. Subsequently, we apply the following additional transformation
step: We extend the edges in E[k] from G to a path of length three.

(T3) For each i ∈ [k], two further nodes ūi and w̄i are introduced.
Consequently, we set Ū[k] := {ūi : i ∈ [k]} and W̄[k] := {w̄i : i ∈
[k]}. Then, for each i ∈ [k], the edges {wi, ūi} and {ūi, w̄i} are
introduced and form the set Ē[k] (cf. Step T6 in the reduction
from SCP to E-RAP, p. 56).

Applying Step T3 to G yields a graph Ḡ = (Ū ∪̇ W̄, Ē), where
Ū := U[k] ∪ Ū[k], W̄ := WS ∪W[k] ∪ W̄[k] and Ē := ESC ∪ E[k] ∪ Ē[k].
We finish the construction of I′ by defining the scenario set S̄ := W̄.
Observe that the presented construction leads to a well-defined func-
tion f̄ : ISCP → ICard-V-RAP. An example of a Card-V-RAP instance I ′

constructed by f̄ is illustrated in Fig. 17.

(B2): Let C be a feasible cover for I. We claim that

XC :=W[k] ∪ W̄[k] ∪ {wSj : Sj ∈ C}

is feasible for I ′. This means we have to show that the subgraph H :=

Ḡ[Ū ∪̇XC] − {w} contains a U-perfect matching, for each w ∈ S̄ =

W̄. If a node from WS fails, then we can take the unique U-perfect
matching contained in Ē[k] ∪ E[k]. This matching is denoted by M.
In the case that wi ∈ W[k] is removed from Ḡ we can take (M \

{{wi,ui}}) ∪ {{ui,wS}}, where S is some set covering i in C. In the
remaining case, w = w̄i we use the latter matching and replace the
edge {w̄i, ūi} by {ūi,wi}.

(B3): The feasibility of

CX ′ = {Sj ∈ S : WSj ∈ X} = ḡ(I,X
′)

is maintained because the nodes in W[k] are still vulnerable. For this
reason we do not need to change the function g, i.e., ḡ := g.

(B4): By construction of I ′, we have |V(Ḡ)| = 4k+ ` and |E(Ḡ)| =

3k+
∑
Sj∈S |Sj| 6 3k+k` and S̄ = W̄. This means f̄, ḡ are polynomial-

time computable functions.

�

4.5 complexity of card-v-rap 79

w̄k

w̄2

w̄1

uk

u2

u1

wS`

wS2

wS1

ūk

ū2

ū1

wk

w2

w1

WSU[k]W[k]Ū[k]W̄[k]

ESCĒ[k] Ē[k] E[k]

Figure 17: A Card-V-RAP instance 〈Ḡ, W̄〉 constructed by the basic reduction
(f̄, ḡ) from an SCP instance 〈[k], {S1, . . . ,S`}〉 (see Lemma 4.5.2).

Next, we will show that the basic reduction (f̄, ḡ) above is in fact
an L-reduction, thus proving that Card-V-RAP is APX-hard.

Theorem 4.5.3. Min-Card Node-Robust Assignment with S =W is
APX-complete and NP-hard to approximate to within 694

693 ≈ 1.0014, even
in graphs with maximum degree three.

Proof. We show the claim via a reduction from Node Cover in cu-
bic graphs. Because 3-NCP is APX-complete (see Theorem 2.4.7) it
suffices to provide an L-reduction to prove APX-hardness of Card-V-
RAP. Recap that by Observation 2.4.6 3-NCP can be restated equiva-
lently as (2,3)-SCP. For this reason we show that the basic reduction
(f̄, ḡ) defined in Lemma 4.5.2 is an L-reduction when restricted to
(2,3)-SCP.

Let I = 〈[k], {S1, . . . ,S`}〉 be a feasible instance of (2,3)-SCP and
I ′ := f̄(I) = 〈Ḡ, S̄〉 the corresponding Card-V-RAP instance. Note that
the maximum degree in G is bounded by three (see Fig. 17). Let X ′ be
a feasible solution to I ′ and CX ′ = ḡ(I,X ′) the associated cover. Recap
that the nodes in Ū[k] have degree two in Ḡ, making the inclusion of
W̄[k] ∪W[k] into every assignment obligatory. This means

|X ′| = 2k+ |CX ′ |.

Now we can prove the two properties of an L-reduction.

(L1): The function ḡ maps optimal robust assignments to opti-
mal covers. Because we have |Sj| = 3, any cover of [k] is of size at least
k
3 , i.e., k 6 3val∗(I). Hence, we have

val∗(I ′) = 2k+ val∗(I) 6 7val∗(I),

i.e., the first parameter is α = 7.

80 robust assignments with vulnerable nodes

(L2): The linear relation between both absolute errors is straight-
forward:

|CX ′ |− val∗(I) = |X ′|− 2k− (val∗(I ′) − 2k) = |X ′|− val∗(I ′).

Hence the second parameter is β = 1.

Consequently, the reduction (f̄, ḡ) is an L-reduction with α = 7

and β = 1. Let r ′ be the approximation ratio for some V-RAP ap-
proximation and r the ratio of the approximation for 3-NCP induced
by (f̄, ḡ). We know that r 6 (1+αβ(r ′ − 1)). Plugging the best known
lower bound for 3-NCP of 10099 into the latter inequality yields a lower
bound on the approximation ratio for Card-V-RAP of 694693 . Conclu-
sively, the membership in APX follows by Corollary 4.5.1. �

4.6 constant-factor approximation for card-v-rap

We have already seen in Corollary 4.5.1 that Card-V-RAP with S ⊆W
admits a 2-approximation. But is an approximation ratio better than
2 possible? In case of uniform instances we can give an affirmative
answer.

Theorem 4.6.1. Algorithm 5 is a 1.75-approximation when restricted to
Card-V-RAP instances with S =W.

Proof. We briefly repeat the basic principle of the algorithm adap-
ted to uniform Card-V-RAP. Here the starting point is any U-perfect
matching M since the cost of M is always |U|. Further, due to unifor-
mity of S all job nodes are matched to a vulnerable machine. There-
fore, each job node is "risky" and Urisk = U. In the constructed, un-
weighted Set Cover instance, the algorithm greedily selects the set
of machines that covers the most job nodes still in Urisk.

To prove the quality of the computed solution X, we proceed as fol-
lows. We distinguish two types of iterations performed by the greedy
algorithm for SCP. An iteration is called productive if the machine
node selected in this iteration saturates at least two "risky" job nodes,
i.e., the cardinality of Urisk is decreased by at least two. All other
iterations are called non-productive. Let p be the total decrease of
Urisk obtained from all productive iterations combined. We denote by
OPT ⊆W an optimal solution to the given Card-V-RAP instance. We
next show two claims that we use later to derive the approximation
ratio of 1.75 for Algorithm 5.
Claim 1: |X| 6 2|U|− p

2

The algorithm first includes all machines from the selected match-
ing M into the solution, i.e., |X| = |WM| = |U|. In the uniform case,
every job node is "risky". Thus, the ground set of the constructed set
cover instance is U, i.e., |U| elements must be taken care of by the
greedy algorithm. Since every productive iteration covers at least two

4.6 constant-factor approximation for card-v-rap 81

nodes, there can be no more than p
2 productive iterations. In each

such iteration, one new node is added to X. All remaining iterations
are non-productive, and there are exactly |U|− p of them. In total, we
have that

|X| 6 |U|+
p

2
+ (|U|− p) = 2|U|−

p

2
.

Claim 2: |OPT| > max{|U|, 2(|U|− p)}
An optimal solution contains at least one U-perfect matching, i.e.,
|OPT| > |U|.

Recap from Claim 1 that there are |U|−p non-productive iterations,
and that in each non-productive iteration only one "risky" job node
is saturated. We denote by U′ all job nodes from U being covered in
a non-productive iteration of the set cover greedy subroutine. Then,
for any pair of distinct nodes u1,u2 ∈ U′, u1 6= u2, we observe that
their neighborhoods in G are disjoint, i.e., NG(u1) ∩NG(u2) = ∅. If
it would not be the case, the nodes u1 and u2 would have been satu-
rated in a productive iteration already, contradicting our assumption
u1, u2 ∈ U′. Because we have a uniform instance, for any node in
U′ two neighbors must be included in any feasible solution, i.e., also
in OPT. This gives us the inequality |OPT| > 2(|U|− p). Finally, we
derive an upper bound on |X|

|OPT| implying the desired approximation
ratio. This is achieved by a case distinction due to Claim 2.

• Case 1: |OPT| > |U| > 2(|U|− p), i.e., 2p > |U|

By Claim 1 and the inequality 2p > |U|, we obtain that

|X| 6 2|U|−
p

2
6 2|U|−

|U|

4
6
7

4
|U| 6

7

4
|OPT|.

• Case 2: |OPT| > 2(|U|− p) > |U|, i.e., 2p 6 |U|

By Claim 1 and the inequality 2p 6 |U|, we conclude that

|X| 6 2|U|−
p

2
6
7

2
|U|−

p

2
−
3

2
|U| 6

7

2
|U|−

7

2
p

6
7

2
(|U|− p) 6

7

4
|OPT|.

�

For non-uniform instances the inequality |OPT| > 2(|U|− p) in Claim
2 does not hold. The reason is that non-productive iterations from
the algorithm depend on the choice of the matching M in Step 4. If
the associated job nodes are adjacent with a certain machine node,
then in an optimal solution these nodes can be saturated using only
one node. This means we only have the bounds |OPT| > |U| and
|X| 6 2|U|− p

2 from the analysis of Theorem 4.6.1. Combining these
two bounds yields the ratio of 2. But this bound can be obtained using
much easier analysis as we have already seen in Corollary 4.5.1.

82 robust assignments with vulnerable nodes

4.7 card-v-rap with two scenarios

We complete the complexity landscape for V-RAP by proving that,
unlike E-RAP, Card-V-RAP remains tractable with two singleton sce-
narios. Recap that in Section 4.5, O(n) vulnerable nodes were neces-
sary to derive hardness results.

This result is shown via a reduction to a custom-tailored problem
that we can solve efficiently via LP methods.

Theorem 4.7.1. Card-V-RAP with two vulnerable nodes is solvable in poly-
nomial time.

Proof. Let I = 〈G,S〉 be a Card-V-RAP instance with G = (U ∪̇W,E)
and S = {w′,w′′} ⊆ W, w′ 6= w′′. Given an optimal solution X to I,
observe first that either both w′ and w′′ are contained in X or none
of them. In the latter case, an optimal solution is given by a U-perfect
matching in G− {w′,w′′}. We can use an efficient matching algorithm
to verify whether a U-perfect matching in G− {w′,w′′} exists.

In the following, we address the case when S is part of any optimal
solution. We introduce a dummy job node d and the edges e′ :=
{d,w′} and e′′ := {d,w′′}. Additionally we double every edge that is
not incident with one of the vulnerable nodes w′ and w′′. This gives
us a new graph G′ := (U′ ∪̇W′,E′) where U′ := U ∪ {d}, W′ = W

and E′ := E ∪ {e′, e′′} ∪ {ē : e ∈ E(U,W \ {w′,w′′}} (see Fig. 18 for an
illustration). Note that the new graph G′ remains bipartite.

We claim that the solutions to the following ILP correspond to so-
lutions to the V-RAP instance I.

min
∑
e∈E′

xe

s.t. x(δ(u)) = 2 for each u ∈ U′,
x(δ(w)) 6 2 for each w ∈W′ \ {w′,w′′},
xe′ = xe′′ = 1,

x(δ(w′)) = 2,

x(δ(w′′)) = 2,

x ∈ {0, 1}E
′
.

(12)

Every solution to ILP (12) forms a collection of cycles of size at least
two and paths that cover every node in U′. Cycles of size two are
allowed as we introduced parallel edges in G′, i.e., each such cycle
represents an original edge of G. The cycle covering node d contains
the newly introduced edges e′ and e′′, and has a size of at least four.
This cycle corresponds to a path from w′ to w′′ in G with an even
number of edges. Thus, every solution to ILP (12) defines a union
of a w′-w′′-path, a (possibly empty) matching, some additional even

4.7 card-v-rap with two scenarios 83

a

b

c

1

2

3

w′

w′′

a

b

c

d

1

2

3

w′

w′′

e ′

e ′′

a

b

c

d

1

2

3

w′

w′′

Figure 18: From left to right: Original graph G; graph G′ resulting from the
modifications explained in the proof of Theorem 4.7.1; a solution
to the corresponding ILP (12) (right).

paths, and potentially some further cycles in the original graphG. The
constraint matrix A ′ of ILP (12) is essentially the node-edge incidence
matrix of G ′. As G′ is bipartite, A ′ is TU implying that ILP (12) can
be solved in polynomial time via LP methods.

First we show that if I is feasible then ILP (12) has a solution too.
Let X be any feasible solution to I. Then, G[U ∪̇X] contains a matching
M′ not covering w′ as well as a matching M′′ not covering w′′. By our
assumption that {w′,w′′} must be contained in every feasible solution
to I, we have that w′′ ∈ V(M′) and w′ ∈ V(M′′). Then, the symmetric
difference M′4M′′ contains an even path P connecting w′ and w′′.
Moreover, M̂ := M′ \ E(P) is a (possibly) empty matching of the job
nodes not covered by the path P. Then, consider x ∈ RE

′
with

xe :=

1, e ∈ {e′, e′′}∪ E(P),

1, e ∈ M̂∪ {ē : e ∈ M̂},

0, otherwise.

By construction the vector x satisfies the constraints of ILP (12).

Now let x be a feasible vertex solution to ILP (12). We set

X := {w ∈W : ∃e ∈ δG ′(w) with xe = 1},

and argue next that X is a robust assignment. To see this, note that
each original job node u is adjacent to at least one non-vulnerable
machine node from X. Each node u ∈ U located on a cycle in G′ that
is induced by x and does not contain a vulnerable node can be easily
matched in G[U ∪̇X] as u is either incident with an isolated edge in
G[U ∪̇X] or u is part of an even cycle. Even paths in G′ correspond
to even paths in G. Since job nodes are internal nodes of these paths,
they can be matched using edges from these paths. All remaining
nodes in U are internal nodes of the even w′-w′′-path induced by x,

84 robust assignments with vulnerable nodes

i.e., we can find a U-perfect matching in G[U ∪̇X] not saturating w′

and w′′ simultaneously. This shows that any feasible solution x of
ILP (12) corresponds to a solution X feasible to I.

Solutions to ILP (12) can be used to obtain optimal solutions to I

as we describe next. In the graph G[U ∪̇X] a job node can be adjacent
to two non-vulnerable machines (see Fig. 18). Such solutions are not
optimal and can be identified by checking if G[U ∪̇X] has any odd
component not containing w′ and w′′. In each of these components
the number of machine nodes exceeds the number of job nodes by
one. By removing an arbitrary machine node from each component
we obtain an optimal solution to I. �

4.8 polyhedral description for uniform v-rap

We conclude this chapter by providing an alternative polyhedral de-
scription for k-uniform V-RAP. It is defined with the help of a super-
modular function and use |W| variables only. Note that it is possible
to extend the formulation in (NIAP-ILP), p. 66, to V-RAP by introduc-
ing a new set of variables for each scenario (cf. the ILP for E-RAP,
p. 49). This approach would require |S||E|+ |W| variables in total.

We need some definitions first. Let S be a finite set and f : 2S → R

a function. The function f is supermodular if for any sets A ⊆ B ⊆ S
and an element x ∈ S \B holds

f(A∪ {x}) − f(A) 6 f(B∪ {x}) − f(B).

If f satisfies f(A) 6 f(B) for any sets A ⊆ B then f is called non-
decreasing. A contrapolymatroid associated with a supermodular
function f is a polyhedron defined as

Pf :=
{
x ∈ RS+ : f(T) 6 x(T) for each T ⊆ S

}
. (CPM)

Contrapolymatroids have the following properties. Pf is non-empty
if and only if f(∅) 6 0. For integer-valued f the inequality system
of (CPM) is box-TDI and the polyhedron Pf integral. If f is non-
decreasing, then we can minimize a linear function over Pf using
the greedy algorithm by Edmonds [Edm70]. For a brief introduction
we refer the reader to [Sch02, Chap. 44]. Our alternative polyhedral
description of the feasible set for k-uniform V-RAP is similar to a con-
trapolymatroid.

For the definition of the supermodular function we need the notion
of critical jobs.

Definition 4.8.1. Let G = (U ∪̇W,E) be a bipartite graph and X ⊆W
a subset of machines. We call a job u ∈ U critical with respect to X if

4.8 polyhedral description for uniform v-rap 85

it can only be performed on the machines in X.1 The set of X-critical
jobs is denoted by critG(X) and it holds

critG(X) = {u ∈ U : NG(u) ⊆ X}.

Lemma 4.8.2. For a given bipartite graph G = (U ∪̇W,E) and k ∈ Z+,
the set function g : 2W → R, X 7→ | critG(X)| + k is supermodular and
non-decreasing.

Proof. We prove supermodularity first. Note that g(X ∪ {x}) − g(X) =
| critG(X ∪ {x})|− | critG(X)|, so we just need to show the supermodu-
larity of the function g ′(X) := | critG(X)|.

Consider A ⊆ B ⊆ W and an element x ∈ W \ B. The definition of
critG implies

g ′(A∪ {x}) − g ′(A) =
∣∣{u ∈ U : u ∈ critG(A∪ {x}) \ critG(A)

}∣∣
=
∣∣{u ∈ U : NG(u) ⊆ (A∪ {x}), {u, x} ∈ E

}∣∣
6
∣∣{u ∈ U : NG(u) ⊆ (B∪ {x}), {u, x} ∈ E

}∣∣
= g ′(B∪ {x}) − g ′(B),

thus proving the supermodularity of g ′.

Let A ⊆ B be subsets of W and let u ∈ critG(A). By definition
we have N(u) ⊆ A and also N(u) ⊆ B. Hence we have critG(A) ⊆
critG(B) implying that g ′(A) 6 g ′(B) and consequently g(A) 6 g(B).

�

We present a characterization of solutions to k-uniform
V-RAP using the function g next.

Lemma 4.8.3. Consider an instance of V-RAP on the graphG = (U ∪̇W,E)
with S = [W]k. A node set X ⊆W is k-robust if and only if

∀W ′ ⊆W : critG(W ′) 6= ∅ ⇒ | critG(W ′)|+ k 6 |W ′ ∩X|.

Proof. Let X ⊆ W be a k-robust solution. Due to Lemma 4.2.1 we
know that the k-extended Hall’s condition is valid for the graph H :=

G[U ∪̇X]. Consider now a subset W ′ ⊆W with critG(W ′) non-empty.
We define T := critG(W ′) ⊆ U. Since G is bipartite we have NH(T) =
NG(T)∩X =W ′ ∩X. Now applying k-extended Hall’s condition to T
and due to the observations above we obtain

| critG(W ′)|+ k = |T |+ k 6 |NH(T)| = |W ′ ∩X|.

Conversely, let T ⊆ U be non-empty. We define W ′ := NH(T), where
the subgraph H is again defined as G[U ∪̇X]. By definition it holds

1 The notion of critical jobs here is different from the definition in [Lar+14].

86 robust assignments with vulnerable nodes

T ⊆ critG(W ′) and as a result critG(W ′) is non-empty. Hence we
have

|T |+ k 6 | critG(W ′)|+ k 6 |W ′ ∩X|.

Since W ′ = NH(T) we have W ′ ∩ X = NH(T) concluding the proof.
�

We can now provide a reformulation of k-uniform V-RAP using the
supermodular function g(W ′) = | critG(W ′)|+ k.

Corollary 4.8.4. The Problem 4.1.1 with the scenario set S = [W]k is
equivalent to the following integer linear program

min c>x

s.t. x(W ′) > g(W ′) for each W ′ ⊆W with critG(W ′) 6= ∅,
x ∈ {0, 1}W .

(13)

Let P be the polytope underlying the LP relaxation of (13). The poly-
tope P has no contrapolymatroid structure (see Equation (CPM)), be-
cause we omit the inequalities for W ′ without critical jobs. But this
description can be useful for designing branch and bound algorithms
in the original space RW .

For sake of completeness we illustrate the non-integrality of the
polytope P in a concrete example next. Recap that in Theorem 4.3.2
we showed that uniform V-RAP is already NP-hard for k = 1, which
already precludes the integrality of P, provided P 6= NP.

Example 4.8.5. Consider the subgraph of K3,6 presented in Fig. 19.

a 1

2

3

4

5

6

b

c

Figure 19: Non-integral vertex solution for the V-RAP formulation from
Corollary 4.8.4 with k = 1. The edges with values 12 are indicated
by dashed lines.

The corresponding polytope P is described by the following non-
redundant inequalities

4.8 polyhedral description for uniform v-rap 87

−x1 − x2 − x3 − x4 − x5 − x6 6 −4,

−x1 − x2 − x5 6 −2,

−x4 − x5 − x6 6 −2,

−x2 − x3 − x6 6 −2,

x 6 1.

The point x̄ =
(
1, 12 , 1, 1, 12 , 12

)
is contained in P and hence it de-

scribes a fractional solution to V-RAP. In this solution each job in
{a,b, c} runs on 1+ 1

2 +
1
2 machines. It is easy to check that the con-

straint matrix has rank three and also three constraints are tight for x̄
and hence it is a vertex solution.

5
R O B U S T M AT C H I N G A U G M E N TAT I O N

In the previous chapters we studied two robust assignment problems.
Both of them are design problems, i.e., given a graph G and a scenario
set S, the task is to find a subgraph containing a perfect matching for
each failure scenario in S. In practice it is not always possible or de-
sired to design an infrastructure from scratch. Building upon a run-
ning system is often cheaper and increases acceptance among staff
members. In this chapter we address the corresponding augmenta-
tion problem: given a fixed perfect matching M in a graph G, we seek
to make M fault-tolerant against edge failures by adding new edges
to G. Before giving a formal definition in the next section, we present
an outline of this chapter first.

outline

In Section 5.1 we will formally introduce k-Robust s-Recoverable

Matching Augmentation (k-s-RRMAP) and explain the two param-
eters k and s describing the robustness level of a matching. In the
subsequent section we treat the basic question of determining how ro-
bust a given matching is. This problem will be proved to be NP-hard
via a reduction from a new problem, the so-called Fixed Matching

Preclusion Number. In Section 5.3 we study the complexity of k-
s-RRMAP and prove that even for k = 1, the problem is NP-hard.
Moreover, the same proof shows, that even in this restricted setting
the problem is as hard to approximate as Set Cover. This means that
from computational complexity point of view the augmentation prob-
lem is as hard as the aforementioned design problems E-RAP and
V-RAP. Conclusively in Section 5.4 we study a variant of k-s-RRMAP
where k = 1 and s = 2, which is solvable in polynomial time.

5.1 formal description and basic properties

Prior to defining the augmentation problem sketched above, we first
need to specify a reasonable notion of a robust matching. Given a per-
fect matching M in a graph G we describe its robustness properties
by two parameters. The parameter k describes how many edges in
M can be removed from G safely, i.e., such that G remains perfectly

89

90 robust matching augmentation

matchable. The additional parameter s governs the repairing effort
once some edges were removed. This informal definition is summa-
rized next.

Definition 5.1.1. Let G be a bipartite graph. A perfect matching M
in G is k-robust s-recoverable if for each subset F ′ ⊆ M, |F ′| 6 k, the
graph G − F ′ has a perfect matching N such that |M4N| 6 2s. In
other words, the two matchings M and N differ only in s edges. If
s =∞, then we call the matching M simply k-robust.

Note that a graph can have perfect matchings with very different
levels of robustness (see Fig. 20). Perfect matchings as defined in Def-
inition 5.1.1 were named weakly k-robust s-recoverable in the work
by Dourado et al. [Dou+15]. The authors provided a characterization
of robust matchings for some values of the parameters k and s.

Theorem 5.1.2 ([Dou+15, Thm. 5]). Let M be a perfect matching in a
bipartite graph G. Then, M is k-robust s-recoverable with k = s ∈ {2, 3, 4}
if and only if the minimum degree in G is at least max{2, |V |

2 − k+ 2}.

However, in the main part of [Dou+15] the setting was different.
The authors studied the problem to decide whether a given graph G
has some k-robust s-recoverable matching and proved that this prob-
lem is NP-complete for k > 1 and s > 2 (see p. 28).

Figure 20: From left to right: a 3-robust matching (blue); a 1-robust matching
(blue); two edges (green) needed to increase the robustness level
of the second matching.

Our main goal here is to study the problem of increasing the ro-
bustness level of a given matching M by adding edges to its ambient
graph G. In order to uphold the bipartiteness of the resulting graph,
these additional edges must be part of the bipartite complement of
G = (U ∪̇W,E) which is defined as

Ē(G) :=
{
{u,w} : u ∈ U, w ∈W

}
\ E(G).

We call edges in Ē(G) residual. We are now ready to define the aug-
mentation problem in its full generality.

5.2 determining robustness of a fixed matching 91

Problem 5.1.3 (k-s-RRMAP).
k-Robust s-Recoverable Matching Augmentation

Instance: 〈G,M,R, c,k, s〉, where G = (U ∪̇W,E) is a bipar-
tite graph, M a perfect matching in G, R ⊆ Ē(G)
a set of residual edges, c ∈ RR

+, k ∈ Z+ and
s ∈ Z+ ∪ {∞}.

Solution: An augmenting edge set L ⊆ R such that M is a
k-robust s-recoverable matching in G+ L.

Task: Find L minimizing c(L) or decide that no such L
exists.

The augmentation problem k-s-RRMAP with s =∞ can be seen as
a special case of E-RAP as defined in Problem 3.1.1, p. 34. Given a
k-s-RRMAP instance 〈G,M,R, c,k,∞〉, we define the input graph for
E-RAP as G+ R and the scenario set as S = [M]k. Furthermore, all
edges except for those in R have zero cost. Then a robust assignment
X, feasible for the resulting E-RAP instance, defines an augmenting
set L = X∩R. But the results in Chapter 3 do not cover this particular
case of E-RAP. Hence, in Section 5.3 we prove that k-s-RRMAP is as
hard as Set Cover.

To conclude this section we want to point out two properties of k-s-
RRMAP. First, finding an augmenting set L ⊆ R such that a matching
M in a graph G is |M|-robust in G+ L is equivalent to finding a per-
fect matching in (G + R) −M, which is a tractable problem. Hence
we can use this augmenting set L to approximate k-s-RRMAP with
s = ∞ for any k > 1. Because we have |L| 6 |V(G)|

2 and an optimal
solution may have a constant number of edges, this gives us a simple
O(|V(G)|)-approximation. Second, for a fixed matching M, increasing
the robustness level from k to k+ 1 can be the same as increasing k to
|M|. The matching depicted second in Fig. 20 is 1-robust. In order to
make it 2-robust we need both edges shown on the right, but adding
these two edges makes M even |M|-robust.

5.2 determining robustness of a fixed matching

In this section we study the problem of deciding whether a given
perfect matching M in a graph G is k-robust, i.e., for each subset F of
M with k elements does G− F has a perfect matching. This question
is related to the matching preclusion number mp(G) discussed in the
context of feasibility of E-RAP in Section 3.2. Consequently we define
the fixed matching preclusion number as

fmp(G,M) := min{|F| : F ⊆M,G− F has no perf. matching}. (14)

We study the decision version of the latter optimization problem
which is defined next.

92 robust matching augmentation

Problem 5.2.1 (FMPNP).
Fixed Matching Preclusion Number

Instance: 〈G,M,k〉, where G is a graph, M a perfect match-
ing in G and k an integer.

Question: Is fmp(G,M) 6 k?

We can reformulate Fixed Matching Preclusion Number as the
following interdiction problem using the model introduced in [Zen10]
(see p. 29). Let 〈G,M,k〉 be an instance of FMPNP. The graph G re-
mains unchanged and the edge-weights are uniform, i.e., w = 1. The
interdiction costs are ce = 1, if e ∈ M and ce = k+ 1 if e /∈ M. The
interdiction budget is k. Then fmp(G,M) 6 k if and only if

min {ν(G− F) : F ⊆ E(G), c(F) 6 k} < |M|.

The results in [Zen10] do not cover problems of the latter type. Thus
we show next, that FMPNP is NP-complete using a reduction from
the following problem dealing with sets that violate Hall’s condition
(see Theorem 2.3.1).

Hall Set (HSP)

Instance: 〈G,k〉, where G = (U ∪̇W,E) is a bipartite graph
and k an integer.

Question: Is there a set S ⊆ U with |NG(S)| < |S| 6 k?

Evidently Hall Set is in NP. Gaspers et al. [Gas+12]. showed that
HSP is W[1]-hard when parameterized by k. The parameterized re-
duction from Clique provided in [Gas+12] is also a many-to-one
reduction, hence implying NP-completeness of HSP. Both hardness
results carry over to FMPNP as stated in the next theorem.

Theorem 5.2.2. Problem 5.2.1 is NP-complete and its standard parameteri-
zation is W[1]-hard, even when restricted to bipartite graphs.

Proof. We provide a many-to-one reduction from Hall Set to Fixed

Matching Preclusion Number in bipartite graphs. Let I = 〈G,k〉
be an instance of Hall Set, where G is a bipartite graph on n+m

nodes with bipartition U = {u1, . . . ,un} and W = {w1, . . . ,wm}. We
construct the corresponding instance I ′ = 〈G ′,M ′,k ′〉 of FMPNP as
follows.

(T1) For each edge e = {ui,wj} ∈ E(G), i ∈ [n], j ∈ [m], we introduce
two edges mui and mwj . We denote the corresponding edge sets
by Mu and Mw, respectively. Then we connect the endpoints
of mui and mwj by adding two more edges, thus obtaining a
4-cycle. These cycles encode the adjacency relations of G (see
Fig. 21 for an example).

5.2 determining robustness of a fixed matching 93

u1

u2

u3

w1

w2

7→

mu1

mu2

mu3

mw1

mw2

r11 r21 r31 r41 r51

r12 r22 r32 r42 r52

Figure 21: Reduction from Theorem 5.2.2 sketched for the bipartite graph
shown on the left. The matching is indicated by blue lines.

(T2) For each wj ∈W, j ∈ [m], we add a ladder graph Lj with rungs
r1j , . . . , r2|U|−1

j (the lighter subgraph in Fig. 21).

(T3) The matching M ′ consists of the edge sets Mu, Mw and the
rungs of the ladders Lj for j ∈ [m]. Evidently, the matching
M ′ is perfect. The ladders ensure that the robustness of M ′ is
related to the size of the violating Hall set in G.

(T4) We define k ′ := k.

Note that the graph G ′ is bipartite because it only contains even
cycles. Moreover, G ′ has O(nm) edges, thus the reduction is polyno-
mial in the input size of G. Moreover it is a parameterized reduction.
We now show

∃S ⊆ U satisfying |NG(S)| < |S| with |S| 6 k⇔ fmp(G ′,M ′) 6 k ′.

"only if" part:
Let S ⊆ U be a violating Hall set of size at most k in the graph G
and MS := {mui : ui ∈ S} the corresponding matching in G ′. Then
MS ⊆ M ′ and |MS| 6 k. Moreover, G ′ −MS does not have a perfect
matching by construction of G ′ (see, e.g., S = {u2,u3} in Fig. 21).
Hence fmp(G ′,M ′) 6 k = k ′.

"if" part:
Let F ′ ⊆ M ′, |F ′| 6 k ′, be an edge set such that G ′ − F ′ has no per-
fect matching. Because S ⊆ U we can assume k ′ = k 6 |U|. Now
consider Fu := F ′ ∩Mu. We claim that G ′ − Fu has no perfect match-
ing. Assume G ′ − Fu has a perfect matching. Because G ′ − F ′ has no
perfect matching, there is an edge mui ∈ F ′, i ∈ [n], and an index
j ∈ [m], such that the |U|+ 1 edges {mui , r1j , r3j , . . . , r2|U|−1

j } are con-
tained in F ′ (see the top ladder in Fig. 21). Otherwise the deletion of
F ′ can be compensated by shifting the cycles of the ladder graph Lj.
But this would imply |F ′| > |U| + 1, which contradicts the assump-
tion on the size of F ′. Hence G ′ − Fu has no perfect matching. Define

94 robust matching augmentation

S ′ := {u ∈ U : mui ∈ Fu}, evidently |S ′| 6 k ′. Because G ′ − Fu has no
perfect matching we have |NG(S ′)| < |S ′|. Thus S ′ is a set violating
Hall’s condition. �

Using the result from the preceding theorem we can address our
original question of deciding whether a given perfect matching M
is k-robust in a graph G. This decision problem is in coNP. If M is
not k-robust, then there is an edge set F ⊆ M with |F| = k such that
G− F has no perfect matching. This set F is a short certificate for coNP
membership.

Corollary 5.2.3. Let M be a perfect matching in a bipartite graph G. De-
ciding whether M is k-robust in G is NP-hard.

Proof. The definition (14) of fmp(G,M) implies that a perfect match-
ing M is k-robust if and only if fmp(G,M) > k. Thus we can decide
FMPNP by applying a robustness oracle to M. �

5.3 complexity of robust matching augmentation

In this section we show that k-Robust s-Recoverable Matching

Augmentation is as hard as Set Cover even for the special case
s =∞ and c = 1. This means we study the following problem.

Problem 5.3.1 (1-RMAP).
1-Robust Matching Augmentation

Instance: 〈G,M,R〉, where G = (U ∪̇W,E) is a bipartite
graph, M a perfect matching in G and R ⊆ Ē(G).

Solution: An augmenting edge set L ⊆ R such that M is a
1-robust perfect matching in G+ L.

Task: Find L minimizing |L| or decide that no such L ex-
ists.

Observe that a perfect matching M in a bipartite graph G is 1-
robust if and only if every M-edge is located on an M-alternating
cycle in G. This is the key idea behind the reduction from SCP to
1-RMAP described in Lemma 5.3.2.

First, we define a basic reduction from Set Cover to 1-RMAP which
is used in the hardness proof later on.

Lemma 5.3.2. There is a basic reduction (f,g) from SCP to 1-RMAP.

Proof. We prove the four properties in Definition 2.2.3 step by step.
Let I := 〈[k], S〉 be an arbitrary feasible instance of Set Cover and
` := |S|.

5.3 complexity of robust matching augmentation 95

(B1): We start the construction of the 1-RMAP instance I ′ := f(I)

= 〈G,M,R〉 with the graph G. The graph is obtained by performing
the following four transformation steps. An example graph is illus-
trated in Fig. 22.

(T1) Introduce an edge {r, x}.

(T2) For each i ∈ [k] introduce an edge {ui,wi} and connect the nodes
ui to x. The edges {ui,wi}, i ∈ [k], form the set E[k].

(T3) For each Sj ∈ S, j ∈ [`], add the nodes {Sj, c1Sj , c
2
Sj

, c3Sj} and the
4-cycle CSj = (Sj, c1Sj , c

2
Sj

, c3Sj ,Sj) to G.

(T4) Introduce edges {wi, c1Sj} if and only if the element i ∈ [k] is
contained in the set Sj ∈ S.

(T5) The set of residual edges R from the bipartite complement is
defined as

R :=
{
{r,Sj} ⊆ Ē(G) : j ∈ [`]

}
.

The described procedure defines a bipartite graph and we fix a bipar-
tition U ∪̇W by declaring r ∈ U. The designated matching is

M := {r, x}∪ E[k] ∪
{
{Sj, c1Sj}, {c

2
Sj

, c3Sj} : j ∈ [`]
}

.

Observe that the presented construction leads to a well-defined
function f : ISCP → I1-RMAP.

(B2): Recap that the SCP instance I is feasible and let C be any
feasible cover for I. We claim that L ′ :=

{
{r,Sj} : Sj ∈ C, j ∈ [`]

}
is an

augmenting set. To see this, consider an arbitrary element i ∈ [k] and
a set Sj ∈ C, j ∈ [`], with i ∈ Sj. Then the M-edge {ui,wi} is located
on the M-alternating cycle (r, x,ui,wi, c1Sj ,Sj) in G+ L ′.

(B3): Let L ′ ∈ sol(I ′) be an augmenting set. We define g(I,L ′) as

CL ′ :=
{
Sj ∈ S : {r,Sj} ∈ L ′, j ∈ [`]

}
.

Let i be an element of the ground set [k]. Since L ′ is feasible, the
graph G+ L ′ has an M-alternating cycle C containing ei := {ui,wi}.
By construction of G, there exists no M-alternating cycle in G that
contains ei, hence there is an edge {r,Sj} ∈ C, j ∈ [`], with the property
i ∈ Sj. This proves that CL ′ is a cover for [k].

(B4): The graph G has 2(k+ 1) + 4` nodes and |R| = `, hence f is
polynomial time computable. The function g has to iterate over a set
of ` edges once, thus g can be computed efficiently too.

�

96 robust matching augmentation

u1 u2 u3

w1 w2 w3

x

r

c1S1 c1S2

S1 c2S1

c3S1

c2S2 S2

c3S2

CS1 CS2

1 2 3

Figure 22: An 1-RMAP instance 〈G,M,R〉 constructed by the basic reduction
(f,g) (see Lemma 5.3.2) from a Set Cover instance 〈[3], {S1,S2}〉,
where S1 = {1, 2} and S2 = {1, 3}. The matching M is indicated by
blue edges and the residual edge set R by dashed lines.

We now show the main complexity result of this chapter.

Theorem 5.3.3. For every ε > 0, it is NP-hard to approximate 1-Robust

Matching Augmentation to within (1− ε) lnn, where n is the number
of nodes in the underlying bipartite graph. Moreover, 1-RMAP is W[2]-hard
when parameterized by the solution size.

Proof. We show the claim by arguing that the basic reduction (f,g) as
defined in Lemma 5.3.2 is in fact an S-reduction (see Definition 2.2.5).
Let I = 〈[k], S〉 be a feasible instance of Set Cover with |S| = ` and
I ′ := f(I) = 〈G,M,R〉 the corresponding 1-RMAP instance.

(S1): Let L ′ ⊆ R be a feasible solution to I ′. Then, the correspond-
ing cover is CL ′ := g(I,X ′) =

{
Sj ∈ S : {r,Sj} ∈ L ′, j ∈ [`]

}
. It follows

immediately that |L ′| = |CL ′ |.

(S2): Observe that, by definition of f and g, an optimal 1-RMAP
solution OPT(I ′) is mapped to an optimal cover OPT(I). This implies
that both optimal objective values coincide.

Hence, 1-RMAP inherits the inapproximability property of Set Cover

stated in Theorem 2.4.4. Furthermore, an S-reduction is also a param-
eterized reduction with respect to solution size. Hence the standard
parameterization of 1-RMAP is W[2]-hard by Theorem 2.4.8. �

5.3 complexity of robust matching augmentation 97

Recap that S-reductions can be also used to derive APX-hardness.
Hence using the results for (2,3)-SCP stated in Theorem 2.4.7 we ar-
rive at the following result.

Corollary 5.3.4. In graphs with maximum degree five, 1-RMAP is APX-
hard and NP-hard to approximate to within 100

99 .

Proof. Using an instance of (2,3)-SCP for the reduction yields a graph
G with node degrees bounded by 5, except for the node x which has
degree k+ 1. To treat this we replace the second and third layer of
G by a binary tree of depth O(logk). It is also possible to choose
this tree in a way such that the matching M ′ can be extended to a
matching on the new graph including the tree. Each of the nodes in
this tree has degree 2 or 3. �

It is worth to remark that 1-RMAP remains hard even if we are al-
lowed to choose a perfect matching in the graph that is supposed to
be augmented to a 1-robust matching. The graph from the reduction
has 2` perfect matchings, but all of them are Set Cover-hard to aug-
ment.

We conclude this section by arguing that the restriction of 1-RMAP
(Problem 5.3.1) with the residual edge set R = Ē(G) remains NP-
hard to approximate within a sublogarithmic factor. The key observa-
tion is that using edges from Ē(G) different from the residual edges
Rs :=

{
{r,S} ∈ Ē(G) : S ∈ S

}
constructed by the basic reduction (f,g)

from Lemma 5.3.2, cannot result in strictly smaller augmenting sets.
We refer to the edges in Rs as standard-choice edges. This observation
is formalized in Lemma 5.3.5. Plugging this result into the proofs of
Lemma 5.3.2 and Theorem 5.3.3 yields a reduction (f̄, ḡ) that is only
slightly weaker than an S-reduction because Property S1 from Def-
inition 2.2.5 is satisfied only with inequality as explained next. For
any augmenting set L ⊆ Ē(G) for an 1-RMAP instance constructed by
f̄, we can efficiently obtain a possibly smaller augmenting set L ′ by
following the steps described in the proof of Lemma 5.3.5. Then for
the corresponding solution CL ′ := ḡ(L

′) to the original Set Cover in-
stance we have |CL ′ | = |L ′| 6 |L| (Property S1 would require |CL ′ | = |L|).
The lemma also implies that the size of the optimal value of a Set

Cover instance and the optimal value of the corresponding 1-RMAP
instance coincide, i.e., Property S2 remains satisfied for (f̄, ḡ). In to-
tal this shows that an approximation for 1-RMAP would define an
approximation for Set Cover with the same approximation guaran-
tee. Hence, due to Theorem 2.4.4 there is no sublogarithmic-factor
approximation for 1-RMAP, unless P = NP.

Lemma 5.3.5. Let I = 〈G,M, Ē(G)〉 be an 1-RMAP instance where G and
M are constructed from a feasible SCP instance 〈[k], S〉 by the reduction
(f,g) defined in Lemma 5.3.2. Then, for any augmenting set L ⊆ Ē(G) that

98 robust matching augmentation

is feasible for I, there is a feasible augmenting set L ′ ⊆ Rs with |L ′| 6 |L|

using standard-choice edges Rs only.

Proof. Let 〈[k], S〉 be a feasible Set Cover instance and (f,g) the re-
duction as defined in Lemma 5.3.2. Consider the 1-RMAP instance
I := 〈G = (U ∪̇W,E),M, Ē(G)〉, where G andM are constructed using
f. Let now L ⊆ Ē(G) be a feasible augmenting set, i.e., every M-edge
is part of an M-alternating cycle in the graph G+ L.

We have to prove that, whenever we use some edges in Ē(G) \ Rs,
we can also use the same number of edges (or even less) in Rs instead.
Recap that, because the Set Cover instance 〈[k], S〉 we started from is
feasible, the edge set Rs is always a feasible augmenting set for I (see
Fig. 22).

It is not obvious if we can replace edges in Ē(G) \ Rs by standard-
choice edges from Rs in an arbitrary order. For this reason, the proof
is carried out in three steps. In the first two steps we replace all
non-standard edges contained in L that are adjacent to the nodes
r and x. This means concerning r and x we have the situation as
illustrated in Fig. 22. More precisely, the proof is organized as fol-
lows. Recap that r ∈ U and x ∈ W. First, we replace all edges in
L ∩
{
{r,w} ∈ Ē(G) : w ∈ {wi : i ∈ [k]} ∪ {c2S : S ∈ S} ⊆ W

}
by suit-

able edges in Rs. Then, in a second step, we replace all edges in
L∩
{
{x,u} ∈ Ē(G) : u ∈ {c1S, c3S : S ∈ S} ⊆ U

}
by edges in Rs. Finally, in

a third step we conclude the proof by arguing with the help of an ear
decomposition.

Step 1:
We consider two major cases with two subcases each.

a): Let e = {r,wi} ∈ L for some i ∈ [k]. Fix a set S ∈ S with i ∈ S

and define L ′ := (L \ {e}) ∪ {{r,S}}. We show that every M-edge that
is contained in an M-alternating cycle C in G+ L using the edge e is
part of an M-alternating cycle D in the graph G+ L ′ by providing an
explicit description of D.

First, observe that the edge {ui,wi} ∈ M is located on the M-cycle
(r, x,ui,wi, c1S,S, r) in G+ L ′. Now, let C be any M-alternating cycle
in G+ L using e = {r,wi}. Because the cycle C is M-alternating, it can
be written as

C = (x, r,wi,ui,p1,p2, . . . ,p2d, x),

where P := (p1,p2, . . . ,p2d), d ∈ Z+, is a (possibly empty) M-path in
G+ L with an even number of nodes. In the first subcase we assume
{S, c1S}∩ V(P) = ∅. Then the M-cycle

D = (x, r,S, c1S,wi,ui,p1,p2, . . . ,p2d, x)

is contained in G+ L ′. In the second subcase, i.e., {S, c1S} ⊆ V(P), the
cycle C has the form

C = (x, r,wi,ui,p1,p2, . . . ,p2d ′ ,S, c1S,q1,q2, . . . ,q2d ′′ , x),

5.3 complexity of robust matching augmentation 99

where P := (p1,p2, . . . ,p2d ′) and Q := (q1,q2, . . . ,q2d ′′), are paths
with d ′,d ′′ ∈ Z+ and d ′ + d ′′ + 1 = d. Then both M-cycles

D ′ = (ui,p1, . . . ,p2d ′ ,S, c1S,wi,ui) and

D ′′ = (x, r,S, c1S,q1,q2, . . . ,q2d ′′ , x)

are contained in G + L ′. Note that the cycle D can not traverse the
edge {S, c1S} in the reversed order, because D is M-alternating. Hence
we can replace e by the standard-choice edge {r,S} ∈ Rs without
breaking feasibility.

b): Let e = {r, c2S} ∈ L for some S ∈ S. As before, we define L ′ :=
(L \ {e})∪ {{r,S}}. Consider an M-alternating cycle C in G+ L using e.
Then C can be written as

C = (x, r, c2S, c3S,p1,p2, . . . ,p2d, x),

where P := (p1,p2, . . . ,p2d), d ∈ Z+. In the first subcase we assume
S 6∈ V(P). Then the M-cycle

D = (x, r,S, c1S, c2S, c3S,p1,p2, . . . ,p2d, x)

can be used in G+ L ′ instead of C. The second subcase assumes S ∈
V(P), i.e., the cycle C has the form

C = (x, r, c2S, c3S,p1,p2, . . . ,p2d ′ ,S, c1S,q1,q2, . . . ,q2d ′′ , x),

where d ′,d ′′ ∈ Z+ and d ′ + d ′′ + 1 = d. Then both M-cycles

D ′ = (c2S, c3S,p1,p2, . . . ,p2d ′ ,S, c2S) and

D ′′ = (x, r,S, c1S,q1,q2, . . . ,q2d ′′ , x)

are contained in G + L ′. Hence we can replace e = {r, c2S} by the
standard-choice edge {r,S} without breaking feasibility.

Step 2:
The arguments are analog to those in Step 1. As before, we have to
consider two major cases with two subcases each.

a): Let e = {x, c1S} ∈ L for some S ∈ S. As above, we define L ′ :=
(L \ {e})∪ {{r,S}}. Consider an M-alternating cycle C in G+ L using e.
Then C can be written as

C = (r, x, c1S,S,p1,p2, . . . ,p2d, r),

where P := (p1,p2, . . . ,p2d), d ∈ Z+, is an M-path in G+ L.
Recap from the definition of Set Cover (see Problem 2.4.1), that S 6=
∅. In case there exists i ∈ [k] with i ∈ S such that {x,ui,wi} ∩V(P) = ∅,
use the M-cycle

D = (r, x,ui,wi, c1S,S,p1,p2, . . . ,p2d, r)

100 robust matching augmentation

in G+ L ′ instead. Otherwise, we assume that all edges {ui,wi}, i ∈ S,
are part of the path P. In case the path P contains only edges {ui,wi},
i ∈ S, there is nothing to do because each of them is part of an M-
alternating cycle because of the new edge {r,S}. Now we assume,
without loss of generality, that the edge e1 := {u1,w1} ∈ E(P) and
1 6∈ S. For sake of brevity, we assume the edge e1 is the only edge
from

{
{ui,wi} : i ∈ [k]

}
in P. Then there are elements a,b ∈ [k] ∩ S

such that P ′ := (ua,wa,u1,w1,ub,wb) is a subpath of P. Then we
can place the edge {u1,w1} on the following M-alternating cycle in
G+ L ′

D = (ua, x, r,S, c1S,wb,ub,w1,u1,wa,ua).

Hence we can replace e = {x, c1S} by a standard-choice edge {r,S}.
b): Let e = {x, c3S} ∈ L and

C = (r, x, c3S, c2S,p1,p2, . . . ,p2d, r),

where P := (p1,p2, . . . ,p2d), d ∈ Z+, be an M-cycle in G+ L. In case
S ∈ V(P), i.e., the cycle C can be written as

C = (r, x, c3S, c2S,p1,p2, . . . ,p2d ′ , c1S,S,q1,q2, . . . ,q2d ′′ , r),

where d ′ + d ′′ + 1 = d. Then the path (p1,p2, . . . ,p2d ′) is part of the
M-cycle

D ′ = (c3S, c2S,p1,p2, . . . ,p2d ′ , c1S,S, c3S).

For the path (q1,q2, . . . ,q2d ′′) we can repeat the arguments from the
preceding subcase. Hence, we only have to show how to treat the
path P. In case S 6∈ V(P), the path P is contained in the M-cycle

D = (r,p1,p2, . . . ,p2d, c2S, c3S,S, r)

in G + L ′. Hence we can replace e = {x, c3S} by the standard-choice
edge {r,S}.

The remaining non-standard edges are more complicated to handle
and we use more high-level arguments to treat them in the remaining
part of the proof. Recap that we have to show that instead of using an
arbitrary augmenting set L ⊆ Ē(G) we can use an augmenting set L ′

using standard-choice edges Rs only and with the property |L ′| 6 |L|.
Let us summarize the situation after the first two steps. We have a

feasible augmenting set L ′ ⊆ Ē(G) and we know that the node r is
only adjacent to nodes in S ⊆ W and x. Furthermore we know that
the node x is only adjacent to r and nodes in {ui : i ∈ [k]} ⊆ U. This
means concerning the nodes r and x we have established the setting
as illustrated in Fig. 22. Because L ′ is feasible we know that there is
at least one standard-choice edge {r,S}, S ∈ S, contained in the aug-
menting set L ′, i.e., theM-edge {r, x} is part of someM-cycle inG+L ′.

5.4 augmenting robust recoverable matchings 101

Step 3:
We now want to compute an ear decomposition of G+ L ′. First, we
remove all dispensable edges from G+ L ′ (see p. 18), which results in
a matching-covered graph G̃L. Observe that, concerning the original
edges of G, the removal can only affect the edge sets

{
{x,ui} : i ∈ [k]

}
and

{
{wi, c1S} : i ∈ [k], S ∈ S

}
. Recall, that the removal of dispens-

able edges disconnects the graph, but every M-edge is still located
on some M-alternating cycle in G̃L because all edges in those cycles
are not dispensable. Note that because of the replacements described
in Step 1, the edge {r, x} is still located on an M-alternating cycle.
Moreover, observe that the cycles CS, S ∈ S, are still contained in
G̃L. This means that the only M-edges in G̃L after the removal of the
non-standard edges, which are possibly not on an M-alternating cy-
cle anymore, are edges in E[k] =

{
{ui,wi} : i ∈ [k]

}
. Let F ⊆ E[k] be

the set of these edges.
We now have to argue that for each edge in F there is a non-

standard edge in G̃L and hence we can replace them by edges in
Rs one by one. Fix f ∈ F. Let H be a component of G̃L with f ∈ E(H).
Because f is on an M-alternating cycle in G̃L, the component H has
at least four nodes. First, in case {r, x} /∈ E(H), the component H only
contains M-edges of the form {ui,wi}, i ∈ [k], and no edges from the
cycles CS, S ∈ S. Moreover, H contains a cycle C that spans H and
every edge {ui,wi} ∈ E(H) ∩ E[k] is covered by C. This implies that
for every edge {ui,wi}, i ∈ [k], there is a non-standard edge in H and
we are done. Second, if {r, x} ∈ E(H), then let P0, . . . ,Pq be an ear de-
composition of H starting with P0 = {r, x} and M∩ E(H) as the initial
matching. By construction the edge f is part of some ear Pj, j ∈ [q].
Let f1, . . . , ft be the edges in F ∩ E(Pj). In case Pj has t non-standard
edges we are done. Now assume that Pj contains strictly less than t
non-standard edges. Then, Pj must contain edges {wi, c1S} and {x,ui ′}
for some i, i ′ ∈ [k], i 6= i ′ and S ∈ S (an example with t = 2, i = 2 and
i ′ = 3 is illustrated in Fig. 23). But then the edge {ui,wi} /∈ F because
H contains the M-alternating cycle (ui,wi, c1S,S, r, x,ui). This contra-
dicts the assumption that we have strictly less than t non-standard
edges in Pj.

Thus we know that G̃L contains at least |F| non-standard edges and
for each f ∈ F we can replace a non-standard edge by an edge in Rs
separately. �

5.4 augmenting robust recoverable matchings

In this section we are returning to the general version of k-Robust

s-Recoverable Matching Augmentation (Problem 5.1.3). Here we
study the influence of the recovery parameter s, which controls the
size of the M-alternating cycles in the graph.

102 robust matching augmentation

u1 u2 u3

w1 w2 w3

x

r

c1S1 c1S2

S1 c2S1

c3S1

c2S2 S2

c3S2

CS1 CS2

1 f1 f2

Figure 23: Illustration of the situation in Lemma 5.3.5 for t = 2, i = 2 and
i ′ = 3. The figure shows the ear Pj (dashed) in the matching-
covered graph G̃L with f1 = {u2,w2} and f2 = {u3,w3}.

First, we argue that even in case k = 1 for most values of s the
problem is as hard as 1-RMAP. Recap the graph G from the proof
of Theorem 5.3.3. First observe that G only has M-alternating cycles
of size 4. Second, the addition of standard-choice edges {r,Sj}, j ∈ [`],
puts every edge {ui,wi} on a cycle of size 6. Hence the reduction (f,g)
defined in Lemma 5.3.2 is a reduction from Set Cover to 1-s-RRMAP
with s > 3. This immediately gives us the same hardness result as for
1-RMAP.

Theorem 5.4.1. For every ε > 0 and every s > 3, it is NP-hard to approx-
imate 1-Robust s-Recoverable Matching Augmentation to within
(1 − ε) lnn, where n is the number of nodes in the underlying bipartite
graph. Moreover, 1-s-RRMAP is W[2]-hard when parameterized by the so-
lution size.

Surprisingly, 1-2-RMAP is a tractable problem.

Theorem 5.4.2. 1-Robust s-Recoverable Matching Augmentation

with s = 2 is solvable in polynomial time.

Proof. First observe that a matching M in G is 1-robust 2-recoverable
if and only if eachM-edge is located on anM-alternating cycle of size
4 in G. Therefore, solving 1-2-RMAP is equivalent to adding edges to
G to obtain this property.

In order to select the edges accordingly, we use a reduction to the
following well-known problem.

5.4 augmenting robust recoverable matchings 103

Min-Cost Edge Cover (ECP)

Instance: 〈G, c〉, where G = (V ,E) is a graph and c ∈ RE
+.

Solution: A set of edges E ′ ⊆ E, such that V(E ′) = V .

Task: Find E ′ minimizing c(E ′) or decide that no such E ′

exists.

Min-Cost Edge Cover can be solved exactly using a reduction to 1-
capacitated b-matching [GLS93, p. 259].

Given an 1-2-RMAP instance I = 〈G,M,R, c〉, the corresponding
ECP instance I ′ = 〈G ′, c ′〉 is defined as follows. Let n = |M| and
m1, . . . ,mn be the edges in M. The graph G ′ is constructed by the
following two transformation steps.

(T1) For each M-edge mi, i ∈ [n], we introduce a node vi to G ′.

(T2) Whenever a pair of M-edges mi,mj is located on a 4-cycle in
G+ R add an edge {vi, vj} to G ′.

In other words, each M-cycle of size 4 in G+R is shrunk to a single
edge in G ′. To facilitate notation, we extend the cost function c ∈ RR+
to E(G) ∪ R by defining ce := 0 for each e ∈ E(G). Then the cost
c ′ ∈ R

E(G ′)
+ for the ECP instance is given by

c ′({vi, vj}) = c(Cij), (15)

where Cij is the unique 4-cycle in G+ R containing the M-edges mi
and mj. This definition implies, that an edge in G ′ has zero cost if
and only if Cij is a cycle in G.
Note that the reduction can be performed in polynomial time and see
Fig. 24 for an example.

Observe that the 1-2-RMAP instance I is feasible if and only if G ′

has no isolated nodes, i.e., I ′ has a feasible edge cover. We now argue
that an optimal solution to I ′ is mapped to an optimal solution to I

and both objective values coincide.
First assume L ⊆ R is an augmenting set for the instance 〈G,M〉.

Consider the edge set

EL :=
{
{vi, vj} ∈ E(G ′) : L∩ E(Cij) 6= ∅

}
∪ {e ∈ E(G ′) : c ′e = 0} .

Because every pair of M-edges is part of a 4-cycle in G+ L, the edges
in EL form an edge cover for I ′.

Conversely, let E ′ ⊆ E(G ′) be a feasible solution to the ECP instance
I ′ = 〈G ′, c ′〉. The corresponding solution L ′ ⊆ R for 〈G,M〉 is given
by

L ′ := {E(Cij)∩ R : e ′ = {vi, vj} ∈ E ′ and c ′(e ′) 6= 0}.

104 robust matching augmentation

m1

m2

m3

m4

m5

v1

v2

v3

v4

v5

2

2
2

2

1
2

2

2

0

1

m1

m2

m3

m4

m5

Figure 24: Illustration of the reduction in Theorem 5.4.2. From left to right:
an unweighted 1-2-RMAP instance 〈G,M〉; corresponding ECP
instance with a minimum-cost solution E ′ in G ′ (green); the input
graph G with an optimal augmenting set L for 〈G,M〉 (green)
constructed from the ECP solution E ′.

Recap that for each edge {vi, vj} with non-zero cost, we have that
|R ∩ E(Cij)| > 1. By construction, each M-edge is part of an M-cycle
of size 4 in the graph G+ L ′, hence L ′ is feasible.

In total we have a one-to-one correspondence between solutions to
the 1-2-RMAP instance I and edge covers for I ′. Because of (15), the
objective values coincide

c(L ′) =
∑
i,j∈[n]

c(L ′ ∩ E(Cij)) =
∑

{vi,vj}∈E ′
c ′({vi, vj}) = c ′(E ′).

Thus an optimal solution to I ′ yields an optimal solution to I. �

Appendices

A
N P - C O M P L E T E N E S S O F B PA F P P

In this section we prove NP-completeness of the special variant of
Path Avoiding Forbidden Pairs used in Section 3.3 to prove NP-
hardness of Shortest Nice Path. For the sake of clarity we repeat
the definition here.

Problem A.1 (BPAFPP).
Path Avoiding Forbidden Pairs in Bipartite Graphs

Instance: 〈H, s, t,FP〉, where H = (U ∪̇W,E) is a balanced
bipartite graph, s, t are two distinct nodes in G and
a set of node pairs FP such that the properties

1. |FP| = k is even,

2. for each pair (ai,bi) ∈ FP : either ai,bi ∈ U
or ai,bi ∈W,

3.
∣∣{(ai,bi) ∈ FP : ai,bi ∈ U

}∣∣ =
∣∣{(ai,bi) ∈

FP : ai,bi ∈W
}∣∣,

4. s ∈ U and t ∈W,

hold.

Question: Is there an s-t-path P in G such that for each
(a,b) ∈ FP at most one of the two nodes is cov-
ered by P?

This is a restriction of Path Avoiding Forbidden Pairs to biparite
graphs. In directed graphs, the general problem is known to be NP-
complete due to Gabow et al. [GMO76, Lemma 2]. Next, we show
that our restricted variant of PAFPP remains NP-complete. For this,
we adapt the reduction from 3-SAT used in the hardness proof in
[GMO76].

Theorem A.2. The decision problem BPAFPP is NP-complete.

Proof. Given a path P in H, it is easy to verify whether P forms a path
from s to t and covers at most one node out of {ai,bi}, for each i ∈ [k].
Thus, the problem is in NP.

107

108 np-completeness of bpafpp

Now consider an arbitrary 3-SAT instance I = 〈B〉, where B =∧n
i=1Ci is a Boolean formula and each clause Ci =

∨3
j=1 ci,j consists

of exactly three literals ci,j, j ∈ [3], defined over a finite set of Boolean
variables.

Next, we construct an instance I ′ of BPAFPP from I. The key idea is
that each clause is represented by a "layer" in the graph and the path
has to select at least one literal from each clause. The forbidden pairs
are defined in a way that this selection yields a valid assignment for
B.

The construction of the bipartite graph is described in detail next,
an example is shown in Fig. 25. First, we introduce two nodes vi,j

s

v1,1 v1,2 v1,3

v̂1,1 v̂1,2 v̂1,3

v2,1 v2,2 v2,3

v̂2,1 v̂2,2 v̂2,3

t

Figure 25: Graph H constructed in reduction from Theorem A.2 for the
Boolean formula (x∨y∨ z)∧ (y∨ x̄∨ z̄). The forbidden pairs are
given by {(v11, v22), (v13, v23), (v̂11, v̂22), (v̂13, v̂23)} correspond-
ing to (x, x̄) and (z, z̄).

and v̂i,j for each literal ci,j appearing in the Boolean formula B. For
each clause Ci = (ci,1 ∨ ci,2 ∨ ci,3) we construct the complete bi-
partite graph (K3,3)

i := (Vi ∪̇ V̂i,Ei) with Vi := {vi,1, vi,2, vi,3} and
V̂i := {v̂i,1, v̂i,2, v̂i,3}, i.e., each literal ci,j corresponds to two nodes
vi,j and v̂i,j. Next, for each i ∈ [n − 1], the bipartite graphs (K3,3)

i

and (K3,3)
i+1 associated with two consecutive clauses Ci and Ci+1

(with respect to some arbitrary ordering) are connected to each other
by introducing the edge set

Ēi =
{
{v̂i,j1 , vi+1,j2} : j1, j2 ∈ [3]

}
.

np-completeness of bpafpp 109

This way, we obtain a complete bipartite subgraph on the node set
{v̂i,1, v̂i,2, v̂i,3} ∪̇{vi+1,1, vi+1,2, vi+1,3}, i ∈ [n− 1].

Finally, we introduce the nodes s and t. We connect s with each
node in V1, and t with each node in V̂n, i.e., we add the edge sets
Es :=

{
{s, v1,1}, {s, v1,2}, {s, v1,3}

}
and Et :=

{
{v̂n,1, t}, {v̂n,2, t}, {v̂n,3, t}

}
.

Our transformation yields the bipartite graph H := (U∪̇W,E) with

U := {s} ∪
n⋃
i=1

V̂i, W := {t} ∪
n⋃
i=1

Vi and

E :=

n⋃
i=1

Ei ∪
n−1⋃
i=1

Ēi ∪ Es ∪ Et.

To define the set FP of forbidden pairs we compute the set

neg(B) := {(ci,j, cl,k) : ∀i, l ∈ [n], ∀j,k ∈ {1, 2, 3} with ci,j = ¬cl,k},

and define FP :=
{
(vi,j, vl,k), (v̂i,j, v̂l,k) : (ci,j, cl,k) ∈ neg(B)

}
.

We now claim that I ′ := 〈H, s, t,FP〉 is an instance of BPAFPP. As
|U| = 1+ 3n = |W|, the graph H is a balanced, bipartite graph with
s ∈ U and t ∈ W. Moreover, both the number of forbidden pairs
(vi,j, vl,k) ∈ FP, whose nodes are contained in W, and the number
of forbidden pairs (v̂i,j, v̂l,k) ∈ FP, whose nodes are contained in U,
equals |neg(B)|. In addition, |FP| = 2|neg(B)| is even. Note that the
size of I ′ is polynomial in size(I).

It remains to show that I is a Yes-instance of 3-SAT if and only if
I ′ is a Yes-instance of BPAFPP. We show necessity first. Let P be an
s-t path in H that does not cover both nodes of any forbidden pair.
Consider now the literals corresponding to nodes in (W ∩ V(P)) \ {t}.
We denote this set by L. For each clause in B there is at least one
literal in L, because the path P has to cross every layer in the graph.
Selecting one literal in L per clause and make this literal resolve to
true gives us a valid assignment for the formula B. Conversely we
now take any truth assignment for B. Then we can choose a literal in
every clause that causes the clause resolve to true. A path from s to t
that covers all the nodes corresponding to the chosen literals defines
a feasible path for I ′. �

B
N O T E S O N E - R A P I N N O N - B I PA RT I T E G R A P H S

Here we sketch two issues that occur if Edge-Robust Assignment is
extended to non-bipartite graphs.

b.1 optimal solutions and k-factors

Recap that by Proposition 3.1.5 (p. 37) we know that if the underlying
bipartite graph G has a k-factor, then any k-factor in G is an optimal
solution for (k− 1)-uniform Card-E-RAP instance 〈G, [E(G)]k−1〉. Un-
fortunately, this is not longer true for non-bipartite graphs and k > 2.
The graph G in Fig. 26 is 3-regular but G− {4, 5} has two odd compo-
nents and hence G is not [E(G)]1-feasible.

0 3

1 2

4 5

6 9

7 8

Figure 26: A 3-regular graph which is not 1-uniform feasible.

In case k = 2, a k-factor is a collection of cycles and is feasible if and
only if every cycle in the collection is even.

For non-bipartite graphs the sufficient condition for feasibility of a
k-factor was proved by Plesník: If X ⊆ E(G) is a k-factor in G and
each component of G[X] is (k − 1)-edge-connected, then G[X] has a
perfect matching after removal of any k edges [Ple72, Thm. 1].

b.2 general ear-decompositions and trivial ears

The constant-factor approximation algorithm for E-RAP in Section 3.7
computes an approximate solution starting from an ear decomposi-
tion of the underlying graph. The key observation is that removing
trivial ears from any ear decomposition results in a graph which is
again matching-covered. As mentioned in Section 2.3.2, non-bipartite
matching-covered graphs also posses ear decompositions. Here we
show that the same idea does not work for general graphs by provid-

111

112 notes on e-rap in non-bipartite graphs

ing a counterexample.

The relationship between matching-covered graphs and feasible so-
lutions to E-RAP with single edge failures was established in Propo-
sition 3.1.3, p. 36. Note that the corresponding proof does not use the
bipartiteness of the graph and thus works for general graphs. In order
to present a counterexample, we first need to define a non-bipartite
ear decomposition precisely. We repeat the definition of an ear first
(see p. 16). Let G = (V ,E) be a graph and H a subgraph of G. An
ear in G with respect to H is an odd path P = (v0, . . . , v`) in G such
that v0 6= v` and {v1, . . . , v`−1} ⊆ V(G) \ V(H). Ears of length one, i.e.
` = 1, are called trivial.

Definition B.2.1 (adapted from [LP86, p. 175]). Let G be a matching-
covered graph. An ear decomposition of G is a sequence of graphs
G0, . . . ,Gr with the following properties.

• The initial graph G0 consists of a single edge in G.

• Each graph Gi, i ∈ [r], results from Gi−1 by adding one or two
odd paths and these paths are ears with respect to Gi−1.

• Each graph Gi, i ∈ [r], is matching-covered.

• Each graph Gi, i ∈ [r], is nice, i.e., G−V(Gi) is perfectly match-
able.

• There holds G = G0 + · · ·+Gr.

If an addition of two ears can not be split up in two single ear
additions, then we call this pair of ears a double ear. Note that the ear
decomposition defined for bipartite graphs in Definition 2.3.5 satisfies
this definition. But unlike for bipartite graphs, we need to require the
subgraphs Gi, i ∈ [r], to be matching-covered and nice explicitly. The
major difference is, that for non-bipartite graphs we need to add two
ears in one step at some point in the construction to ensure that the
resulting graph is matching-covered. An easy example is K4. We can
start with any edge and then add a path of length 3 yielding a 4-cycle.
The remaining two edges have to be add at once, because adding just
one of them results in a graph which is not matching-covered. In
general, for a non-bipartite graph at least one addition of two ears is
necessary [LP86, p. 185].

We want to stress, that it is non-trivial to show that adding at most
two ears in each step is sufficient. This result is known as The Two
Ear Theorem [LP86, Thm. 5.4.6.].

We are now ready to present an example illustrating that both triv-
ial single and trivial double ears may be crucial in an ear decomposi-
tion and can not be omitted.

B.2 general ear-decompositions and trivial ears 113

Example B.2.2. We consider the graph G illustrated in Fig. 27. One
possible ear decomposition is G0, . . . ,G4 where we start with G0 =

{1, 2} and the remaining sequence is defined by

G1 := G0 + (2, 3, 4, 5, 6, 7, 8) (black),

G2 := G1 + (2, 5) (gray),

G3 := G2 + (1, 3) + (2, 8) (blue),

G4 := G3 + (4, 9, 10, 6) (green).

Note that adding only one of the ears (1, 3) or (2, 8) to the graph G2
does not yield a matching-covered graph. To simplify notation we
define Ps := (2, 5), Pd := (1, 3) + (2, 8) and Q := (4, 9, 10, 6), i.e.,

G = G1 + Ps + Pd +Q.

Both ears, the single ear Ps and the double ear Pd are trivial and hence
do not cover any new nodes. But without them, the graph G1 +Q is
not matching-covered. To see this, consider (G1 +Q) − {9, 10}, where
the nodes 5, 9 and 10 can not be matched at the same time. In order
to be able to add the path Q to G1 we need both, the single edge ear
Ps and the double ear Pd.

6 5 4

3

21

8

7

10 9

Figure 27: A non-bipartite graph G and an ear decomposition, such that G
is not matching-covered if all its trivial ears are removed.

B I B L I O G R A P H Y

[Adj17] David Adjiashvili. “Beating Approximation Factor Two for
Weighted Tree Augmentation with Bounded Costs.” In:
Proceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA). Society for Industrial
and Applied Mathematics, 2017, pp. 2384–2399. doi: 10.1
137/1.9781611974782.157 (cit. on p. 31).

[ASZ15] David Adjiashvili, Sebastian Stiller, and Rico Zenklusen.
“Bulk-robust combinatorial optimization.” Mathematical
Programming 149.1-2, 2015, pp. 361–390. doi: 10.1007/s10
107-014-0760-6 (cit. on pp. 1, 4, 25, 26).

[ABV05] Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten.
“Complexity of the min–max and min–max regret assign-
ment problems.” Operations Research Letters 33.6, 2005,
pp. 634 –640. doi: 10 . 1016 / j . orl . 2004 . 12 . 002 (cit.
on p. 26).

[ABV09] Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten.
“Min–max and min–max regret versions of combinatorial
optimization problems: A survey.” European Journal of Op-
erational Research 197.2, 2009, pp. 427 –438. doi: 10.1016
/j.ejor.2008.09.012 (cit. on pp. 24, 26).

[AAL07] Robert E. L. Aldred, Richard P. Anstee, and Stephen C.
Locke. “Perfect matchings after vertex deletions.” Discrete
Mathematics 307.23, 2007, pp. 3048–3054. doi: 10.1016/j.
disc.2007.03.017 (cit. on p. 30).

[AK00] Paola Alimonti and Viggo Kann. “Some APX-complete-
ness results for cubic graphs.” Theoretical Computer Science
237.1, 2000, pp. 123 –134. doi: 10.1016/S0304-3975(98)00
158-3 (cit. on p. 21).

[Aru+16] Ashwin Arulselvan, Ágnes Cseh, Martin Groß, David F.
Manlove, and Jannik Matuschke. “Matchings with Lower
Quotas: Algorithms and Complexity.” Algorithmica, 2016.
doi: 10.1007/s00453-016-0252-6 (cit. on p. 27).

115

https://doi.org/10.1137/1.9781611974782.157
https://doi.org/10.1137/1.9781611974782.157
https://doi.org/10.1007/s10107-014-0760-6
https://doi.org/10.1007/s10107-014-0760-6
https://doi.org/10.1016/j.orl.2004.12.002
https://doi.org/10.1016/j.ejor.2008.09.012
https://doi.org/10.1016/j.ejor.2008.09.012
https://doi.org/10.1016/j.disc.2007.03.017
https://doi.org/10.1016/j.disc.2007.03.017
https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.1007/s00453-016-0252-6

116 bibliography

[Aus+12] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi,
Viggo Kann, Alberto Marchetti-Spaccamela, and Marco
Protasi. Complexity and Approximation: Combinatorial Op-
timization Problems and Their Approximability Properties.
Springer, 2012 (cit. on pp. 7, 11).

[BTN99] Aharon Ben-Tal and Arkadi Nemirovski. “Robust solu-
tions of uncertain linear programs.” Operations Research
Letters 25.1, 1999, pp. 1 –13. doi: 10.1016/S0167-6377(99
)00016-4 (cit. on pp. 22, 23).

[BT+04] Aharon. Ben-Tal, Alexander Goryashko, Elana Guslitzer,
and Arkadi Nemirovski. “Adjustable robust solutions
of uncertain linear programs.” Mathematical Programming
99.2, 2004, pp. 351–376. doi: 10.1007/s10107-003-0454-y
(cit. on p. 24).

[BBC11] Dimitris Bertsimas, David B. Brown, and Constantine Cara-
manis. “Theory and Applications of Robust Optimiza-
tion.” SIAM review 53, 2011, pp. 464–501. doi: 10.1137/08
0734510 (cit. on p. 22).

[BC10] Dimitris Bertsimas and Constantine Caramanis. “Finite
Adaptability in Multistage Linear Optimization.” IEEE
Transactions on Automatic Control 55.12, 2010, pp. 2751–
2766. doi: 10.1109/TAC.2010.2049764 (cit. on p. 24).

[BNS13] Dimitris Bertsimas, Ebrahim Nasrabadi, and Sebastian
Stiller. “Robust and Adaptive Network Flows.” Operations
Research 61.5, 2013, pp. 1218–1242. doi: 10.1287/opre.201
3.1200 (cit. on p. 26).

[BS03] Dimitris Bertsimas and Melvyn Sim. “Robust discrete op-
timization and network flows.” Mathematical Programming
98.1, 2003, pp. 49–71. doi: 10.1007/s10107-003-0396-4
(cit. on p. 24).

[BS04] Dimitris Bertsimas and Melvyn Sim. “The Price of Robust-
ness.” Operations Research 52.1, 2004, pp. 35–53. doi: 10.12
87/opre.1030.0065 (cit. on p. 23).

[Bri+05] Robert C. Brigham, Frank Harary, Elizabeth C. Violin, and
Jay Yellen. “Perfect-matching preclusion.” Congressus Nu-
merantium 174, 2005, pp. 185–192 (cit. on pp. 30, 38).

[BP71] Richard A. Brualdi and Hazel Perfect. “Extension of partial
diagonals of matrices I.” Monatshefte für Mathematik 75.5,
1971, pp. 385–397 (cit. on p. 18).

https://doi.org/10.1016/S0167-6377(99)00016-4
https://doi.org/10.1016/S0167-6377(99)00016-4
https://doi.org/10.1007/s10107-003-0454-y
https://doi.org/10.1137/080734510
https://doi.org/10.1137/080734510
https://doi.org/10.1109/TAC.2010.2049764
https://doi.org/10.1287/opre.2013.1200
https://doi.org/10.1287/opre.2013.1200
https://doi.org/10.1007/s10107-003-0396-4
https://doi.org/10.1287/opre.1030.0065
https://doi.org/10.1287/opre.1030.0065

bibliography 117

[BK17a] Christoph Buchheim and Jannis Kurtz. “Min–max–min
robust combinatorial optimization.” Mathematical Program-
ming 163.1, 2017, pp. 1–23. doi: 10.1007/s10107-016-1053
-z (cit. on p. 24).

[BK17b] Christoph Buchheim and Jannis Kurtz. Robust Combinato-
rial Optimization under Convex and Discrete Cost Uncertainty.
Tech. rep. 2017. url: http://www.optimization-online.
org/DB_HTML/2017/09/6199.html (cit. on p. 24).

[BDM12] Rainer E. Burkard, Mauro Dell’Amico, and Silvano Martello.
Assignment Problems, Revised Reprint. Society for Industrial
and Applied Mathematics, 2012 (cit. on p. 1).

[CC05] Marcelo H. de Carvalho and Joseph Cheriyan. “An O(VE)
Algorithm for Ear Decompositions of Matching-Covered
Graphs.” ACM Transactions on Algorithms (TALG) 1.2, 2005,
pp. 324–337. doi: 10.1145/1103963.1103969 (cit. on p. 19).

[CP10] Shiri Chechik and David Peleg. “Robust Fault Tolerant Un-
capacitated Facility Location.” In: 27th International Sym-
posium on Theoretical Aspects of Computer Science (STACS).
Vol. 5. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2010, pp. 191–202. doi: 10.4230/LIPIcs.STACS.2010.2454
(cit. on p. 26).

[Che+09a] Shiri Chechik, Michael Langberg, David Peleg, and Liam
Roditty. “Fault-tolerant spanners for general graphs.” In:
Proceedings of the 41st Annual ACM Symposium on Theory of
Computing (STOC). 2009, pp. 435–444. doi: 10.1145/15364
14.1536475 (cit. on p. 26).

[Che+02] Chandra Chekuri, Anupam Gupta, Amit Kumar, Joseph
Naor, and Danny Raz. “Building Edge-Failure Resilient
Networks.” In: Proceedings of the 9th Conference on Inte-
ger Programming and Combinatorial Optimization (IPCO).
Springer, 2002, pp. 439–456. doi: 10.1007/3-540-47867-1
_31 (cit. on p. 26).

[Che+09b] Eddie Cheng, Linda Lesniak, Marc J. Lipman, and Las-
zlo Liptak. “Conditional matching preclusion sets.” Infor-
mation Sciences 179.8, 2009, pp. 1092–1101. doi: 10.1016
/j.ins.2008.10.029 (cit. on p. 30).

https://doi.org/10.1007/s10107-016-1053-z
https://doi.org/10.1007/s10107-016-1053-z
http://www.optimization-online.org/DB_HTML/2017/09/6199.html
http://www.optimization-online.org/DB_HTML/2017/09/6199.html
https://doi.org/10.1145/1103963.1103969
https://doi.org/10.4230/LIPIcs.STACS.2010.2454
https://doi.org/10.1145/1536414.1536475
https://doi.org/10.1145/1536414.1536475
https://doi.org/10.1007/3-540-47867-1_31
https://doi.org/10.1007/3-540-47867-1_31
https://doi.org/10.1016/j.ins.2008.10.029
https://doi.org/10.1016/j.ins.2008.10.029

118 bibliography

[CSS01] Joseph Cheriyan, András Sebő, and Zoltán Szigeti. “Im-
proving on the 1.5-Approximation of a Smallest 2-Edge
Connected Spanning Subgraph.” SIAM Journal on Discrete
Mathematics 14.2, 2001, pp. 170–180. doi: 10.1137/S089548
0199362071 (cit. on pp. 25, 59).

[CC03] Miroslav Chlebík and Janka Chlebíková. “Inapproximabil-
ity Results for Bounded Variants of Optimization Prob-
lems.” In: Proceedings of 14th International Symposium on
Fundamentals of Computation Theory (FCT). Springer, 2003,
pp. 27–38. doi: 10.1007/978-3-540-45077-1_4 (cit. on
p. 21).

[Chr76] Nicos Christofides. Worst-case analysis of a new heuristic for
the travelling salesman problem. Tech. rep. 388. Carnegie-
Mellon University Pittsburgh, Graduate School of Indus-
trial Administration, 1976 (cit. on p. 1).

[Chv79] Vašek Chvátal. “A Greedy Heuristic for the Set-Covering
Problem.” Mathematics of Operations Research 4.3, 1979,
pp. 233–235. doi: 10.1287/moor.4.3.233 (cit. on p. 20).

[CFS91] Pierluigi Crescenzi, C. Fiorini, and Riccardo Silvestri. “A
note on the approximation of the max clique problem.”
Information Processing Letters 40.1, 1991, pp. 1 –5. doi: 10.1
016/S0020-0190(05)80002-X (cit. on p. 11).

[Cyg+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel
Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał
Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015 (cit. on pp. 12, 21).

[Dah16] Mirko Dahlbeck. “Ear decompositions of matching-cov-
ered graphs.” MA thesis. Technische Universität Dort-
mund, 2016 (cit. on p. 61).

[Dar+11] Andreas Darmann, Ulrich Pferschy, Joachim Schauer, and
Gerhard J. Woeginger. “Paths, trees and matchings un-
der disjunctive constraints.” Discrete Applied Mathematics
159.16, 2011, pp. 1726–1735. doi: 10.1016/j.dam.2010.12
.016 (cit. on p. 32).

[DW06] Vladimir G. Deineko and Gerhard J. Woeginger. “On the
robust assignment problem under a fixed number of cost
scenarios.” Operations Research Letters 34.2, 2006, pp. 175 –
179. doi: 10.1016/j.orl.2005.04.003 (cit. on p. 26).

https://doi.org/10.1137/S0895480199362071
https://doi.org/10.1137/S0895480199362071
https://doi.org/10.1007/978-3-540-45077-1_4
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1016/S0020-0190(05)80002-X
https://doi.org/10.1016/S0020-0190(05)80002-X
https://doi.org/10.1016/j.dam.2010.12.016
https://doi.org/10.1016/j.dam.2010.12.016
https://doi.org/10.1016/j.orl.2005.04.003

bibliography 119

[Dha+05] Kedar Dhamdhere, Vineet Goyal, R. Ravi, and Mohit Singh.
“How to pay, come what may: approximation algorithms
for demand-robust covering problems.” In: 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society, 2005, pp. 367–376. doi: 10.1109
/SFCS.2005.42 (cit. on p. 25).

[Die00] Reinhard Diestel. Graph Theory. 2nd ed. 173. Springer, 2000

(cit. on p. 5).

[DK11] Michael Dinitz and Robert Krauthgamer. “Fault-tolerant
Spanners: Better and Simpler.” In: Proceedings of the 30th
Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC). ACM, 2011, pp. 169–178.
doi: 10.1145/1993806.1993830 (cit. on p. 26).

[DS14] Irit Dinur and David Steurer. “Analytical Approach to Par-
allel Repetition.” In: Proceedings of the Forty-sixth Annual
ACM Symposium on Theory of Computing (STOC). ACM,
2014, pp. 624–633. doi: 10.1145/2591796.2591884 (cit. on
pp. 20, 21).

[Dou+15] Mitre Costa Dourado, Dirk Meierling, Lucia D. Penso,
Dieter Rautenbach, Fabio Protti, and Aline Ribeiro de
Almeida. “Robust recoverable perfect matchings.” Net-
works 66.3, 2015, pp. 210–213. doi: 10.1002/net.21624
(cit. on pp. 28, 38, 90).

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized
Complexity. Springer, 1999 (cit. on p. 13).

[Edm65] Jack Edmonds. “Paths, trees, and flowers.” Canadian Jour-
nal of mathematics 17.3, 1965, pp. 449–467 (cit. on p. 14).

[Edm70] Jack Edmonds. “Submodular functions, matroids, and cer-
tain polyhedra.” In: Combinatorial Structures and their Ap-
plications (Proc. Calgary Internat. Conf., 1969). Gordon and
Breach, 1970, pp. 69–87 (cit. on p. 84).

[ET76] Kapali P. Eswaran and Robert E. Tarjan. “Augmentation
Problems.” SIAM Journal on Computing 5.4, 1976, pp. 653–
665. doi: 10.1137/0205044 (cit. on p. 31).

[Fav96] Odile Favaron. “On k-factor-critical graphs.” Discuss. Math.
Graph Theory 16.1, 1996, pp. 41–51. doi: 10.7151/dmgt.1022
(cit. on p. 30).

https://doi.org/10.1109/SFCS.2005.42
https://doi.org/10.1109/SFCS.2005.42
https://doi.org/10.1145/1993806.1993830
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1002/net.21624
https://doi.org/10.1137/0205044
https://doi.org/10.7151/dmgt.1022

120 bibliography

[Fei98] Uriel Feige. “A Threshold of ln n for Approximating Set
Cover.” Journal of the ACM 45.4, 1998, pp. 634–652. doi: 10
.1145/285055.285059 (cit. on p. 20).

[Fei+07] Uriel Feige, Kamal Jain, Mohammad Mahdian, and Vahab
Mirrokni. “Robust Combinatorial Optimization with Expo-
nential Scenarios.” In: Proceedings of the 12th Conference on
Integer Programming and Combinatorial Optimization (IPCO).
Springer, 2007, pp. 439–453. doi: 10.1007/978-3-540-727
92-7_33 (cit. on p. 25).

[Fio+17] Samuel Fiorini, Martin Groß, Jochen Könemann, and
Laura Sanità. “A 3/2-Approximation Algorithm for Tree
Augmentation via Chvátal-Gomory Cuts.” arXiv preprint,
2017. url: https://arxiv.org/abs/1702.05567 (cit. on
p. 31).

[FJ81] Greg N. Frederickson and Joseph Ja’Ja’. “Approximation
Algorithms for Several Graph Augmentation Problems.”
SIAM Journal on Computing 10.2, 1981, pp. 270–283. doi: 10
.1137/0210019 (cit. on p. 31).

[FKM10] Ryo Fujita, Yusuke Kobayashi, and Kazuhisa Makino. “Ro-
bust Matchings and Matroid Intersections.” In: Proceedings
of the 18th annual European conference on Algorithms (ESA):
Part II. Springer, 2010, pp. 123–134. doi: 10.1007/978-3-6
42-15781-3_11 (cit. on p. 27).

[FM94] Komei Fukuda and Tomomi Matsui. “Finding all the per-
fect matchings in bipartite graphs.” Applied Mathematics
Letters 7.1, 1994, pp. 15–18. doi: 10.1016/0893- 9659(94
)90045-0 (cit. on p. 13).

[GMO76] Harold N. Gabow, Shachindra N. Maheshwari, and Leon
J. Osterweil. “On Two Problems in the Generation of Pro-
gram Test Paths.” IEEE Transactions on Software Engineering
SE-2.3, 1976, pp. 227–231. doi: 10.1109/TSE.1976.233819
(cit. on p. 107).

[Gab+09] Harold N. Gabow, Michel X. Goemans, Éva Tardos, and
David P. Williamson. “Approximating the smallest k-edge
connected spanning subgraph by LP-rounding.” Networks
53.4, 2009, pp. 345–357. doi: 10.1002/net.20289 (cit. on
p. 25).

https://doi.org/10.1145/285055.285059
https://doi.org/10.1145/285055.285059
https://doi.org/10.1007/978-3-540-72792-7_33
https://doi.org/10.1007/978-3-540-72792-7_33
https://arxiv.org/abs/1702.05567
https://doi.org/10.1137/0210019
https://doi.org/10.1137/0210019
https://doi.org/10.1007/978-3-642-15781-3_11
https://doi.org/10.1007/978-3-642-15781-3_11
https://doi.org/10.1016/0893-9659(94)90045-0
https://doi.org/10.1016/0893-9659(94)90045-0
https://doi.org/10.1109/TSE.1976.233819
https://doi.org/10.1002/net.20289

bibliography 121

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co Ltd, 1979 (cit. on pp. 7, 31, 41).

[Gas+12] Serge Gaspers, Eun Jung Kim, Sebastian Ordyniak, Saket
Saurabh, and Stefan Szeider. “Don’t Be Strict in Local
Search!” In: Proceedings of the Twenty-Sixth AAAI Confer-
ence on Artificial Intelligence. 2012. url: https://www.aaai.
org/ocs/index.php/AAAI/AAAI12/paper/view/4929 (cit.
on p. 92).

[Gra+14] Fabrizio Grandoni, R. Ravi, Mohit Singh, and Rico Zen-
klusen. “New approaches to multi-objective optimization.”
Mathematical Programming 146.1, 2014, pp. 525–554. doi: 10
.1007/s10107-013-0703-7 (cit. on p. 26).

[GLS93] Martin Grötschel, László Lovász, and Alexander Schrijver.
Geometric Algorithms and Combinatorial Optimization. 2nd ed.
Springer, 1993 (cit. on pp. 8, 15, 50, 103).

[HIM03] MohammadTaghi Hajiaghayi, Nicole Immorlica, and Va-
hab S. Mirrokni. “Power optimization in fault-tolerant
topology control algorithms for wireless multi-hop net-
works.” In: Proceedings of the 9th Annual International Con-
ference on Mobile Computing and Networking (MobiCom).
ACM, 2003, pp. 300–312. doi: 10 . 1145 / 938985 . 939016

(cit. on p. 26).

[Han+17] Samuel Haney, Bruce Maggs, Biswaroop Maiti, Debmalya
Panigrahi, Rajmohan Rajaraman, and Ravi Sundaram.
“Symmetric Interdiction for Matching Problems.” In: Ap-
proximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM). Vol. 81.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017,
9:1–9:19. doi: 10.4230/LIPIcs.APPROX- RANDOM.2017.9
(cit. on p. 29).

[Har70] Darald J. Hartfiel. “A simplified form for nearly reducible
and nearly decomposable matrices.” Proceedings of the
American Mathematical Society 24.2, 1970, pp. 388–393 (cit.
on p. 17).

[HR02] Refael Hassin and Shlomi Rubinstein. “Robust Match-
ings.” SIAM Journal on Discrete Mathematics 15.4, 2002,
pp. 530–537. doi: 10 . 1137 / S0895480198332156 (cit. on
p. 27).

https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4929
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4929
https://doi.org/10.1007/s10107-013-0703-7
https://doi.org/10.1007/s10107-013-0703-7
https://doi.org/10.1145/938985.939016
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.9
https://doi.org/10.1137/S0895480198332156

122 bibliography

[Het64] Gábor Hetyei. “Rectangular configurations which can be
covered by 2× 1 rectangles.” Pécsi Tan. Foisk. Közl 8, 1964,
pp. 351–367 (cit. on p. 16).

[HK73] John E. Hopcroft and Richard M. Karp. “An n5/2 Algo-
rithm for Maximum Matchings in Bipartite Graphs.” SIAM
Journal on Computing 2.4, 1973, pp. 225–231. doi: 10.1137
/0202019 (cit. on p. 14).

[HHS93] Chun-Nan Hung, Lih-Hsing Hsu, and Ting-Yi Sung. “The
most vital edges of matching in a bipartite graph.” Net-
works 23.4, 1993, pp. 309–313. doi: 10.1002/net.32302304
13 (cit. on p. 28).

[Jai01] Kamal Jain. “A Factor 2 Approximation Algorithm for
the Generalized Steiner Network Problem.” Combinatorica
21.1, 2001, pp. 39–60. doi: 10.1007/s004930170004 (cit. on
p. 26).

[JV00] Kamal Jain and Vijay V. Vazirani. “An Approximation
Algorithm for the Fault Tolerant Metric Facility Location
Problem.” In: Approximation Algorithms for Combinatorial
Optimization (APPROX). Springer, 2000, pp. 177–182. doi:
10.1007/3-540-44436-X_18 (cit. on p. 26).

[Joh74] David S. Johnson. “Approximation algorithms for combi-
natorial problems.” Journal of Computer and System Sciences
9.3, 1974, pp. 256 –278. doi: 10.1016/S0022-0000(74)8004
4-9 (cit. on p. 20).

[KM08] Rafael R. Kamalian and Vahan V. Mkrtchyan. “On com-
plexity of special maximum matchings constructing.” Dis-
crete Mathematics 308.10, 2008, pp. 1792–1800. doi: 10.1016
/j.disc.2007.04.029 (cit. on p. 29).

[Kar72] Richard M. Karp. “Reducibility among Combinatorial
Problems.” In: Complexity of Computer Computations: Pro-
ceedings of a Symposium on the Complexity of Computer Com-
putations. Springer, 1972, pp. 85–103. doi: 10.1007/978-1-
4684-2001-2_9 (cit. on pp. 19, 21).

[KKZ14] Adam Kasperski, Adam Kurpisz, and Paweł Zieliński. “Re-
coverable Robust Combinatorial Optimization Problems.”
In: Operations Research Proceedings 2012: Selected Papers of
the International Annual Conference of the German Operations
Research Society (GOR). Springer, 2014, pp. 147–153. doi: 1
0.1007/978-3-319-00795-3_22 (cit. on pp. 26, 27).

https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
https://doi.org/10.1002/net.3230230413
https://doi.org/10.1002/net.3230230413
https://doi.org/10.1007/s004930170004
https://doi.org/10.1007/3-540-44436-X_18
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1016/j.disc.2007.04.029
https://doi.org/10.1016/j.disc.2007.04.029
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-319-00795-3_22
https://doi.org/10.1007/978-3-319-00795-3_22

bibliography 123

[KZ09] Adam Kasperski and Paweł Zieliński. “On the approxima-
bility of minmax (regret) network optimization problems.”
Information Processing Letters 109.5, 2009, pp. 262–266 (cit.
on p. 26).

[KZ16] Adam Kasperski and Paweł Zieliński. “Robust Discrete
Optimization Under Discrete and Interval Uncertainty: A
Survey.” In: Robustness Analysis in Decision Aiding, Opti-
mization, and Analytics. Springer, 2016, pp. 113–143. doi:
10.1007/978-3-319-33121-8_6 (cit. on p. 24).

[KKMU08] Irit Katriel, Claire Kenyon-Mathieu, and Eli Upfal. “Com-
mitment under uncertainty: Two-stage stochastic match-
ing problems.” Theoretical Computer Science 408.2, 2008,
pp. 213–223. doi: 10.1016/j.tcs.2008.08.010 (cit. on
p. 28).

[Kha80] Leonid G. Khachiyan. “Polynomial algorithms in linear
programming.” USSR Computational Mathematics and Math-
ematical Physics 20.1, 1980, pp. 53 –72. doi: https://doi.
org/10.1016/0041-5553(80)90061-0 (cit. on p. 15).

[KN16] Guy Kortsarz and Zeev Nutov. “A Simplified 1.5-Approxi-
mation Algorithm for Augmenting Edge-Connectivity of a
Graph from 1 to 2.” ACM Transactions on Algorithms (TALG)
12.2, 2016, 23:1–23:20. doi: 10.1145/2786981 (cit. on p. 31).

[KY97] Panos Kouvelis and Gang Yu. Robust discrete optimization
and its applications. Vol. 14. Kluwer Academic Publishers,
1997. doi: 10.1007/978-1-4757-2620-6 (cit. on pp. 23, 26).

[Kri75] Mukkai S. Krishnamoorthy. “An NP-hard Problem in Bi-
partite Graphs.” SIGACT News 7.1, 1975, pp. 26–26. doi:
10.1145/990518.990521 (cit. on p. 61).

[Kuh55] Harold W. Kuhn. “The Hungarian method for the assign-
ment problem.” Naval Research Logistics Quarterly 2.1-2,
1955, pp. 83–97. doi: 10 . 1002 / nav . 3800020109 (cit. on
p. 14).

[Kut+08] Martin Kutz, Khaled Elbassioni, Irit Katriel, and Meena
Mahajan. “Simultaneous matchings: Hardness and approx-
imation.” Journal of Computer and System Sciences 74.5, 2008,
pp. 884–897. doi: 10.1016/j.jcss.2008.02.001 (cit. on
p. 27).

https://doi.org/10.1007/978-3-319-33121-8_6
https://doi.org/10.1016/j.tcs.2008.08.010
https://doi.org/https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.1145/2786981
https://doi.org/10.1007/978-1-4757-2620-6
https://doi.org/10.1145/990518.990521
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1016/j.jcss.2008.02.001

124 bibliography

[Lac+12] Mathieu Lacroix, Ali R. Mahjoub, Sébastien Martin, and
Christophe Picouleau. “On the NP-completeness of the
perfect matching free subgraph problem.” Theoretical Com-
puter Science 423, 2012, pp. 25 –29. doi: 10.1016/j.tcs.20
11.12.065 (cit. on p. 38).

[LL98] J. Lakhal and L. Litzler. “A polynomial algorithm for the
extendability problem in bipartite graphs.” Information Pro-
cessing Letters 65.1, 1998, pp. 11–16. doi: 10.1016/S0020-0
190(97)00177-4 (cit. on p. 19).

[Lar+14] Pierre Laroche, Franc Marchetti, Sébastien Martin, and
Zsuzsanna Róka. “Bipartite Complete Matching Vertex
Interdiction Problem: Application to Robust Nurse Assign-
ment.” In: International Conference on Control, Decision and
Information Technologies (CoDIT). 2014, pp. 182–187. doi:
10.1109/CoDIT.2014.6996890 (cit. on pp. 27, 68–70, 85).

[Lie+09] Christian Liebchen, Marco Lübbecke, Rolf Möhring, and
Sebastian Stiller. “The Concept of Recoverable Robust-
ness, Linear Programming Recovery, and Railway Appli-
cations.” In: Robust and Online Large-Scale Optimization:
Models and Techniques for Transportation Systems. Springer,
2009, pp. 1–27. doi: 10.1007/978-3-642-05465-5_1 (cit.
on p. 24).

[LY93] Jiping Liu and Qinglin Yu. “Matching Extensions and
Products of Graphs.” In: Annals of Discrete Mathematics.
Vol. 55. Elsevier, 1993, pp. 191–200. doi: 10.1016/S0167-5
060(08)70389-3 (cit. on p. 30).

[LY04] Dingjun Lou and Qinglin Yu. “Sufficient conditions for n-
matchable graphs.” Australasian Journal Of Combinatorics 29,
2004, pp. 127–134. url: http://ajc.maths.uq.edu.au/
pdf/29/ajc_v29_p127.pdf (cit. on p. 30).

[Lov75] László Lovász. “On the ratio of optimal integral and frac-
tional covers.” Discrete Mathematics 13.4, 1975, pp. 383 –390.
doi: 10.1016/0012-365X(75)90058-8 (cit. on p. 20).

[LP77] László Lovász and Michael D. Plummer. “On minimal el-
ementary bipartite graphs.” Journal of Combinatorial Theory,
Series B 23.1, 1977, pp. 127 –138. doi: 10.1016/0095-8956
(77)90062-4 (cit. on p. 62).

https://doi.org/10.1016/j.tcs.2011.12.065
https://doi.org/10.1016/j.tcs.2011.12.065
https://doi.org/10.1016/S0020-0190(97)00177-4
https://doi.org/10.1016/S0020-0190(97)00177-4
https://doi.org/10.1109/CoDIT.2014.6996890
https://doi.org/10.1007/978-3-642-05465-5_1
https://doi.org/10.1016/S0167-5060(08)70389-3
https://doi.org/10.1016/S0167-5060(08)70389-3
http://ajc.maths.uq.edu.au/pdf/29/ajc_v29_p127.pdf
http://ajc.maths.uq.edu.au/pdf/29/ajc_v29_p127.pdf
https://doi.org/10.1016/0012-365X(75)90058-8
https://doi.org/10.1016/0095-8956(77)90062-4
https://doi.org/10.1016/0095-8956(77)90062-4

bibliography 125

[LP86] László Lovász and Michael D. Plummer. Matching theory.
North-Holland Publishing Co., 1986 (cit. on pp. 13, 15–19,
37, 112).

[LY94] Carsten Lund and Mihalis Yannakakis. “On the Hardness
of Approximating Minimization Problems.” Journal of the
ACM 41.5, 1994, pp. 960–981. doi: 10.1145/185675.306789
(cit. on p. 20).

[MMO17] Jannik Matuschke, S. Thomas McCormick, and Gianpaolo
Oriolo. “Rerouting Flows When Links Fail.” In: 44th In-
ternational Colloquium on Automata, Languages, and Program-
ming (ICALP). Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2017, 89:1–89:13. doi: 10.4230/LIPIcs.ICALP.20
17.89 (cit. on p. 26).

[MSS14] Jannik Matuschke, Martin Skutella, and José A. Soto. “Ro-
bust randomized matchings.” In: Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). Society for Industrial and Applied Mathematics,
2014, pp. 1904–1915. doi: 10.1137/1.9781611973730.127
(cit. on p. 27).

[OZP13] Temel Öncan, Ruonan Zhang, and Abraham P. Punnen.
“The minimum cost perfect matching problem with con-
flict pair constraints.” Computers & Operations Research 40.4,
2013, pp. 920–930. doi: 10.1016/j.cor.2012.10.022 (cit.
on p. 32).

[OM87] Pekka Orponen and Heikki Mannila. On approximation
preserving reductions: Complete problems and robust measures.
Technical Report C-1987-28. Department of Computer Sci-
ence, University of Helsinki, 1987 (cit. on p. 11).

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. “Opti-
mization, approximation, and complexity classes.” Journal
of Computer and System Sciences 43.3, 1991, pp. 425 –440. doi:
10.1016/0022-0000(91)90023-X (cit. on p. 11).

[PI11] Jung-Heum Park and Insung Ihm. “Strong matching
preclusion.” Theoretical Computer Science 412.45, 2011,
pp. 6409–6419. doi: 10.1016/j.tcs.2011.08.008 (cit.
on p. 30).

[Ple72] Ján Plesník. “Connectivity of regular graphs and the exis-
tence of 1-factors.” Matematickỳ časopis 22.4, 1972, pp. 310–
318 (cit. on pp. 29, 37, 111).

https://doi.org/10.1145/185675.306789
https://doi.org/10.4230/LIPIcs.ICALP.2017.89
https://doi.org/10.4230/LIPIcs.ICALP.2017.89
https://doi.org/10.1137/1.9781611973730.127
https://doi.org/10.1016/j.cor.2012.10.022
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/j.tcs.2011.08.008

126 bibliography

[Plu86] Michael D. Plummer. “Matching extension in bipartite
graphs.” Congressus Numerantium 54, 1986, pp. 245–258

(cit. on p. 18).

[Plu94] Michael D. Plummer. “Extending matchings in graphs: A
survey.” Discrete Mathematics 127.1–3, 1994, pp. 277–292.
doi: 10.1016/0012-365X(92)00485-A (cit. on p. 19).

[PA96] Michael I. Porteous and Robert E. L. Aldred. “Matching
extensions with prescribed and forbidden edges.” Aus-
tralasian Journal Of Combinatorics 13, 1996, pp. 163–174 (cit.
on p. 30).

[Rég94] Jean-Charles Régin. “A Filtering Algorithm for Constraints
of Difference in CSPs.” In: Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence (Vol. 1). American
Association for Artificial Intelligence, 1994, pp. 362–367 (cit.
on p. 18).

[Sch98] Alexander Schrijver. Theory of Linear and Integer Program-
ming. John Wiley & Sons, 1998 (cit. on p. 14).

[Sch02] Alexander Schrijver. Combinatorial Optimization: Polyhedra
and Efficiency. Springer, 2002 (cit. on p. 84).

[SV14] András Sebő and Jens Vygen. “Shorter tours by nicer ears:
7/5-Approximation for the graph-TSP, 3/2 for the path ver-
sion, and 4/3 for two-edge-connected subgraphs.” Combi-
natorica 34.5, 2014, pp. 597–629. doi: 10.1007/s00493-014-
2960-3 (cit. on p. 59).

[ŞAO09] Onur Şeref, Ravindra K. Ahuja, and James B. Orlin. “Incre-
mental Network Optimization: Theory and Algorithms.”
Operations Research 57.3, 2009, pp. 586–594. doi: 10.1287
/opre.1080.0607 (cit. on p. 31).

[SS93] Edwin Hsing-Mean Sha and Kenneth Steiglitz. “Maintain-
ing bipartite matchings in the presence of failures.” Net-
works 23.5, 1993, pp. 459–471. doi: 10.1002/net.32302305
03 (cit. on p. 32).

[Sla96] Petr Slavík. “A Tight Analysis of the Greedy Algorithm
for Set Cover.” In: Proceedings of the Twenty-eighth Annual
ACM Symposium on Theory of Computing (STOC). ACM,
1996, pp. 435–441. doi: 10.1145/237814.237991 (cit. on
p. 20).

https://doi.org/10.1016/0012-365X(92)00485-A
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.1287/opre.1080.0607
https://doi.org/10.1287/opre.1080.0607
https://doi.org/10.1002/net.3230230503
https://doi.org/10.1002/net.3230230503
https://doi.org/10.1145/237814.237991

bibliography 127

[Soy73] Allen L. Soyster. “Technical Note—Convex Programming
with Set-Inclusive Constraints and Applications to Inex-
act Linear Programming.” Operations Research 21.5, 1973,
pp. 1154–1157. doi: 10 . 1287 / opre . 21 . 5 . 1154 (cit. on
p. 22).

[SS03] Chaitanya Swamy and David B. Shmoys. “Fault-tolerant
Facility Location.” In: Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). Soci-
ety for Industrial and Applied Mathematics, 2003, pp. 735–
736. url: http://dl.acm.org/citation.cfm?id=644108.6
44228 (cit. on p. 26).

[Tar86] Éva Tardos. “A Strongly Polynomial Algorithm to Solve
Combinatorial Linear Programs.” Operations Research 34.2,
1986, pp. 250–256. doi: 10.1287/opre.34.2.250 (cit. on
p. 15).

[Tut54] William T. Tutte. “A short proof of the factor theorem for
finite graphs.” Canad. J. Math 6.1954, 1954, pp. 347–352 (cit.
on p. 14).

[VV16] Carlos E. Valencia and Marcos C. Vargas. “Optimum
matchings in weighted bipartite graphs.” Boletín de la
Sociedad Matemática Mexicana 22.1, 2016, pp. 1–12. doi:
10.1007/s40590-015-0065-7 (cit. on p. 18).

[Val79] L.G. Valiant. “The complexity of computing the perma-
nent.” Theoretical Computer Science 8.2, 1979, pp. 189 –201.
doi: 10.1016/0304-3975(79)90044-6 (cit. on p. 13).

[WYZ09] Xiumei Wang, Jinjiang Yuan, and Sujing Zhou. “Edge-
deletable IM-extendable graphs with minimum number of
edges.” Discrete Mathematics 309.16, 2009, pp. 5242 –5247.
doi: 10.1016/j.disc.2009.03.048 (cit. on p. 30).

[Whi32] Hassler Whitney. “Non-separable and planar graphs.”
Transactions of the American Mathematical Society 34.2, 1932,
pp. 339–362 (cit. on p. 16).

[WS11] David P. Williamson and David B. Shmoys. The Design
of Approximation Algorithms. Cambridge University Press,
2011, pp. 1–504 (cit. on p. 55).

[Woe07] Gerhard J. Woeginger. “Match, match, match and match
again.” OPTIMA 73, 2007, pp. 6–8 (cit. on p. 1).

https://doi.org/10.1287/opre.21.5.1154
http://dl.acm.org/citation.cfm?id=644108.644228
http://dl.acm.org/citation.cfm?id=644108.644228
https://doi.org/10.1287/opre.34.2.250
https://doi.org/10.1007/s40590-015-0065-7
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/j.disc.2009.03.048

128 bibliography

[Zen10] Rico Zenklusen. “Matching interdiction.” Discrete Applied
Mathematics 158.15, 2010, pp. 1676 –1690. doi: 10.1016/j.
dam.2010.06.006 (cit. on pp. 29, 92).

[Zen+09] Rico Zenklusen, Bernard Ries, Christophe Picouleau, Do-
minique De Werra, Marie-Christine Costa, and Cédric
Bentz. “Blockers and transversals.” Discrete Mathematics
309.13, 2009, pp. 4306–4314. doi: 10.1016/j.disc.2009.01
.006 (cit. on p. 29).

[ZLM08] Guohun Zhu, Xiangyu Luo, and Yuqing Miao. “Exact
weight perfect matching of bipartite graph is NP-complete.”
In: Proceedings of the World Congress on Engineering (WCE).
2008, pp. 1–7. url: http://www.iaeng.org/publication/
WCE2008/WCE2008_pp878-880.pdf (cit. on p. 26).

https://doi.org/10.1016/j.dam.2010.06.006
https://doi.org/10.1016/j.dam.2010.06.006
https://doi.org/10.1016/j.disc.2009.01.006
https://doi.org/10.1016/j.disc.2009.01.006
http://www.iaeng.org/publication/WCE2008/WCE2008_pp878-880.pdf
http://www.iaeng.org/publication/WCE2008/WCE2008_pp878-880.pdf

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Algorithms
	List of Computational Problems
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Basic Notions from Graph Theory
	2.2 Concepts and Notions from Complexity Theory
	2.2.1 Optimization Problems
	2.2.2 Approximation-Preserving Reductions
	2.2.3 Parameterized Complexity

	2.3 Matchings in Bipartite Graphs
	2.3.1 The Matching Polytope
	2.3.2 Matching-Covered Graphs

	2.4 A Brief Introduction to Set Cover
	2.5 Robust Combinatorial Optimization
	2.5.1 Cost Robustness
	2.5.2 Redundancy-Based Robustness

	2.6 Related Work
	2.6.1 Robust Matching Problems
	2.6.2 Interdiction Problems
	2.6.3 Matching Preclusion
	2.6.4 Graphs with Extendable Matchings
	2.6.5 Augmentation Problems
	2.6.6 Miscellaneous

	3 Robust Assignments with Vulnerable Edges
	3.1 Formal Description and Basic Properties
	3.2 Deciding Feasibility
	3.3 Card-E-RAP with Two Vulnerable Edges
	3.4 Complexity of E-RAP
	3.5 O(logn)-Approximation for E-RAP
	3.6 Complexity of Card-E-RAP
	3.7 Constant-Factor Approximation for Card-E-RAP

	4 Robust Assignments with Vulnerable Nodes
	4.1 Formal Description and Basic Properties
	4.2 Deciding Feasibility
	4.3 Complexity of V-RAP
	4.4 An (lnn + 2)-Approximation for V-RAP
	4.5 Complexity of Card-V-RAP
	4.6 Constant-Factor Approximation for Card-V-RAP
	4.7 Card-V-RAP with Two Scenarios
	4.8 Polyhedral Description for Uniform V-RAP

	5 Robust Matching Augmentation
	5.1 Formal Description and Basic Properties
	5.2 Determining Robustness of a Fixed Matching
	5.3 Complexity of Robust Matching Augmentation
	5.4 Augmenting Robust Recoverable Matchings

	Appendices
	A NP-Completeness of BPAFPP
	B Notes on E-RAP in Non-Bipartite Graphs
	B.1 Optimal Solutions and k-Factors
	B.2 General Ear-Decompositions and Trivial Ears

	Bibliography

