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Abstract: In this paper it is shown that for a bimatrix game each quasi-stable set is finite. 

1 Introduction 

Over the last decades several attempts have been made to find refinements of the 
Nash equilibrium concept in order to eliminate equilibria with undesirable 
properties. In this field of game theory Kohlberg and Mertens (1986) have started 
a new approach by considering set-valued solution concepts and by formulating 
a list of properties that a proper solution concept should satisfy. Furthermore 
these authors introduced several stability concepts for closed sets of equilibria. 
They call a set stable if all slightly perturbed games have an equilibrium close to 
this set. By specifying the kind of perturbation and the meaning of the word 
'slightly', they consider successively hyperstable, fully stable and stable sets. We 
call the last mentioned sets KM-stable to distinguish them from other kinds of 
stable sets. None of these concepts however satisfies all of the requirements 
formulated by them. Some years later first Mertens (1989, 1991) and then Hillas 
(1990) proposed new kinds of stability satisfying indeed all the Kohlberg-Mertens 
properties. In his paper, Hillas introduced amongst others quasi-stable sets and 
showed that such sets satisfy most of the important requirements. Unfortunately 
these sets need not be invariant or connected. In this paper it is shown that, for 
bimatrix games, these quasi-stable sets are in fact finite. As such, this result can be 
seen as an extension of the finiteness of the minimal KM-stable sets of bimatrix 
games as was proved by Jansen, Jurg and Borm (1994). Wilson (1992) used this 
result to develop an algorithm to determine so-called simple stable sets. It is 
possible to construct a three-person game with a quasi-stable set consisting of 
a line segment. Hence our result is not correct for games with more than two 
players. 

In Section 2 we define quasi-stable sets as minimal Q-sets and characterize for 
later purposes Q-sets in terms of sequences. In Section 3 equivalence relations on 
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the strategy set of each player are introduced. These relations turn out to define 
a finite partition of the strategy spaces. If we select from a given Q-set one point of 
each (nonempty) intersection of the Q-set with a product of equivalence classes, 
we obtain, as we prove, another finite Q-set. Therefore minimal Q-sets are finite 
and the purpose of this paper is achieved. 

Notation: For a keN:={1,2, . . .} ,  Nk is the vector space of k-tuples of real 
numbers and Ak:= { p e r  k IP > 0, Y,~= lPi = 1}. For a vector pea  k, C(p):= {ilpl > 0} 
is the carrier ofp. The unit vectors in ~k are denoted by el, e a . . . . .  % For x, y e Nk, 
(x ,y ) := ~,~=lxiy i and tlxtl~o:=maxi=l,2,...,klXil. I f S c  {1,2 . . . . .  k}, eseE k is the 

vectorwith(es)i:={ ~ if i~S 
if i(sS. 

2 Preliminaries 

Given an ordered pair of two m x n-matrices A and B, the m x n-bimatrix game 
(A, B) is the two-person game (A m, A,, K, L) in strategic form with strategy spaces 
A,, and A, for player 1 and player 2, respectively and payoff functions 
K:A m x A . ~ N  and L:A m x A , ~ R ,  where K(p,q):=pAq and L(p,q):=pBq for 
all (p, q)eAm x A,. A pair of strategies (/~, (l)eA m x A,  is an equilibrium of the 
bimatrix game (A, B) if pAT:I > pAgl and ~Bq >>_ !SBq, for all (p, q)eA m x A,. 

For an m x n-bimatrix game we introduce the sets M:= {1,2 . . . . .  m} and 
N:= {1,2,...,n}. The collection of all non-empty proper subsets of M (N) is 
denoted by 2 M (2N). For mappings C5:2M~(0,1) and e:2N-+(0,1) the (cs, e)- 
restricted game (A, B, C5, e) corresponding to (A, B) is defined as the game of which 
the strategy spaces are restricted to the polytopes 

Am(cS):= {peA,,[ (es ,p)  > 6(S) for all Se2 ~t} 

and 

A,(e):= {qeA,[ fer ,  q) >_ e(T) for all Te2U}, 

respectively. Note that the set E(A, B, 6, e) of equilibria of this restricted game is 
non-empty if [1C5 ][ := max { 6(S) 1Se2 M} and [[ ell := max {e(T)[Te2 N} are small 
enough. 

These restricted games play an important role in Hillas' definition of quasi- 
stable sets. 

Definition 1: A closed set C of equilibria of (A, B) is called a Q-set if for any open 
set V containing C there is a number t />  0 such that each (6, 0-restricted game 
with [[ 6 [l < t/and [[ e If < t/has an equilibrium in V. A Q-set that does not properly 
contain another Q-set is called a quasi-stable set. 
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In the lemma Q-sets are characterized in terms of sequences. The proof is easy 
and left to the reader. 

Lemma 1: Let (A, B) be an m x n-bimatrix game. A closed set C of equilibria of 
(A, B) is a Q-set if and only if lim supkE(A, B, 6k, ek) c~ C r ~b for every sequence 
{(6k, ek)}k~ ~ converging to zero. 

3 Two Equivalence Relations 

In this section we introduce two equivalence relations on the strategy space of 
each player, best reply equivalence and direction equivalence. We prove that there 
are finitely many equivalence classes under direction equivalence and that 
direction equivalence implies best reply equivalence. Hence, there are finitely 
many equivalence classes under best reply equivalence. This is the result we need 
in the next section. First we need some technical definitions. 

For an extreme point q of the restricted strategy space A,(e) we define 

-Y-~(q):= {Te2 N ] (er, q) = ~(T)}. 

Furthermore, we associate with such an extreme point q the polyhedral cone 
K~(q) consisting of those points x in R" for which 

(er, x )  >O 

(-~eN, x ) >_ 0 

and 

(eu, x ) >_ O. 

for all TeJ-,(q) 

Note that every cone K~(q) has finitely many extreme directions and that only 
finitely many cones of type Ks(q) exist. This implies that the set N2 of all extreme 
directions of length one (w.r.t. II II ~) over all possible cones K~(q) is finite. The set 
~1, defined in a similar way, is also finite. Furthermore, xeK~(q) if and only if 
q + 2x~A,(e) for some small positive number 2. 

Note that N1 and N2 are just the sets of(normalized) directions of the edges of 
all possible restricted strategy spaces. So obviously all vectors of the form e i - ej 
for some i and j with i r  are extreme directions. In order to show that also 
extreme directions of a different form are possible, we consider for a 2 x 5- 
bimatrix game the mapping e:2N~ (0, 1) with for Ts2 n 

( 2  Igl = 1 

60a(T) :=I !  if I T [ = 2  
0 ITI = 4  

otherwise. 

The strategies q:=~o(25, 1, 1, 1, 2) and q':= 3~(23, 2, 2, 2, 1) are neighboring 
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extreme points ofAs(e ) as the subsets {2, 5}, {3, 5} and {4, 5} are in Y~(q)c~ Y~(q'). 
By normalizing the vector q -  q' we find (1, 1 ~ 1 2, 2, ~, �89 as an extreme 
direction. 

Definition 2: For  an m x n-bimatrix game (A, B) two strategies p and/5 of player 
1 are direction-equivalent, denoted as P ~ d,,/5 , if C(p) = C(/5) and for all r e ~  2 

pBr > 0 if and only if/sBr > O. 

A similar equivalence relation can be defined on A,. 

Now since both ~ ' s  are finite sets, there are only finitely many equivalence 
classes corresponding with the relation ~ d~. Next we come to a second pair of 
equivalence relations that play a central role in the rest of this paper. 

Definition 3: For  an m x n-bimatrix game (A, B) two strategies p and/5 of player 
1 are best-reply-equivalent, denoted as p ~ ~R/~, if C(p) = C(p) and p and p have the 
same set of best replies in every restricted strategy space A,(0. A similar 
equivalence relation can be defined for the strategies of player 2. 

In order to show that the number of equivalence classes corresponding with the 
relation ~ ~R is also finite, we need the following 

Lemma 2: Direction-equivalent strategies are best-reply-equivalent. 

Proof: Assume that p ~d~r P and that q is a best reply in A,(e) to p. We only show 
that q is also a best reply to/5. Because the set of best replies in An(e ) to p is exactly 
the set of points in d,(e) where the linear function q~-~pBq attains its maximum, 
we may assume without loss of generality that q is an extreme point of A,(e). 

Let q' be any point of A,(e). Then q' - q is a nonnegative linear combination of 
extreme directions r of the cone K~(q). For each of these directions r we have 
pBr <_ 0 and therefore,/sBr <_ 0 by direction equivalence ofp and/5. Consequently, 
/sB(q' - q) <_ 0 and q is an at least as good response as any point q'~A,(e). [] 

Corollary I: There are finitely many equivalence classes under best response 
equivalence. 

The equivalence classes in A,, corresponding to ~BR are denoted by 
~ i  . . . . .  ~K and those in A, by ~K 1 . . . . .  ~/r 

4 On the Equivalence Classes 

The purpose of this section is to prove 

Theorem 1: Let (A,B) be an m x n-matrix game and let (p,q) be an element of 
limsupkE(A,B,~k, ek) for some sequence {(C~k,~k)}k~ converging to zero. If 
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(p, q ) e ~ *  x ~K* for some equivalence classes U*  and ~/~* corresponding to 
"~ ~R, then 

~U* x ~K* c limsupE(A,B,3k, ek). 
k 

If the conditions mentioned in the theorem are satisfied, we may suppose, without 
loss of generality, that there exists a sequence {(pk, qk)}k~ ~ converging to (p, q) 
such that, for every ke N, (pk, qk) is an equilibrium of the game (A, B, 6k, ek). Since 
there are only finitely many equivalence classes corresponding with ~ BR, this 
sequence can be taken in such a way that all points pk are contained in some 
equivalence class, say ~U, corresponding with ~ BR, and all qk are contained in 
some equivalence class, say ~/r, corresponding with .-~ BR' 

In order to prove that an arbitrarily chosen point (/~,q~)eV* x ~K* is an 
element of lim supkE(A, B, 6k, ek), we introduce, for each ke N, the strategies 

~k:=pk+(~__p) and ok:=qk+(O--q). 

Obviously, (pk, ok)~(p,O) as k--*oo. Furthermore, one can show that 
(~k, ok)eAm(6k) X A,(ek) for large k. So the proof of Theorem 1 is complete if we 
can show that (~k, ok)eE(A, B, 6 k, e k) for large k. To that purpose we consider, for 
each k e N, the minimal face F k of A,,(6k) containing pk and the minimal face G k of 
A,(ek) containing qk. 

In the following two lemmas two properties are described for the strategies 
introduced before. 

Lemma 3: ~keF k and okEGk for large k. 

Proof: In order to prove that 0 k is an element of G k for large k, we will show that, 
for large k, y ~  (qk) = y~(0k). NOW suppose ( er, qk) = ek( r). If rc~ C(q) r O, then 
(er, qk) > ek(T ) for large k. So we may conclude that Tc~ C(q) = 4). In that case 
(er, ok) = (er, qk + 0 -- q) = (e r ,  qk) = ek(T). The first inclusion can be proved 
in a similar way. []  

Lemma 4: pkE~ and 0k~/g for large k. 

Proof: We only show that, for large k, f f ~ U ,  i.e. ~k ~BR pk. First note that 
C(p k) = C(p k) for large k, because both strategies are completely mixed. 

Let e:2N-~ (0, 1) be such that A,(e) r (o and let q be a best reply in A,(e) ~ 4) to 
pk. The proof is complete if we can show that q is also a best reply to/~g for large k. 

In order to show that for large k 

~kB(q -- q') >_ 0 for all q' eA,(e), 

we consider two cases. 
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(1) Suppose  that  pkB(q -- q') > 0 for some q'eA,(e) .  
Since p k e ~  for all k, q is a best reply to pk for all k. This implies that  q is a best 

reply to p. Hence  q is also a best reply to/5, because p ,-~ BR P. So fiB(q - q') > 0. 
If  pB(q - q') > 0, then fikB(q -- q') > 0 for large k, because pk _~ p as k ~ oe. 
IffiB(q - q') = 0, then q' is also a best reply to p. In that  case q' is also a best reply 

to p and  pB(q - q') = 0. This implies that  

~kB(q -- q') = pkB(q -- q') + #B(q -- q') -- pB(q - q') = pkB(q -- q') > O. 

(2) Suppose that  pkB(q -- q') = 0 for some q'eA,(e) .  
As in par t  (1) one can show that  also in this case fiB(q - q') = pB(q - q') = O. 

Hence, ~kB(q -- q') = pkB(q -- q') = O. [] 

With the help of the L e m m a s  3 and 4, we get 

(#k, glk)e(Fk C~l/" ) x (GkC~ ~K) for large k. 

Hence,  (#k, glk)eE(A, B, 6k, ek) for large k as is implied by 

L e m m a  5: For  all k e N ,  (FkC~ ~ )  x (Gkc~ #~) is a subset of E(A,B ,6k ,  ek). 

Proof'. Let k e N .  Take  ( p ' , q ' ) e ( F k ~ U )  x (GkC~~ Because bo th  pk and p'  are 
elements of  :U, pk ~ BR P'" Since (pk, qk)~ E( A, B, 3k, ek), qk is a best reply in A,(ek) to 
pk. SO by definition, qk is also a best reply in An(ek) to p'. Then however  all elements 
of G k - t h e  minimal  face containing qk_  are best replies in An(ek) to p'. In 
par t icular  q' is a best reply to p'. Similarly, p' is a best reply to q', so 
(p', q ' )eE(A,  B, 6k, ek)" [] 

5 The Finiteness of Quasi-Stable Sets 

In this section we show that  for a b imatr ix  game each Q-set contains a finite Q-set. 
In par t icular  this implies that  quasi-stable sets are finite. 

Let  C be a Q-set for a b imatr ix  game (A, B). If  for some equivalence classes 
and #r 

cm(~  x ".'~) ~ ~ 

we select one point  in this intersection. The set of equilibria selected in this way is 
denoted to C*. 

Because there are only finitely m a n y  equivalence classes, it's obvious  that  C* is 
a finite set. Since C is a Q-set, we know that  C c~ lira supkE(A, B, 6k, ek)Va 0 for 
a given sequence {(6k, ek )}k~  converging to zero. Take  a point  (p' ,q')  in this 
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intersection. If U and ~K are the equivalence classes containing p' and q', 
respectively, then it's obvious that also C n (~U x ~/~) is non-empty, since (p', q') is 
an element of this intersection. Hence, by construction, C* contains an element, 
say (p*,q*), of c/r x ~/U. By Theorem 1, (p*,q*) is also an element of 
lim supkE(A, B, Ok, ek). Consequently, C* c~ lim supkE(A, B, Ok, ek) ~ c~. Since the 
sequence {(Ok, ek)}k~ was chosen arbitrarily, by Lemma 1, C* is a Q-set. Hence 
we have proved 

Theorem 2: Every Q-set contains a finite Q-set. 

In particular Theorem 2 implies that a quasi-stable set contains a finite Q-set. So 

Corollary 2: For a bimatrix game every quasi-stable set is finite. 

Furthermore Theorem 2 implies that the set of all equilibria of a bimatrix game 
contains a finite Q-set. this provides a new proof of 

Corollary 3: Every bimatrix game possesses a quasi-stable set. 

Finally, we give an example of a game with a unique quasi-stable set. 

Example: For the 2 x 3-bimatrix game 

 1,0t  1,2tl 
[ t l ,u )  (0,3) (1,2)3 

the set of equilibria equals 1 {Plg-<Pa <2} x {e3} , while 

1 2 1 1 2 1 {(>~),(>~),(>~)} x {%} 

is the only qausi-stable set for this game. 
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