
 1 

 

 

 

Assessment of degradation rate constants for quantitative 

predictions of drug-drug interactions arising from CYP450 

drug metabolising enzymes 

 

 

 

 

Thesis submitted in accordance with the requirements of the University of Liverpool 

for the degree of Doctor in Philosophy by  

 

 

Christina Yik See Chan 

 

 

 

September 2017 

 



 2 

 

This thesis is the result of my own work. The material contained within 

the thesis has not been presented, either wholly or in part, for any other 

degree of qualification. 

 

 

Christina Chan 

 

 

 

 

 

 

 

 

This research was carried out in the 

Liverpool HIV Pharmacology Group 

Department of Molecular and Clinical Pharmacology 

University of Liverpool 

UK 

 

 



 3 

Table of Contents 

 

Acknowledgements         4 

Abbreviations         5 

Publications and communications       10 

Abstract          11 

Chapter 1 General Introduction 12 

Chapter 2 Utility of single protein synthesis inhibitor agents for measuring 

protein degradation rate constants; an analysis in hepatic 

primary cells and tumour cell lines 

62 

Chapter 3 Utility of multiple protein synthesis inhibitor combinations for 

measuring protein degradation rate constants 

92 

Chapter 4 Using mRNA suppression to estimate CYP3A4 degradation 

rate constant in primary human hepatocytes 

123 

Chapter 5 Using mRNA suppression to estimate CYP2B6 degradation 

rate constant in primary human hepatcytes 

173 

Chapter 6 Exploring genetic polymorphisms in CYP3A4 protein 

degradation machinery on substrate pharmacokinetics 

219 

Chapter 7 Final Discussion 241 

References  249 

 

 

 

 

 

 

 



 4 

Acknowledgements 
The research presented in this thesis was carried out in the Department of Molecular 

and Clinical Pharmacology, University of Liverpool. I would like to express my 

gratitude to the MRC and Certara (Simcyp) for providing the funding and opportunity 

to carry out this project.  

 

The making of this thesis has been an incredible journey and I am thankful for 

everyone I met along the way who have supported and contributed to it. I would like 

to thank to my supervisors Prof. Andrew Owen, Dr Lisa Almond and Dr Marco 

Siccardi for their supervision and guidance throughout the project. Prof. Owen 

directed me throughout the PhD and supervised every aspect of my work - thank you 

you for your continued patience and for being so supportive during my many 

moments of ‘panic’. Dr Siccardi, thank you for all your inputs and advice, especially 

in all things analytical. Dr Almond and Dr Garner offered invaluable advice and 

interesting scientific discussions during the project.  

 

A big thank you to my colleagues (past and present) at the Liverpool HIV 

Pharmacology group: Owain, Louise, Rajith, Rohan, Chris, Megan, Rana, Paul, Neill, 

Jay, Beth, Lee, Darren, Justin, Ana, Hannah, Helen, Pedro, Henry, Alessandro, 

Adeniyi, Laura, Sara and Jo. Your friendship and professional wisdom (mainly 

imparted at the AJs) has made the last 4 years so much fun! It has been a real 

priveledge to work with such brilliant minds and in a culture of open knowledge 

sharing where no question is too silly and everyone’s willing to stop what they’re 

doing to help you in an instant. The lessons I have learnt here (not just scientifically) 

will stay with me for life. 

 

I would like to thank Rohan, Ky, Katie, Georgie, Izzi, flabbies and Gab for being 

there for me through the highs and lows and keeping me sane throughout.  

 

Finally, this thesis is dedicated to my family: Mum, Dad and Michael. Thank you for 

your unconditional love and support despite not really knowing what I’ve been up to 

in the last 4 years. Dad, you always have the words to put everything right again. 

 



 5 

Abbreviations 
3H   Tritium 

µCi   Microcurie(s) 

µg   Microgram(s) 

µl   Microliter(s) 

µM   Micromolar 

ADME   Absorption, distribution, metabolism, excretion 

ADR   Adverse drug reaction 

AhR   Aryl hydrocarbon receptor 

ALD   Autophagic-lysosomal degradation 

AMFR   Autocrine motility factor receptor 

ANOVA  Analysis of variance 

AO   Aldehyde oxidase 

ARNT   Aryl hydrocarbon receptor nuclear translocator 

ATCC   American type culture collection 

ATG   Autophagy-related gene 

ATP   Adenosine triphosphate 

ATV   Atazanavir 

AUC   Area under the curve 

BMI   Body mass index 

BSA   Bovine serum albumin 

CAR   Constitutive active receptor 

CCRP   Cytoplasmic CAR retention protein 

cDNA   Complementary deoxyribonucleic acid 
oC   Degree Celsius  

CHIP   C-terminus of Hsc70-interacting protein 

CHRM   Cryopreserved hepatocyte recovery medium 

CC50   Concentration causing 50% cytotoxicity 

cm   Centimetre(s) 

Cmax   Maximum plasma concentration 

CNS   Central nervous system 

CO2   Carbon dioxide 

CPR   Cytochrome P450 reductase 



 6 

C(t)   Cycle threshold 

CYP   Cytochrome P450 

Cyt b5   Cytochrome b5 

DDI   Drug-drug interaction 

DEST   Aspartate (D), glutamine (E), serine (S), threonine (T) 

DME   Drug metabolising enzyme 

DMEM  Dulbecco’s modified eagle medium 

DMSO   Dimethyl sulfoxide 

DNA   Deoxyribonucleic acid 

E1    Ub-activating enzyme 

E2    Ub-conjugating enzyme 

E3   Ub-protein ligase enzyme 

EC50   Concentration at 50% efficacy 

ECL   Enhanced chemiluminescence 

EGFR   Epidermal growth factor receptor 

EMA   European Medicines Agency 

Emax   Maximum induction response 

ER   Endoplasmic reticulum 

ERAD   ER-associated degradation 

ERAD-C  ER-associated degradation of cytosolic domain 

ERAD-L  ER-associated degradation of lumenal domain 

ERAD-M  ER-associated degradation of membrane domain 

ES   Enzyme-substrate complex 

ESS   Steady-state enzyme level 

e-   Electron 

FBS   Fetal bovine serum 

FDA   Food and drug administration (US) 

FIC   Fractional inhibitory concentration 

Fmcyp   Fraction metabolised by CYP enzyme 

FMO   Flavin monooxygenase 

GAPDH  Glyceraldehyde 3-phosphate dehydrogenase 

gp78   Glycoprotein 78 

GPSP   Global protein stability profiling 

GSH   Glutathione 



 7 

GST   Glutathione S-transferase 

h   Hour(s) 

H+   Hydrogen ion 

HBSS   Hank’s balanced salt solution 

HEPES  4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid 

HPLC   High performance liquid chromatography 

HPLC-UV  High performance liquid chromatography-ultraviolet 

HIV   Human immunodeficiency virus 

HIV-1   Human immunodeficiency virus subtype 1 

HPRT1  Hypoxanthine-guanine phosphoribosyltransferase 1 

HRP   Horseradish peroxidase 

I   Inhibitor / inactivator 

IL-6   Interleukin-6 

Ind   Inducer 

IC50                             Concentration of inhibitor resulting in 50% inhibition 

iTRAQ  Isobaric tag for relative and absolute quantification 

IVIVE   In vitro – in vivo extrapolation 

kDa   KiloDalton(s) 

kdeg   Degradation rate constant 

kg   Kilogram(s) 

KI   Inactivation rate constant 

Kinact                            Time-dependent inhibition constant  

Km   Michaelis-Menten constant 

ksyn   Synthesis rate constant 

Kobs   Apparent inactivation rate constant 

LC3   Microtubule-associated protein 1 light chain 3 

LIR   LC3-interacting region 

Lys   Lysine 

MBI   Mechanism-based inhibition 

MDI   Metabolism-depedent inhibition 

MDZ   Midazolam 

mg   Milligram(s) 

MgCl2   Magnesium chloride 

min   Minute(s) 



 8 

ml   Millilitre(s) 

mM   Millimolar 

mRNA   Messenger RNA 

MS   Mass-spectrometry 

MTT   3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

n   Number of observations 

ng   Nanogram(s) 

nM   Nanomolar 

nt   Nucleotide 

NADH   Reduced nicotinamide adenine dinucleotide 

NADPH  Reduced nicotinamide adenine dinucleotide phosphate 

NAT   N-acetyltransferase 

NBR1   Neighbour of BRCA1 gene1 

NFDM   Non-fat dried milk 

NME   New molecular entity 

NNRTI  Non-nucleoside reverse transcriptase inhibitor 

NQO1   NADPH quinone oxidoreductase 1 

nt   Nucleotide  

NTC   Non-targeting control 

O2   Molecular oxygen 

PB    Phenobarbital 

PBPK   Physiologically-based pharmacokinetic 

PBREM  Phenobarbital-responsive enhancer module 

PCR   Polymerase chain reaction 

PD   Pharmacodynamic 

pH   -Log10 hydrogen ion concentration 

PI   Protease inhibitor 

PK   Pharmacokinetic 

PKA   Protein kinase A 

PKC   Protein kinase C 

PRH   Primary rat hepatocytes 

PXR   Pregnane X receptor 

QC   Quality control 

qPCR   Real-time polymerase chain reaction 



 9 

R2   Correlation coefficient 

RIF   Rifampicin 

RIS   Relative induction score 

RISC   RNA-induced silencing complex 

RNA   Ribonucleic acid 

RNAi   RNA interference 

ROS   Reactive oxygen species 

RT   Room temperature 

RT-PCR  Reverse-transcription polymerase chain reaction 

RTV   Ritonavir 

s   Second(s) 

S   Substrate 

SD   Standard deviation 

siRNA   Small-interfering ribonucleic acid 

SILAC   Stable isotope labelling by amino acid 

SNP   Single nucleotide polymorphism 

SQSTM1  Sequestosome-1 

SULT   Sulfotransferase 

t1/2   Half-life 

TBT   Thiazolyl blue tetrazolium 

TDI   Time-dependent inhibition 

TPMT   Thiopurine S-methyltransferase 

T-TBS   Tween-tris buffered saline 

Ub   Ubiquitin 

UBC7   Ubiquitin-conjugating enzyme E2 7 

UBE2G1  Ubiquitin-conjugating enzyme E2 G1 

UGT   UDP-glucuronosyltransferase 

UPD   Ubiquitin-proteasome degradation 

V   Volt 

v/v   Volume per volume 

VCP   Valosin-containing protein 

Vmax   Maximal rate of enzyme reaction 

XRE   Xenobiotic response element 

XREM   Xenobiotic response enhancer module 



 10 

Publications 

Chan, C., Roberts, O., Rajoli, R., Siccardi, M., Almond, L. and Owen, A. (2017) 
Derivation of CYP3A4 and CYP2B6 degradation rate constants in primary human 
hepatocytes: A siRNA-silencing-based approach. Drug Metabolism & 
Pharmacokinetics. In production. 

 
Chan, C., Martin, P., Liptrott, N. J., Siccardi, M., Almond, L. and Owen, A. (2017) 
Incompatibility of chemical protein synthesis inhibitors with accurate measurement of 
extended protein degradation rates. Pharmacology Research & Perspectives. DOI: 
10.1002/prp2.359. 
 

 

Communications 

Chan, C. Y., Liptrott, N. J., Martin, P., Siccardi, M., Almond, L. and Owen, A. The 
lack of utility of pharmacological interference for the study of protein degradation. 
Presented at the 13th European meeting for International Society for the Study of 
Xenobiotics. Glasgow, UK, June 2015.  

 
Chan, C. Y., Roberts, O., Hassan, N., Liptrott, N. J., Siccardi, M., Almond, L. and 
Owen, A. Use of mRNA suppression to estimate CYP3A4 protein degradation rate 
constant in primary human hepatocytes. Drug Metabolism and Pharmacokinetics, 32, 
S109. Presented at the 11th International meeting for International Society for the 
Study of Xenobiotics, Busan, South Korea, June 2016. 
 
 

 

 

 

 

 

 



 11 

Abstract 
 

The first-order degradation rate constant (kdeg) of drug metabolising enzymes 
(DMEs) is a known source of uncertainty in the prediction of time-dependent drug-
drug interactions (DDIs) in physiologically-based pharmacokinetic (PBPK) 
modelling. There is a large disparity or paucity of published kdeg and related half-life 
(t1/2) values for DMEs. Physiologically-relevant kdeg values should ideally be derived 
in vivo to facilitate accurate DDI predictions. However, direct measurement of DME 
degradation in humans is not routinely possible and indirect measurements utilising 
changes in levels of specific endogenous substrates have only been described for a 
few DMEs. This thesis aims to develop an in vitro method of measuring DME protein 
degradation rates to improve the prediction accuracy of time-dependent DDIs. 

One in vitro approach of measuring protein degradation rates involves 
inhibiting de novo protein synthesis, followed by tracking residual protein or activity 
decline over time. Pharmacological protein synthesis inhibitor agents are commonly 
used for this purpose but may cause cytotoxicity. Four commonly used inhibitor 
agents were assessed for their capacity to inhibit protein synthesis without overt 
cytotoxicity. However, all selected compounds were too cytotoxic for subsequent use 
in kdeg studies. Small-interfering ribose nucleic acid (siRNA) can be added to in vitro 
systems to initiate gene-specific silencing by inhibiting messenger RNA (mRNA) 
translation. It was hypothesised that siRNA would inhibit de novo protein synthesis 
with less cytotoxicity owing to its specificity. CYP3A4 is the most widely studied 
cytochrome P450 (CYP) enzyme in terms of DDIs because of its well-recognised role 
in xenobiotic metabolism. Primary human hepatocytes were treated with CYP3A4-
specific siRNA to suppress mRNA translation, followed by the tracking of enzyme 
activity and protein loss over time to derive kdeg. CYP3A4 kdeg was calculated at 
0.019 (± 0.044) and 0.020 (± 0.0003) h-1 from protein and activity loss, respectively. 
These values were in good agreement with existing published values. The siRNA 
approach was subsequently applied to determine CYP2B6 kdeg. The CYP2B6 kdeg 
values derived from siRNA-treated hepatocytes were 0.081 (± 0.009) h-1 from protein 
loss and 0.058 (± 0.010) and 0.062 (± 0.006) h-1 from activity loss, which were 
assessed by different methods. The CYP2B6 kdeg values derived from untreated 
hepatocytes were similar to values in literature. This novel approach can now be used 
for other less well-characterised DMEs that are associated with time-dependent DDIs.  

Cellular protein abundance is a balance between synthesis and degradation. 
Dysregulation of the lysosomal or proteasomal protein degradation mechanisms 
affects steady-state protein levels and impacts on overall cellular functions. It was 
hypothesised that single nucleotide polymorphisms (SNPs) in the CYP3A4 protein 
degradation machinery could affect CYP3A4 protein abundance and downstream 
activity. Five SNPs were investigated for associations with plasma atazanair (ATV) 
concentrations, which was a surrogate measure for CYP3A4 activity. No associations 
were found and this was likely due to the lack of clear understanding of the specific 
mechanisms that commits CYP proteins for degradation. Further work in this field 
will identify targets that may be exploited in the future for more accurate 
measurements of DME kdeg. 

The data presented in this thesis enhances the understanding of methods used 
to study protein degradation and this can be applied to multiple fields of cellular 
research. Importantly, work herein has generated a novel approach to measuring kdeg 
of proteins that can be applied to other less-well characterised enzymes for better 
prediction of time-dependent DDIs.  
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1. INTRODUCTION 
 

Drug-drug interactions (DDIs) occur when two or more drugs are co-administered 

and the perpetrator drug(s) causes changes in exposure of the concomitant (victim) 

drug(s), which can lead to therapeutic failure or adverse drug reaction (ADR). This is 

particularly relevant for treatments in cancer, human immunodeficiency virus (HIV) 

and psychiatric disorders, and often in elderly patients where treatments require 

polypharmacy and also when drugs have narrow therapeutic windows (Scripture & 

Figg 2006). Mathematical modelling and simulation of DDI potential are becoming 

increasingly important to the drug discovery and development process. Regulatory 

agencies such as the US Food and Drug Administration (FDA) and European 

Medicines Agency (EMA) have advocated for such approaches to be applied for 

predicting the risk and magnitude of DDIs for new molecular entities (NME) as well 

as approved drug compounds in the pre and post-licensing stages of drug 

development. This has been useful for optimising drug candidates, informing dosing 

regimens and clinical trials, and reducing costs of drug discovery.  

Drug metabolising enzymes (DME) are amongst some of the most important 

components in the complex interplay of factors giving rise to DDIs. Characterising 

drug-induced alterations to their activity via inhibition or induction is an important 

focus during drug development. Reliable predictions depend on accurate kinetic drug 

and system parameters that are incorporated into mathematical prediction algorithms. 

Several sources have indicated that the uncertainty of DME degradation rate constants 

(kdeg) gives rise to error in DDI predictions when incorporated into mechanistic static 

and dynamic physiologically-based pharmacokinetic (PBPK) modelling to predict in 

vivo effects (Obach et al. 2006; Wang 2010; Rowland Yeo et al. 2011; Mao et al. 
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2013). There is a large disparity in reported kdeg values of DMEs and currently no 

consensus as to the best method of obtaining kdeg. This thesis aims to address this 

issue with the optimisation of a novel and robust method of measuring kdeg.  

 

 

1.1. Drug-drug interactions 

DDIs can be pharmacokinetic (PK), whereby alterations in drug disposition, 

governing processes of absorption, distribution, metabolism and/or excretion 

(ADME), can lead to changes in drug exposure with consequential pharmacological 

effects. They can also be pharmacodynamic (PD) where the effects of the 

administered drugs in combination can be synergistic or antagonistic. DDIs occur 

through PK, PD or a combination of both mechanisms. PD interactions occur when 

drugs or substances have similar molecular targets but do not affect the PK 

parameters of each other. In synergistic PD interactions, two drugs may result in 

better response or exacerbated toxicity through separate mechanisms of action. An 

example of such a reaction is in the co-administration of warfarin and aspirin where 

both drugs’ anticoagulant activity in combination can increase the risk of spontaneous 

bleeding through distinct drug targets (Chan 1995).  

DDIs can have various outcomes: interactions between drugs can increase or 

decrease therapeutic and adverse effects, or result in a completely unique response 

that does not occur when the agents are given individually. Various other substances 

and factors can alter the PK and PD of medications for example, food, drug 

formulation excipients, nutritional supplements, genetics and environmental factors. 

Drugs with narrow therapeutic windows, such as antiretrovirals, anticoagulants, 

carbamazepine, oestrogens and aminoglycoside antibiotics, are particularly 
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susceptible to DDIs because relatively small changes in drug exposure will result in 

increased risk of ADRs or therapeutic failure (Wienkers & Heath 2005).  

PK interactions are characterised by the alteration of the disposition (ADME) of 

one drug by another. If the alterations to ADME are of sufficient magnitude then a 

significant change in exposure of the victim drug occurs leading to altered 

pharmacological effects. An example of PK interactions is when multiple drugs 

compete for the same metabolic pathway and when the pathway is inhibited the 

substrate drugs undergo partial metabolism at a slower rate, which results in reduced 

clearance and increased exposure. An example of this is in the co-administration of 

CYP3A4 substrates clarithromycin and simvastatin, where clarithromycin inhibition 

of CYP3A4 leads to increased exposure of simvastatin that in turn could potentially 

cause rhabdomyolysis (Lee & Maddix 2001).  

Drug exposure is quantified in PK terms by the maximum plasma concentration 

(Cmax) and by AUC (area under the curve); this is the area of the curve in a plasma-

concentration versus time response plot. Changes in Cmax reflects the rate and extent 

of absorption of an orally-given drug; therefore encompassing the effects of first-pass 

metabolism. AUC corresponds to overall plasma exposure and changes in AUC are 

dependent on the rate of elimination. If AUC is significantly increased by DDI then 

pharmacological effects may become exaggerated and risk of ADR potential also 

increases. A significant decrease in AUC can result in reduction of pharmacological 

effects and risk of therapeutic failure. Quantifying changes in AUC can give 

indication as to whether DDIs are likely to occur (Bachmann 2009a).  
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1.2. Cytochrome P450 enzymes 

Cytochrome P450 (CYP) are functionally diverse haemoprotein enzymes found 

ubiquitously in nature, including bacteria, yeast, plants, fish and mammals (Danielson 

2002). Human CYP enzymes constitute a major enzyme family of 57 putatively 

functional genes and 59 pseudogenes grouped into 18 families and 44 subfamilies and 

these have specific functions such as biosynthesis of steroid hormones, prostaglandins 

and bile acids, degradation of endogenous compounds such as fatty acids, steroids, 

retinoic acids as well as exogenous compounds that include drugs and carcinogens, 

mostly through an oxidative transformation process (Williams et al. 2000). CYP 

enzymes can be found in a wide variety of tissues including the intestine, kidney, 

lung, brain, adrenal gland, testes, heart, nasal and tracheal mucosa and skin, but the 

highest abundance with the largest number of isoforms occurs in the liver causing it to 

be the major site of xenobiotic metabolism (Pelkonen et al. 2008). The small 

intestines constitute the next largest site of metabolism and the relative contributions 

of these sites to xenobiotic biotransformation depend on its route of administration. 

For intravenously administered drugs the liver is likely to be the major site of 

biotransformation bypassing the alimentary canal, whereas orally administered drugs 

will first undergo intestinal absorption where a proportion of the dose is metabolised 

by locally present DMEs, before reaching the liver. The solubility and lipophilicity of 

the drug compound, as well as the interplay between uptake and efflux transporters on 

enterocytes and hepatocytes are some of the factors that account for the differences in 

drug concentrations achieved in the gut and liver, which ultimately affect the 

proportion of administered dose that is able to reach systemic circulation and into 

target sites to elicit therapeutic effects. 
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CYP enzymes are classified according to their genetic information and sequence 

homology. About a dozen enzymes belonging in the CYP- 1, 2 and 3 families and are 

well characterised for the metabolism of xenobiotics. An estimated 70% of all 

commercially used drugs undergo CYP metabolism as the main route of clearance 

and ten isoforms of CYP enzymes carry out the majority of CYP-mediated 

metabolism, these include CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 

and 3A5 (Williams et al. 2004; Guengerich 2008). CYP3A family accounts for >30% 

of CYP abundance in the liver, of which the most abundant isoform is CYP3A4 that 

is responsible for metabolising 50% of all currently used drugs. The CYP2 family 

accounts for around 60% of hepatic CYPs and they also catalyse a significant number 

of oxidative drug biotransformation reactions (Pelkonen et al. 2008).  

All CYP enzymes contain a prosthetic group consisting of a ferric Fe3+ 

chelated to an aromatic polypophorin IX ring or haem, which is linked to the protein 

structure via a sulphur atom from a proximal cysteine ligand. They are potent 

oxidants and are called monooxygenases due to their mechanism of oxidation by 

inserting one oxygen atom into the oxidised substrate. CYP uses molecular oxygen 

(O2) by inserting one oxygen atom into a substrate (S) and reducing the second atom 

to a water molecule, utilising two electrons (e-) provided by donor reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) via a reductase protein such 

as cytochrome b5 (cyt b5) as shown in equation A (Meunier et al. 2004): 

 

 

The major pathway of elimination of toxic and pharmacological agents 

involves the biotransformation of lipophilic compounds to readily excreted water-

soluble forms. The two distinct steps involved are traditionally described as phase I 
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(oxidation) and phase II (conjugation) and each step is catalysed by different 

metabolic enzymes. CYP enzymes catalyse the majority of phase I reactions, but 

other enzymes in this class include esterases, hydrolases, alcohol dehydrogenase and 

monoamine oxidases (MAOs). The main phase II conjugating enzymes include UDP-

glucuronyltransferase (UGT), sulfotransferases (SULTs) and glutathione S-transferase 

(GST) (Pelkonen et al. 2008). Compounds undergo either phase I or phase II, or more 

commonly both stages, in the pathway of elimination.  

Within the liver, CYP enzymes are embedded in the endoplasmic reticulum 

(ER) region and the orientation of the CYP within the ER is important for their 

activity. The hydrophobic region in the N-terminal end forms the monotopic 

membrane-spanning domain anchoring the protein to the ER. The haem containing 

catalytic part of the CYP is oriented towards the cytoplasm. The CYP redox partners 

NADPH, cytochrome P450 reductase (CPR) and cyt b5 are also anchored to the ER 

orientated to the cytosolic side of the membrane, readily donating electrons to CYP 

catalytic centre (Bachmann 2009b). 

 

1.2.1. CYP3A4 

It is estimated that CYP3A4 is involved in metabolising 50% of all currently used 

drugs (Zhou 2008). It is the predominant CYP isoform in the gut and constitutes over 

30% of all CYPs in the liver and therefore plays a critical role in xenobiotic 

metabolism at both sites (Pelkonen et al. 2008). The enzyme has large substrate 

variability, is highly inducible and allows catalysis of multiple compounds 

simultaneously, rendering it the most important and widely studied in the context of 

DDIs. The kinetic interactions between CYP3A4 and its substrates are complex, 

which complicates predictions of CYP3A4-mediated DDIs (Pelkonen et al. 2008; 
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Galetin et al. 2005), for example the HIV protease inhibitor drug ritonavir is reported 

to be both an inhibitor and inducer of CYP3A in a dose and time-dependent manner 

(Hsu et al. 1997; Foisy et al. 2008). Moreover, CYP3A4 has a large substrate overlap 

with other CYP enzymes and major transporters such as P-glycoprotein (P-gp) that 

further incriminates its association to many clinically significant DDIs. A list of 

CYP3A4 substrates, inhibitors and inducers are given in Table 1.1. 

Many studies collectively refer 3A4 and 3A5 isoforms as CYP3A. CYP 3A4 and 

3A5 isoforms have high structural homology and substrate specificity, however 

expression of CYP3A5 can vary widely between populations. Over 80% of the 

Caucasian population carry the CYP3A5*3 variant in the 3A5 isoform rendering it 

inactive, whereas over 90% of Sub-Equatorial African populations carry the 

functional CYP3A5*1 allele (Lamba et al. 2012; Bains 2013). The majority of 

clinically relevant CYP3A4/5 inhibitors are established as mechanism-based enzyme 

inhibitors (Grimm et al. 2009).  
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Table 1.1 CYP3A substrate, inhibitor and inducer compounds, * denotes time-dependent inhibitors (FDA, 2016) 

Substrate Inhibitor Inducer 
Sensitive Moderate Weak 

(<2-fold  éAUC; 
20-50%ê 
clearance) 

Moderate 
(>2 and >5-fold  
éAUC; 50-

80%ê clearance) 

Strong 
(>5-fold  éAUC; 

>80%ê clearance) 

Weak 
(20-50% 
êAUC) 

Moderate 
(50-80% 
êAUC) 

Strong 
(>80%êAUC) 

Alfentanil 
Avanafil 
Budesonide 
Buspirone 
Conivaptan 
Darifenacin 
Darunavir 
Dasatinib 
Dronedarone 
Ebastine 
Eletriptan 
Eplerenone 
Everolimus 
Felodipine 
Ibrutinib 
Indinavir 
Lomitapide 
Lovastatin 
Lurasidone 
Maraviroc 
Midazolam* 
Naloxegol 
Nisoldipine 
Quetiapine 
Saquinavir 
Sildenafil 

Simvastatin 
Sirolimus 
Tacrolimus 
Testosterone 
Ticagrelor 
Tipranavir 
Tolvaptan 
Triazolam 
Vardenafil 
 

Alprazolam 
Aprepitant 
Atorvastatin 
Colchicine 
Elugistat 
Pimozide 
Rilpivirine 
Rivaroxaban 
Tadalafil 

Chlorzoxazone 
Cilostazol 
Fosaprepitant 
Istradefylline 
Ivacaftor 
Lomitapide 
Ranitidine 
Ranolazine 
Tacrolimus 
Ticagrelor 

Aprepitant 
Amiodarone* 
Amprenavir* 
Azamulin* 
Cimetidine 
Ciprofloxacin 
Clotrimazole 
Crizotinib 
Cyclosporine 
Delavirdine* 
Dronedarone 
Erythromycin* 
Fluconazole 
Fluvoxamine 
Fosamprenavir 
Imatinib 
Miconazole 
Tofisopam 
Verapamil*  
 
 

Atazanavir 
Bocepravir 
Clarithromycin* 
Conivaptan 
Corbicistat 
Danoprevir 
Darunavir 
Diltiazem* 
Elvitegravir 
Grapefruit juice* 
Idelalisib 
Indinavir 
Itraconazole 
Ketoconazole* 
Lopinavir* 
Nefazodone* 
Nelfinavir* 
Paritaprevir 
Posaconazole 
Ritonavir* 
Saquinavir* 
Telithromycin 
Telaprevir 
Tipranavir 
Troleandomycin* 
Voriconazole 

Armodafinil 
Fufinamide 

Bosentran 
Efavirenz 
Etravirine 
Modafinil 

Carbamazepine 
Enzalutamide 
Mitotane 
Phenytoin 
Rifampicin 
St John’s Wort 
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1.2.1. CYP2B6 

Until just over a decade ago, CYP2B6 was regarded as a minor human hepatic CYP 

accounting for <1% of total content. However, studies since conducted with improved 

detection methods have indicated that the isoform is highly variable between individuals, 

accounting for 2-10% of overall CYP abundance and an estimated 8% contribution to 

metabolism of all clinically used drugs (Wang & Tompkins 2008; Hedrich et al. 2016). 

CYP2B6 is considered highly inducible by phenobarbital-type compounds and CYP3A4 

inducing drugs such as rifampicin, dexamethasone and carbamazepine (Lindley et al. 2002; 

Kharasch et al. 2012; Faucette et al. 2004). CYP2B6 shares mechanisms of transcriptional 

regulation (discussed in 1.3.2) with several other DMEs, consequently inducers of CYP2B6 

have also been found to induce CYP3A4 (Kharasch et al. 2012) and UGT1A1 as well as 

transporters such as P-gp (Tolson et al. 2009).  

Compared with CYP3A4, there has been less significant enzyme inhibition interactions 

identified for CYP2B6. Walsky et al. (2006) evaluated 227 clinically used drugs for their 

ability to inhibit CYP2B6 in vitro. They found that 30 of the 227 compounds displayed 50% 

or greater inhibition at 30 µM and identified clopidogrel and ticlopidine as potent inhibitors. 

However, even with this significant in vitro finding, these inhibitors do not fit the FDA 

classification of a potent inhibitor. A list of CYP2B6 substrates, inhibitors and inducers are 

given in Table 1.2. 

CYP2B6 is highly polymorphic with over 100 single nucleotide polymorphisms (SNPs) 

and 63 alleles identified. Most significant is the CYP2B6*6 (516G>T and 785A>G) allele 

which occur in 15-60% of various populations, the homozygous phenotype results in a non-

functional allele (Zanger & Klein 2013). This variant allele has been linked to central nervous 

system (CNS) toxicity of efavirenz by significantly increasing plasma levels (Rakhmanina & 

van den Anker 2011). Efavirenz is a non-nucleoside reverse transcriptase inhibitor (NNRTI) 
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used widely for treatment of HIV-1; it has a narrow therapeutic index that renders the drug 

particularly susceptible to therapeutic failure or toxicity with altered exposure. The highly 

inducible and polymorphic nature of the CYP2B6 gene contribute to the large inter-individual 

variability observed with PK of substrate drugs and up to 250-fold expression difference 

between individuals (Hedrich et al. 2016).  

To date, CYP2B6 has not been implicated in causing clinically-relevant DDIs, however 

combining its highly inducible potential, significant impact of genetic regulations and a 

likelihood of interactions with other CYP enzymes and transporter proteins, there is an 

increased likelihood of uncovering DDIs mediated by this enzyme in the future.  
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Table 1.2 CYP2B6 substrate, inhibitor and inducer compounds, * denotes time-dependent inhibitors (Collated from FDA, 2016 and 
Hedrich et al 2016) 

 
  

Substrate Inhibitor  Inducer 
Sensitive Moderate Weak 

(<2-fold  éAUC; 20-
50%ê clearance) 

Moderate 
(>2 and >5-fold  

éAUC; 50-80%ê 
clearance) 

Strong 
(>5-fold  éAUC; 

>80%ê clearance) 

Weak 
(20-50% 
êAUC) 

Moderate 
(50-80% êAUC) 

Strong 
(>80%êAUC) 

Aminopyrine 
Artemether 
Artemisinin 
Bupropion 
Clotiazepam 
Coumarins 
Cyclophosphamide 
Diazepam 
Efavirenz 
Ifosfamide 
Lidocaine 
Mephenytoin 
Mephobarbital 
Methadone 
Nevirapine 
Pethidine 
Piclamilast 
Propofol 
S-mephobarbital 
Selegiline 
Temazepam 

Antipyrine 
Ketamine 
Mexiletine 
Nicotine 
Tamoxifen 
Tazofelone 
Testosterone 
Valproic acid 
 

Clopidogrel* 
Tenofovir 
Ticlopidine* 
Voriconazole 

Phencyclidine*  
Sertraline 
Thiotepa * 

- Nevirapine Efavirenz* 
Rifampicin 
Ritonavir 

Carbamazepine 
Phenobarbital 
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1.3. Relevance of cytochrome P450 enzyme turnover in drug-drug 

interaction predictions 

CYP enzymes are estimated to metabolise over 70% of all drugs on the market 

(Williams et al. 2004) and they tend to have broad and overlapping substrate 

specificity, which renders specific CYPs particularly relevant in causing DDIs. Most 

drugs cleared by the CYP system are metabolised by several isoforms but drugs that 

are metabolised by a single isoform are more likely to be victims of DDIs compared 

to those with multiple metabolic pathways (Pelkonen et al. 2008). Activities of CYP 

enzymes are affected by genetic, endogenous and environmental factors, which 

causes drug metabolism to be exceedingly variable between individuals. The EMA 

and FDA have issued specific guidelines on characterising inhibitory and induction 

potential of seven major CYP isoforms, 1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A, by 

new molecular entities (NMEs) as part of the drug development process to assess 

potential of ADRs caused by DDIs and to recommend dosing regimens and clinical 

trials (EMA 2012; FDA 2012; FDA 2017).  

 

1.3.1 Categories of CYP inhibition interactions 

Inhibition of CYP enzymes is the most common cause of clinically relevant DDIs 

and has been the reason for withdrawal of several drugs from the market over the 

years. For example, the antihistamine terfenadine was removed from market due to 

causing QT prolongation, torsades de pointes and sudden cardiac death in patients 

receiving CYP3A4 inhibitors (Woosley et al. 1993; Dresser et al. 2000). Inhibition of 

CYP function by a perpetrator compound can lead to the reduced metabolism of a 

victim drug that uses the same inhibited CYP enzyme in its metabolic clearance 

pathway. This increases the risk of accumulation of the parent drugs leading to ADRs 
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or a risk of therapeutic failure if the concomitant parent drug requires 

biotransformation into active metabolites to exert pharmacological effects.  

CYP enzyme inhibition interactions are categorised into direct and time-

dependent inhibition (TDI). Direct inhibition involves the rapid reversible association 

and dissociation of drugs and enzymes and this can be further divided into 

competitive, non-competitive, uncompetitive and mixed inhibition. Competitive 

inhibition occurs when a substrate (inhibitor) binds to a single active site that is also 

the active binding site for another substrate or the inhibitor itself and the binding of 

the inhibitor can be reversed with increased substrate concentrations. Non-

competitive inhibition occurs if the inhibitor binds at a site that is distinct from the 

substrate-binding site, but the binding of which slows the product formation and 

addition of substrate cannot overcome the inhibition. Uncompetitive inhibition occurs 

when a drug can only bind to the enzyme-substrate complex when a substrate is 

present and then cause a slowing of product formation. Finally, mixed inhibition 

involves a combination of competitive and non-competitive inhibition to different 

degrees of affinity (Zhang & Wong 2005; Bachmann 2009a).  

Direct inhibition has been the most widely studied; progress in this area has 

led to a push to study TDI (which includes mechanism-dependent inhibition) in CYP 

interactions (Riley & Wilson 2015). TDI generally results from irreversible or quasi-

irreversible inhibition reactions. Irreversible inhibition refers to the covalent, whereas 

quasi-irreversible refers to the non-covalent, binding of a chemically reactive 

intermediate to the enzyme that catalyses its formation, resulting in an irreversible 

loss of enzyme function. TDI can also result from reversible inhibition, therefore the 

difference between TDI and mechanism-based inhibition (MBI) ought to be 

recognised (Grimm et al. 2009). TDI is defined as a compound that displays an 
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increase to the extent of inhibition it causes when incubated with the enzyme prior to 

addition of substrate, therefore TDI is a definition based on the kinetics of the 

interaction. Whilst all MBI are quasi-irreversible and irreversible inhibition 

interactions, MBI can only be defined after specific biochemical studies are 

conducted to prove that the enzyme forms a chemically reactive metabolite as part of 

the inhibition mechanism (Riley & Wilson 2015).  

 CYP inhibition interactions can also be categorised based on the agent that is 

inhibiting the enzyme in question. Inhibition can occur directly from the parent 

compound or from its metabolite(s). Metabolism-dependent inhibition (MDI) 

describes inhibition interactions caused by metabolite(s) of the investigated 

compound and can be further divided into reversible, irreversible and quasi-

irreversible MDI (Parkinson et al. 2011).  

 

1.3.2 Relevance of enzyme turnover in time-dependent interactions 

At steady-state (Ess) the rate of change of active enzyme concentration (d[E]/dt) is 

considered to be a balance between de novo protein synthesis (ksyn) and protein 

degradation, the rate of which is called kdeg (enzyme degradation rate constant) and 

this relationship is depicted in A (Yang et al. 2008): 

𝐤𝐬𝐲𝐧
 𝐄 

𝐤𝐝𝐞𝐠
   (A) 

![!]
!!

= k!"# −  (k!"# x [E])  (1) 

[E]!! =  !!"#
!!"#

  (2) 

When equilibrium between enzyme ksyn and kdeg is disturbed, such as in the 

case of irreversible inhibition or induction interactions, the abundance of active 

enzyme will change and reach a new steady-state. The ESS level and the time taken to 
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reach the new steady-state level are determined by enzyme ksyn and kdeg (as described 

by equation 2). Induction and time-dependent DDIs are mediated by a change in 

enzyme level; therefore accurate estimation of enzyme turnover will affect the 

accuracy of predictions of these interactions (Yang et al. 2008; Almond et al. 2009). 

Accordingly, the predictions of time-dependent DDIs (such as MBI and time-

dependent induction) are most sensitive to inaccuracies in enzyme kdeg (Hutzler et al. 

2011).  

 

1.3.3 Mechanism-based inhibition 

A mechanism-based enzyme inhibitor is a compound that undergoes a 

biotransformation catalysed by the enzyme to a reactive metabolite, which in turn 

inactivates the enzyme by binding covalently (irreversible inhibition) or non-

covalently (quasi-irreversible inhibition) (Silverman 1995). This interaction is also 

referred to as MDI and suicide inhibition. Mechanism-based inhibition (MBI) results 

in a permanent inactivation of the enzyme that can only be overcome with the 

synthesis of new enzyme proteins (as depicted in figure 1.1), as such, interactions 

often manifest as slow-onset, long-lasting and cumulative in clinical scenarios 

(Venkatakrishnan & Obach 2007).  
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Predictions of DDIs based on in vitro models of competitive inhibition are 

known to underestimate the magnitude of interactions in the presence of a time-

dependent inhibitor (Obach et al. 2006; Hemeryck et al. 2001). Therefore TDI require 

different models of kinetic interactions and TDI-specific parameters. MBI reactions, a 

subset of TDI, can be modelled as: 

E+ I 
!!  EI 

!!"
 EI!  

!!"
 E!"#$%                     (B) 

↓ k!" 
E+ P 

Where E is the active enzyme and Einact is the inactive forms of the enzyme; I, 

metabolite-dependent inactivator; P, product and EI and EI’ are enzyme-inhibitor 

complexes. CYP enzymes catalyse the conversion of a mechanism-based inactivator 
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Figure 1.1 Schematic for the change in enzyme activity from baseline levels 

after multiple doses of a mechanism-based inhibitor. Upon removal of the 

inhibitor, enzyme recovery to basal levels will depend on resynthesis of the enzyme. 

Accordingly, the time taken to reach basal levels will depend on the rate of enzyme 

synthesis and degradation (that is interchangeable with t1/2).  
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to the reactive form EI’ with rate constant kp1 and this reactive metabolite is either 

released as a product (via kp2) or react and further inactivate more enzyme, Einact.  

Evaluation of MBI can be divided into two categories: 1) high-throughput 

screening assays that rank compounds based on their TDI potential, 2) kinetic assays 

constructed to characterise the potency (KI, inactivator concentration that produces 

50% rate of maximal inactivation) and maximum inactivation rate (kinact). These 

parameters are then incorporated into steady-state mechanistic or dynamic PBPK 

modelling to assess the potential of DDIs (Yang et al. 2005). 

The in vitro two-step dilution approach is used to experimentally determine KI 

and kinact. The first step involves pre-incubating a hepatic CYP system with NADPH 

and a range of inactivator concentrations over varying amounts of time to determine 

the decrease of active enzyme over time. The second step includes a dilution of the 

pre-incubation mixture to quench inactivation, followed by an activity assay with an 

enzyme-specific probe substrate at saturating concentration (Vmax) to track the 

remaining active enzyme. For each inhibitor concentration, natural log CYP activity 

versus pre-incubation time are plotted and the slope used for the calculation of the 

inactivation rate constant (kobs). This is turn is fitted to the Michaelis-Menten model 

where the array of kobs values are then plotted against inactivator concentrations to 

determine KI and kinact (Wong et al. 2016). The relationship between these parameters 

is given in the following equation: 

k!"# =  !!"#$% ! [!]
!!![!]

  (3) 

The R value is calculated based on kobs and kdeg and is used as an indicator for MBI 

potential: 

R =  !!"#! !!"#
!!"#

   (4) 
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The FDA draft guidance for industry regarding irreversible inhibitors recommended 

the use of equation 2 to assess DDI potential. If R > 1.1 (or 11 for CYP3A inhibition 

in the gut) then the test compound is considered likely to elicit considerable CYP 

MBI (FDA 2012) and warrants further investigation with a full mechanistic static 

model or dynamic PBPK model to predict in vivo DDI potential (Fujioka et al. 2012). 

Other methods such as the progress curve have also been suggested for assessing MBI 

potential (Burt et al. 2012). 

 

1.3.3.1. Relevance of kdeg in mechanism-based inhibition 

In the presence of an irreversible inhibitor in vivo, the levels of enzyme will 

decrease due to inactivation (described by equation 5), reaching a new steady-state 

level (equation 6). In steady-state CYP enzyme abundance is a balance between the 

rate of synthesis (ksyn) and rate of degradation (kdeg) (described by A). However, MBI 

will cause a secondary mechanism for loss of functional enzyme (rate constant λ) in 

addition to its endogenous degradation (kdeg), as depicted: 

            
 𝐤𝐬𝐲𝐧

 𝐄 
𝐤𝐝𝐞𝐠

                    (C) 
↓ 𝛌 

Kobs is the inhibitory rate constant can be substituted into equations 5 and 6 to account 

for λ: 

![!]
!!

=  k!"# − k!"# x E − k!"# x E   (5) 

[E]!! =  !!"#
!!"#! !!"#

   (6) 

Therefore by substituting inactivation constants, the mechanistic equation for MBI is: 

![!]
!!

=  k!"# x E! −  E! x (k!"# +
!!"#$% ! !
!!! !

)  (7) 

Where, ksyn = kdeg x Eo and E0 is the initial enzyme level.  
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From this principle, Mayhew et al. (2000) developed the following 

mechanistic static model equation to quantitatively assess the potential for an 

inactivator to cause increased exposure by MBI in vivo: 

δAUC =  !

!",!"#

!! 
!!"#$% ! ! !" !"!#

!! ! !!"#

!(!! !"!"#)

    (8) 

Where δAUC is the AUC ratio of in vivo exposure in the presence of inactivator 

compared to control state; fmcyp, fraction metabolised by CYP isozyme and [I]invivo, in 

vivo Cmax concentration of inactivator.  

Accurate predictions of DDIs arising from MBIs rely on four main 

parameters: 1) the in vivo enzyme kdeg, 2) in vivo concentration of inactivator drug 

available to the enzyme, 3) in vitro inactivation parameters kinact and KI and 4) the 

fraction of clearance of the affected drug mediated by the inactivated enzyme (Obach 

et al. 2006). Each of these parameters are potential sources of prediction errors and 

require further investigation.  

 

1.3.4 Enzyme induction 

Induction occurs when a perpetrating chemical compound causes an increase 

in the expression of enzymes in the metabolising tissue. This can result in increased 

CYP activity thereby enhancing clearance and reducing exposure of the victim drug 

and can also potentially lead to reduced therapeutic effect and/or increase in exposure 

to metabolites, which can in turn cause ADRs. These interactions can be clinically 

significant, for example in rifampicin induction of CYP3A that results in reducing the 

in vivo AUC of co-administered drug verapamil by up to 52-fold (Fromm et al. 1996), 

causing contraception failure if administered with oral contraceptives, organ rejection 
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when given with cyclosporine and failure of protease inhibitors in HIV treatments 

(Almond et al. 2009). 

Several forms of CYP expression occur through transcription that is regulated 

by nuclear transcription factors including the aryl hydrocarbon receptor (AhR), 

pregnane X receptor (PXR) and the constitutive active receptor (CAR); the 

mechanisms of which are depicted in Figure 1.2. In the absence of an agonist AhR is 

located in the cytosol in complex with chaperone proteins Hsp90, ARA9 and p23. 

Upon binding, AhR undergoes conformational change that causes dissociation from 

chaperone proteins and nuclear translocation. Within the nucleus AhR dimerises with 

the AHR nuclear translocator (ARNT) and forms a DNA-binding complex. The 

AHR:ARNT heterodimer complex binds xenobiotic response element (XRE) and 

initiates transcription. CYPs 1A1, 1A2 and 1B1 are induced by this mechanism 

(Hewitt et al. 2007).  

CYP3A induction is mediated by PXR and CAR. Following binding of an 

inducer to PXR, the complex translocates into the nucleus and forms a heterodimer 

with retinoid X receptor (RXR). The PXR:RXR heterodimer binds distal and 

proximal response elements in the ER6 regulatory region of the CYP3A gene, also 

referred as xenobiotic response enhancer module (XREM), to initiate transcription. In 

the absence of an activator, CAR resides in the cytosol in complex with cytoplasmic 

CAR retention protein (CCRP) and Hsp90. During induction, CAR pathway is 

activated upon binding an inducer and CAR forms a heterodimer with RXR and binds 

to many DNA-binding elements that are shared with PXR (Handschin & Meyer 

2003).  

In CYP2B6 induction, the CAR:RXR heterodimer binds to the phenobarbital-

responsive enhancer module (PBREM) in the regulatory region of the CYP2B6 gene 
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and facilitates gene transcription. PXR has also been implicated in CYP2B6 

regulation as the PXR:RXR complex is able to bind the PBREM eliciting 

transcription but selective activation of CAR over PXR provides preferential 

induction of CYP2B6 over CYP3A (Wang & Tompkins 2008; Pelkonen et al. 2008; 

Almond et al. 2009). 

 

 

Figure 1.2 Schematic showing the activation of AhR, CAR and PXR nuclear 

receptor regulation pathways leading to induction of CYP enzymes. Adapted 

from Handschin & Meyer (2003)  
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CYP induction is a time and substrate concentration-dependent process. 

Induction occurs through binding of drugs to nuclear receptors which then activate the 

protein expression of a specific enzyme through an endogenous signalling pathway, 

therefore in vitro induction studies are conducted in living cells, as opposed to 

microsomal fractions, where these signalling mechanisms are intact. In vitro studies 

typically involve the plating and culturing of cells for 1-2 days prior to addition and 

incubation with a positive control and test compounds over a range of concentrations 

for a further few days. The magnitude of CYP increase can be detected by measuring 

specific enzyme activity and preferably mRNA and compared to untreated controls 

(Fahmi & Ripp 2010).  

Several mathematical models were developed incorporating in vitro 

parameters derived from induction experiments, to assess whether a NME or drug 

compound is likely to cause induction DDIs. One such an approach is the relative 

induction score (RIS) that combines in vitro potency and efficacy induction 

parameters (Emax and EC50, respectively) with the efficacious plasma inducer 

concentrations that is correlated to a calibration curve generated from known 

induction response: 

RIS =  !!"# ! [!"#]
!"!"![!"#]

  (9) 

Where Emax is the maximum induction response; EC50, concentration at 50% of 

maximal induction and [Ind] is the concentration of inducer. If RIS > 0.1 then the 

compound is likely to lead to clinical DDI (Fahmi & Ripp 2010; Riley & Wilson 

2015).  

Another approach that is advocated by the 2012 draft FDA recommendations 

is the R3-value, which is calculated by the following equation where d is the 

calibration factor (taken as 1): 
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R! =  !

!! ! ! !!"# ! [!"#]
!"!"![!"#]

  (10) 

If the R3 value is < 0.9 then the investigated compound is likely to be an inducer and 

will require further incorporation into mechanistic static or dynamic models to assess 

likely magnitude of DDIs. 

 The RIS approach can be used where a known induction response, such as in 

the case of CYPs in hepatocytes, are available to generate a calibration curve to which 

the investigated inducer can be compared with. The R3 approach conversely, requires 

generation of the entire profile of the concentration-induction curve (Kuramoto et al. 

2017). 

 

1.3.4.1 Relevance of kdeg in time-dependent induction 

Increased abundance of enzyme levels in response to an inducer can result 

from either increased de novo protein synthesis (ksyn) or decrease in degradation (kdeg) 

by protein stabilisation. There will be a delay in both cases before the new 

equilibrium is reached and the time taken to reach this will depend on enzyme kdeg 

(depicted in Figure 1.3), therefore accurate estimation of enzyme turnover will affect 

the accuracy of predictions. 
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The time taken to reach the new equilibrium is longer when kdeg is decreased 

compared to when enzyme synthesis is increased, thus enzyme kdeg is critical in the 

evaluation of time-dependent induction interactions (Almond et al. 2009). Enzyme 

levels will increase as described by the following equations: 

! ! !

!!
=  k!"# +  k!"# x E ! −  k!"# x E !   (11) 

=  k!"# + k!"# −  k!"#  x [!"#]
!"!"![!"#]

−  k!"# x [E]′  (12) 

A new steady state will be reached: 

[E]′!! =  !!"#!(!!"#! !!"#)
!!"#

 x [!"#]
!"!"![!"#]

   (13) 

Figure 1.3 Schematic for the change in enzyme activity from baseline levels 

after multiple doses of an inducer. Upon removal of the inducer, the time taken to 

return to basal enzyme activity levels will be dependent on the rate of enzyme 

degradation (that is interchangeable with t1/2). 
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Where kind is the enzyme induction rate constant; Kmax, maximum rate of enzyme 

synthesis; EC50, concentration of inducer at 50% of maximal induction and [E]’SS is 

the enzyme content at steady state in the presence of an inducer and [Ind] is the 

inducer concentration (Shou et al. 2008).  

 If the inducer only causes an increase in enzyme synthesis then the enzyme 

turnover (kdeg) does not determine the overall extent of induction. However, in the 

majority of time-dependent interactions the inducer is not given over sufficient time 

for the system to reach maximal induction and in this case the impact of 

interindividual variability in kdeg on the observed magnitude of induction will be 

apparent, therefore giving rise to variable DDI estimates.  

 

 

1.4 Mathematical modelling for in vivo drug interaction predictions 

Quantitative in vitro data describing ADME processes can be incorporated into 

computer-based algorithms to predict AUC changes and potential for DDIs. However, 

whilst many disposition interactions can be predicted qualitatively based on 

knowledge of ADME of interacting drugs, these quantitative changes in AUC are 

often insubstantial to bring about clinically-significant interactions in practice. 

Therefore, caution must be employed when using these prediction models because 

exaggeration of DDI potential can cause unnecessary attrition of potentially useful 

compounds (Bachmann 2009a).  

 

1.4.1. Static mechanistic model 

Fahmi et al. (2008) developed a mechanistic static model to predict the net 

potential for all DDIs simultaneously. This model accounts for metabolic 
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contributions of both the liver and the gut wall and is applicable to compounds that 

can act as both inhibitors and inducers of DMEs. For example, ritonavir has been 

demonstrated to be a potent time-dependent inhibitor of CYP3A4 as well as an 

activator of the PXR induction pathway (Hsu et al. 1997). Prediction of DDIs for such 

agents are difficult due to the challenge to determine which interaction phenomena 

will dominate the in vivo response. As such, the combined or net effect model was 

developed for compounds that exhibit combinations of reversible direct inhibition, 

TDI and/or induction (Fahmi & Ripp 2010). In this model, the AUC ratio (δAUC) can 

be described by: 

δAUC =  !
!! ! !! ! !!  ! !!"#$!(!! !!"#$) 

 x !
!! ! !! ! !!  ! !! !! ! !!

       (14) 

Where, 

A =  !!"#

!!"#! 
!!"#$% ! !
!!! !

  

B = 1+  ! ! !!"# ! [!"#]
!"!",!"#![!"#]

  

C =  !

!! [!]!!

  

Where fmcyp is the fraction metabolised by CYP enzyme; FG, fraction of drug that 

escapes intestinal extraction. A, B and C are terms for TDI, induction and reversible 

inhibition, respectively. Subscript H and G are hepatic and gut interactions, 

respectively.  

The FDA categorisations for changes to substrate drug are: > 5-fold increase 

in AUC or >80% decrease in clearance suggests a strong inhibitor, >2 but <5-fold 

AUC increase and 50-80% clearance decrease is a moderate inhibitor and >1.25 but 

<2-fold AUC increase and 20-50% clearance decrease is considered a weak inhibitor. 

The advantage of this model over basic models is that it incorporates both hepatic and 
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intestinal components as well as different mechanisms of DDIs that can improve 

prediction accuracy. However, predictability of the model relies on accurate 

estimations of additional parameters such as FG, fmcyp, dose and kdeg, which can 

introduce sources of error to the model (Fahmi & Ripp 2010).  

 

1.4.2. Dynamic modelling 

As more comprehensive compound and biological systems data have become 

available through the maturation of the methods of attaining them, there has been 

increased confidence in DDI prediction accuracy using dynamic modelling and 

therefore growing interests for incorporating the use of them during drug development 

(Riley & Wilson 2015). These simulations use PBPK and in vitro-in vivo 

extrapolation (IVIVE) methods to evaluate the relevance of inhibition and induction 

interactions observed in vitro to predict in vivo clinical scenarios. The FDA and EMA 

have advocated the use of dynamic simulations alongside the net effect model during 

drug development (FDA 2012; EMA 2012).  

Static models assume a constant inhibitor/inducer concentration throughout 

the course of DDI prediction; they simply predict the change in overall exposure of 

victim drug from a constant concentration of perpetrator drug. However, many 

substrates are known to simultaneously display multiple forms of interaction 

including inhibition, inactivation and/or auto-activation, thus a comprehensive 

dynamic approach addressing the temporal changes in drug concentration as well as 

active enzyme levels and exposure to victim substrate should in theory improve 

predictions. As such, enzyme kdeg remains an important component in the dynamic 

modelling process. These models can also be semi- or whole-body PBPK and provide 

a physiologically-relevant framework enabling the incorporation of multiple ADME 
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processes, such as active transport and protein binding, as well as processes that are 

not yet fully characterised. However, predictability of such models relies on 

adequately characterised compound and biological parameters and prediction 

accuracy can be hampered by incorporating incorrect parameter values (Jones & 

Rowland-Yeo 2013).  

Proprietary software programmes with in-built PBPK algorithms, such as 

Simcyp®, PK-Sim®, AcslXtreme® and GastroPlus™, are the most commonly used 

for dynamic predictions. Semi-physiological models encompassing fewer 

compartments provide a useful tool to examine effects within a specific tissue of 

interest, for example the liver or gut, and these models are simpler and less reliant on 

multiple accurate physiological parameters. In contrast, software such as Simcyp® 

requires more comprehensive input data to incorporate into the complex in-built 

algorithms, but the software offers the distinct advantage of incorporating parameter 

variability to allow for predictions of DDI magnitude in specific patient populations 

(Fahmi & Ripp 2010).  

 

1.4.3. Uncertainty of kdeg in DDI predictions 

Several sources have highlighted the sensitivity of DDI predictions in both 

static and dynamic models to kdeg values when enzyme levels change as a result of 

TDI or induction (Venkatakrishnan et al. 2007; Grimm et al. 2009; Fahmi & Ripp 

2010; Galetin et al. 2006). Obach et al. (2006) demonstrated sensitivity of in vivo kdeg 

effects for accurate predictions of MBI interactions with contour mapping. Table 1.3 

summarises some published studies that assessed the impact of different CYP3A kdeg 

values on DDI predictions. Different kdeg values have yielded varied prediction 

accuracies, therefore it is apparent that the choice for kdeg is deemed as very important 
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for the generation of DDI predictions. This is particularly relevant for compounds that 

display time-dependent mixed inhibition/induction reactions, where complex dynamic 

modelling is needed that relies heavily on accurate incorporation of systems 

parameters (Grimm et al. 2009; Prueksaritanont et al. 2013). 

 

 

Table 1.3 Studies utilising different CYP3A4 kdeg values for DDI predictions 
 

Study Tested 
CYP3A4 kdeg 
(h-1) values 

Outcome Reference 

37 in vivo irreversible 
inhibition interactions with 
macrolides (erythromycin, 
clarithromycin and 
azithromycin) and diltiazem 

0.0048 - 0.03 89% of studies predicted 
within 2-fold using kdeg of 
0.0096 h-1 

(Galetin et al. 
2006) 

MBI with clarithromycin 
and erythromycin  

0.0231, 
0.0077 and 
0.0026 

Predicted clarithromycin 
inactivation rates were more 
sensitive to changes in kdeg 
compared with erythromycin 

(Ghanbari et al. 
2006) 

45 in vivo inhibition 
interactions with diltiazem, 
erythromycin, fluconazole, 
fluoxetine, itraconazole, 
ketoconazole, paroxetine 
ritonavir, terbinafine and 
verapamil 

0.0077 and 
0.0193 

Improved predictions of AUC 
for seven of nine trials when 
0.0193 h-1 was used 

(Einolf 2007) 

Sensitivity analysis of 
erythromycin/midazolam 
inhibition interactions in 
rats 

0.006 – 0.15 10-fold variation in kdeg 
resulted in midazolam AUC 
change from 8.3-18.8 

(Zhang et al. 
2010) 

54 clinical interactions with 
clarithromycin, diltiazem, 
erythromycin, ritonavir, 
saquinavir, verapamil and 
fluoxetine 

0.0077 and 
0.03 

Better prediction accuracy 
and less error relative to 
observed values when in kdeg 
of 0.03 h-1 was used with 
Simcyp. 

(Wang 2010) 

29 in vivo MBI interactions 
with azithromycin, 
clarithromycin, diltiazem, 
erythromycin and verapamil 

0.0193 and 
0.0077 

Better prediction accuracy of 
83 versus 59% of AUC 
within 1.5-fold when 0.0193 
h-1 CYP3A4 kdeg was used 
compared to 0.0077 h-1. 

(Rowland Yeo 
et al. 2011) 
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Table 1.3 Continued. 
 

Study Tested 
CYP3A4 kdeg 
(h-1) values 

Outcome Reference 

Simcyp simulations of 
plasma concentration-time 
profiles of diltiazem and 
midazolam interactions 

0.03 and 
0.0077 

Accurate Simcyp predictions 
(within 2-fold) were only 
observed when a hepatic 
CYP3A value of 0.03 h-1 was 
used.  

(Friedman et al. 
2011) 

Sensitivity analysis of 
crizotinib-midazolam 
interaction predictions 

0.000693 – 
0.693 

CYP3A4 t1/2 of 25-35 h 
yielded the best prediction of 
crizotinib plasma 
concentrations whereas a t1/2 
of 30-40 h yielded the best 
midazolam AUC prediction. 
Hepatic kdeg of 0.019 h-1 
yielded reasonable crizotinib 
interaction predictions.  

(Mao et al. 
2013) 

Pioglitazone/midazolam 
and troglitazone/simvastatin 
DDI predictions 

0.008, 0.03 
and 0.019 

Improved DDI predictions for 
both interactions with kdeg of 
0.03 h-1 compared with 0.019 
h-1 and 0.0008 h-1.  

(Prueksaritanont 
et al. 2013) 

Prediction of midazolam 
AUC following 28 day once 
daily oral administration of 
rifampicin 

0.008 and 
0.03 

Better prediction of observed 
midazolam AUC with kdeg of 
0.08 h-1 compared to 0.03 h-1.   

(Prueksaritanont 
et al. 2013) 
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1.5      Methods of measuring CYP protein degradation rates 

CYP kdeg is a physiological rather than drug-dependent parameter and cannot 

easily be directly measured in vivo; therefore it is often associated with uncertainty. 

The turnover of CYP enzymes is determined by protein degradation and, what is 

particularly relevant for DDI predictions, active site haem degradation. Depending on 

the approach of estimating kdeg, it is feasible that previous studies have generated t1/2 

estimates based on the protein component rather than the catalytic haem site. This will 

result in less relevance in terms of DDI kinetics thus introducing more uncertainty in 

the physiological relevance of kdeg for DDI predictions.  

There have been several approaches used to estimate CYP kdeg and the most direct 

method is using pulse-chase tracer kinetic studies of a specific protein of interest in a 

living organism (Correia 1991). However, such an approach requires multiple 

invasive sampling of hepatic tissue over time, thus it is unsuitable for humans and has 

only been applied to rodent models. Half-lives of rat CYPs 1A2, 2E1 and 3A have 

been estimated to be 10 (Correia 1991), 6-7 (Roberts et al. 1995) and 14 hours 

(Watkins et al. 1985), respectively in this way. However, rat CYP enzymes have 

shorter half-lives compared to humans resulting in under prediction of human DDI 

risk when rat half-lives are used in prediction models (Iwano S 2015; 

Venkatakrishnan et al. 2007).  

The approaches used for human estimates of human CYP kdeg fall into two main 

categories: 1) direct methods using in vitro models of the human liver and 2) indirect 

PK-based estimations based on in vivo animal or human systems.  

Liver slices and primary cultured hepatocytes have traditionally been used as in 

vitro models to estimate human kdeg. Pichard et al. (1992) used a radiolabelled pulse-

chase kinetic approach to estimate CYP3A4 kdeg in primary human hepatocytes and a 



 46 

t1/2 of 44 hours was derived. Renwick et al. (2000) derived kdeg estimates for several 

CYP enzymes through characterising the rates of loss of CYP apoprotein and CYP-

specific metabolic activities in cultured human liver slices. The latter study, where 

pulse-chase was not conducted, is limited by the assumption that the CYP loss 

detected is solely due to enzyme degradation negating any de novo CYP synthesis that 

might occur during the analysis period. In both studies, the observed rate of loss of 

CYP may be confounded by cell death or differentiation during culture. Such caveats 

can result in uncertainty and lack of consensus on the optimum approach of 

measuring kdeg.  

Analysis of the time-course of enzyme induction followed by tracking the de-

induction profile upon removal of the inducer, or recovery profile following 

inactivation, may provide an indirect in vivo estimate of kdeg (as depicted in Figures 

1.3 and 1.1, respectively). This is based on the assumption that steady-state enzyme 

levels comprise of a balance between synthesis and degradation and that CYP 

induction, de-induction and recovery from inactivation are all first-order processes 

with a rate constant equivalent to kdeg. The inactivator or inducer utilised in such 

studies must have a shorter t1/2 than the enzyme turnover. If the inducer or inactivator 

has a t1/2 longer than that of the enzyme, the t1/2 of the drug will need to be 

deconvoluted from the overall process of induction, de-induction or recovery from 

inactivation to provide an estimate of kdeg. This can be done using physiologically-

based modelling on the clinical PK data or via non-compartmental deconvolution 

(Venkatakrishnan & Obach 2007; Venkatakrishnan & Obach 2005; Venkatakrishnan 

et al. 2007).  

Faber & Fuhr (2004) estimated human CYP1A2 t1/2 to be 39 h from tracking the 

recovery of CYP1A2 activity from induced state to basal conditions following abrupt 
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cessation of heavy smoking. Venkatakrishnan & Obach (2005) utilised non-

compartmental deconvolution of the t1/2 of paroxetine, which was originally generated 

by Liston et al. (2002) who tracked the recovery time-course of CYP2D6 upon 

cessation of treatment of paroxetine inactivator. The deconvoluted t1/2 of CYP2D6 

was estimated to be 51 h. For CYP2E1, tracking de-induction during withdrawal 

phase in alcoholics derived a t1/2 of 60 h (Lucas et al. 1995) and recovery of metabolic 

activity following inactivation by disulfiram have found the t1/2 to be 51 h (Emery et 

al. 1999).  

CYP3A (comprising 3A4 and 3A5) t1/2 are the most extensively studied amongst 

CYP enzymes using indirect PK based estimations. Greenblatt (2003) tracked the 

recovery of midazolam oral clearance following CYP3A inactivation by grapefruit 

juice, which estimated the in vivo intestinal t1/2 to be 23 h. For hepatic CYP3A4, the 

reported t1/2 values range from 10 to 140 h (Yang et al. 2008) and these have been 

derived from many studies utilising a range of in vitro and in vivo approaches (Table 

1.4). Earlier studies with in vivo rodent models estimated CYP3A t1/2 to be 14 h 

(Watkins et al. 1985). At the opposite end of the spectrum, Von Bahr et al. (1998) 

estimated CYP3A4 t1/2 to be 140 h from measuring nortriptyline metabolite formation 

in vivo in human subjects after dosing with pentobarbital. However, the accuracy of 

this estimate is likely to be limited by the fact that nortriptyline is metabolised by 

other CYP isozymes, primarily by CYP2D6, and the extent of metabolism can be 

highly variable between individuals. Several other estimates have found CYP3A4 t1/2 

to be in the region of 26 to 96 h. Table 1.4 shows a summation of the estimated 

turnover t1/2 of human hepatic CYPs.  

There are several caveats associated with the in vivo methods of deriving CYP 

kdeg. In vivo approaches characterise CYP activity through substrate drug turnover and 
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measurement of metabolite in urine or blood samples; and thus presents an indirect 

method of measuring kdeg. Such studies make the assumption that the probe substrate 

metabolites are produced by a single CYP isoform. However in practice, substrates 

such as ritonavir and midazolam are known to be metabolised by both CYP 3A4 and 

3A5 (Soars et al. 2006) and chlorzoxazone has also been found to be metabolised by 

both CYP 1A2 and 2E1 (Ono et al. 1995). Where probe substrate compounds are used 

to estimate the kdeg for a specific CYP enzyme, the validity of kdeg estimate is put into 

question when the probe substrate is metabolised by multiple CYP isoforms. 

Furthermore, drugs such as ritonavir produce simultaneous auto-induction and MBI of 

CYP3A and therefore confounds the interpretation of kdeg estimates when using the 

model-based analysis of solely auto-induction kinetics. Estimates of kdeg based on in 

vivo de-induction profiles are limited by the assumption that there was no de novo 

enzyme protein synthesis during the de-induction period. Another consideration is 

that in vivo estimates of hepatic CYP kdeg should take into account the relative 

contributions of gut disposition and metabolism of inducer/inactivator and probe 

substrate drug, when using PK based models for estimations with orally-dosed 

compounds. A combination of these caveats may give rise to the large difference 

between kdeg estimations across and within studies.  

Considering the uncertainty of CYP kdeg, several CYP3A DDI studies have used 

an approach of selecting reasonable estimates of kdeg (for example, between 24-72 h 

range) for incorporation into the prediction model, followed by examining the 

sensitivity of the predicted interaction magnitude around the range of values used, as 

shown in Table 1.3 (Galetin et al. 2005; Ghanbari et al. 2006; Venkatakrishnan & 

Obach 2007). The sensitivity of DDI predictions to varying kdeg values is related to 

fmcyp of the object drug. Prediction accuracy was found to be less sensitive to CYP 
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kdeg values when drugs had alternate clearance mechanisms (relating to a smaller 

fmcyp) compared to those with exclusive clearance by the inactivated enzyme. As 

such, fmcyp is incorporated into the static mechanistic models given by equations 8 

and 14 (Venkatakrishnan et al. 2007; Obach et al. 2006). 
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Table 1.4 Human hepatic CYP turnover half-lives and corresponding kdeg 
(Updated from Yang et al. 2008) 
 

 

CYP 
Enzyme 

Source Method n Half-life 
(h) 

kdeg  
(h-1) 

Reference 

1A2 In vitro Pulse-chase 1 51 0.014 (Diaz et al. 1990) 
 In vitro Tracking degradation over 

time in cultured hepatocytes 
N/A 43 0.016 (Maurel 1996) 

 In vitro Tracking apoprotein over 
time in cultured liver slices 

5 36 (8-58) 0.019 (Renwick et al 
2000) 

 In vivo Tracking recovery profile 
following inactivation by 
heavy smoking 

12 39 (19-143) 0.018 (Faber & Fuhr 
2004) 

 In vivo Tracking autoinduction 
profile from carbamazepine 
using caffeine metabolism as 
probe 

7 105 0.0066 (Magnusson et al. 
2007) 

2A6 In vitro Tracking apoprotein loss over 
time in cultured liver slices 

2 26 (19-37) 0.027 (Renwick et al 
2000) 

2B6 In vitro Tracking apoprotein loss over 
time in cultured liver slices 

1 32 0.022 (Renwick et al 
2000) 

 In vitro De-induction profile in 
HepatoPac following 
rifampicin induction 

2 68 (67-70) 0.010 (Dixit et al. 2016) 

2C8 In vitro Tracking apoprotein loss over 
time in cultured liver slices 

5 23 (8-41) 0.030 (Renwick et al 
2000) 

 In vivo Tracking recovery profile 
after gemfibrozil inactivation 
using repaglinide as probe 

9 22 (16-28) 0.032 (Backman et al. 
2009) 

2C9 In vitro Tracking apoprotein loss over 
time in cultured liver slices 

5 104 0.0067 (Renwick et al 
2000) 

2C19 In vitro Tracking apoprotein loss over 
time in cultured liver slices 

3 26 (7-50) 0.027 (Renwick et al 
2000) 

2D6 In vitro Tracking apoprotein loss over 
time in cultured liver slices 

4 70 0.0099 (Renwick et al 
2000) 

 In vivo Tracking recovery after 
MDMA inactivation using 
dextromethorphan as probe 

12 37 (14-60) 0.019 (Yubero-lahoz et 
al. 2000) 

 In vivo Tracking recovery profile 
after paroxetine inactivation 
followed by non-
compartmental deconvolution 

13 51 0.014 (Liston et al 2002; 
Venkatakrishnan 
& Obach 2005) 

 In vivo Tracking recovery profile 
after MDMA inactivation and 
using dextromethorphan as 
probe 

15 47 (35-58) 0.015 (O’Mathúna et al. 
2008) 
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Table 1.4 continued  

 

CYP 
Enzyme 

 

Source Method n Half-life 
(h) 

kdeg 
(h-1) 

Reference 

2E1 In vivo Tracking de-induction profile 
after alcohol induction 

6 60 0.012 (Lucas et al 1995) 

 In vivo Tracking of enzyme recovery 
after disulfiram inactivation 
using chlorzoxazone as probe 

13 50 (±19) 0.014 (Emery et al 
1999) 

 In vitro Tracking apoprotein loss over 
time in cultured liver slices 

5 27 (7-40) 0.026 (Renwick et al 
2000) 

4A11 In vitro Tracking apoprotein loss over 
time in cultured liver slices 

5 75 (56-77) 0.0092 (Renwick et al 
2000) 

3A4 In vivo Tracking of auto-induction  6 96 (53-154) 0.0072 (Pitlick et al. 
1976) 

 In vivo Tracking de-induction profile 
after carbamazepine 
induction 

7 72 (20-146) 0.0096 Lai et al (1978) 

 In vivo Tracking de-induction profile 
after carbamazepine 
induction 

3 (85-806) - (Warren et al. 
1980) 

 In vitro Induction by rifampicin 
followed by pulse-chase 
tracking of de-induction in 
hepatocytes 

1 44 0.016 (Pichard et al. 
1992) 

 In vivo Tracking of auto-induction 
and interpreted by Yang et al 
2008 

13 10 (2-158) 0.069 (Boddy et al. 
1995; Yang et al. 
2008) 

 In vitro Tracking degradation over 
time in cultured hepatocytes 

N/A 26 0.027 (Maurel, P 1996) 

 In vivo De-induction profile 
following rifampicin dosing 
with verapamil as probe 

8 36-50 - (Fromm et al 
1996) 

 In vivo Tracking of auto-induction by 
ritonavir 

16 85 (±61) 0.0082 (Hsu et al. 1997) 

 In vivo De-induction profile 
following phenobarbital 
dosing 

6 140 (48-
284) 

0.0050 Von Bahr, C et al 
(1998) 

 In vivo Tracking of auto-induction by 
methadone 

35 94 (62-205) 0.0074 (Rostami-
Hodjegan et al. 
1999) 

 In vivo Tracking de-induction after 
rifampicin dosage, measuring 
6β-hydroxycortisol as 
substrate; interpreted by Yang 
et al. 

15 72 0.0096 (Tran et al. 1999; 
Yang et al. 2008) 

 In vitro Tracking apoprotein loss over 
time in cultured liver slices 

4 79 0.0088 (Renwick et al 
2000) 
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Table 1.4 continued 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CYP 
Enzyme 

 

Source Method n Half-life 
(h) 

kdeg 
(h-1) 

Reference 

3A4 In vivo Tracking autoinduction 
profile from carbamazepine 
with midazolam as probe 

7 70 0.0099 (Magnusson et al 
2007) 

 In vivo De-induction profile 
following St John’s Wort 
induction 

12 46 (20-116) 0.017 (Imai et al. 
2008) 

 In vivo De-induction profile 
following carbamazepine 
induction 

15 86 0.0081 (Punyawudho et 
al. 2009) 

 In vivo De-induction profile 
following rifampicin 
induction 

11 86 0.008 (Reitman et al. 
2011) 

 In vitro De-induction profile in 
HepatoPac following 
rifampicin induction 

3 49 (43-56) 0.014 (Dixit et al 
2015) 
 

 In vitro siRNA knockdown followed 
by metabolite detection 

5 29 (22-39) 0.024 (Ramsden et al. 
2015) 

 In vitro SILAC labelling in 
HepatoPac 

4 30 (27-32) 0.023 (Takahashi et al. 
2017) 

3A5 In vitro Tracking apoprotein loss over 
time in cultured liver slices 

3 36 (15-70) 0.019 (Renwick et al 
2000) 
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1.6 . Mechanisms of CYP protein degradation 
 

Protein abundance in a cellular system is a balance between the rate of 

synthesis and degradation. The ability of the cell to remove and replenish proteins in a 

dynamic state of constant turnover is paramount to maintaining essential cellular 

functions and all protein turnovers are regulated in a specific way. Rates of protein 

synthesis are readily measurable by time-course experiments utilising radioisotopes 

and protein quantification, but kdeg is often more difficult to determine especially in 

vivo (Millward et al. 1981; Pratt et al. 2002). This is due to the complex interplay 

between different protein degradation mechanisms and paucity in understanding the 

signalling mechanisms initiating specific protein degradation. The two main 

mechanisms of protein degradation are: lysosomal and ubiquitin-proteasomal 

degradation (UPD), and both pathways participate in the degradation of CYP 

enzymes. ER-associated degradation (ERAD) refers collectively to the mechanisms 

(including both lysosomal and UPD) involved in the proteolysis of ER-bound proteins 

(such as the CYP proteins), and thus responsible for maintaining physiological levels 

of CYP.  

 Much of what is known about ERAD is derived from studies with 

Sacchromyces cerevisae (yeast) and in rat hepatocytes, but there is a high degree of 

evolutionary conservation in protein degradation found in mammals and yeast. ERAD 

has been classed into three distinct pathways: ERAD-L for proteolysis of ER-lumenal 

proteins, ERAD-M for polytopic ER-membrane bound proteins and ERAD-C for 

monotopic ER-membrane bound proteins with cytosolic domains. CYP proteins fall 

under the ERAD-C category (Kim et al. 2016). 
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1.6.1 ERAD/ALD 

Discovered in the 1950s, the lysosome was the first identified system of 

protein degradation. It is a vesicular organelle that occurs in the cytosol of eukaryotic 

cells and contains a multitude of proteases that catalyse proteolysis of intra- and extra-

cellular proteins, as well as cellular organelles. The degradation process is dynamic 

involving many stages of lysosomal maturation together with the digestion of both 

exogenous and endogenous proteins and particles, through different pathways. 

Exogenous proteins enter the lysosome through receptor-mediated endocytosis and 

pinocytosis (engulfment of extracellular fluids) and particles enter by phagocytosis; 

all three processes are collectively known as heterophagy. Endogenous proteins and 

cellular organelles are targeted by microautophagy and macroautophagy, respectively 

(Ciechanover 2005; Eskelinen & Saftig 2009). Of these lysosomal pathways, only 

macroautophagy has been linked to cellular degradation of ER-bound proteins such as 

CYP450s (Liao et al. 2010).  

The macroautophagy of CYP proteins is also referred as autophagic lysosomal 

degradation (ALD) or ERAD/ALD. The specific mechanisms and cellular participants 

of ERAD/ALD are still mostly unknown. However, macroautophagy generally 

involves the collaborative functions of over 35 ATG (autophagy-related genes) 

products that form multiprotein complexes to deliver relevant protein cargo for 

lysosomal degradation. This process is initiated by the formation of a phagophore, 

which is an isolation membrane that selectively engulfs a portion of the cytosol with 

intact organelles, such as the ER, to form an intracellular double-membrane vesicle 

called an autophagosome. The autophagosome that contains the protein cargo then 

fuses with the primary lysosomes to generate an autolysosome wherein lysosomal 

protease enzymes digest the contents and the end products are recycled or consumed 
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as an energy source (Correia 2003; Correia et al. 2014a; Kim et al. 2016; Bento et al. 

2016).  

Studies with rat liver have reported that long-lived proteins, such as ER-bound 

CYPs, undergo ALD in a selective process. Such as in the example of native rat 

CYP2E1, which undergoes biphasic degradation with a rapid phase (t1/2 = 7 h) and a 

slower phase (t1/2 = 37 h) (Correia 2003). ALD is responsible for at least some part of 

the slow phase of CYP2E1 degradation, as demonstrated by the accumulation of the 

enzyme when lysosomal degradation was inhibited by leupeptin (Ronis et al. 1991). 

Rat CYPs 2B1 and 2C11 are predominantly degraded by the ALD pathway (Masaki 

et al. 1987; Ronis & Ingelman-Sundberg 1989; Ronis et al. 1991; Murray et al. 2002).  

 

1.6.2 ERAD/UPD 

Non-lysosomal protein degradation occurs through calcium-dependent 

proteases and proteolytic systems found in the cytosol and in organelles, including the 

nucleus, ER and mitochondria. The most prominent of these is the adenosine 

triphosphate (ATP)/ ubiquitin (Ub)-dependent 26S proteasomal system. The cytosolic 

Ub/26S system is responsible for many cellular homeostatic processes including 

removal of erroneous proteins, processing of transcriptional protein precursors, 

intracellular protein trafficking and generation of peptides for antigen presentation, 

whereas in the nucleus it is involved in cell cycle regulation and cellular 

differentiation (Correia 2003). The cytosolic Ub-depdent 26S proteasomal system has 

been shown to participate in ER-protein degradation and is the predominant 

component of the CYP ERAD-C pathway (Ruggiano et al. 2014).  

The majority of intracellular proteins undergo UPD and the system involves 

concerted actions of enzymes that link chains of Ub (a highly conserved 76-residue 
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protein) onto proteins to mark them for degradation. The pathway entails an ATP-

dependent enzymatic conjugation of Ub to a proteolytic substrate followed by 

breakdown into peptides by the 26S proteasome complex. Three classes of enzymes 

catalyse the Ub-substrate coupling: the first is the Ub-activating enzyme (E1) that 

generates the Ub-thiolester ternary complex (a highly reactive form of Ub) in the 

presence of ATP, the second is the Ub-conjugating enzyme (E2) that shuttles the Ub-

thiolester directly between the E1 enzyme and target protein and the third is the Ub-

protein ligase (E3) enzyme. There are over 1000 types of mammalian E3 enzymes 

and they are critical for the specific recognition of target substrates in a highly 

regulated manner (Nakayama & Nakayama 2006). E3s catalyse the E2-mediated 

coupling of Ub-thiolester to target proteins via the formation of an isopeptide bond. 

The polyubiquitinated substrate is then targeted into the ATP-dependent multi-

catalytic proteasome (26S) complex for degradation into small peptides (Ciechanover 

1998; Correia 2003; Lecker 2006). 

The 26S proteasome, which forms a key component of the ATP/Ub-dependent 

proteolysis system, is composed of a 20S catalytic core and a 19S regulatory complex. 

The 20S core is barrel-shaped and consists of four rings (two outer α rings and two 

inner β rings) containing seven distinct subunits that assemble to form stacks with a 

hollow cavity in which proteolysis takes place. The 19S regulatory complex caps the 

20S catalytic core and regulates proteolysis by restricting barrel opening to only allow 

unfolded linear proteins to enter, thus preventing regular globular cellular proteins 

from erroneous proteasomal breakdown. The 19S complex is composed of 18 

subunits with a ring of 6 homologous ATPases at its base, including Rpn (non-

ATPase) subunits for polyubiquination recognition and deubiquitination, and Rpt 

AAA (ATPases associated with different cellular activities) ATPase subunits for 
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protein unfolding (Bedford et al. 2010). Altogether, the 19S regulatory complex 

carries out important functions such as: unfolding and translocation of proteins into 

the 20S core, polyubiquitin recognition for initiation of proteolysis and the de-

ubiquitination and regeneration of Ub to be reused for degradation of other proteins 

(Lecker 2006; Kim et al. 2016).  

CYP proteins are model examples of ERAD-C substrates due to their 

monotopic ER-topology and a cytosolic domain that is prone to oxidative/structural 

lesions by reactive oxygen species (ROS), due to their oxidative functions. 

Elucidation of rat hepatic CYP 3A and 2E1 ERAD has provided insights into CYP-

specific degradation pathways. Such ERAD involves post-translational 

phosphorylation of the CYPs by cytosolic kinases such as protein kinase A (PKA) and 

C (PKC), followed by polyubiquitination by E1, E2 and E3 enzymes and 26S 

proteasomal degradation in the previously discussed manner. Specific but not limited 

to CYPs, proteins are extracted out of the ER into the cytosol by the p97/VCP 

(Valosin-containing protein) AAA-ATPase, an abundant cytosolic chaperone and/or 

the Rpt4 AAA-ATPase subunit of the 19S regulatory complex prior to proteasomal 

degradation (Acharya et al. 2011; Kim et al. 2016).  

The specific participants of the E1, E2, E3 polyubiquinating pathways of 

human CYP proteins have been difficult to determine. Studies of yeast ERAD-C 

pathways have uncovered the Ubc6p/Ubc7p/Doa10p complex. Ubc6p and Ubc7p are 

ER-associated E2 enzymes that complexes with the Doa10p E3 ligase enzyme. 

Mammalian cells have a greater repertoire of E2/E3 complexes and the components 

found to be involved in ERAD include Hrd1, gp78/AMFR (autocrine motility factor 

receptor), TEB4/MARCH VI, RNF5/RMA1, RNF170 and CHIP (C-terminus of 

Hsc70-interacting protein). More than one E2/E3 Ub-ligase complex can target the 
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same proteins as substrates and may act synergistically, such as in the case of gp78 

and CHIP in CYP3A4 ubiquitination (further discussed in Chapter 6).  ERAD/UPD 

has also been implicated in the rapid phase of CYP2E1 degradation as well as in the 

biphasic degradation of CYP 2C9 and 2D6 (Kim et al. 2016).  

CYP proteins have distinct half-lives suggesting different mechanisms of 

signalling for degradation. However, human CYPs seem to be preferentially degraded 

by the ERAD/UPD over the ERAD/ALD pathway. The haem and protein moieties of 

individual isoforms also turn over at different rates, with haem turnover being 

relatively more rapid and constant than that of the protein (Correia 2003). CYP 

protein turnover is also highly variable between different isoforms and the molecular 

mechanisms for this heterogeneity are yet to be clarified.  

 

1.6.3 Targeting of CYP proteins for degradation 

The mechanisms that trigger normal CYP turnover are still relatively 

unknown, especially the determinants that trigger the ERAD/ALD pathway. 

Degradation of other intracellular proteins requires specific post-translational 

modifications such as: Ub-conjugation, GSH-protein disulphide formation, 

phosphorylation and glycosylation. They may also undergo unmasking of intrinsic 

molecular/structural signals (also referred as ‘degrons’), such as N-terminal residues, 

PEST/PAGE sequences, KFERQ motifs and C-terminal residues to initiate 

proteolysis. Understanding the processes that commit other intracellular proteins for 

proteolysis have provided clues for deriving determinants involved in CYP-specific 

degradation (Ravid & Hochstrasser 2008).  

Haem modification by oxidative uncoupling or drug inactivation triggers rapid 

CYP degradation (Almira Correia et al. 2011). Haem modification disrupts normal 
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CYP conformation and renders it an aberrant protein target for disposal by the 

ERAD/UPD system. The rapid phase of CYP2E1 degradation is thought to result 

from structural damage inflicted by ROS that is generated during its futile oxidative 

cycling in the absence of a substrate or with a poorly fitting substrate that allows ROS 

leakage from the active site. CYP2E1 undergoes biphasic degradation, but substrate 

binding (with ethanol or acetone) can stabilise the protein by diverting it from 

ERAD/UPD to the slower ERAD/ALD pathway which prolongs its t1/2 (Correia 2003; 

Kim et al. 2016). Studies involving the genetic knock-out of redox partner CPR in 

mice liver resulted in increased hepatic CYP content, thus supporting that oxidative 

cycling plays a major role in regulation of CYP abundance (Henderson et al. 2003). 

Although oxidative turnover proves to be a compelling determinant of CYP turnover, 

other requirements must exist as yeast cells have minimal CPR content and oxidative 

functions, yet ER-bound proteins do not necessarily switch to ALD as the 

predominant pathway.  

Intrinsic structural features or ‘degrons’ and/or post-translational 

modifications are involved in CYP recognition and designation into ALD or UPD 

pathway. Degrons are short linear amino acid sequences (usually containing S/T-

residues that undergo phosphorylation; termed phosphodegrons), structural motifs (C- 

or N-terminal residues) and/or cytosol-facing amino acids that engage the degradation 

machinery for molecular recognition and initiation of degradation. Specific 

ubiquitinated Lys (K) residues, along with PKA- and PKC- phosphorylated Ser and 

Thr residues associating with a nearby negatively charged Asp-Glu-Ser-Thr (DEST) 

cluster found on the CYP3A4 protein, form the ‘phosphodegron’ and serves as a 

molecular switch to enhance the gp78/CHIP (E2/E3-complex) recognition and 
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subsequent 26S proteasomal degradation (Correia et al. 2014b; Wang et al. 2015; 

Wang et al. 2011).  

ALD targeting generally involves 3 mechanisms that are assumed to be 

relevant for CYP ERAD/ALD: (i) LC3-interacting region motifs (LIRs; LC3 referring 

to microtubule-associated protein 1 light chain 3); (ii) monoubiquitination or Lys63-

linked polyubiquitination; and (iii) cargo receptors/adapters such as 

p62/sequestosome-1 (SQSTM1) and/or NBR1 (neighbour of BRCA1 gene1) that 

contains the LIR motif to target mono- or Lys63-ubiquitinated substrates to selective 

autophagy. The LIR is a linear 8-amino acid sequence that facilitates the docking of 

substrate to LC3 and subsequent targeting of the substrate to the phagophore. ALD 

substrates are tagged via mono- or polyubiquitination at the Lys63 position for the first 

Ub and Gly76 for the subsequent Ub. This K63-linked ubiquitination is involved in 

p62/MBR-1 recruitment and specific targeting to ALD and is considered a hallmark 

of ALD pathway. P62/SQSTM1 and NBR1 are autophagic cargo receptors that enable 

selective phagosomal engulfment of the protein cargo via docking of the LIR motif. 

These cargo receptors are most likely to be involved in CYP ALD due to their 

propensity to target Lys63-ubiquitinated substrates (Kim et al. 2016). CYP 2C9 and 

2D6 in transfected HepG2 cells have found to undergo degradation by both 

ERAD/ALD and ERAD/UPD pathways and K63-linked ubiquitination and LIR motifs 

were found in both CYPs, which supports them to be hallmarks of ALD (Wang et al. 

2012; Kim et al. 2016).  

The finding that CYPs undergo different pathways of degradation attests to 

not only to the mechanistic diversity of ER protein degradation but also the 

complexity.  Substrate ligands can stabilise certain CYPs and induce or prolong 

expression by blocking post-translational modifications such as haem modification, 
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oxidation or phosphorylation that would normally trigger degradation of the protein. 

Some substrate interactions can inhibit rapid UPD and divert the CYP to the ALD 

pathway that prolongs its life span, such as in the case of CYP2E1. It is evident that 

ERAD of CYP proteins play a significant role in regulating the basal hepatic 

microsomal content and thus may impact on substrate PK and interactions.  
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2.1  Introduction 

The ability of the cell to remove and replenish proteins in a dynamic state of 

constant turnover is paramount to maintaining essential cellular functions. 

Mammalian protein half-lives range from minutes to years depending on the specific 

functions of the protein in question and protein turnover is tightly regulated through 

multiple molecular mechanisms. Collagen has an estimated t1/2 of 117 years whereas 

regulatory proteins such as nuclear receptors are mostly estimated in the region of <5 

hours (Alarid 2006; Toyama & Hetzer 2013). Characterisation of the degradation rate 

(kdeg) for specific proteins is required for better understanding of cell signalling 

processes involved in both normal and dysfunctional diseased cell states, thus studies 

of protein turnover are used in many different areas of cellular and molecular biology. 

In the context of PK studies for drug development, CYPs and other DME protein kdeg 

are important for the prediction of time-dependent DDIs, as discussed in Chapter 1. 

Protein degradation is commonly quantified as t1/2, the time taken for protein 

concentration to decrease by half (Zhou 2004; Belle et al. 2006; Zhang et al. 2007). 

This variable is interchangeable with kdeg by the following equations assuming first-

order decay kinetics (Belle et al. 2006), where N is the protein intensity at time t, N0 is 

the protein intensity at time T, k is the decay rate constant (and –k represents kdeg) and 

t1/2 is the half-life: 

     N! = N!e!!"     (15) 

 ln N! −  ln N! = −kt ⇒  t!
!
=  !"(!)

!
  (16) 

    −k = ln N! − ln N! ÷ t    (17) 

Historically, protein degradation has been studied using methods that either 

measure overall protein degradation or focus on a few specific proteins. Advances in 

high-throughput tagging methods have allowed measurement of degradation rates of 
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large numbers of defined proteins but there are caveats associated with these 

proteome-wide approaches; such as the potential of protein tagging disrupting regular 

degradation pathways (Yewdell et al. 2011). Methods for measuring protein 

degradation and subsequent derivation of kdeg, generally fall into two experimental 

designs: i) quantifying the amount of a specific protein before and after a cell 

perturbation then measuring the difference in protein abundance and time between the 

initial and new steady-state; or ii) quantifying changes in protein abundance in real-

time by time-course experiments (Alvarez-Castelao et al. 2012).  

The most common approach for measuring protein degradation is the pulse-

chase analysis and this method involves a ‘pulse’ stage of incubating cells with a 

radiolabelled amino acid, which allows the radiolabelled amino acids to be 

incorporated into newly synthesised proteins, followed by washing out of the excess 

unincorporated amino acids and then a ‘chase’ stage of incubation with unlabelled 

amino acids. The change in the proportion of labelled to unlabelled amino acid 

incorporation over time is used to calculate rate of protein degradation. Protein 

synthesis inhibitors, most commonly cycloheximide, are used in this method to 

eliminate reincorporation (Zhou 2004; Doherty et al. 2009). Another simple kinetic 

approach is based on inhibiting de novo protein synthesis with an initial cell treatment 

with pharmacological inhibitors or genetic interference, followed by the 

quantification of changes in protein content over time by immunoblotting (Alvarez-

Castelao et al. 2012; Dai et al. 2013), thereby tracking the degradation of untagged 

proteins. However, there are concerns with using protein synthesis inhibitor agents for 

measuring long-lived proteins because prolonged use of these pharmacological 

inhibitors are likely to introduce cytotoxicity that will disrupt the regular protein 

turnover process. Any loss in protein could be caused by cytotoxicity rather than the 
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protein degradation process itself, therefore a non-cytotoxic concentration will need to 

be determined prior to measuring the protein degradation rate. 

The more recent methods for measuring protein degradation are based on 

modifications to the traditional pulse-chase analysis with a focus on protein tagging to 

simultaneously measure the rates of a large number of proteins in a high throughput 

manner. For example, stable isotope labelling by amino acids (SILAC) in cell culture 

followed by mass-spectrometry (MS) (Mann 2006; Doherty et al. 2009; Fierro-Monti 

et al. 2013; Takahashi et al. 2017), isobaric tag for relative and absolute quantification 

(iTRAQ) (Jayapal et al. 2010) and global protein stability profiling (GPSP) utilising 

protein fusion constructs for reporter assays (Yewdell et al. 2011; Yen et al. 2008). 

The caveats of using fusion constructs to tag proteins is that any modifications to 

regular protein conformation may influence protein folding and any misfolding of 

proteins is likely to affect regular degradation pathways (Alvarez-Castelao et al. 2012; 

Yewdell et al. 2011).  

The focus of this chapter was on the more traditional methods of measuring 

protein degradation by initial treatment with protein synthesis inhibitor agents 

followed by quantification of protein disappearance by immunoblot detection. CYP 

protein t1/2 are thought to be in the medium-lived rrange of 10-140 hours (Yang et al. 

2008), thus it was hypothesized that using pharmacological inhibition to stop protein 

synthesis followed by tracking of CYP protein disappearance over a few days was a 

feasible method of deriving CYP kdeg. Due to the cytotoxic concerns with using 

protein synthesis inhibiting agents, a suitable agent that provided maximum protein 

synthesis inhibition with minimum cytotoxicity must be defined prior to being used in 

a subsequent time-course immunoblot approach to derive CYP protein kdeg.  
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Table 2.1 shows some commonly used protein synthesis inhibitor agents in 

biology research as recommended in Current Protocols in Cell Biology by N. H. Cole 

(2001) and some examples of the use of these compounds in various in vitro studies to 

measure messenger RNA (mRNA) or protein degradation. The four protein synthesis 

inhibitors used in this chapter were selected based on their different mechanisms of 

action along the protein synthesis process, as shown in Figure 2.1, and previous use in 

biomedical research.  

Actinomycin D (Sobell 1985) intercalates deoxyribonucleic acid (DNA) 

forming a stable complex with deoxyguanosine residues, thus blocking movement of 

RNA polymerase and subsequently transcription. Cycloheximide binds the 60S 

ribosomal subunit blocking the translocational step in amino acid elongation, thus 

inhibiting protein synthesis (Schneider-Poetsch et al. 2010). Emetine inhibits protein 

synthesis by binding onto the 40S subunit of ribosomes and inhibiting translocation of 

proteins (Akinboye 2011). Puromycin acts as an analogue of the 3′-terminal end of 

aminoacyl-tRNA that results in premature amino acid chain termination during 

translation of proteins (Azzam & Algranati 1973). The selected inhibitors 

actinomycin D, cycloheximide, emetine and puromycin were assessed to determine 

their suitability for protein degradation studies. 

Leucine incorporation assays and standard 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assays were conducted to determine the level of 

protein synthesis inhibition and cytotoxicity respectively, across a range of drug 

concentrations in a human hepatic immortalised cell line, HepG2, and primary rat 

hepatocytes (PRH). Physiologically-relevant hepatic CYP kdeg values should ideally 

be derived from primary human hepatocytes as these cells are considered to be the 

‘gold standard’ representative of the in vivo human liver (LeCluyse 2001), however 
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the use of these cell systems are costly. Therefore, HepG2 and PRH were initially 

selected for the optimisation of protein synthesis inhibitor concentrations with the aim 

of transferring the optimised concentrations for use in primary human hepatocytes for 

a cost-saving optimisation approach.  

The aim of this chapter was to define a single concentration of an inhibitor 

agent that displayed maximum protein synthesis inhibition with minimal cytotoxicity, 

to stop de novo protein synthesis, for subsequent use in measuring CYP protein t1/2. 

The selected inhibitor agents were assessed for cytotoxicity by standard MTT assays 

and their potential to inhibit protein synthesis by leucine incorporation assay, in 

HepG2 and PRH cells.  
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Table 2.1 Protein synthesis inhibitor compounds used in cell biology research, collated from Cole (2001) 
Compound Mechanism of Action Concentration used in vitro to assess mRNA or protein degradation  

 
a-Amanitin Acts as a potent and specific inhibitor of mRNA 

synthesis by binding preferentially to RNA 
polymerase II. At high concentrations also inhibits 
RNA polymerase III. 

Van Nguyen et al. 1996: 5.4-108.8 µM in NIH 3T3 cells for up to 24 h; Tsao et 
al. 2012: 21.8 µM in COS cells for 14 h; Lugowski et al. 2017: 50 µM in HEK-
293 cells for up to 24 h 

Actinomycin D Inhibits transcription by complexing with 
deoxyguanosine residues on DNA and blocking 
the movement of RNA polymerase.  

Koeller et al. 1991: 4.0 µM in fibroblasts for up to 3 h; Van Nguyen et al. 1996: 
15.9 µM in NIH 3T3 cells for up to 24 h; Lee & Wayne 1998: 39.8 µM in bag 
cell neurons up to 32 h; Takei et al. 2000: 6.0 µM for 6 h; Leclerc et al. 2002: 
0.5-5 µM in CEM and Nalm6 cells for up to 24 h; Lugowski et al. 2017: 4.0 µM 
in HEK-293 cells for up to 24 h 

Anisomycin Inhibits protein synthesis by blocking the peptidyl 
transferase step during translation.  

Marroquin et al. 2004: 37.7 µM in murine leukemia cells for up to 96 h 

Cycloheximide The exact mechanism of action remains to be 
elucidated but it has been found to inhibit 
translation elongation through binding to 60S 
ribosomal subunit.  

Chang et al. 1981: 0.9 mM in CHO cells for 12 h; Welch & Wang 1992: 88.9 µM 
in NIH 3T3 cells for up to 60 h; Van Nguyen et al. 1996: 35.5 µM in NIH 3T3 
cells for 5 h; Fayadat et al. 2000: 100 µM in CHO cells for up to 24 h; Jeong et 
al. 2005: 355.4 µM in HepG2 cells for 4 h; Belle et al. 2006: 124.4 µM in yeast 
cells for 45 min; Chen & Madura 2008: 1.8 µM in yeast cells for up to 120 h; 
Bouligand et al. 2010: 71.1 µM in fibroblast cells for 2 h; Tsao et al. 2012: 71.1 
µM in COS cells for 14 h; Puskarjov et al. 2012: 100 µM in hippocampal slices 
for 4 h; Majumber et al. 2012: 248.8 µM in hippocampal neurons for up to 8 h 

Emetine Irreversibly blocks protein synthesis by inhibiting 
movement of ribosomes along mRNA by binding 
to 40S ribosomal subunit.  

Chang et al. 1981: 5 µM in CHO cells for 10 h; Fayadat et al. 2000: 100 µM in 
CHO cells for up to 24 h; Gelman et al. 2002: 75 µM in CHO cells for 4 h; 
Bouligand et al. 2010: 208.1 µM in fibroblasts for 6 h; Puskarjov et al. 2012: 100 
µM in hippocampal slices for 4 h; Weitzel et al. 2004: 100 µM in sea urchin egg 
cells for 30 min 

Hygromycin Inhibits protein synthesis at the translocation step 
on 70S ribosomes and causes misreading of 
mRNA.  

Tan & Walker 2010: 94.8 µM in HEK293 cells for 24 h; Chen & Madura 2008: 
0.2 mM in yeast cells for up to 120 h 

Puromycin Inhibits protein synthesis by causing premature 
release of nascent polypeptide chains by its 
addition to the growing chain end; structural 
analog of 3’-terminal end of the aminoacyl-tRNA.  

Chang et al. 1981: 0.2 mM in CHO cells for 12 h; Liao et al. 1998: 10 µM in 
HepG2 cells for 10 min; Lacsina et al. 2012: 20.0 µM in 293-Kb cells for 50 min 
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Figure 2.1 Mechanisms of action of selected protein synthesis inhibitor agents: actinomycin D, puromycin, emetine 

and cycloheximide. 
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2.2 Materials and methods  

 

2.2.1 Materials 

Dulbecco’s modified eagle medium (DMEM), foetal bovine serum (FBS), trypsin-

EDTA solution, Hank’s balanced salt solution (HBSS), thiazolyl blue tetrazolium 

(TBT), sterile water (W4502) and protein synthesis inhibitors; actinomycin D 

(A4262), emetine dihydrochloride hydrate (E2375) and puromycin dihydrochloride 

(P7255), were purchased from Sigma-Aldrich (Dorset, UK). HepG2 cells were 

purchased from American Tissue Culture Collections (ATCC, Virginia, USA). 

Cryopreserved primary rat hepatocytes, William’s E media, plating cocktail, 

maintenance cocktail, Geltrex® matrix and collagen I coated plates were purchased 

from Invitrogen Ltd (Paisley, UK). Cycloheximide (ab120093) was purchased from 

Abcam (Cambridge, UK). L-Leucine [4,5-3H] (MT-672E) was obtained from 

Moravek (California, USA).  

 

2.2.2 Cell line culture  

HepG2 cells were maintained in DMEM medium supplemented with 10% FBS 

solution. Cells were seeded in T175 culture flasks and grown in a 37°C 5% CO2 

humidified incubator. The media was changed every 48 hours and cells were sub-

cultured by the standard trypsin and centrifugation method when they reached 

approximately 80-90% confluence. The cells were discarded beyond passage 20.  

 

2.2.3 PRH culture  

Primary rat hepatocytes (PRH) were purchased from Invitrogen (Paisley, UK), 

isolated from male Sprague-Dawley rats at 9 weeks old (Lot. RS745). Cryopreserved 
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PRH were thawed in a 37°C water bath for approximately 2 mins until contents were 

around 90% thawed. Once thawed, the hepatocytes were added to 50 ml of pre-

warmed plating media (William’s E media without phenol red supplemented with 5% 

FBS, 1 µM dexamethasone, 1% solution of penicillin/streptomycin, 4 µg/ml Bovine 

insulin, 2 mM GlutaMAX™ and 15mM HEPES; CHRM® supplement A) and 

centrifuged for 3 min at 55 x g at 18oC and the supernatant fraction discarded. The 

hepatocytes were then resuspended in plating media at approximately 1 x 106 cells 

per ml density and counted.  

 

2.2.4 Cell counting and viability 

The cell numbers and viability of HepG2 and PRH were calculated using the 

Chemometec NucleoCounter® NC-100TM (Chemometec, Denmark). 150 µl of cell 

suspension was added to a fresh Eppendorf tube for total dead cells count, 50 µl of 

reagent A and B were added to 50 µl of cell suspension in a separate Eppendorf tube 

for total cell count. A cell viability of > 80% was required for experiments. Cell 

viability was calculated using the following equation: 

Cell viability % = 100 − (
Dead cells count 

Total cells count Reagent A + B  x 3 (dilution factor)
) 

 

2.2.5 PRH plating and maintenance 

PRH cells were seeded in 96-well collagen-I coated plates and were incubated in 

plating media for 5 h at 37°C with 5% CO2 and 95% humidity to allow for cell 

adherence to culture plate. After 5 hour incubation, plating media was discarded and 

replaced with 0.022 mg/ml of Geltrex® Matrix in maintenance media (William’s E 

media supplemented with 0.1 µM dexamethasone, 0.5% penicillin/streptomycin 6.25 
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µg/ml human recombinant insulin, 6.25 µg/ml human transferrin, 6.25 ng/ml selenous 

acid, 1.25 mg/ml BSA, 5.35 µg/ml linoleic acid, 2nM GlutaMAX™ and 15mM 

HEPES). Protein concentration for each Geltrex® Matrix lot vary and the amount of 

Geltrex® required for each experiment was calculated by: 

Geltrex amount (ml) =  
Incubation medium mL x 0.35(mg mL )
Geltrex protein concentration (mg mL )

 

Geltrex® Matrix was added to maintenance media on ice. After incubation overnight, 

the media containing Geltrex® was removed and replaced with regular maintenance 

media with varying drug concentrations and controls. Maintenance media with 

treatment conditions were replaced every 24 hours.  

 

2.2.6 Measuring cytotoxicity by standard MTT Assays  

Standard MTT assays were performed on HepG2 and PRH cells to determine cell 

viability. 2 x 104 cells per well of HepG2 were seeded into 96-well plates in DMEM 

with 10% FBS and left overnight in a 37°C humidified incubator to allow cells to 

adhere to the plate. PRH were seeded in collagen-I coated 96-well plates at a density 

of 2 x 104 cells per well. Old media was removed and replaced with 10 

concentrations between 0-300 µM diluted at third-log concentrations, of protein 

synthesis inhibitor drugs in fresh maintenance media and incubated for 72 hours, and 

the media containing treatment conditions were replaced every 24 hours. Vehicle 

controls and a control with no drug was included. The vehicle controls were 1% 

sterile water for emetine, puromycin and cycloheximide, or 1% dimethyl sulfoxide 

(DMSO) for actinomycin D, in cell maintenance media. Vehicle control wells 

required >90% cell viability for the solvent to be deemed suitable for drug 

dissolution. 20µl of 5mg/ml TBT in HBSS was added to each well and incubated for 
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2 hours. 100µl lysis buffer (50%v/v dimethylformamide and 20%v/v sodium dodecyl 

sulphate) was added to each well and the plate was incubated overnight at 37°C. The 

absorbance at 570nm, which correlated to cell viability, was determined by Tecan 

GENios micoplate reader (Germany).  

 

2.2.7 Measuring protein synthesis inhibition by [3H]-leucine incorporation  

HepG2 cells were seeded at 2 x 105 cells per well on 96-well plate in DMEM 

supplemented with 10% FBS and the plates were incubated overnight at 37°C to 

allow cells to adhere. PRH cells were seeded in collagen-I coated 24-well plates at a 

density of 2 x 105 cells per well. Old media was removed and replaced with 0-100µM 

of protein synthesis inhibitor drugs dissolved in DMEM with 10% FBS for HepG2 

cells or maintenance media for PRH and incubated for 72 hours in a 37°C humidified 

incubator. In the last 2 hours of incubation, cells were pulsed with 2µCi of [3H]-

leucine without removing the inhibitor. After 2 hours, the media containing [3H]-

leucine was removed by aspiration and the cells were washed twice with HBSS before 

removal from well by trypsinisation for 5 min at 37°C with 5% CO2 and 95% 

humidity. HepG2 cells were then harvested onto a filtermat using a TomTec cell 

harvester. The filtermat was sealed in a sample bag with melt-on scint and the level of 

protein synthesis was determined by the amount of [3H]-leucine incorporation 

measured using a MicroBeta detector (Perkin-Elmer, Cambridge, UK). PRH cells 

were transferred to scintillation vials following trypsinisation. 4 ml of scintillation 

fluid was added to each sample and radioactivity was determined using 

QuantaSmartTM software on Tri-Carb scintillation counter (Perkin-Elmer, 

Cambridge, UK).  
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2.2.8 Protein synthesis inhibitor drug analysis  

The protein synthesis inhibitors actinomycin D, cycloheximide, emetine and 

puromycin were tested individually in HepG2 and PRH cells. Actinomycin D was 

incubated at 0-10µM and 0-0.039µM and puromycin at 0-20µM and 0-5µM for 

leucine incorporation assays and MTT cytotoxicity assays, respectively. 

Cycloheximide was incubated at 0-300µM and emetine at 0-30µM for both leucine 

incorporation and MTT assays. These concentration ranges were determined after 

initial optimization in HepG2 cells utilizing a wide range of concentrations for each 

inhibitor to detect a sigmoidal concentration-response.  

 

2.2.9 IC50 and CC50 calculations  

The CC50 (concentration causing 50% cytotoxicity) and IC50 (concentration causing 

50% protein synthesis inhibition) for each inhibitor drug were calculated by non-

linear regression of drug concentration versus % protein synthesis inhibition (as 

determined by level of [3H]-leucine incorporation) and % cell viability (as determined 

by MTT assays) concentration-response graphs, respectively, using Graphpad Prism 6 

software. IC50 and CC50 values could only be determined when a sigmoidal 

concentration-response curve was observed. Where non-sigmoidal responses were 

seen, experiments were repeated with a wider concentration range until a sigmoidal 

relationship could be observed by eye. A mean value ± standard deviation (SD) was 

taken over at least four replicates in at least three independent experiments. 

 

2.2.10 Linear regression of HepG2 and PRH data  

Linear regression was carried out with Graphpad Prism 6 software for HepG2 and 

PRH derived CC50 and IC50 for each of the protein synthesis inhibitor drugs to 
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determine the correlation between HepG2 and PRH derived values and suitability of 

these cell types for measuring kdeg.  

 

 

2.3   Results  

2.3.1 Optimisation of concentration ranges for protein synthesis inhibitor drugs in 

MTT assays for accurate CC50 measurement 

A clear sigmoidal concentration-response relationship is required for accurate 

CC50 calculation by the Graphpad Prism 6 software. HepG2 cells were initially 

incubated with third-log dilutions of drug concentration over the range of 0-100 µM 

for all four protein synthesis inhibitors. Cell viability was calculated as a percentage 

of control, where no drug was added, and this was assumed to be to 100% viability. 

Figures 2.1 A and C depicting actinomycin D and emetine, respectively, did not 

display a sigmoidal concentration-response when the drug concentration range was at 

0-100 µM. Although puromycin did display a sigmoidal curve over this concentration 

range, accurate CC50 could not be determined as there was a sharp decrease in 

viability between two concentrations (Figure 2.1 C). A more gradual drop in cell 

viability is needed to better quantify CC50.  

Further optimisations with narrowing drug concentration ranges deemed 0-

0.039 µM for actinomycin D, 0-100 µM for cycloheximide, 0-30µM for emetine and 

0-5µM for puromycin to be the ideal concentration ranges to display a sigmoidal 

concentration-response with standard MTT assays. 
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Figure 2.1 HepG2 cell viability, determined by standard MTT assays, as a response to a 

range of protein synthesis inhibitor concentrations. Optimisation of concentration-response 

assays conducted in HepG2 cell lines. A. actinomycin D. B. cycloheximide C. emetine and D. 

puromycin. Data are expressed as the mean of 8 technical replicates ± SD in at least 1 

independent experiment. 
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2.3.2 Optimisation of concentration ranges for protein synthesis inhibitor drugs in 

[3H]-leucine incorporation assays for accurate IC50 measurement 

The Graphpad Prism 6 software was also used for calculation of IC50 and a 

clear sigmoidal concentration-response relationship was also required for accurate 

measurement. HepG2 cells were incubated with third-log dilutions of drug 

concentration over the range of 0-100 µM for all four protein synthesis inhibitor 

agents. The level of protein synthesis inhibition was calculated as a percentage of 

control, where no drug was added inhibition was assumed to be 0%. Figure 2.2.A 

shows that actinomycin D did not exhibit a sigmoidal concentration-response and 

further repeats were needed with a more narrow concentration range for emetine and 

puromycin, and a wider concentration range for cycloheximide. The outlier observed 

for 1 μM puromycin (Figure 2.2 D) futher attests to the variability in protein synthesis 

inhibition observed between 0.1 – 3 μM and therefore more concentrations within this 

range should be included to better define the concentration-response. A more gradual 

change in protein synthesis inhibition, than that shown in figure 2.2 were needed to 

accurately measure IC50. 

Further optimisations deemed 0-10 µM for actinomycin D, 0-300 µM for 

cycloheximide, 0-30 µM for emetine and 0-20µM for puromycin to be the ideal 

concentration range to display a sigmoidal concentration-response in protein synthesis 

inhibition as measured by [3H]-leucine incorporation assays. 
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Figure 2.2 Level of protein synthesis inhibition, determined by [3H]-leucine incorporation 

assay, as a response to incubations with a range of protein synthesis inhibitor 

concentrations. Optimisation of concentration-response assays conducted in HepG2 cell lines. A. 

Actinomycin D. B. Cycloheximide. C. Emetine and D. Puromycin. Data are expressed as the 

mean of 8 technical replicates ± SD in at least 1 independent experiment. 
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2.3.3 CC50 of protein synthesis inhibitor drugs determined by standard MTT assays 

in HepG2 and PRH cell types 

HepG2 and PRH were incubated with the optimised protein synthesis inhibitor 

drug concentrations as discussed in 2.3.1. The mean ± SD CC50 for the four inhibitors 

actinomycin D, cycloheximide, emetine and puromycin were found at 0.0062 ± 

0.0073, 0.57 ± 0.51, 0.081 ± 0.0090 and 1.3 ± 0.064 µM, respectively in HepG2 cells 

and 0.00098 ± 0.0018, 0.68 ± 1.3, 0.18 ± 0.70 and 1.6 ± 1.0 µM, respectively in PRH 

(Table 2.2). The CC50 concentrations were calculated from concentration-response 

graphs shown in figure 2.3. HepG2 cells were sensitive to puromycin concentrations 

as shown in the sharp decrease in cell viability between 1 and 2.5 µM (Figure 2.3.D).  

 

2.3.4 IC50 of protein synthesis inhibitor drugs determined by [3H]-leucine 

incorporation assays in HepG2 and PRH cell types 

HepG2 and PRH were incubated with the optimised protein synthesis inhibitor 

drug concentrations as discussed in 2.3.2. The mean ± SD IC50 for the four inhibitors 

actinomycin D, cycloheximide, emetine and puromycin were calculated at 0.039 ± 

0.0074, 6.6 ± 2.5, 2.2 ± 1.4 and 1.6 ± 1.2 µM, respectively, in HepG2 and 0.0017 ± 

0.0018, 0.29 ± 0.090, 0.62 ± 0.92 and 2.0 ± 2.0 µM, respectively in PRH (Table 2.2). 

The IC50 concentrations were calculated from concentration-response graphs shown in 

figure 2.4. PRH appears to be sensitive to emetine concentrations as shown in the 

high variability and sharp increase in protein synthesis inhibition between 0.078 and 

1.25 µM (Figure 2.4.C). 

The CC50 concentrations were lower compared to corresponding IC50 values 

for all four inhibitor drugs except cycloheximide in PRH; this indicates that the 
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inhibitors were more effective in generating cell death than protein synthesis 

inhibition and thus unsuitable for further protein degradation studies. 

 

   

Figure 2.3 CC50 of the four individual protein synthesis inhibitors in HepG2 and PRH. 

(A-D) Cell viability across different concentrations of inhibitors was measured by MTT 

assays and shown as percentage of control. Dotted line shows PRH and solid line for HepG2 

cells. Concentration-response curves were produced by Prism software and CC50 values were 

calculated from linear regression models. Data are shown as mean ± S.D from 4 independent 

experiments (n=4) carried out in 8 replicates for HepG2 and n=3 in quadruplicates in PRH. 
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Figure 2.4 IC50 of the four individual protein synthesis inhibitors in HepG2 and PRH. 

(A-D) Protein synthesis inhibition across different concentrations of inhibitors was 

measured by [3H]-Leucine incorporation assay and shown as percentage of inhibition of 

control. Dotted line shows PRH and solid line for HepG2 cells. Concentration-response 

curves were produced by Prism software and IC50 values were calculated from linear 

regression models. Data are shown as mean ± S.D from 4 independent experiments (n=4) 

carried out in 8 replicates for HepG2 and n=3 in quadruplicates in PRH. 
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2.3.5 Linear regression analysis of CC50 and IC50 between HepG2 and PRH cell 

types 

The CC50 and IC50 values for HepG2 and PRH for each of the four selected 

protein synthesis inhibitors were derived from concentration-response curves shown 

in figures 2.3 and 2.4. These calculated values, displayed in Table 2.2, were 

incorporated into linear regression analyses to determine the correlation and 

predictability of HepG2 and PRH cell types for CC50 and IC50.  

Figure 2.5 show a linear relationship of CC50 between HepG2 and PRH cells 

for all four protein synthesis inhibitor agents at R2=0.996. The inset graph in Figure 

2.6 shows a reasonable linear correlation for actinomycin D, emetine and puromycin 

at R2=0.655 when cycloheximide was omitted. The inset graph in Figure 2.7 also 

shows a strong linear relationship of IC50:CC50 at R2=0.997 when cycloheximide was 

omitted. Thus, cycloheximide fit in the linear relationship for cytotoxicity but not for 

protein synthesis inhibition. HepG2 and PRH produced CC50 values that were in good 

correlation for all four inhibitor drugs. The difference for cycloheximide in IC50 

estimations could be due to differential mechanisms of protein synthesis inhibition 

between the HepG2 and PRH cell types. 

 

 

 

 

 

 

 

 



 84 

 

 

Table 2.2 CC50, IC50 and CC50:IC50 values derived from concentration-response 

curves for each protein synthesis inhibitor agent in HepG2 and PRH cells. 

 

Drug 

CC50 (µM) IC50 (µM) Ratio IC50:CC50 

HepG2 PRH HepG2 PRH HepG2 PRH 

       

Actinomycin D 0.0062 0.00098 0.039 0.0017 6.2 1.8 

Cycloheximide 0.57 0.68 6.6 0.29 11.6 0.42 

Emetine 0.081 0.18 1.4 0.62 18.0 3.5 

Puromycin 1.3 1.6 1.6 2.0 1.3 1.2 
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Figure 2.5 Linear regression analysis of CC50 between HepG2 and PRH cell types. 

Linear regression of the mean CC50 values of the four protein synthesis inhibitor drugs 

derived from HepG2 and PRH concentration-response cytotoxicity curves.   
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Figure 2.6 Linear regression analysis of IC50 between HepG2 and PRH cell types. 

Linear regression of the mean IC50 values of the protein synthesis inhibitor drugs derived 

from HepG2 and PRH concentration-response protein synthesis inhibition curves. 

Cycloheximide is omitted in the inset graph. 
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Figure 2.7 Linear regression analysis of IC50:CC50 concentration ratio between HepG2 

and PRH cell types. Linear regression of the IC50:CC50 ratio of HepG2 and PRH cells. 

Cycloheximide is omitted in the inset graph. 
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2.4  Discussion 

The use of protein synthesis inhibitors is the most common method for measuring 

protein degradation rates and has been documented by many sources over 4 decades 

(Goldberg & Dice 1974; Curfman et al. 1980; Princiotta et al. 2003; Zhou 2004; Belle 

et al. 2006; Delgado-Vega et al. 2012; Chistyakov et al. 2014). As discussed 

previously in Chapter 1, ineffective inhibition of de novo protein synthesis will distort 

the accuracy of the measured rate of protein degradation. Protein synthesis inhibitor 

agents universally stop protein synthesis by inhibiting fundamental gene transcription 

and translation processes, thus prolonged inhibition will inevitably affect proteins that 

are essential for cell survival. Despite their cytotoxic risks, protein synthesis inhibitors 

are worth exploring for their potential to use in short-term degradation rate studies as 

they provide the most simple, economical and readily available approach to inhibit de 

novo protein synthesis. The aim of this chapter was to define a single inhibitor at a 

concentration that provided maximum protein synthesis inhibition with minimal 

cytotoxicity, which could then be used in subsequent kinetic experiments to 

accurately estimate CYP protein degradation rates. 

Protein synthesis inhibitors have been commonly used in previous studies of 

protein degradation, yet there has been little consideration for their cytotoxic effects 

and none have reported optimisations for a specific concentration to use. It is evident 

from Table 2.1 that historically, a range of different protein synthesis inhibitor 

compounds were used over a range of concentrations and incubation times have been 

used for the purpose of measuring mRNA or protein stability in different cell systems. 

Cycloheximide is the most commonly used of all inhibitor agents for this purpose and 

some previous studies have used this inhibitor with cell cultures at millimolar 

concentrations (Chang et al. 1981; Pan & Haines 1999; Princiotta et al. 2003; Jeong et 



 89 

al. 2005; Majumder et al. 2012), which was much higher than the non-toxic 

concentration range found here. Moreover, Welch & Wang (1992) cultured NIH 3T3 

cells with 88.9 µM for 60 h and Chen & Madura (2008) cultured yeast cells in 1.8 µM 

for 120 h; both of which are higher than the non-toxic concentrations reported here 

for cycloheximide over a long incubation period. However, it must be noted that 

different cellular systems may well have different tolerance of inhibitor agent-induced 

cytotoxicity and thus, concentrations ought to be optimised for each given cellular 

system. 

In this chapter, the CC50 and IC50 for four protein synthesis inhibitor agents were 

measured in two cell types to define their potential to inhibit protein synthesis without 

cytotoxicity. In all cases, except for cycloheximide in PRH (as reflected in IC50:CC50 

< 1), the CC50 concentrations for the individual inhibitors were lower than the 

corresponding IC50 in both cell types, suggesting that protein synthesis inhibition 

could not be studied in the absence of an effect on other cellular functions. On closer 

inspection with cycloheximide in PRH, the concentration that provided 20% 

cytotoxicity or 80% viability (CC20) was 0.11 µM and this was lower than the IC50 at 

0.29 µM. This means that at 80% cell viability, which was considered the maximum 

level of acceptable toxicity, cycloheximide produced less than 50% protein synthesis 

inhibition and therefore insufficient for protein degradation studies. Clearly, a 

different approach to single protein synthesis inhibitors was needed to increase the 

level of target protein synthesis inhibition and reduce cytotoxicity.  

Earlier studies with actinomycin D and puromycin reported toxicity in HeLa cells 

at concentrations within the range investigated here. Studies by Sawicki & Godman 

(1971) showed that at 0.08 µM actinomycin D was sufficient to cause cell toxicity in 

HeLa cells and the data in this chapter is in agreement with these findings. Dudani et 
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al. (1988) reported 79.6% protein synthesis inhibition at 0.9 mM and cytotoxicity was 

detected at 0.9 µM after incubation of HeLa cells with puromycin; the data presented 

herein agreed with these findings and suggests that puromycin is cytotoxic at 

concentrations lower than those required for protein synthesis inhibition.  

Conversely, Low et al. (2009) conducted cytotoxicity assays Huh-7 cells that were 

treated with emetine and reported over 90% cell viability at 10 µM; this concentration 

is much higher than the cytotoxic range derived here. Although the reason for this 

disparity is not apparent, cytotoxicity of these inhibitors may vary between different 

cell types and for this reason two hepatic cell types were analysed in this Chapter.  

The single drug analyses were carried out in HepG2 and PRH with reasonable 

agreement in protein synthesis inhibition and cytotoxicity between these cell types for 

actinomycin D, emetine and puromycin; as demonstrated by the linear relationship 

displayed in Figures 2.5 – 2.7. A strong linear correlation (R2=0.996) was observed in 

the CC50 values derived from both cell types and also in the IC50:CC50 (R2=0.997) 

when cycloheximide was omitted, and a reasonable correlation (R2=0.655) in IC50 

when cycloheximide was omitted. The correlations between two cell types confirm 

the reliability of findings that the inhibitors were more efficacious in bringing about 

cytotoxicity than protein synthesis inhibition. Cycloheximide did not fit in the 

correlation for IC50; this could perhaps be explained by differential mechanisms of 

protein synthesis inhibition in different species as HepG2 cell lines are of human 

origin. However, elucidation of this hypothesis is beyond the scope of this thesis.  

Optimisation of protein synthesis inhibitor concentrations was initially carried out 

in HepG2 and PRH cells with the intention of transferring the optimised conditions to 

measure CYP kdeg in primary human hepatocytes. One advantage of using HepG2 (a 

hepatic immortalised cell line) and PRH are that they are relatively inexpensive 
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compared with primary human hepatocytes. HepG2 cells express similar mRNA 

transcripts as primary human hepatocytes and are recommended for studying DME 

regulation pathways (Westerink & Schoonen 2007). Unlike HepG2 cells, PRH 

express the full panel of phase I and II DMEs and are therefore considered a better 

representative model for the in vivo liver. However, there are reported differences 

between liver-specific metabolic functions across species (Vilei et al. 2001) and 

differential expression of CYP enzymes occur in sandwich culture between human 

and rat (Kern et al. 1997), therefore CYP kdeg derived from hepatocytes of human 

origin ought to provide a better representative for the human in vivo condition. 

In summary, single protein synthesis inhibitor drugs are unsuitable for measuring 

protein degradation rates due to their propensity to cause cell death. Any loss of signal 

in subsequent protein kinetic analyses will be distorted by the loss of signal caused by 

cell death. The incubation time with the protein synthesis inhibitor drugs was for 72 

hours in the current study and as such, measurement of degradation for proteins with 

medium or long (over 72 hours) half-lives, as in the case of CYP enzymes, are likely 

to be particularly problematic. A different approach avoiding the use of single protein 

synthesis inhibitor drugs, eliciting increased target protein synthesis inhibition with 

less cytotoxicity is needed for measurement of CYP kdeg. The purpose of chapter 3 

was therefore to assess whether a combination of inhibitors would be more 

appropriate.  
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3.1 Introduction 

It was concluded in Chapter 2 that individual protein synthesis inhibitor drugs, 

which are commonly used in processes to measure protein degradation, are likely to 

be unsuitable for measuring CYP degradation due to confounding cytotoxic effects 

when used in vitro. However, pharmacological interference remains the most simple 

and cost effective method of stopping protein synthesis and an assessment of inhibitor 

combinations was therefore worthy of analysis. 

Combination drug therapies can increase efficacy, decrease toxicity and 

reduce resistance compared to monotherapy. Combination regimens are routinely 

used in the treatment of many diseases such as HIV, cancer and hypertension 

(Foucquier & Guedj 2015). This is possible due to the principles of PD interactions 

(Jia et al. 2009) and drug synergism in which each agent within the combination 

contributes to the desirable effect and so lower doses of each agent can be 

administered to achieve optimal efficacy, while reducing risks of toxicity. One 

clinical example of a synergistic dose-reduction effect is in the use of capecitabine 

and docetaxel in combination for treatment of advanced metastatic breast cancer 

(Verma et al. 2005). It was found that 1250 mg/m2 capecitabine combined with 75 

mg/m2 docetaxel significantly improved survival compared with 100 mg/m2 docetaxel 

alone (O’Shaughnessy et al. 2002). The use of combinations of antiretrovirals have 

been crucial in the treatment of HIV and one example, amongst many, of a clinically 

significant synergistic effect is in the administration of ritonavir and squinavir in 

combination. Ritonavir inhibits saquinavir metabolism therefore increases therapeutic 

effects compared to administering saquinavir alone (Merry et al. 1997). 

There are several different methodologies used to assess synergism of drug 

combinations and the advantages and limitations between these approaches are widely 
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debated amongst biologists and mathematicians (Chou 2010). The most commonly 

used methods for assessing synergism in drug combinations fall into two main 

designs: effect-based and dose-effect-based approaches (Foucquier & Guedj 2015). 

Effect-based approaches assess drug synergy by comparing the overall effect 

of a drug combination to the effects produced by the drugs individually. Dose-effect-

based strategies aim to assess what amount, or the relative contribution, of each drug 

produces a specified quantifiable effect and such approaches rely on the principles of 

Loewe Additivity (Loewe 1926). The basis for predicting the effects of a drug 

combination is based on the concept of dose equivalence; this is the determination of 

the doses of each drug alone that give the same effect. When the ratio of equally 

effective dose is the same for the drugs in combination at every concentration, then 

drug additivity is inferred and the combination effect can be predicted. In this case, a 

constant relative potency occurs between the drug pairs and can be described by the 

following equation, where two drugs A and B are administered at doses a and b, 

respectively (Tallarida 2010): 

!
!
+  !

!
 = 1  (33) 

Isobolographic analysis is the most common dose-effect-based method of 

combination drug analysis based on the principles of Loewe Additivity (Loewe 1926). 

An isobologram is a graph that is constructed on a coordinate system with individual 

drug doses on the x and y-axis and a linear line of additivity that is used to 

differentiate synergy (superadditive) and antagonism (subadditive) from additive 

interactions (Tallarida 2006). The graph is produced from two drugs that produce a 

similar measurable effect and a dose-effect profile is produced for each drug 

individually. The efficacy and potency is derived from the individual concentration-

effect curves for each of the drugs and allows a determination of the expected 



 96 

combination effect. The expected effect is termed the ‘additive effect’ and a 

difference from additivity infers synergy or antagonism (Tallarida 2011). Synergy and 

antagonism represents greater or lesser effects for drugs in combination than the 

simple additive effect expected, respectively (Tallarida 2010). Additivity implies no 

interaction between the drug combinations, where each drug contributes to the effect 

according to its own potency. Figure 3.1 shows theoretical isobolograms indicating 

these interactions; if the curve lies below the line of additivity then a lower 

concentration is needed to reach a specified effect and synergy is assumed. 

Conversely, if it lies above then a higher dose is required and antagonism is infered.  
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Figure 3.1 Theoretical isobolograms showing synergy (A) and antagonism (B). 

FIC denotes fractional inhibitory concentration of drug A or drug B (See equations 

3.1-3.3). The solid black line represents the line of additivity.  
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Synergy for a desired effect and antagonism of an undesired effect is the ideal 

scenario when assessing drug combinations. Drug combination effects are often not 

predictable in a concentration-dependent manner as constituent concentrations of each 

drug within the combination may present different effects. Accordingly, different 

concentration ratios of the drugs in combination are assessed to determine an optimal 

combination at specific concentrations for synergising a desirable effect (Tallarida 

2010). 

MTT assays were the only form of cell viability analysis employed in Chapter 

2 to determine cytotoxicity. Viable cells within culture convert MTT into a purple 

coloured formazan product with optimal absorbance at 570 nm. When cells die, they 

lose the ability to convert MTT into formazan therefore the intensity of colour 

formation, as determined by absorbance value, serves as a surrogate estimate for cell 

viability (Riss et al. 2004). The exact mechanism of MTT reduction to formazan 

product remains poorly understood but it is likely that reduced nicotinamide adenine 

dinucleotide (NADH) and NADPH electron transfer in the mitochondria are involved; 

thus it is widely accepted that MTT assays are a measure of mitochondrial function 

(Berridge & Tan 1993). Several chemical compounds, especially reducing 

compounds, are known to interfere with MTT assays and can produce signals by 

increasing absorbance values in the absence of viable cells. Consequently there are 

limitations to using MTT assays to alone to determine cell viability. This limitation 

was addressed in this chapter through the use of multiple cell viability assays, which 

determine cell viability through different mechanisms and using different indicators 

as measure of viability. As cell death can be caused by multiple mechanisms, such as 

those leading to apoptosis or necrosis, using a single method of determining cell 

viability may not be a true measure of cell death. The GSH-Glo™ glutathione assay 
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measures oxidative stress and the CellTiter-Glo® luminescent assay measures ATP 

production; both assays detect early indicators of cytotoxicity. Converesly, trypan 

blue exclusion tests for membrane integrity and can be considered a measure of the 

later stages in the cascades of cell death. The comparison of cell viability estimated 

from MTT assays to other established cytotoxicity assays will confirm the robustness 

of the data reported in Chapter 2.  

The aim of this chapter was to investigate the potential for using multiple 

protein synthesis inhibitor drug combinations for measuring CYP protein degradation 

rates. The principles of concentration-effect-based combination drug analysis were 

employed to study the in vitro effects and find possible synergy in protein synthesis 

inhibition and antagonism in cytotoxicity in two-drug combinations of the four 

previously chosen protein synthesis inhibitors: actinomycic D, cycloheximide, 

emetine and puromycin, detailed in 2.1, for use in subsequent degradation rate 

studies. Three and four-drug combinations were also investigated at sub-cytotoxic 

concentrations for level of protein synthesis inhibition and cytotoxicity. A range of 

different cytotoxicity assays including GSH-Glo™ glutathione, CellTiter-Glo® 

luminescent and Trypan blue exclusion assays were also performed on the three and 

four-drug combinations to assess the robustness of using MTT assays as a measure of 

cell viability. 
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3.2 Materials and methods  

3.2.1 Materials 

Dulbecco’s modified eagle medium (DMEM), foetal bovine serum (FBS), trypsin-

EDTA solution, Hank’s balanced salt solution (HBSS), dimethyl sulfoxide (DMSO), 

sterile water (W4502), thiazolyl blue tetrazolium (TBT) and protein synthesis 

inhibitors; actinomycin D (A4262), emetine dihydrochloride hydrate (E2375) and 

puromycin dihydrochloride (P7255), were purchased from Sigma-Aldrich (Dorset, 

UK). HepG2 cells were purchased from American Tissue Culture Collections (ATCC, 

Virginia, USA). Cycloheximide (ab120093) was purchased from Abcam (Cambridge, 

UK). L-Leucine [4,5-3H] (MT-672E) was obtained from Moravek (California, USA). 

CellTiter-Glo® luminescent cell viability assay and GSH-Glo™ glutathione assay 

were purchased from Promega (Southampton, UK).  

 

3.2.2 Cell culture and plating 

HepG2 cell line was maintained and plated as described in 2.2.2 and 2.2.4, 

respectively. After overnight incubation to allow for cell adherence, old media was 

removed and cells were dosed with desired drug combinations. Cells were incubated 

for 72 h at 37 °C with 5% CO2 and 95% humidity with drug-containing media and 

this media was replaced every 24 h.  

 

3.2.3 Two-drug combination fixed-ratio isobologram analysis 

The effects of two-drug combinations on HepG2 cells were assessed using a modified 

fixed-ratio isobologram method, published by Fivelman et al., that detects synergy, 

additivity or antagonism between a pair of drugs (Fivelman et al. 2004). Stock 

solutions of the drugs were prepared at 10 mM in sterile water or DMSO then diluted 
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in cell line maintenance media (DMEM with 10% FBS) to achieve desired 

concentration with the dissolution vehicle at <1% of final concentration. The IC50 and 

CC50 of the individual drugs were derived from concentration-response assays 

described in 2.2.9. The four protein synthesis inhibitor drugs (actinomycin D, 

cycloheximide, emetine and puromycin) formed six different two-drug combinations 

and for these combinations dilutions were made to allow the IC50 or CC50 to fall at 

about the fourth three-fold serial dilution. The dilutions of each of the two drugs in 

each combination were prepared in 7 fixed ratios 6:0, 5:1, 4:2, 3:3, 2:4, 1:5 and 0:6. 

These mixtures were then serially diluted three-fold in quadruplicates to generate a 

range of eight concentrations for each condition. Cell viability and protein synthesis 

inhibition assays were conducted as described in 2.2.6 and 2.2.7 to generate a 

concentration-response curve to calculate the CC50 and IC50, respectively, for drug A 

and B in each mixture. The fractional inhibitory concentrations (FICs) were 

calculated using equations 3.1, 3.2 and 3.3 (Gorka et al. 2013):  

FIC! =
!"!" !" !!!" !" !"#$ ! !" !"#$%&'(%"&

!"!" !" !!!" !" !"#$ ! !"#$%
   [3.1] 

FIC! =
!"!" !" !!!" !" !"#$ ! !" !"#$%&'(%"&

!"!" !" !!!" !" !"#$ ! !"#$%
  [3.2] 

FIC!"#$% = FIC! + FIC!    [3.3] 

Isobologram curves were generated by plotting FICA versus FICB. FICindex = 1 was 

taken as indicative of an additive effect between drug A and B, FICindex <1 indicative 

of synergy and FICindex >1 indicative of antagonism. There were four replicates per 

condition and the assays were repeated four times. 

 

3.2.4 Measuring protein synthesis inhibition in two-drug combinations by [3H]-

leucine incorporation 

HepG2 cells were seeded at 2 x 105 cells per well on 96-well plates. Cells were then 
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dosed with drug-containing media in concentrations described in 3.2.3. [3H]-leucine 

incorporation assays were conducted after 72 h incubation as described in 2.2.7 on all 

six two-drug combinations at each fixed-ratio to generate an IC50 for each drug in 

each mixture. Only combinations that displayed additivity or synergy in the level of 

protein synthesis inhibition were proceeded for analysis of cytotoxicity to determine 

useful two-drug combinations for protein degradation studies.   

 

3.2.5 Measuring cytotoxicity of two-drug combinations by standard MTT assay 

HepG2 cells were seeded at 2 x 104 cells per well on 96-well plates.  Cells were then 

dosed with drug-containing media in concentrations described in 3.2.3. After 72 h 

incubation, the levels of cytotoxicity of the two-drug fixed-ratio combinations 

explained in 3.2.3 were determined by standard MTT assays as described in 2.2.6 to 

generate a CC50 for each drug in each mixture. Vehicle controls and a control with no 

drug were included. Only combinations that displayed additive or synergistic protein 

synthesis inhibition were included. 

 

3.2.6 Calculation of CC10 concentrations for three and four-drug combination 

analysis 

Three-drug combinations: actinomycin D, cycloheximide and emetine; actinomycin 

D, puromycin and emetine; actinomycin D, puromycin and cycloheximide; and 

puromycin, cycloheximide and emetine, and four-drug combination: actinomycin D, 

puromycin, cycloheximide and emetine were assessed at sub-cytotoxic concentrations 

of each drug (CC10; concentration of inhibitor providing 10% cytotoxicity or 90% 

viability). The CC10 value was determined from the concentration-response curves 

derived from single drug incubation experiments in HepG2 cells shown in Figure 2.3. 



 103 

The EC50 (concentration that gives 50% maximum response) and hill slope (H) 

derived from GraphPad Prism 6 software were inputted to the GraphPad calculator 

which calculated the CC10 value by the following equation: 

EC! = (
F

100− F)
!/! x EC!" 

Where F represents the desired response percentage. The CC10 concentrations are 

shown in Table 3.1.  

 

Table 3.1 The CC50, hill slope and CC10 values derived in HepG2 cells in 

response to protein synthesis inhibitors 

Drug CC50 (µM) Hill Slope CC10 (nM) 

    
Actinomycin D 0.0062 -0.61 0.17 

Cycloheximide 0.57 -0.69 2.4 

Emetine 0.081 -0.89 7.0 

Puromycin 1.3 -13 107 

 

 

3.2.7 Measuring protein synthesis inhibition in three and four-drug combinations by 

[3H]-leucine incorporation 

HepG2 cells were seeded at 2 x 105 cells per well on 96-well plates. Cells were then 

dosed with three or four-drug combinations made up at CC10 for each drug by dilution 

in HepG2 maintenance media to achieve final concentrations shown in Table 3.1. 

Cells were incubated for 72 h with drug-containing media replaced every 24 h. For 

each of these combinations the level of protein synthesis inhibition was assessed by 

[3H]-leucine incorporation as described in 2.2.7.  
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3.2.8 Measuring cytotoxicity of three and four-drug combinations 

Cytotoxicity of the three and four-drug combinations on HepG2 cells were 

determined by several different toxicity assays. Further toxicity assays, in addition to 

MTT (CellTiter-Glo®, GSH-Glo™ glutathione and trypan blue exclusion) were 

performed on three and four-drug combinations to confirm the robustness of MTT 

assays as a measure of cell viability.   

3.2.8.1 Standard MTT assay 

HepG2 cells were seeded at 2 x 104 cells per well onto 96-well plates. After initial 

incubation to allow for adherence, cells were incubated with the three and four-drug 

combinations described above for 72 h. Standard MTT assays were performed after 

72 h using methods described in 2.2.6.  

3.2.8.2 CellTiter-Glo® luminescent cell viability assay 

HepG2 cells were seeded at 2 x 104 cells per well onto 96-well plates. CellTiter-Glo® 

luminescent cell viability assay were performed following 72 h incubation with three 

and four-drug combinations. A vehicle control and a control containing media only 

with no cells were included to obtain background luminescence. Plated cells and 

CellTiter-Glo® reagents were equilibrated at room temperature (RT) for 30 min. 

Equal volumes of CellTiter-Glo® substrate was added to buffer to create CellTiter-

Glo® reagent. An equal volume to cell culture medium, 100 µl, of CellTiter-Glo® 

reagent was added to each well then mixed for 2 min on an orbital shaker. The plate 

was incubated for 10 min at RT to stabilise luminescent signal and then read by Tecan 

GENios micoplate reader (Germany). The luminescence corresponds to the amount of 

ATP present, which indicates the presence of metabolically active viable cells. All 

readouts were normalised against background fluorescence and cell viability was 
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determined as a percentage of control where no drug was added and viability assumed 

at 100%. 

3.2.8.3 GSH-Glo™ glutathione assay 

HepG2 cells were seeded at 1 x 104 cells per well on 96-well plates. After overnight 

incubation, cells were incubated with the three and four-drug combinations for 72 h. 

Vehicle controls and a control with no drug were included for background 

luminescence. All media was removed at 72 h and 100 µl GSH-Glo™ reagent (made 

up of Luciferin-NT substrate and GSH diluted 1:100 in GSH-Glo™ reaction buffer) 

was added to each well and then mixed for 2 min on an orbital shaker. The plate was 

incubated for 30 min at RT. 100 µl reconstituted luciferin detection reagent was added 

to each well before plates were mixed for further 2 min on an orbital shaker.  The 

plate was incubated for 15 min at RT before luminescence was read by Tecan GENios 

micoplate reader (Germany). All readouts were normalised against background 

fluorescence and cell viability was determined as a percentage of control where no 

drug was added and viability assumed at 100%. GSH-Glo™ glutathione assays 

measures the conversion of a luciferin derivative into luciferin in the presence of 

glutathione and glutathione S-transferase (GST) as an indication of oxidative stress, a 

surrogate measure of cell death.  

3.2.8.4 Trypan blue exclusion 

HepG2 cells were seeded at 5 x 104 cells per well, left overnight and for adherence 

before incubation with the three and four-drug combinations for 72 h. Following 

incubation, the cells were washed twice with HBSS solution then either trypsinised 

for 5 min or incubated with cell dissociation buffer at 37°C with 5% CO2 and 95% 

humidity for cell removal, before being transferred in suspension to Eppendorf tubes. 

10µl of cell suspension was added to 10µl of trypan blue solution and placed on a 
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Countess™ slide. Cell viability was calculated using a Countess™ automated cell 

counter (LifeTechnologies, UK) that contained internal algorithms to determine cell 

viability. 

 

3.2.9 Data Analysis 

The IC50 and CC50 values in HepG2 cells derived from the single inhibitor analyses 

(Table 2.2) were used for two-drug combination fixed-ratio isobologram analyses. 

Concentration-response curves were created individually for each drug (A and B) in 

the two-drug combination at each of the 7 fixed ratios to generate IC50 and CC50 

values to calculate FIC values for isobolograms. All concentration-response curves 

were generated in GraphPad Prism 6 software as described in 2.2.9.  

Statistical analyses of the three and four-drug combinations were completed 

using SPSS software, whereby a Shapiro-Wilk test was used to test for normality 

followed by unpaired T-test for normal populations and Mann-Whitney tests used for 

non-normal populations. P<0.05 was taken as significant. 
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3.3  Results  

3.3.1 Antagonistic two-drug protein synthesis inhibitor combinations 

The fixed-ratio isobologram method was employed to assess additivity, 

synergy or antagonism in both protein synthesis inhibition and cytotoxicity between 

drug pairs. Figure 3.2 shows a typical concentration-response curve produced by the 

fixed-ratio method to generate IC50 and CC50 values for each individual drug within 

the drug pairs at each fixed-ratio concentrations. The IC50 and CC50 values of the 

drugs alone and in combination were used to calculate the FICindex, which is plotted in 

an isobolographic analysis (Figures 3.3, 3.4 and 3.5). 

All six combinations of drug pairs for the four inhibitors were analysed for 

protein synthesis inhibition. Three of the six two-drug combinations: cycloheximide 

and emetine; cycloheximide and puromycin; emetine and puromycin, showed 

antagonism for protein synthesis inhibition at all ratios (Figure 3.3). This meant the 

drugs showed decreased efficacy in inhibiting protein synthesis in combination than 

with the inhibitors alone, therefore these drug pairs were deemed unsuitable for 

protein degradation studies. As such, isobolograms to assess cytotoxicity were not 

carried out for these combinations.  
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Figure 3.2 Typical concentration-response curves produced by the fixed-ratio method. 

Cycloheximide and emetine drug pair is shown for analysis of protein synthesis inhibition in 

HepG2 cells. A. Cycloheximide concentration-response. Ratios Drug A : Drug B represent 

cycloheximide : emetine. B. Emetine concentration-response. Ratios Drug A : Drug B represent 

emetine : cycloheximide. Individual IC50 values are derived for the individual drugs in each fixed-

dose ratio to calculate corresponding FIC values for isobolographic analysis. N = 4. 
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Figure 3.3 Isobolograms showing antagonistic interactions for protein synthesis inhibition in 

HepG2 cells.   A. cycloheximide and emetine B. cycloheximide and puromycin and C. emetine and 

puromycin. Dotted line represents the line of additivity. Red line corresponds to drug pair 

interactions for protein synthesis inhibition. FICA and FICB correspond to the fractional inhibitory 

concentrations of the first and second drugs in each drug pair listed.  
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3.3.2 Additive two-drug protein synthesis inhibitor combination 

As seen in Figure 3.4, actinomycin D and emetine showed additivity (no 

interaction) between the drugs for protein synthesis inhibition and was investigated 

for interactions in cytotoxicity. The drug pair showed synergy at all ratios for 

cytotoxicity, indicating that actinomycin D and emetine in combination did not 

improve efficacy in protein synthesis inhibition but increased cytotoxic effects 

compared to the drugs alone. As such, this combination was also deemed unsuitable 

for measuring CYP protein degradation rates.  
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Figure 3.4 Isobolograms showing protein synthesis inhibition and cytotoxicity 

interactions for actinomycin D and emetine in HepG2 cells. Dotted line represents the 

line of additivity. Red line corresponds interactions for protein synthesis inhibition. Blue 

line corresponds to interactions for cytotoxicity. FICA and FICB correspond to the fractional 

inhibitory concentrations of the first and second drug in each drug pair listed in the ratio.  



 111 

3.3.3 Synergistic two-drug protein synthesis inhibitor combinations 

Two of the six combinations: actinomycin D and cycloheximide, and actinomycin 

D and puromycin, showed desirable synergy for protein synthesis inhibition at most 

ratios, therefore these combinations were investigated for interactions in cytotoxicity. 

However, upon analysis of cytotoxicity both of these combination also displayed 

strong synergy for cytotoxicity as shown in Figure 3.5. This suggests that although in 

combination the drugs showed increased efficacy for protein synthesis inhibition, they 

also demonstrated strong undesirable synergy for producing cytotoxicity.  

Interestingly, at ratios of 5:1 and 4:2 for actinomycin D : cycloheximide and 

actinomycin D : puromycin, these combinations were synergistic for protein synthesis 

inhibition and antagonistic for cytotoxicity as seen in Figure 3.5. The IC50 and CC50 

values at these ratios were investigated and shown in Table 3.2. However, despite the 

synergy for protein synthesis inhibition and antagonism for cytotoxicity at these 

ratios, the CC50 values for these drug pairs in combination were still lower than the 

IC50 values and thus cytotoxicity was observed at lower concentrations than those 

required to inhibit protein synthesis. The CC50 concentrations for actinomycin D in 

combination with cycloheximide at 5:1 and 4:2 ratios were 0.012 and 0.014 µM and 

the corresponding IC50 concentrations were 0.028 and 0.035 µM, respectively. The 

CC50 values for cycloheximide in combination with actinomycin D at 5:1 and 4:2 

ratios were 0.026 and 0.012 µM and the corresponding IC50 concentrations were 2.5 

and 1.3 µM, respectively. For actinomycin D and puromycin, the CC50 concentrations 

for actinomycin D at 5:1 and 4:2 ratios were 0.0098 and 0.0081 µM and the 

corresponding IC50 concentrations were 0.016 and 0.021 µM respectively. As for 

puromycin the CC50 values at 5:1 and 4:2 ratios were 0.060 and 0.020 µM and the 

corresponding IC50 concentrations were 0.69 and 0.36 µM, respectively, as shown in 
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Table 3.2. Even for two-drug combinations at ratios that showed desirable synergy in 

protein synthesis inhibition and antagonism for cytotoxicity, such combinations were 

still more potent in bringing about cytotoxicity. Therefore all two-drug combinations 

of the four protein synthesis inhibitor drugs assessed were unsuitable for subsequent 

analysis of protein degradation.  

 

Table 3.2 IC50 and CC50 of protein synthesis inhibitor drug combinations at 

ratios that showed synergy for protein synthesis inhibition and antagonism for 

cytotoxicity 

 
Drug 

Combination (A 
and B) 

Ratio Protein synthesis inhibition 
(µM) 

Cytotoxicity (µM) 

FIC50 of 
drug A 

FIC50 of 
drug B 

FCC50 of drug 
A 

FCC50 of drug 
B 

Actinomycin D and 

cycloheximide 

4:2 0.028 2.5 0.012 0.026 

5:1 0.035 1.3 0.014 0.012 

Actinomycin D and 

puromycin 

4:2 0.016 0.69 0.0098 0.060 

5:1 0.021 0.36 0.0081 0.020 
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Figure 3.5 Isobolograms showing protein synthesis inhibition and cytotoxicity 

interactions in HepG2 cells. A. actinomycin D and cycloheximide. B. actinomycin D and 

puromycin. Dotted line represents the line of additivity Red line corresponds interactions for 

protein synthesis inhibition. Blue line corresponds to interactions for cytotoxicity. FICA and 

FICB correspond to the fractional inhibitory concentrations of the first and second drug in 

each drug pair listed in the ratio. Arrows indicate drug pair ratios that showed synergism for 

protein synthesis inhibition or antagonism for cytotoxicity. 
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3.3.4 Three and four-drug combination analysis for protein synthesis inhibition 

Three and four-drug combinations at sub-toxic concentrations (CC10 of each 

when incubated alone) were assessed to investigate whether protein synthesis 

inhibition could be achieved at concentrations lower or equal to those causing 

cytotoxicity. The CC10 (90% cell viability concentration) were calculated for each 

drug to be 0.17, 24, 7.0 and 110 nM for actinomycin D, cycloheximide, emetine and 

puromycin in HepG2 cells, respectively (Table 3.1). Figure 3.6 shows that three and 

four-drug combinations exhibited < 50% leucine incorporation and therefore 

insufficient levels of protein synthesis inhibition was achieved in all combinations for 

subsequent use in protein degradation studies. 
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Figure 3.6 Level of [3H]-Leucine incorporation for three and four inhibitor 

combinations at sub-cytotoxic concentrations (CC10) in HepG2 cells. APCE 

corresponds to actinomycin D, puromycin, cycloheximide and emetine, respectively. 

***P<0.001 significance was calculated compared to control group. Data are shown as 

mean ± S.D from n=3 experiments carried out in triplicates. 
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3.3.5 Three and four-drug combination analysis for cytotoxicity 

HepG2 cell viability in response to incubation with three and four-drug 

combinations at CC10 of each inhibitor was assessed with several different toxicity 

assays. Figure 3.7 shows that over 50% cell death occurred across all drug 

combinations except for puromycin, cycloheximide and emetine (PCE). However, 

this combination was also ineffective at inhibiting protein synthesis, as shown in 

Figure 3.6, where level of leucine incorporation was higher than control.  

There was good agreement between the different toxicity assays in relation to 

the level of cytotoxicity measured as a response to the three and four-drug 

combinations, with the exception of GSH-Glo™, which consistently measured a 

higher viability across all combinations. Overall, three and four-drug combinations of 

the selected protein synthesis inhibitors were deemed to be unsuitable for further 

protein degradation studies even at low concentrations due to high cytotoxicity levels 

and low protein synthesis inhibition potential. 
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Figure 3.7 Cytotoxicity for three and four inhibitor combinations at sub-cytotoxic 

concentrations (CC10). Three and four inhibitor combinations were prepared at CC10 

concentrations. A range of cytotoxicity assays including standard MTT, GSH, ATP and 

trypan blue exclusion assays were conducted on HepG2 cells. APCE corresponds to 

actinomycin D, puromycin, cycloheximide and emetine, respectively. ***P<0.001 

significance was calculated compared to corresponding control. Data are shown as mean ± 

S.D from n=3 experiments carried out in triplicates. 
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3.4 Discussion 

Pharmacological interference through protein synthesis inhibitor drugs is the most 

common and inexpensive method of achieving protein synthesis inhibition for 

subsequent use in methods for measuring rates of protein degradation (Alvarez-

Castelao et al., 2012). In Chapter 2, four protein synthesis inhibitor drugs were 

deemed individually unsuitable for assessing protein degradation due to overt 

cytotoxicity. However, it is known that drug combinations that exhibit similar effects 

can sometimes produce synergy and any inhibitor combination that was able to 

produce improved protein synthesis inhibition and reduced cytotoxicity was worth 

investigating. The aim of this chapter was to assess the utility of multiple inhibitor 

drugs at all possible combinations from the four selected protein synthesis inhibitor 

drugs used in Chapter 2. Ideally, a drug combination that provided synergy for protein 

synthesis inhibition and antagonism for cytotoxicity would be the most suitable for 

subsequent use in quantifying CYP protein degradation rate. However, even through 

rigorous investigation of all possible combinations, no inhibitor combination was able 

to generate sufficient protein synthesis inhibition in the absence of cytotoxicity. This 

study supports the previously reported concerns over pharmacological inhibitors 

being too disruptive to normal cellular function to measure natural rates of protein 

turnover (Yewdell et al. 2011; Eden et al. 2011). 

Protein synthesis inhibitor drugs bring about inhibition of universal protein 

synthesis by inhibiting fundamental protein transcription and translation machinery; it 

is therefore unsurprising that such drugs are cytotoxic as proteins vital for cell 

survival will also be affected in prolonged inhibition. MTT assays were the only 

method used to derive CC50 across the four individual protein synthesis inhibitor 

drugs in Chapter 2. Since MTT assays specifically assess the formazan production 
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pathway as a measure of cellular mitochondrial damage (Berridge & Tan 1993), other 

forms of cytotoxicity assays including CellTiter-Glo®, GSH-Glo™ and trypan blue 

exclusion, which assess other mechanisms of cytotoxicity, were carried out to validate 

the findings. The CellTiter-Glo® luminescent cell viability assay is a form of ATP-

assay, where ATP present in viable cells convert luciferin substrate into luciferase that 

emits light photons. The intensity of light photons emitted, measured as a luminescent 

signal, is an indicator of cell viability as only viable cells are able to produce ATP 

(Posimo et al. 2014; Riss et al. 2004). The GSH-Glo™ glutathione assay is another 

commercially available assay based on the detection of glutathione (GSH) levels as a 

measure of oxidative stress, potentially leading to cell death. Luciferin derivative is 

converted to luciferin in the presence of GSH and GST and the luciferin is then 

converted to luciferase in the presence of ATP and O2 and light is generated. The 

luminescent signal detected is directly proportional to the amount of GSH present and 

this is an indicator of cytotoxicity (Promega). The Trypan Blue exclusion test of cell 

viability measures viable cells through principles of dye exclusion. Live cells with 

intact cell membranes do not take up Trypan Blue dye whereas dead cells with 

permeable membrane stain blue. By calculating the proportion of dead stained cells in 

a total cell count, the amount of viable cells in a sample can be calculated (Strober 

2001). Each of the cytotoxicity assays measure a specific indicator of cytotoxicity 

however, the assays alone may not definitively show cell death therefore a range of 

toxicity assays were utilised for the same concentrations in the same cell type to 

confirm the robustness of the assays individually as a measure of cell death.   

Good agreement across cytotoxicity assays in response to most three and four-

drug combinations were observed, with the exception of puromycin, cycloheximide 

and emetine in which higher cellular toxicity was detected in MTT than other assays. 
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The GSH-Glo™ assay generally derived higher cell viability across the different drug 

combinations; this is perhaps due to GSH being a measure of oxidative stress, which 

is a surrogate indicator of cell death and GSH may not be fully depleted even as cells 

die via a different mechanism. It should be noted that GSH-Glo™ assays alone could 

not be used to predict the CC50 because they were in disagreement with the other 

assays that clearly demonstrated cytotoxicity. Interestingly, all three and four-drug 

combinations involving actinomycin D showed significant cytotoxicity across all 

viability assays which is consistent with the synergy in cytotoxicity observed in all 

two-drug combinations involving this drug. Therefore, actinomycin D was clearly the 

most cytotoxic of the four drugs in HepG2 cells.  In this study, cell viability was 

determined through several different cytotoxicity assays that utilise different 

mechanisms and indicators of cell death. The reasonably good agreement across 

assays confirmed that MTT was a robust method of measuring of cell viability in 

chapter 2.  

No two-drug combinations, even at ratios that appeared to be synergistic for 

protein synthesis inhibition and antagonistic for cytotoxicity, were suitable for use in 

protein degradation analysis. This highlights a need for caution when interpreting data 

from isbolograms because on closer inspection of such seemingly suitable 

combinations the CC50 at these ratios were still less than corresponding IC50, which 

means that the combinations were still more potent in generating toxicity than protein 

synthesis inhibition. It is important to compare the source data rather than drawing 

conclusions based upon the interaction. The requirements and limitations of using 

isobolograms for assessing drug combinations have been discussed in detail by 

several sources (Tallarida 2006; Li et al. 2011; Chou 2010; Foucquier & Guedj 2015; 

Zhou et al. 2016; Matthews et al. 2017). Isobolograms do not provide the exact extent 
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of synergy nor statistical differentiation and their effective use is limited by 

inconsistencies in mathematical definitions of additive, syngergistic and antagonistic 

interactions.  

For all drug combinations, the data suggest that inhibiting mechanisms of protein 

synthesis by pharmacological interference (even with lower concentration 

combinations) is not a physiologically appropriate method of measuring kdeg because 

all protein systems, including those essential for cell survival are likely to be affected. 

Furthermore, several studies have shown that cycloheximide causes disruption to 

protein degradation machinery affecting both lysosomal (Thoene et al. 1985) and 

UPD (Hanna et al. 2003; Dai et al. 2013) protein degradation pathways. Other protein 

synthesis inhibitors including emetine and puromycin have also been reported to 

impact on lysosomal degradation (Thoene et al 1985). Guzelian and Barwick 

suggested that cycloheximide directly inhibits CYP degradation machinery in PRH 

(Guzelian & Barwick 1979). In support of this, Tokunaga et al. found that 

cycloheximide and puromycin suppressed ERAD (discussed in Chapter 1) in baby 

hamster kidney cells (Tokunaga et al. 2003). ERAD is a recognised pathway of CYP 

protein degradation therefore these inhibitors are particularly unsuitable for use in 

measuring CYP kdeg as they will likely affect normal CYP turnover.  

Consistent with Chapter 2, 72 h was selected to be the incubation time point due 

to the likelihood of CYP t1/2 fitting within this time course (Yang et al 2008) and 

indeed other studies have conducted cell incubations with cycloheximide beyond 72 h 

(Chen & Madura 2008). Clearly, 72 h incubation with protein synthesis inhibitors was 

too long as demonstrated by the overt cytotoxicity detected for all combinations. 

However, it may be possible to use synergistic combinations for protein synthesis 

inhibitors on a shorter time frame for measuring degradation of proteins with a shorter 
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t1/2 but further optimisation would be needed to define a cut-off point. A potential 

limitation of this study is that protein binding was not assessed. However, it should be 

recognised that protein binding would be expected to impact both cytotoxicity and 

protein synthesis inhibition by impacting free-drug concentration. In taking protein 

binding into account, lower concentrations for potency would be anticipated but the 

ratio would not be expected to be different. 

There have been recent reports of protein synthesis inhibitors actively inducing a 

range of protein mRNA production that also impact accuracies for calculating protein 

degradation rates downstream (Chen & Feigelson 1979; Hattori & Gross 1995; 

Schuetz et al. 1995; Stordeur et al. 1995). Furthermore, Joiakim et al. (2004) reported 

superinduction of CYP1A1 mRNA in MCF10A cell line cultures in response to 

multiple protein synthesis inhibitors including cycloheximide, anisomycin and 

puromycin; further supporting the notion that these inhibitor drugs are unsuitable 

especially for use in measuring CYP degradation. Taken collectively with the data 

presented in this chapter, the use of protein synthesis inhibitors for CYP enzyme kdeg 

estimation is not recommended. As such, further work with these inhibitors was not 

conducted. 

 Despite the wide-ranging importance of protein degradation, there has been no 

single recognised method for its measurement. However, the use of protein synthesis 

inhibitors, whether alone or in combination, should be avoided particularly for 

medium and long t1/2 proteins. Protein synthesis inhibitor drugs not only impact on 

essential cell survival proteins but are also known to induce mRNA of several 

different genes and affect protein degradation machinery, which would in turn 

dramatically impact any protein degradation rate derived downstream. The more 

recent methods of measuring rates of degradation focus on high-throughput 
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approaches aiming to quantify many different proteins in parallel; these involve 

metabolic labelling of proteins of interest followed by MS analysis (Doherty & 

Beynon 2006; Yewdell et al. 2011). Newly developed quantitative proteomic methods 

provide an important alternative to chemical inhibition, but reproducibility across 

different experiments and the impact of protein labelling on endogenous protein 

degradation warrants full investigation.  
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4.1 Introduction 

CYP enzymes are important DMEs indicated in many clinically-relevant 

DDIs. Any alterations to their activity through induction, inactivation or inhibition 

can manifest as changes in PK profiles of the victim substrate drug(s) (Tanaka 1998; 

Chu et al. 2009). DDIs can cause an increase or decrease of exposure and thus a 

change in therapeutic effect and/or increased potential for adverse effects. Approaches 

to assessing DDI potential for a new drug candidate have traditionally been conducted 

in vitro using animal and human samples, which require the translation to the human 

in vivo situation. Where preclinical studies indicate DDI liability, DDI studies have 

also been carried out in vivo in humans by measuring PK profiles in clinical trials, but 

these studies invoke huge costs and require ethical approval (Kuhlmann & Mück 

2001). Increasingly, regulators have advocated the use of in silico approaches to DDI 

prediction as an alternative or alongside clinical studies (Yeo et al. 2013; Zhao et al. 

2012; Leong et al. 2012). Such methods include PBPK modelling which integrates 

physiological system-specific parameters with drug-specific parameters derived from 

in vitro and in vivo experiments. Once the model has been adequately verified and 

deemed ‘fit-for-purpose’, the impact of intrinsic and extrinsic sources of variability in 

PK can be predicted, including DDIs (Einolf 2007; Rostami-Hodjegan 2012).  

At the kinetic level, CYP protein abundance at steady-state comprises of a 

continuous turnover of proteins that balance de novo synthesis at zero-order and 

degradation at first-order (Belle et al. 2006). However, many endogenous factors such 

as drugs, hormones and foods can induce or inhibit CYP expression (Zanger & 

Schwab 2013), thus disrupting the steady-state abundance and accordingly, the time 

required to return to steady-state is partially dependent on its rate of degradation 

(Yang et al 2008). As previously mentioned, the enzyme P450 degradation rate 
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constant, kdeg, is an important system parameter that gives rise to the timescale of 

interactions, which is required for predicting time-dependent DDIs such as those 

arising from MBI and induction of enzymes (Yang et al 2008).   

Owing to the challenges with methodology and sample size there is a lack of 

consensus on CYP turnover half-lives, which places a significant limitation on the 

accurate prediction of changes in drug concentration-time profiles associated with 

interactions involving enzyme MBI and/or induction (Almond et al. 2009). 

Consequently, there is a paucity of reported kdeg values for many of the CYP enzymes 

that are involved in clinically relevant DDIs. As such, inaccurate kdeg continues to be 

a source of error in metabolic time-dependent DDIs and several sources have 

documented the importance of accurate kdeg values in facilitating accurate predictions 

of DDI magnitudes (Houston & Galetin 2010; Lutz et al. 2013; Almond et al. 2009).  

The measurement of kdeg values should ideally be achieved by specific 

labelling of enzymes in humans in vivo, but this direct method has proven to be 

understandably difficult and surrogate kdeg values derived from in vitro approaches 

are needed. As discussed previously in Chapter 1, CYP3A4 is involved in the 

metabolism of around 50% of all marketed drugs and due to this wide specificity; the 

enzyme has been most widely implicated in DDIs. Examples of inhibitors, inducer 

and substrates of CYP3A4 are given in Table 1.1 and classic examples drug that cause 

clinically-significant CYP3A4 TDIs include diltiazem, verapamil, erythromycin and 

troleandomycin (Grimm et al. 2009; Chen et al. 2011). As such, CYP3A4 has been 

the most extensively studied of all CYP enzymes with the reported half-life values 

ranging from 10 to 140 hours (Yang et al. 2008). These half-life values were derived 

by a plethora of different in vivo and in vitro methods.  
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The three main in vitro approaches include: (i) measuring CYP apoprotein 

expression loss in liver models without treatment over time (Maurel 1996; Renwick et 

al. 2000), (ii) induction of CYP enzymes followed by tracking of de-induction and 

recovery profiles (Maurel 1996; Dixit et al. 2016) and (iii) Pulse-chase analysis after 

de-induction (Pichard et al. 1992). Many in vitro studies have shown that CYP 

apoprotein and enzyme levels decline differentially over time in culture (Guillouzo et 

al. 1985; Paine 1990; Morel et al. 1990) thus, enzyme degradation rates can be 

derived from tracking the loss of expression assuming that the changes are caused 

solely by endogenous enzyme degradation mechanisms. However, this method is 

limited by the assumption that there is no de novo enzyme synthesis and that the 

decline in cell viability does not contribute to the enzyme expression loss observed.  

In the second aforementioned approach, enzyme turnover is estimated from 

measuring the increased level of activity instigated by incubation of liver with 

multiple doses of a known inducer compound to reach a maximally induced new 

steady-state, then removing the inducer and measuring the time taken to return to the 

basal non-induced enzyme level using probe substrates. The main caveats to this 

approach include, again, the assumption that there is no de novo CYP protein 

synthesis and the interindividual variability in the inducibility of CYP enzymes 

between donor livers.  

The pulse-chase method is frequently used to predict turnover and half-life of 

various proteins (Belle et al. 2006; Montgomery et al. 2003; Boisvert et al. 2012) and 

typically the protein of interest is labelled with a radioactive amino acid precursor 

during pre-incubation followed by a chase period where an excess of non-radioactive 

amino acid is added to the culture to prevent further incorporation of radiolabelled 

precursor amino acid. Cells are then harvested and the radioactivity determined over 
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several time points to measure rate of protein disappearance to determine half-life 

(Zhou 2004; Jansens & Braakman 2003). This technique is limited by the potential of 

isotope labelling distorting normal CYP degradation mechanisms thereby producing 

an inaccurate degradation rate constant value.  

Another simple kinetic approach circumventing the problem of radiolabelling 

the protein of interest, involves inhibiting de novo protein synthesis by treatment with 

pharmacological inhibitors, followed by the quantification of changes in protein 

content over time by immunoblotting (Alvarez-Castelao et al., 2012; Dai et al., 2013). 

However as deduced in Chapters 2 and 3, the use of pharmacological inhibitors 

should be avoided due to their cytotoxic effects precluding the propensity for protein 

synthesis inhibition (Chan et al. 2017). More recently, based on the principle of 

inhibiting de novo protein synthesis, Ramsden et al. (2015) utilised RNA interference 

(RNAi) and interleukin-6 (IL-6) to specifically knockdown CYP3A4 gene expression 

in vitro in the HepatoPac model, followed by tracking its degradation and recovery 

profile to estimate kdeg.  

siRNAs are short 20-30 nt (nucleotide) sequences of non-coding RNA that 

regulate the genome mainly through inhibitory effects by silencing the translation of 

the regulated parts of the genome via the RNAi pathway (Carthew & Sontheimer 

2009). The mechanism of siRNA gene silencing is depicted in Figure 4.1. In 

eukaryotic cells the RNase-III-type enzyme Dicer cleaves long double-stranded 

siRNA into short 21-26 nt siRNA duplexes. Components of the RNAi machinery then 

recognise the siRNA duplex and incorporate a single strand of siRNA into the RNA-

induced silencing complex (RISC). The argonaute 2 protein within RISC unwinds the 

siRNA and cleaves off the passenger or sense strand. The activated RISC complex 

containing the antisense siRNA strand binds and cleaves mRNA at the site that 
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contains the complementary sequences to the single antisense strand, therefore 

inhibiting subsequent gene translation (Dorsett & Tuschl 2004; Whitehead et al. 

2009). The activated RISC complex continues to destroy more mRNA targets, further 

propagating the gene-silencing response. siRNA occurs endogenously within cells as 

a mechanism of genetic regulation but it can also be synthetically produced and 

introduced experimentally via transfection vectors, circumventing the Dicer process 

(Whitehead et al 2009). Increasingly, siRNA has been exploited in vitro, enabling the 

knockdown of genes to analyse specific gene functions. RNAi has also been used as a 

therapeutic approach in the treatment of diseases including cancer and autoimmune 

disorders (Aagaard & Rossi 2007; Wittrup & Lieberman 2015). For DME kdeg 

investigations, it was hypothesised that by introducing target gene-specific siRNA, 

the translation of target protein is specifically silenced without impacting on regular 

cellular survival and protein degradation mechanisms. This circumvents the 

previously encountered problems of cytotoxicity and de novo protein synthesis during 

analysis of degradation rates.  

Based on the findings from Ramsden et al. (2015), the aim of this Chapter was 

to investigate the utility of CYP3A4-specific siRNA, as an alternative in vitro 

approach to protein synthesis inhibitors, for suppressing synthesis of CYP3A4 mRNA 

and protein. CYP3A4 kdeg was derived by tracking activity and protein expression 

loss over time in cryopreserved primary human hepatocytes.  
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Figure 4.1 Mechanism of siRNA gene silencing. Adapted from Dorsett et al 

(2004).  
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4.2 Materials and methods 

4.2.1  Materials 

Plateable cryopreserved primary human hepatocytes (HMCPIS Lot. Hu1591, Hu1824 

and Hu8241), CHRM® media, William’s E media, thawing and plating supplements 

(CM3000), maintenance supplements (CM4000), 24-well collagen I coated plates and 

opti-MEM® I media were purchased from Invitrogen Ltd (Paisley, UK). TaqMan® 

reverse transcription reagents, TaqMan® gene expression assays for CYP3A4 

(Hs00604506_m1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 

Hs02758991_g1) and hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1; 

Hs02800695_m1), TaqMan® gene expression master mix, PrestoBlue® cell viability 

reagent, CYP3A4 (P2377) and control (P2315) BACULOSOMES® plus reagent, 

Lipofectamine® RNAiMAX reagent, NuPAGE® Western blot materials and 

TRIzol® reagent were purchased from ThermoFisher Scientific Inc. (Loughborough, 

UK). ON-TARGETplus human CYP3A4 SMARTpool, GAPD control pool and non-

targeting pool siRNA were purchased from GE Healthcare Dharmacon™ (UK). 

Western blot primary and secondary antibodies: anti-CYP3A4 (ab3572), anti-beta 

actin (ab6276), anti-GAPDH (ab181602), goat polyclonal anti-mouse IgG1 (ab97240) 

and goat polyclonal to rabbit IgG (ab97080) were purchased from Abcam 

(Cambridge, UK). Luminata™ Forte Western HRP substrate was bought from 

Millipore (Watford, UK). TWEEN®20, Bradford Reagent, urea solution, CelLytic™ 

M, protease inhibitor cocktail, 1’-hydroxymidazolam, RNase-free water and other 

Western blot buffer ingredients were purchased from Sigma-Aldrich (Dorset, UK). 

Midazolam hydrochloride was purchased from Tocris (Bristol, UK).   
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4.2.2 Cryopreserved primary human hepatocyte culture 

4.2.2.1 Cell thawing 

Cryopreserved primary human hepatocytes were thawed in a 37 °C water bath for 

approximately 2 min until contents were around 90% thawed. Once thawed, the 

hepatocytes were added to 50 ml of pre-warmed plating media (William’s E media 

without phenol red supplemented with 5% FBS, 1 µM dexamethasone, 1% solution of 

penicillin/streptomycin, 4 µg/ml Bovine insulin, 2 mM GlutaMAX™ and 15mM 

HEPES; CHRM® supplement A) and centrifuged for 10 min at 100 x g at 18oC and 

the supernatant fraction discarded. The hepatocytes were then resuspended at 

approximately 1 x 106 cells per ml density in plating media, which was prepared as 

Williams E media without phenol red supplemented with 1μM dexamethasone, 1% 

solution of penicillin-streptomycin, 4 μg/ml insulin, 5% FBS, 2 mM GlutaMAX™ 

and 15 mM HEPES (CM3000, supplement A). The donor demographics are given in 

Table 4.1. 

4.2.2.2 Cell counting and plating 

The cell viability and count were determined as described in 2.2.4. Primary human 

hepatocytes were seeded at 500 μl per well on 24-well collagen-I coated plates at a 

density of 3 x 105 viable cells/well for CYP3A4 metabolism activity and protein 

expression analyses. Cells were incubated with plating media for 5 hours at 37°C with 

5% CO2 and 95% humidity to allow cell adherence prior to siRNA transfection. After 

5 hours of incubation, the plating media was replaced with maintenance media 

(William’s E media supplemented with 0.1 µM dexamethasone, 0.5% 

penicillin/streptomycin 6.25 µg/ml human recombinant insulin, 6.25 µg/ml human 

transferrin, 6.25 ng/ml selenous acid, 1.25 mg/ml BSA, 5.35 µg/ml linoleic acid, 2nM 

GlutaMAX™ and 15 mM HEPES) for untreated control or dosed with varying siRNA 
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conditions in optiMEM® I reduced serum media. Following siRNA transfection, 

maintenance media was replaced every 24 hours. The use of Geltrex™ matrix overlay 

is generally recommended for primary hepatocytes to maintain phenotype during 

culture. However, after private correspondence with authors of the publication by 

Vozza-Brown et al. they advised against the use of Geltrex™ as it was found that the 

matrix interfered with siRNA delivery, consequently Geltrex™ was not used in 

conjunction with siRNA experiments. 

 

Table 4.1 Donor demographics of the cryopreserved primary human hepatocytes  

 

 

4.2.3 Small-interfering RNA (siRNA) treatment 

CYP3A4 siRNA experiments were conducted by modification of the knockdown 

protocol published by Vozza-brown et al. (2005). 5X siRNA buffer (300 mM KCl, 30 

mM HEPES-pH 7.5, 1.0 mM MgCl2) was prepared and diluted to 1X concentration 

with RNAse-free water. siRNA was stored at 10 µM stock concentration in 1X 

siRNA buffer at -20°C until use.  

After 5 hours incubation with hepatocyte plating media, cells were washed 

and treated with Dharmacon ON-TARGETplus human CYP3A4 SMARTpool 

Demographics Donor 1 Donor 2 Donor 3 

Donor ID Hu1591 Hu1824 Hu8241 
Age 29 66 60 
Gender Male Female Male 
Ethnicity Caucasian Caucasian Caucasian 
Characteristics Rare alcohol user. 

No tobacco or drug 
use reported 

Tobacco use. No 
alcohol or drug use 

Tobacco and 
alcohol user. No 
drug use 

Cause of death Not reported Not reported Cardiac related 
Cell viability 91% 93% 94% 
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siRNA. Positive ON-TARGETplus GAPD human control pool and negative control 

ON-TARGETplus non-targeting pool were also included. The sequences of the 

siRNA used are shown in Table 4.2. 1.25 μl of transfection reagent Lipofectamine 

RNAiMAX™ was complexed with ON-TARGETplus siRNA in reduced serum opti-

MEM® I media for 30 minutes prior to addition to cell culture. Hepatocytes were 

exposed to the siRNA overnight for 15 hours before the cells were washed and media 

replaced with standard hepatocyte maintenance media. Cells were subsequently 

incubated at 37°C with 5% CO2 and 95% humidity for a range of time post CYP3A4 

siRNA treatment. CYP3A4 metabolic activity, mRNA and protein expression were 

assessed at specific time points. Time 0 hours was taken at 5 hours incubation with 

plating media, prior to siRNA transfection and maintenance media replacement. 

 

Table 4.2 siRNA sequences.  

siRNA Sequence 

  
ON-TARGETplus human 

CYP3A4 SMARTpool 

5’-CAUCCCAAUUCUUGAAGUA-3’ 
5’-GUGGAAAACUCAAGGAGAU-3’ 
5’-GAACUGAAGCUCUUAUUAU-3’ 
5’-CCAACUGUCUCGAUGCAAU-3’ 

 
 

ON-TARGETplus human 

GAPD control pool 

 
5’-GUCAACGGAUUUGGUCGUA-3’ 
5’-CAACGGAUUUGGUCGUAUU-3’ 
5’-GACCUCAACUACAUGGUUU-3’ 
5’-UGGUUUACAUGUUCCAAUA-3’ 

 
 

ON-TARGETplus Non-targeting 

pool 

 
5’-UGGUUUACAUGUCGACUAA-3’ 
5’-UGGUUUACAUGUUGUGUGA-3’ 
5’-UGGUUUACAUGUUUUCUGA-3’ 
5’-UGGUUUACAUGUUUUCCUA-3’ 
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4.2.4 Cytotoxicity determined by PrestoBlue™ cell viability reagent 

PrestoBlue™ reagent is a resazurin-based cell viability assay that is able to monitor 

live cells not requiring lysis at the final stage of analysis and therefore, appropriate for 

detecting cytotoxicity caused by siRNA and transfection reagent in primary human 

hepatocytes following knockdown. Due to the expense of primary human 

hepatocytes, PrestoBlue™ assay optimisation was initially conducted in HepG2 cells 

because they displayed concentration-dependent toxicity in Chapter 2 in response to 

actinomycin D.  

4.2.4.1. Optimisation of PrestoBlue™ assay in HepG2 cells 

HepG2 cell line was maintained and plated as described in 2.2.2 and 2.2.4, 

respectively. Cells were seeded at 3x105 per well on 24-well culture plates and 

incubated with 0.0001-10 µM actinomycin D dissolved in cell line maintenance 

media. Drug dissolution vehicle and cells with no drug treatment were included as 

controls. The assay was carried out in triplicates. HepG2 cells were incubated with 

varying concentrations of actinomycin D at 37°C with 5% CO2 and 95% humidity for 

72 hours, with media replaced every 24 hours. At the end of incubation, 50 µl of 10X 

PrestoBlue™ reagent was directly added to each well and fluorescence was read at 10 

min intervals for 80 min with excitation at 560 nm and 590 nm emission on a 

CLARIOstar® microplate reader (BMG LABTECH, Aylesbury, UK). Final readings 

were taken at a time point before signal saturation and normalised against background 

fluorescence.  

4.2.4.2. Determination of siRNA and transfection reagent inflicted 

cytotoxicity 

Following siRNA treatment and cell incubation to a designated time point, 50 µl of 

10X PrestoBlue™ reagent was directly added to each well. Media only with no cells, 
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cells incubated with transfection reagent and cells with no treatment were included as 

controls. Fluorescence was read with excitation at 560 nm and 590 nm emission at 10 

min intervals for 60 min on a CLARIOstar® microplate reader (BMG LABTECH, 

Aylesbury, UK). Final readings were taken at a time point before signal saturation and 

normalised against background fluorescence. The media containing PrestoBlue™ 

reagent was washed off the cells 3 times with HBSS prior to proceeding with further 

experimental procedures. 

 

4.2.5 CYP3A4 mRNA knockdown quantification 

The magnitude of siRNA knockdown was determined by quantifying gene expression 

by reverse-transcription polymerase chain reaction (RT-PCR) following a designated 

time of incubation. 

4.2.5.1 Total mRNA isolation 

After siRNA treatment and incubation, total RNA isolation was carried out using the 

standard TRIzol® reagent extraction protocol by Ambion/Life Technologies. Media 

was discarded and hepatocytes were treated with 1 ml TRIzol® reagent and 

homogenised for 5 min at RT. The cell lysates were transferred to 1.5 ml centrifuge 

tubes and samples were vortexed with chloroform at 0.2 ml per 1 ml of TRIzol® and 

incubated for 2 min at 30°C before centrifugation at 13,200 x g for 15 min at 4°C. 

The aqueous phase of the samples were transferred into new centrifuge tubes. 0.5 ml 

per 1ml TRIzol® of 100% isopropanol was added and incubated for 10 min at RT 

before centrifugation at 12,000 x g for 10 min at 4°C. The supernatant fraction was 

then removed leaving the mRNA pellet that was washed with 1 ml of 75% ethanol per 

1 ml of TRIzol® used. The samples were vortexed with 75% ethanol then centrifuged 

at 7500 x g for 5 min at 4°C. The supernatant fraction was then discarded and mRNA 
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pellet left to dry. The mRNA pellet was resuspended in 30 µl RNase-free water and 

incubated on a heat block at 60°C for 15 min. The isolated mRNA was stored at -

80°C until analysis. Total mRNA was quantified by NanoDrop™ 1000 

spectrophotometer with an average purity (A260/280) of >1.80. 

4.2.5.2 cDNA synthesis 

Complementary DNA (cDNA) synthesis was performed using Taqman® reverse 

transcription kit. 2 µg of total mRNA was reverse transcribed with 3 µl 10X 

Taqman® RT buffer, 1.75 mM MgCl2, 0.5 mM dNTP mix, 1.0 U/µl RNase inhibitor, 

2.5 U/µl MultiScribe™, 2.5 µM random hexamers and reaction mixes were made up 

to 50 µl per sample with RNase-free water. cDNA amplification was performed in a 

GeneAmp® PCR 9700 thermocycler (Applied Biosystems, UK) with cycling 

conditions of 25°C for 10 min, 37°C for 30 min and 95°C for 5 min. The cDNA 

samples were kept at 4°C overnight for analysis the following day. Total cDNA was 

quantified by NanoDrop™ 1000 spectrophotometer with an average purity (A260/280) 

of >1.80, then diluted to produce a working stock of 5 ng/µl. 

4.2.5.3 Gene amplification by RT-PCR 

Real-time PCR (qPCR) were developed for quantification relative to HPRT1, 

housekeeping gene; assays were conducted according to Taqman® gene expression 

protocol. All samples were completed in quadruplicate. A 25 µl reaction mix 

consisting of 1.25 µl of 20X Taqman® custom gene CYP3A4 (assay ID, 

Hs00604506_m1), GAPDH (Hs02758991_g1) or HPRT1 (Hs02800695_m1) assay, 

40 ng cDNA in 8 µl, 3.25 µl RNase free water and 12.5 µl of 2X Taqman® Master 

Mix were dispensed into a 96-well plate. Negative controls where RNase-free water 

was added in place of cDNA was included. The plates were then covered with 

Microseal® adhesive PCR plate sealing film and centrifuged briefly up to 2000 rpm 
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to mix the reaction contents to eliminate air bubbles from the solution mix. PCR 

conditions were run at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 

60°C for 1 min.  

4.2.5.4 Calculating relative expression 

Relative CYP3A4 and GAPDH mRNA expression against housekeeping gene HPRT1 

were performed in an Opticon2™ Fluorescence Detector (MJ Research, UK). The 

cycle threshold [C(t)] was set to ignore any aberrant fluorescence to ensure that only 

gene amplification was measured. Data was normalised to the primary hepatocyte 

vehicle control or untreated control sample collected at time 0 (T0) and relative 

expression was derived using two methods: the comparative C(t) method given by the 

following equation, 

𝐶! =  2!∆∆!(!) 

 or the Pfaffl method (Pfaffl 2001), given by the following equation: 

Relative expression ratio =  
(E!"#$%!)∆!"!"#$%!(!"#$%"&!!"#$%&)

(E!!")∆!"!"#(!"#$%"&!!"#$%&)
 

Where Etarget is the qPCR efficiency from target gene; Eref is qPCR efficiency of 

reference gene; ΔCPtarget is the deviation of control-sample of target gene to test 

sample and ΔCPref is the deviation of control-sample of reference gene to test sample.  

 

4.2.6 CYP3A4 protein quantification 

4.2.6.1 Protein extraction 

Two different established methods of protein extraction were carried out to determine 

a suitable method for maximum extraction of proteins. 

(i) Modified TRIzol® protein extraction method 

The efficiency of protein extraction by TRIzol® reagent using the method published 

by Ambion/LifeTechnologies is known to be limited by problems of protein 
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resolubilisation (Hummon et al. 2007). Therefore, a modified version with improved 

resolubilisation was conducted as detailed in a publication by Simões et al. (2013). 

 Following phase separation and removal of the aqueous phase containing 

mRNA as detailed in 4.2.5.1, protein separation and isolation were conducted as 

follows: 300 µl of 100% ethanol was added to tube containing the interphase and 

phenol-chloroform phase. The tube was mixed by inversion then incubated for 2-3 

min at RT before centrifugation at 2000 x g for 5 min at 4°C to pellet the DNA. The 

phenol-ethanol supernatant layer containing protein was transferred into a new 

centrifuge tube. 1.5 ml of 100% isopropanol was then added and samples incubated 

for 10 min RT. The samples were then centrifuged at 12,000 x g for 15 min at 4°C to 

pellet the protein. The supernatant was discarded and washed 3 times with 2 ml 0.3 M 

guanidine hydrochloride in 95% ethanol with 20 min incubation at RT between 

washes. The samples were then centrifuged at 7,500 x g for 5 min at 4°C. 2 ml of 

100% ethanol was then added, vortexed and left to incubate for 20 min RT. Samples 

were centrifuged at 7,500 x g for 5 min at 4°C and ethanol wash supernatant 

discarded. 1.5 ml of 1:1 solution of 8 M urea (in Tris-Hcl 1 M, pH 8.0) and 1% 

sodium dodecyl sulphate (SDS) was added to the cell pellet and vortexed to resuspend 

pellet in solution. The solution was then sonicated for 5 cycles of 15 s and placed on 

ice for 30 s to solubilise the protein. The mixture was then centrifuged at 3,200 x g for 

10 min at 4°C to sediment any insoluble material. The supernatant containing the 

dissolved protein was transferred to a new centrifuge tube and stored at -80°C until 

analysis.  

(ii) CelLytic™ M protein extraction method 

CelLytic™ M protein extraction was conducted according to manufacturer’s 

recommendations. A separate sample from which mRNA was extracted by TRIzol® 
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reagent was included for CelLytic™ M protein extraction. After siRNA treatment and 

cell incubation, media was discarded from culture dish and cells were washed four 

times with HBSS before removal from well by trypsinisation for 5 min at 37°C with 

5% CO2 and 95% humidity. 1 ml of cell maintenance media was added to neutralise 

the trypsin-EDTA solution and the cells in solution were transferred to 1.5 ml 

centrifuge tubes. The samples were centrifuged at 4,500 x g for 5 min at 4°C to pellet 

cells. The supernatant was discarded and cells were resuspended in 1 ml HBSS before 

further centrifugation at 2,000 x g for 5 min at 4°C to wash cells. The supernatant was 

then discarded. 125 µl of CelLytic™ M lysis solution and 12.5 µl protease inhibitor 

cocktail (which was stored on ice during use) was added to cell pellet and mixed 

vigorously to lyse cells. The samples were then incubated on an oscillating table for 

15 min before centrifugation at 13,900 x g for 15 min at 4°C. The supernatant 

containing protein samples were collected and stored at -80°C until analysis. 

4.2.6.2 Quantification of extracted protein by Bradford assay 

Protein concentrations of the isolated samples were determined by the Bradford 

reagent assay according to protocol provided by Sigma-Aldrich. Bovine serum 

albumin (BSA) standards were prepared at 8 concentrations at two-fold dilutions in 

the range of 0-1.5 mg/ml in CelLytic™ M buffer with 10% protease inhibitor 

cocktail. Protein standards were made to 20 µl per well on a 96-flat well plate with 

buffer. Protein samples were added at 1, 2.5 or 5 µl in 20 µl per well CelLytic™ M 

buffer with 10% protease inhibitor cocktail. Conditions were performed in duplicates. 

250 µl of 1X Bradford Reagent was added to each well at RT, mixed for 30 s on 

orbital shaker then incubated in darkness for 30 min. The absorbance of the samples 

were measured at 595 nm on a CLARIOstar® microplate reader (BMG LABTECH, 

Aylesbury, UK). Protein concentrations of the samples were determined by 
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comparing the net A560 values against the standard curve and only plates with 

standard curve where R2≥0.99 were included. 

4.2.6.3 Protein quantification by Western blotting 

20 µg of total protein, as determined by Bradford assay, and 0.5 µl CYP3A4 

BACULOSOMES® plus reagent (positive control) was added to 5 µl of 4X 

NuPAGE® LDS sample buffer, 2 µl of NuPAGE® reducing agent and made up to 21 

µl volume using deoinised water. Samples were heated at 100°C for 5 min. 20 µl of 

sample and 3 µl of Kaleidoscope™ prestained protein standard (Bio-Rad, UK) were 

loaded onto a NuPAGE® 4-12% Bis-Tris Gel with 200 µl NuPAGE® antioxidant and 

electrophoresed for 1 hour 30 min at 150 V. Following electrophoresis, the proteins 

were blotted onto a Amersham Protran 0.45 nitrocellulose membrane using a 

Criterion™ blotter method (Bio-Rad, UK) run at 30 V for 60 min.  

After protein transfer, the membrane was blocked in 5% non-fat dried milk 

(NFDM) or BSA in 0.01% Tween-tris buffered saline (T-TBS) for 2 hours RT, 

washed with 0.01% T-TBS solution 3 times for 5 min, followed by incubation with 

primary antibody (anti-cytochrome P450 3A4, ab3572) at 1/2000 dilution in 2% 

NFDM or BSA in 0.01% T-TBS overnight at 4°C. The following day, the membrane 

was washed 3 times with 0.01% T-TBS for 5 min then incubated with secondary 

antibody (goat polyclonal secondary antibody to rabbit IgG, ab97080) at 1/5000 in 

2% NFDM or BSA in 0.01% T-TBS for 2 hours at 4°C. For detection of loading 

control β-actin, the membrane was blocked with 10% NFDM or BSA in 0.01% T-

TBS overnight at 4°C. The following day, membranes were washed 3 times with 

0.01% T-TBS for 5 min before incubation with primary antibody (anti-β-actin 

antibody, ab6276) at 1/5000 in 2% NFDM or BSA in 0.01% T-TBS for 2 hours at 

4°C. After primary antibody incubation, membrane was washed 3 times with 0.01% 
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T-TBS for 5 min before incubation with secondary antibody (goat polyclonal 

secondary antibody to mouse IgG1, ab97240) at 1/2000 in 2% NFDM or BSA in 

0.01% T-TBS for 1 hour at 4°C. For GAPDH loading control, membranes were 

initially blocked with 10% BSA in 0.01% T-TBS overnight before GAPDH was 

probed for using primary antibody (anti-GAPDH, ab181602) at 1/10,000 for 2 hours 

at 4oC and secondary antibody (ab97080) at 1/10,000 dilution incubated for 1 hour RT 

in 2% BSA in 0.01% T-TBS. Following incubation with secondary antibodies, 

membranes were washed 3 times in 0.01% T-TBS for 5 min followed by 2 times 20 

min wash in 0.01% T-TBS. 

Between the detection of each protein, the membrane was stripped and re-

probed. After enhanced chemiluminescence (ECL) detection, membranes were 

washed for 5 min in 0.01% T-TBS, then 2 times 20 min with acidic glycine stripping 

buffer, followed by 2 times 10 min 1X Tris-buffer saline (TBS) solution and 2 times 

10 min 0.01% T-TBS. The membranes were then blocked and probed for a new 

protein as indicated above. 

Protein bands were visualised by ECL detection. Following the final wash, the 

membrane was blotted dry and incubated with 3 ml Luminata™ Forte Western 

Horseradish Peroxidase (HRP) substrate solution for 5 min. Excess substrate was 

drained and membrane placed under plastic wrap. Detection was carried out in the 

dark room where an X-ray film was placed on the blot and the film was exposed 

between 10-600 s for CYP3A4, β-actin and GAPDH protein band detection. The X-

ray film was then placed in a developing solution for approximately 30 s for the 

image to appear before immersing in fixing solution for 30 s followed by water for 30 

s. Quantification of protein bands were achieved using GS-800™ calibrated 

densitometer (Bio-Rad, Hercules, CA) and ImageJ software (NIH). Relative protein 
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quantification was determined by normalising CYP3A4 band against β-actin or 

GAPDH loading control band density. 

 

4.2.7 Assessment of CYP3A4 activity by probe substrate turnover  

Midazolam (MDZ) and 1’hydroxymidazolan were dissolved in high performance 

liquid chromatography (HPLC) grade 100% methanol to form a stock solution at 1 

mM that was stored at -20°C until use. The probe substrate selected for CYP3A4 

activity was 3.4 μM MDZ (the concentration was chosen based on recommendations 

from personal communications with Dr Beth Williamson) and the probe substrate 

compound was prepared in hepatocyte maintenance media in <0.5% methanol. In the 

final hour of incubation in control and siRNA-treated samples, cells were spiked with 

MDZ to a final concentration of 3.4 μM and incubated for 60 min at 37°C with 5% 

CO2 and 95% humidity. CYP3A4 activity was measured as 1’-hydroxymidazolam 

metabolite formation following incubation with MDZ at 0, 48, 72 and 96 hours after 

CYP3A4 siRNA transfection. After 60 min incubation with MDZ, the media was 

removed and immediately stored at -80°C to terminate further activity until analysis. 

1’-hydroxymidazolam metabolite was extracted from cell maintenance media matrix 

and analysed by high performance liquid chromatography-ultraviolet (HPLC-UV). 

4.2.7.1 Drug extraction from media matrix 

Extraction of 1’-hydroxymidazolam metabolite involved addition of acetone (5:1 v/v) 

to 400 μl of media sample. The samples were then mixed on a turntable for 30 min at 

RT followed by centrifugation at 13,000 x g for 30 min at 4°C. The metabolite-

containing supernatant fraction was then removed and transferred to a glass tube. The 

samples were dried overnight in a Savant SpeedVac rotary evaporator (Thermo 
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Scientific, UK). The resulting dried compounds were reconstituted in 150 μL mobile 

phase A with 20% acetonitrile (ACN) v/v.  

4.2.7.2 Metabolite quantification by HPLC-UV 

MDZ and 1’-hydroxymidazolam were chromatographically separated and quantified 

by HPLC with ultraviolet detection (HPLC-UV). 100 μL of reconstituted sample was 

injected into a Dionex HPLC system (Thermo, UK). Two mobile phases were used 

for the chromatographic run and the run was conducted using a using a multi-step 

gradient with a reverse-phase Fortis® column (3 μM, C18, 100 x 4.6 mm; Fortis® 

Technologies Ltd., Neston, UK). The conditions were as follows: 

 

Mobile phase A 80% 25 mM KH2PO4 in ddH2O, 20% 

ACN, pH 3.14 

Mobile phase B 100% ACN 

Wash 50% H2O, 50% MeOH 

Internal wash reservoir 100% H2O 

Flow rate 1 ml.min-1 

Injection volume 100 µl 

Run time 9.18 min 

Retention time of 1’-

hydroxymidazolam 

4.88 min 

Detection wavelength 235 nm 
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The gradient mobile phase run conditions are as follows: 

Time (min) Mobile phase A (%) Mobile phase B (%) 

0.0 80 20 

1.0 80 20 

1.1 60 40 

6.0 55 45 

6.1 20 80 

8.0 20 80 

8.1 80 20 

9.0 80 20 

 

Calibration curves were prepared with 10 concentrations including blank media with 

no drug and a range of 1’-hydroxymidazolam concentrations between 0.04-20 μM. A 

linear calibration curve with R2≥0.999 was required for quantification.  Precision and 

accuracy were determined using 3 sets of quality controls (QCs; including low, 0.5 

μM; medium, 3 μM and high, 10 μM) in each run, on 3 consecutive days. Accuracy 

was defined as the percentage deviation from the nominal concentration and precision 

determined by SD at each QC concentration. Average recovery of 1’-

hydroxymidazolam was determined by comparing peak area of the drug extracted 

from 3 QCs against samples directly injected with no extraction procedure taken to be 

100%. The recovery for 1’-hydroxymidazolam was calculated at >90% in all 

replicates. 
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4.2.8 CYP3A4 kdeg and t1/2 calculations and statistical analyses  

Kdeg and half-life were calculated using GraphPad Prism 6 software (GraphPad 

Software, CA). Linear regression was used and the percentage of metabolite, 

fluorescence unit or normalised protein expression, relative to untreated control at 

each time point post siRNA treatment, was transformed by taking the natural 

logarithm (Ln). Half-life values for CYP3A4, representative of kdeg, were derived from 

the slope (k) of linear regression using the following equation as described in 2.1: 

t!
!
=  
ln(2)
k  

Data was plotted with Ln percentage on the y-axis and incubation time (h) on the x-

axis and kdeg taken from the slope (k). All statistical analyses were carried out using 

GraphPad Prism 6 software. 
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4.3 Results 

4.3.1 Optimisation of PrestoBlue™ reagent for cell viability analysis 

 The PrestoBlue™ cell viability reagent detected concentration-dependent 

cytotoxicity in response to incubation with varying actinomycin D concentrations in 

HepG2 cells, as shown in Figure 4.2. and the CC50 was 0.0009 µM. This is consistent 

with the findings in Chapter 2 and therefore confirms the utility of PrestoBlue™ 

reagent for detecting live cell cytotoxicity. PrestoBlue™ reagent was subsequently 

used to determine cytotoxicity for the optimisation of siRNA experiments.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. HepG2 cytotoxicity in response to actinomycin D dose. HepG2 cells were 

incubated with varying concentrations of actinomycin D for 72 hours to confirm utility 

of PrestoBlue™ assay for determination of cytotoxicity. Fluorescence reading shown 

was taken at 10 min incubation with PrestoBlue™ reagent. Data shown as mean ±SD 

of 3 replicates from N=1 experiment. 
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4.3.2 Optimisation of mRNA knockdown time-course and siRNA dosage 

 Primary human hepatocytes were initially treated with 50 or 100 nM 

concentrations of siRNA and incubated for 24, 48 and 72 h to determine the 

achievable level of mRNA knockdown after a single siRNA dose. Figure 4.3 shows 

that over 50% CYP3A4 knockdown was achieved at 48 h with both 50 and 100 nM 

siRNA. GAPDH mRNA expression was also successfully reduced by GAPD-

targeting siRNA. CYP3A4 expression in non-targeting control (NTC) samples 

remained high as expected. No statistically significant mRNA knockdown was 

achieved in untreated, optiMEM and NTC control conditions compared with the 

corresponding vehicle control and therefore confirms the validity and specificity of 

CYP3A4 siRNA for target gene knockdown experiments. 
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Figure 4.3 Relative mRNA knockdown following siRNA treatment and 24-72 h 

incubation in primary human hepatocytes (Hu1591). CYP3A4 and NTC siRNA 

treatment corresponds with CYP3A4 mRNA and GAPDH siRNA treatment corresponds 

to GAPDH mRNA expression relative to HPRT1 housekeeping gene. Data analysed by 

comparative C(t) method and expressed as mean ±SD as percentage of vehicle control 

of each time point of 4 replicates from N=1 experiment. Unpaired t-test were performed 

between each treatment condition against the corresponding vehcle control where, 

*P<0.05, **P<0.01 and ***P<0.001.  
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As CYP3A4 mRNA was still detectable after 72 h incubation, hepatocytes were 

cultured up to 96 h with 10, 50 and 100 nM siRNA dosage to determine the time-

course of knockdown. Cell viability was determined at 72 and 96 h to ensure that 

siRNA was not causing cytotoxicity to mask any mRNA knockdown effects. As such, 

siRNA and vehicle control (RNAiMAX™ transfection reagent) treatments, as shown 

in Figure 4.4, caused no significant cytotoxicity as viability remained above 75% of 

untreated control in all treatment conditions. 

Figure 4.4 Primary human hepatocyte (Hu1591) cell viability after siRNA 

treatment and culture over 72 and 96 h. Cell viability was determined by 

PrestoBlue™ live cell assay. Fluorescence readings were taken at designated 

incubation time points after 10 min incubation with PrestoBlue™ reagent. Cell 

viability was calculated as the fluorescence measured as a percentage of the untreated 

sample at each time point from N=1 experiment. 
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Figure 4.5 Relative mRNA knockdown following siRNA treatment and 72 and 96 h 

incubation, data analysed by two methods. A. Comparative CT method. B. Pfaffl method. 

CYP3A4 and non-targeting control (NTC) siRNA treatment corresponds with CYP3A4 mRNA and 

GAPDH siRNA treatment corresponds to GAPDH mRNA expression relative to HPRT1 

housekeeping gene. Data expressed as mean  ±SD as percentage of vehicle control from 4 replicates 

from N=1 indepdendent experiment. Where, *P<0.05, **P<0.01 and ***P<0.001.  
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Figure 4.5 shows the CYP3A4 and GAPDH mRNA knockdown over the incubation 

of 72 and 96 h after a single dose of siRNA. The data was analysed by 2 different 

methods. Over 50% knockdown (compared to vehicle control) was achieved for 

CYP3A4 mRNA in CYP3A4 siRNA treated samples up to 96 h. This confirms the 

use of a single siRNA dose for prolonged knockdown. Similar levels of knockdown 

were achieved with 50 and 100 nM siRNA concentrations, which were slightly more 

than with 10 nM CYP3A4 siRNA. The data was analysed using two different 

methods as a comparison. The Pfaffl method of gene expression analysis takes into 

account the efficiency of qPCR reactions. Both comparative C(t) and Pfaffl methods 

produced a similar trend for the same data. However, Figure 4.5 shows that the range 

of SD was smaller for Pfaffl analysis. Therefore, the Pfaffl method will be used for all 

subsequent gene expression analyses. 

 In order to optimise the dosage of siRNA for knockdown experiments, mRNA 

expression was analysed at the 48 h time-point as shown in Figure 4.6 Around 70% 

reduction in CYP3A4 mRNA expression was detected after 50 and 100 nM CYP3A4 

siRNA treatment, whereas knockdown was not achieved with 10 nM siRNA. 

Interestingly, GAPDH did not show a dose-dependent level of knockdown as lower 

mRNA expression was detected at 50 nM than 100 nM of GAPDH siRNA in both 

Figures 4.5 and 4.6. This confirms the need for dose optimisation in siRNA 

experiments.  

ON-TARGETplus siRNA complexed with 1.25 µl RNAiMAX® transfection 

reagent appeared to be non-toxic for primary human hepatocytes. A 50 nM dose of 

siRNA and time-course of 48, 72 and 96 h incubation were selected for subsequent 

siRNA experiments to derive CYP3A4 kdeg.  
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Figure 4.6 Relative mRNA expressions after 48 h incubation with varying siRNA 

concentrations and treatment conditions. CYP3A4 and NTC siRNA treatment 

corresponds with CYP3A4 mRNA and GAPDH siRNA treatment corresponds to GAPDH 

mRNA expression relative to HPRT1 housekeeping gene. Data analysed by comparative 

C(t) method and expressed as mean ±SD as percentage of vehicle control from 4 technical 

replicates in N=4 independent experiments in primary human hepatocytes (Hu1591). 

Unpaired t-test was performed between each treatment condition with vehicle control 

where *P<0.05. 
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4.3.3 Development of Western blotting conditions 

Non-specific protein bands often appear on Western blots that make 

identification of target protein difficult, therefore a positive control is recommended 

(Mahmood & Yang 2012). Varying volumes of CYP3A4 and control (which is 

transfected with WT baculovirus) BACULOSOME® plus reagent were blotted for 

CYP3A4 protein expression to validate the use and concentration of this reagent for a 

positive control. Figure 4.7 shows a strong protein band detected at above 50 kDa for 

CYP3A4 BACULOSOME® samples, this band was likely to be for CYP3A4 protein 

that was expected at 57 kDa. Although a band was seen at 0.5 and 1 µl of the control 

reagent, these bands were likely due to the overspill of the adjacent CYP3A4 

BACULOSOME® sample as no strong bands were detected with neighbouring wells 

with increasing volumes of control. Clearly, a volume of 0.5 µl or less of CYP3A4 

BACULOSOME® reagent was needed for subsequent experiments as the streaky blot 

suggested that too much protein was present. The contrast between CYP3A4 protein 

detection in CYP3A4 and control reagents validate the use of CYP3A4 

BACULOSOME® plus reagent as a positive control. 

 

 

Figure 4.7 Detection of CYP3A4 protein expression in varying quantities of 

CYP3A4 and Control BACULOSOME® plus reagent.  
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Cellular protein was extracted by CelLytic™ M lysis and TRIzol® reagents to 

compare their uses. Successful TRIzol® protein extraction would reduce the need for 

a separate culture well for mRNA and protein analysis, however several sources have 

reported problems of solubility of the extracted protein pellet using this method 

(Hummon et al 2007). Figure 4.8 shows that under the same siRNA treatment 

conditions and incubation times, protein was not detected beyond 72 h incubation 

with protein extracted with TRIzol®. Therefore, a separate culture well utilising 

CelLytic™ M lysis reagent was required and will be used for all subsequent protein 

extraction from primary human hepatocytes.  

 

 

 

 

 

 

Figure 4.8 Comparison of CelLytic™ M and TRIzol® protein extraction 

methods in siRNA-treated primary human hepatocytes (Hu1591). Primary 

human hepatocytes were treated with 50 nM CYP3A4 and NTC siRNA for 48-120 

h prior to protein extraction by CelLytic™ M or TRIzol® reagents. CYP3A4 

protein detection was carried out by Western blotting as detailed in 4.2.6. 
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All protein bands were normalised to a housekeeping gene as a loading control 

for determination of relative protein expression. GAPDH and β-actin are common 

choices for Western blotting loading controls in mammalian cell types. Figure 4.9 

shows that GAPDH expression was more consistent across all treatment conditions 

and time compared to β-actin, furthermore previous publications have demonstrated 

variability of housekeeping protein expression amongst different tissue types (Kim et 

al. 2014). All CYP3A4 protein bands were therefore normalised to GAPDH 

expression to determine relative expression and protein abundance.  
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Figure 4.9 Comparison of GAPDH and β-actin expression in siRNA treated and 

untreated primary human hepatocytes.  Cryopreserved primary human hepatocytes 

were treated with 50 nM CYP3A4 or NTC siRNA, or left untreated and incubated for 

48-96 h. After incubation period, protein was isolated by CelLytic™ M lysis buffer and 

protein detection was carried out by Western blotting utilising both GAPDH and β-actin 

as comparison with expression quantified by ImageJ software as detailed in 4.2.6. 
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4.3.4 Optimisation of HPLC-UV conditions for 1’-hydroxymidazolam 

detection 

The standards extracted from primary hepatocyte maintenance media showed 

good linearity over the concentration range of 0.04 to 20 µM (R2≥0.999) for 1’-

hydroxymidazolam. As the MDZ parent drug was detected simultaneously with 1’-

hydrozymidazolam metabolite to determine level of CYP3A4 activity in hepatocyte 

cultures, a clear separation between the two drug peaks was required. Figure 4.10 

shows a representative chromatogram in the co-detection of MDZ and metabolite and 

the calibration curve for 1’-hydroxymidazolam.  

 

 

A 

B 

Figure 4.10 A. Representative chromatogram for the co-detection of MDZ and 1’-

hydroxymidazolam. B. Representative calibration curve of extracted standards of 1’-

hydroxymidazolam over the concentration range of 0.04 to 20 µM.  
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Precision and accuracy of the 1’-hydroxymidazolam detection assay were 

assessed and the percentages are shown in Table 4.3 for each individual run. The 

percentage error of accuracy and precision was below 15% for all 3 repeats at all 3 

QC concentrations. Interestingly, 1’hydroxymidazolam eluted before the parent MDZ 

compound, which is unexpected for reverse-phase chromatography. However, the 

chemical components of the mobile phases and their pH may alter the retention of the 

compounds. 

 

 

Table 4.3 shows the accuracy and precision of 3 repetitions of the assay. Accuracy 

and precision were assessed in triplicate at 3 levels low (0.5 µM), medium (3 µM) and 

high (10 µM) in 3 independent experiments. 

 

 

 Low QC  

(0.5 µM) 

Medium QC  

(3 µM) 

High QC  

(10 µM) 

Assay 1 

Amount detected  (µM) 0.55 2.94 10.56 

Variance of accuracy (%) 11.0 -2.02 5.59 

Variance of precision (%) 13.0 5.08 2.62 

Assay 2 

Amount detected (µM) 0.56 3.12 10.41 

Variance of accuracy (%) 12.7 4.07 4.06 

Variance of precision (%) 2.99 2.81 2.84 

Assay 3 

Amount detected (µM) 0.44 3.06 9.85 

Variance of accuracy (%) -12.44 2.07 -1.50 

Variance of precision (%) 2.47 1.69 1.47 
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4.3.5 Magnitude of CYP3A4 mRNA knockdown 

Following incubation of primary human hepatocytes with CYP3A4 SMARTpool 

siRNA (50 nM) for 0-96 h, 60 (± 9.4) %, 70 (± 6.7) % and 66 (± 6.7) % CYP3A4 

mRNA knockdown was achieved after 48, 72 and 96 hours of incubation, as shown in 

Figure 4.11. The 24 hour incubation time point was not included because previous 

optimisations, as shown in Figure 4.3, did not show significant CYP3A4 mRNA 

knockdown at this time point, therefore any subsequent detection of decrease in 

CYP3A4 protein or activity may not be due solely to degradation. Figure 4.11 ahows 

that siRNA specific for CYP3A4 elicited significant prolonged mRNA suppression 

following a single dose over the course of 96 hours.  
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Figure 4.11 Impact of siRNA on CYP3A4 mRNA expression. Primary human 

hepatocytes were dosed and incubated with 50nM CYP3A4 SMARTpool siRNA for 

15 h in reduced serum optiMEM™ I media. After siRNA incubation, media was 

replaced and cells were incubated for 48, 72 and 96 hours in 37
o
C 5% CO

2 
after initial 

dosing. CYP3A4 mRNA expression was determined by RT-PCR. The level of 

CYP3A4 expression is given as a percentage of untreated control at each time point 

and time 0 was taken after initial cell plating prior to siRNA treatment. Data represents 

mean ± SD from n=3 donors. Unpaired t-test was performed between each incubation 

time point and T0 where *P<0.05, **P<0.01 and ***P<0.001. 
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4.3.6 Deriving CYP3A4 kdeg from protein expression after siRNA treatment 

The CYP3A4 protein degradation rate constant was derived with two 

methods: (1) from tracking differential CYP3A4 protein decline in untreated 

hepatocytes and (2) tracking protein decline after siRNA treatment. The relative 

CYP3A4 expression normalised to GAPDH was calculated (Figure 4.12) and the 

protein density at each time point compared to control (T0) was fit to a linear 

regression model and the slope is taken as rate of degradation (Figure 4.13). NTC was 

not included in the blot shown in Figure 4.12A because there were not enough wells 

on the electrophoresis gel to accommodate the NTC samples. The CYP3A4 protein 

kdeg values derived by the two methods are summarised in Table 4.4. Overall, kdeg 

derived from untreated hepatocytes resulted in a longer half-life than siRNA-treated. 
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Figure 4.12 Quantification of CYP3A4 protein by Western blotting. A. 

Representative Western blot of Hu1591. The CYP3A4 protein density was 

normalised to GAPDH. B. The CYP3A4 protein density ratio normalised to 

GAPDH shown for siRNA-treated hepatocytes and corresponding untreated 

control. Data represents mean ± SD of 1 replicate from N=3 donors. Unpaired t-

test was performed between the siRNA-treated and corresponding untreated 

hepatocytes at each time point. 
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Figure 4.13. Determination of the CYP3A4 degradation rate constant by 

protein analysis. CYP3A4 protein degradation over time was quantified by 

Western blot. CYP3A4 protein density was normalized to GAPDH and is 

expressed as a percentage of T0. A. CYP3A4 kdeg derived from untreated 

hepatocytes. B. CYP3A4 kdeg derived from siRNA-treated hepatocytes. The natural 

logarithm of the percent of T0 is given and the slope of the loss of enzyme protein 

expression is used to calculate the protein half-life, which is equal to the rate of 

degradation. Data represents 1 replicate from N=3 donors. 
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4.3.7 Deriving CYP3A4 kdeg from activity after siRNA treatment 

After exposure to CYP3A4 targeting siRNA for 48, 72 or 96 hours, 1’-

hydroxymidazolam metabolite formation was quantified to determine CYP3A4 

activity. Figure 4.14 shows that concentration of 1’-hydroxymidazolam detected was 

lower for CYP3A4 siRNA-treated hepatocytes compared with untreated and NTC-

treated. Interestingly, in untreated and NTC-treated conditions there appears to be an 

increase in activity between 72 and 96 h, however the rebound in activity is not as 

significant in siRNA treated condition implicating sustained mRNA suppression by 

siRNA. 

The percentage of activity at each time point compared to T0 was fit to linear 

regression models based on assumed first-order enzyme degradation kinetics as 

shown in Figure 4.15 to calculate kdeg. The CYP3A4 kdeg values were derived by 

tracking the decline of CYP3A4 activity in siRNA-treated samples and the average 

kdeg from the 3 donors were calculated to be 0.0202 (± 0.00026) h-1 and t1/2 of 34.2 (± 

0.49) h. Unlike protein samples, the kdeg was not able to be calculated from untreated 

samples as there were no decline in metabolite production observed over time (Figure 

4.15.A). 
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Figure 4.14 Determination of CYP3A4 activity by formation of probe substrate 

metabolite. Primary human hepatocytes were treated with CYP3A4 or non-targeting 

control (NTC) siRNA and incubated over 48, 72 and 96 h. Formation of 1’-

hydroxymidazolam after 60 min incubation with 3.4 µM MDZ was quanified with 

HPLC-UV. Data represents mean ± SD from n=3. Unpaired t-test was performed 

between each treatment condition with corresponding untreated control where *P<0.05. 
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Figure 4.15 Determination of the CYP3A4 degradation rate constant by activity 

analysis. CYP3A4 activity was determined by formation of 1’-hydroxymidazolam. 

CYP3A4 activity is expressed as a percentage of T0. A. CYP3A4 kdeg derived from 

untreated hepatocytes. B. CYP3A4 kdeg derived from siRNA-treated hepatocytes. 

The natural logarithm of the percent of T0 is given and the slope of the loss of 

enzyme activity is used to calculate the protein half-life, which is equal to the rate of 

degradation. Data represents 1 replicate from N=3 donors. 
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A summary of the kdeg and t1/2 values calculated from protein and activity 

methods are given in Table 4.4. Mean values were derived from one experimental 

replicate of hepatocytes from three donors.  

 

 

Table 4.4 Summary of the kdeg and t1/2 values derived from protein and activity 

methods of analysis using untreated and siRNA treated samples. 

Parameter Donor 1 Donor 2 Donor 3 

t1/2 (h)  derived from protein determined by 
Western blot in untreated samples 

76.4 61.3 35.5 

kdeg (h-1) derived from protein determined by 
Western blot in untreated samples 

0.0090 0.0113 0.0195 

Average t1/2 (h) 57.7 (± 20.7) 
Average kdeg (h-1) 0.0132 (± 0.0055) 
t1/2 (h)  derived from protein determined by 
Western blot in siRNA treated samples 

34.3 49.3 31.0 

kdeg (h-1) derived from protein determined by 
Western blot in siRNA treated samples 

0.0202 0.0141 0.0223 

Average t1/2 (h) 38.2 (± 9.8) 
Average kdeg (h-1) 0.0189 (± 0.0043) 
t1/2 (h)  derived from activity determined by probe 
substrate metabolite formation in siRNA treated 
samples 

34.8 33.9 34.0 

kdeg (h-1) derived from activity determined by probe 
substrate metabolite formation in siRNA treated 
samples 

0.0199 0.0204 0.0203 

Average t1/2 (h) 34.2 (± 0.49) 
Average kdeg (h-1) 0.0202 (± 0.00026) 
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4.4 Discussion 

Physiologically relevant kdeg values of DMEs are important for the accurate 

prediction of time-dependent DDIs in PBPK modelling. There are currently large 

disparities or missing values published for the enzymes most involved in clinically 

significant DDIs and no agreement on the best method of assessment (Yang et al. 

2008). Traditional approaches of measuring CYP enzyme degradation rates are 

limited by the de novo protein synthesis in the duration of degradation measurement. 

There is a general consensus that steady-state protein abundance is a dynamic balance 

between protein synthesis and degradation (Gottesman & Maurizi 1992), such that 

unaccounted levels of protein synthesis during the assessed time period will distort 

the degradation rate calculated in such approaches. Other common methods for 

measuring protein degradation rates utilise protein synthesis inhibitor drugs such as 

cycloheximide and actinomycin D which inhibits cellular protein synthesis 

mechanisms to stop universal protein production, followed by tracking the 

disappearance of specific target protein with pulse-chase analysis (Alvarez-Castelao 

et al. 2012; Yewdell et al. 2011; Zhou 2004). The concern with such an approach is 

that the chemical inhibitor drugs are cytotoxic and will disrupt normal cellular 

function including protein degradation pathways that will in turn distort degradation 

rates and this is demonstrated with findings in Chapters 2 and 3. Ramsden et al. 

(2015) used siRNA and IL-6 to specifically inhibit CYP3A4 protein synthesis without 

impacting on regular cellular mechanisms and a similar siRNA-silencing approach 

was used in this Chapter to specifically target CYP3A4 protein circumventing the 

concern of cytotoxicity. This study demonstrated that utilising gene-specific siRNA 

produced significant knockdown of CYP3A4 mRNA and protein with minimal 

cytotoxicity. CYP3A4 was knocked down at the functional protein level as shown in 
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Figure 4.14 where CYP activity was lower for siRNA-treated hepatocytes compared 

with untreated and NTC. 

A consensus value of hepatic CYP3A4 kdeg for use in PBPK models has been 

investigated (as summaried in Table 1.3) and subsequently evolved based upon new 

techniques and on prediction accuracy. For example, 0.0077 h-1 (corresponding to 

half-life of 90 hours) was derived from meta-analysis of all the published CYP3A 

values until 2008 (Yang et al. 2008). However, Wang et al. (2010) found better 

prediction accuracy for 54 DDIs involving CYP3A mechanism-based inhibition 

interactions using 0.03 h-1 as the kdeg value compared to 0.0077 h-1. Other subsequent 

studies also found superiority with 0.03 h-1 compared with 0.0077 h-1 (Friedman et al. 

2011; Yamashita et al. 2013). Rowland Yeo et al. (2011) reported that 0.0193 h-1 

produced decreased bias and increased precision in 29 time-dependent metabolic 

inhibition DDIs compared with 0.0077 h-1 and Mao et al. (2013) further validated this 

value and reported that a CYP3A4 half-life of between 25-35 hours (0.019 - 0.027 h-1 

kdeg) yielded the most accurate crizotinib drug interaction predictions. Subsequently, 

this value has been used in numerous published examples of DDI prediction (Peters et 

al. 2012; Ke et al. 2016; Xu et al. 2015).  

Interestingly, the CYP3A4 kdeg values of 0.019 h-1 (t1/2 of 36.4 hours) and 

0.020 h-1 (t1/2 of 34.3 hours) derived from siRNA-treated hepatocytes in loss of 

protein method and tracking activity decline, respectively, were in close agreement to 

the 25-35 hour t1/2 range reported by Mao et al. (2013) and was closer than the kdeg 

value derived by tracking protein disappearance in untreated hepatocytes (0.013 h-1; 

t1/2 of 53.3 hours) as shown in Table 4.4. This suggests that derivation of kdeg from 

siRNA-treated samples was the more robust method. Moreover, the kdeg values 

derived from both protein and activity in siRNA-treated hepatocytes were in close 
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agreement to each other. Understanding the potential of de novo protein synthesis 

distorting overall measurement of enzyme degradation during the analysis period, this 

is perhaps unsurprising. However, whether the difference between the values derived 

from protein and activity assays will impact on DDI predictions will require further 

modelling to confirm the best method.  

Extraction of RNA and proteins from a single sample is beneficial for accurate 

correlations between response in the transcriptome and proteome (Hummon et al. 

2007; Simões et al. 2013). However, the method of standard TRIzol® extraction of 

proteins was insufficient due to problems of protein resolubilisation and therefore two 

separate methods of protein isolation including a modified TRIzol® extraction 

protocol published by Simões et al. (2013) and a standard whole-cell protein 

extraction method utilising CelLytic™ M detergent solution according to 

manufacturer’s protocol, were tested. It was found that a separate sample extracted by 

CelLytic™ M lysis buffer yielded more protein which attests to the limitations of 

using Western blotting to derive rates of protein degradation. However, Takahashi et 

al. (2017) recently reported a CYP3A4 kdeg value of 0.026 h-1 derived from SILAC 

and specific protein quantifications with mass spectrometry. Therefore, deriving kdeg 

by quantification of proteins over activity is likely to be possible with sensitive 

protein quantification methods. Simple semi-quantitative protein detection by 

methods such as Western blotting may not be optimal due to insufficient sensitivity 

and variability in detection between experiments.  

It should be noted that there may be differential expression of CYP enzymes 

between cell types within an individual and this may impact upon kdeg. For example, 

the Simcyp default hepatic 3A4 kdeg is 0.0193 h-1 whilst the intestinal value is 0.030 h-

1. The faster rate of intestinal turnover of CYP3A4 is likely to be due to the turnover 
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of the enterocyte itself in which the enzyme resides, as the reported human intestinal 

epithelia complete turnover is estimated to be around 3.5 days (Darwich et al. 2012). 

Intestinal drug metabolism is known to contribute to exposure of orally administered 

drugs and several DDI prediction strategies incorporate the estimated contribution of 

gut metabolism (Almond et al. 2016; Xie et al. 2016). Other CYP enzymes detected in 

human small intestine include CYP 1A1, 1B1, 2C9, 2C19 2D6, 2E1, 2J2 and 3A5, 

with 3A4/5 accounting for 80% and 2C for around 18% abundance (Paine et al. 

2006). Since protein turnover rates can vary between tissue types as well as species 

(Waterlow 1984; Millward et al. 1981), the established method here should be 

verified in intestinal cells for the relevant CYP enzymes detected in the gut, especially 

when the expected protein turnover rate is less than that of the enterocyte. Intestinal 

kdeg values for that of CYPs 2C8 and 2C19, with estimated t1/2 of 23 and 26 h, 

respectively (Table 1.4), should be determined in the relevant cell systems for 

incorporation into time-dependent DDI prediction models. 

A potential limitation to the accuracy of the hepatic CYP3A4 kdeg derived here 

is that the study was conducted in only three hepatocyte donors. Hepatic CYP3A4 

expression is subject to genetic polymorphisms (Lamba et al. 2010) and it would 

therefore be of interest to capture inter-individual variability in kdeg through the study 

of as many donors as possible or through the use of pooled hepatocytes to generate an 

average kdeg value representative of a wider population. CYP3A4 is the most 

extensively studied in terms of kdeg and DDIs whereas values for other CYPs 

implicated in time-dependent interactions remain scarce (as shown in Table 1.4). The 

cost-effective in vitro method described in this Chapter can be applied to measure 

degradation rates for other less well-characterised CYPs. 
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5.1 Introduction 

As discussed in Chapter 4, the kdeg of DMEs is a known source of error in the 

prediction of time-dependent DDIs in PBPK modelling. Previous attempts at 

quantifying this kinetic parameter have focused primarily on CYP3A4 with highly 

variable estimates and little consensus as to which methods yield the most 

physiologically-relevant values (Yang et al 2008). Methods of quantifying protein 

degradation rates traditionally involve using radiolabelled isotopes for tagging the 

protein of interest or tracking protein loss over time by immunoblotting (Yewdell et al 

2011; Alvarex-Castelao et al 2012). The caveats of these approaches, as discussed in 

Chapter 4, are that the degradation rates derived do not account for de novo protein 

synthesis during the period of investigation, which would distort the overall level of 

protein abundance and impact upon the accuracy of the measured degradation rate.  

Other in vitro approaches that address this caveat incorporate the use of 

protein synthesis inhibitor drugs to pharmacologically inhibit universal protein 

synthesis in the given test cell system (Zhou et al 2004; Belle et al 2006). However, as 

demonstrated in Chapters 2 and 3, protein synthesis inhibitor drugs instigate protein 

inhibition by acting on fundamental protein synthesis machinery that are essential for 

cell survival, consequently they generate high levels of cytotoxicity even at low 

concentrations in most cell types. Furthermore, they can also affect protein 

degradation processes (Dai et al 2013) and are therefore unsuitable for measuring 

endogenous protein degradation rates. It was demonstrated in Chapter 4 that using 

CYP3A4-specific siRNA, de novo protein production was reduced without overt 

cytotoxicity and kdeg values were derived that were in good agreement with published 

values. The kdeg values derived from siRNA-treated hepatocytes also seemed to be 

more consistent with literature compared to kdeg derived from untreated hepatocytes. 



 177 

To date, kdeg for CYP3A4 is the most extensively studied amongst all DMEs 

due to the well established importance of CYP3A4 in xenobiotic metabolism. Kdeg 

values for other CYP and non-CYP enzymes remain scarce, yet many other CYP 

isoforms, such as CYP2B6, CYP2C8, CYP2C9 and CYP2D6, are implicated in time-

dependent DDIs (Riley & Wilson 2015). There are currently large disparities or 

missing values published for the enzymes most involved in complex DDIs.  

There is currently a growing interest in CYP2B6 as this CYP isoform is 

inducible with highly variable expression levels between individuals, accounting for 

2-10% of overall CYP abundance and an estimated 8% contribution to metabolism of 

all clinically-used drugs (Wang & Tompkins 2008; Hedrich et al 2016). As the list of 

identified CYP2B6 substrates is growing (Table 1.2), so is the enzyme’s importance 

in propagating DDIs, especially in time-dependent induction interactions due to its 

highly inducible nature (Faucette et al. 2004). Clearly, an accurate kdeg value for 

CYP2B6 will be important for the predictions of DDIs propagated by this enzyme. 

The objectives of this Chapter were two-fold. The first was to induce CYP2B6 

expression in HepG2 and Caco-2 cell lines from which optimisations of CYP2B6 

protein and activity detection could be carried out. Previously, Martin et al. (2008) 

reported CYP2B6 induction in HepG2 and Caco-2 cell lines at both the mRNA and 

protein level. We hypothesised that increasing the expression of CYP2B6 in cancer 

cell lines would provide a sufficient level of activity from which the turnover of probe 

substrate to metabolite can be detected by HPLC-UV. Thus, the induced cell lines can 

be used as a cheaper system compared with primary human hepatocytes in which the 

HPLC-UV detetction of probe substrate metabolite can be optimised. The second 

objective for this Chapter was to determine the kdeg of the CYP2B6 enzyme by 

utilising the approach validated in Chapter 4 for measuring CYP3A4 kdeg. This 
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approach involved using siRNA for suppression of mRNA followed by the tracking 

of enzyme activity and protein loss over time in primary human hepatocytes.  An 

additional method of activity detection, using CYP2B6-Glo™ assay, was employed 

for studying CYP2B6 as the enzyme expression levels were expected to be low and 

therefore the HPLC-UV instrument may have insufficient sensitivity to detect the 

production of probe substrate metabolite. 
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5.2 Materials and methods 

5.2.1. Materials 

HepG2 and Caco-2 cell lines were obtained from ATCC (Virginia, USA). Plateable 

cryopreserved primary human hepatocytes (HMCPIS Lot. Hu1591, Hu1824 and 

Hu8241), CHRM® media, William’s E media, thawing and plating supplements 

(CM3000), maintenance supplements (CM4000), 24-well collagen I coated plates and 

opti-MEM® I media were purchased from Invitrogen Ltd (Paisley, UK). TaqMan® 

reverse transcription reagents, TaqMan® gene expression assays for CYP2B6 

(Hs04183483_g1) and GAPDH (Hs02758991_g1), TaqMan® gene expression master 

mix, CYP2B6 (P3028) and control (P2315) BACULOSOMES® plus reagent, 

Lipofectamine® RNAiMAX reagent, NuPAGE® Western blot materials and 

TRIzol® reagent were purchased from ThermoFisher Scientific Inc. (Loughborough, 

UK). ON-TARGETplus human CYP2B6 SMARTpool and non-targeting pool siRNA 

were purchased from GE Healthcare Dharmacon™ (UK). Western blot antibodies: 

anti-CYP2B6 (VMA00041) and goat polyclonal anti-mouse IgG (STAR207P) were 

purchased from Bio Rad (Oxford, UK), anti-CYP2B6 (ab198870 and ab140609), anti-

GAPDH (ab181602) and goat polyclonal to rabbit IgG (ab97080) were bought from 

Abcam (Cambridge, UK). Luminata™ Forte Western HRP substrate was obtained 

from Millipore (Watford, UK). DMEM, FBS, TWEEN®20, Bradford Reagent, 

CelLytic™ M, protease inhibitor cocktail, salicylamide, rifampicin (RIF), 

phenobarbital (PB), bupropion hydrochloride, (2S,3S)-hydroxybupropion, RNase-free 

water and other Western blot buffer ingredients were purchased from Sigma-Aldrich 

(Dorset, UK). P450-Glo™ CYP2B6 assay was from Promega (Southampton, UK). 
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5.2.2 CYP induction in tumour cell lines 

5.2.2.1 Caco-2 and HepG2 cell line culture  

HepG2 and Caco-2 cells were cultured as detailed in section 2.2.2. HepG2 cells were 

maintained in DMEM medium supplemented with 10% FBS solution and Caco-2 

cells were cultured in DMEM supplemented with 15% FBS. Cell lines were passaged 

or plated at 80% confluence and discarded beyond passage 20.  

5.2.2.2 Induction of CYP3A4 and CYP2B6 in HepG2 and Caco-2 cell lines 

HepG2 and Caco-2 cells were seeded at 3 x 105 cells per well in 24-well plates in 

DMEM medium supplemented with 10% or 15% FBS solution, respectively, and 

incubated overnight in a 37oC 5% CO2 humidified incubator overnight to allow cells 

to adhere to the plate bottom. The following day, cells were dosed with 2, 10 and 20 

μM RIF and 100, 500 and 1000 μM PB and incubated for 24, 48 and 72 hours to 

determine the time and level of maximum induction. A vehicle control containing 1% 

methanol, an untreated control and controls consisting of RNA extracted from a 

primary human hepatocyte sample at 0 and 24 h (positive control) after plating 

(described in 4.2.3) were also included. The control and drug-containing media were 

removed and replaced every 24 h. 

5.2.2.3. Magnitude of mRNA induction quantified by RT-PCR 

After 24, 48 and 72 h incubation, total RNA was isolated, using TRIzol® reagent, and 

quantified as described in section 4.2.5.1. cDNA was synthesised from the isolated 

RNA with Taqman® reverse transcription kit as detailed in 4.2.5.2. The magnitude of 

mRNA induction at each incubation time-point was determined by quantifying 

CYP3A4 and CYP2B6 mRNA expression relative to the housekeeping gene GAPDH 

by qPCR.  The protocols for CYP3A4 and CYP2B6 quantification are as detailed in 

4.2.5 and 5.2.5, respectively. Data was normalised to the primary hepatocyte control 
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sample collected at time 0 (T0) and relative expression was derived using the Pfaffl 

method (Pfaffl 2001) as explained in 4.2.5.4. 

5.2.2.4. Magnitude of induced CYP2B6 activity determined by P450-Glo™ 

assay and UV-HPLC analysis in Caco-2 cell line 

Caco-2 cells were induced as described in 5.2.2.2 with 10 µM RIF; the level of 

induced activity was determined by two methods: the CYP2B6 P450-Glo™ assay and 

via bupropion probe substrate metabolite formation by UV-HPLC. In the first 

aforementioned method, the CYP2B6 P450-Glo™ assay was conducted as described 

in 5.2.7. For probe substrate metabolite detection, the protocol was as follows: 2 hours 

prior to the designated incubation time-point, Caco-2 cells were dosed with 500 µM 

of bupropion and incubated for 2 h at 37oC, 5% CO2 in a humidified incubator. The 

bupropion probe concentration used was described previously (Levy et al. 2015; 

Zhang et al. 2016). Cell culture media containing probe and metabolite were removed 

and immediately stored at -80oC to stop any further reaction until analysis. (2S,3S)-

hydroxybupropion metabolite was extracted from the culture media as described in 

5.2.8.2 and quantified as detailed in 5.2.8.3. 

5.2.3 Cryopreserved primary human hepatocyte culture 

Cryopreserved primary human hepatocytes were thawed and plated as described in 

section 4.2.2. The donor demographics are given in Table 5.1; three hepatocyte 

donors were used and CYP2B6 kdeg were derived from 1 experiment from the three 

donors. Hepatocytes were seeded on 24-well collagen-I coated plates at a density of 3 

x 105 viable cells per well for CYP2B6 metabolism activity and protein expression 

analyses. Hepatocytes were seeded at 1 x 105 viable cells/well for mRNA and P450-

Glo™ CYP2B6 analyses. The media volume used was 500 μl per well. Cells were 

incubated with plating media for 5 hours at 37°C with 5% CO2 and 95% humidity to 
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allow cell adherence prior to siRNA transfection. After 5 hours of incubation, the 

plating media was replaced with maintenance media for untreated control or dosed 

with varying siRNA conditions in optiMEM media. Following siRNA transfection, 

maintenance media was replaced every 24 hours for the duration of the experiment. 

 

Table 5.1 Donor demographics of the cryopreserved primary human hepatocytes  

 

 

5.2.4 Small-interfering RNA treatment 

Experiments using siRNA to suppress CYP2B6 expression were conducted following 

a modified knockdown protocol published by Vozza-brown et al. (2005). CYP2B6 

siRNA was prepared and stored at 10 µM stock concentration in 1X siRNA buffer (as 

described in 4.2.3) at -20°C until use.  

After 5 hours incubation with hepatocyte plating media, cells were washed 

with HBSS and then treated with Dharmacon ON-TARGETplus human CYP2B6 

SMARTpool siRNA. Negative control of ON-TARGETplus non-targeting pool and 

untreated and vehicle controls were also included. The sequences for the siRNA are 

given in Table 5.2. 1.25 μl of transfection reagent Lipofectamine RNAiMAX™ was 

complexed with siRNA in reduced serum opti-MEM® I media for 30 minutes prior to 

Demographics Donor 1 Donor 2 Donor 3 

Donor ID Hu1591 Hu1824 Hu8241 
Age 29 66 60 
Gender Male Female Male 
Ethnicity Caucasian Caucasian Caucasian 
Characteristics Rare alcohol user. 

No tobacco or drug 
use reported 

Tobacco use. No 
alcohol or drug use 

Tobacco and 
alcohol user. No 
drug use 

Cause of death Not reported Not reported Cardiac related 
Cell viability 91% 93% 94% 
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addition to the cells. Hepatocytes were exposed to the siRNA overnight for 15 hours 

before the cells were washed and replaced with standard hepatocyte maintenance 

media. Cells were subsequently incubated at 37°C with 5% CO2 and 95% humidity 

after CYP2B6 siRNA treatment. CYP2B6 metabolic activity, mRNA and protein 

expression were assessed at specific time points. Time 0 hours was taken at 5 hours 

incubation with plating media, prior to siRNA transfection and maintenance media 

replacement. 

 

Table 5.2 siRNA sequences.  

siRNA Sequence 

  
ON-TARGETplus human 

CYP2B6 SMARTpool 

5’-GGGGAUAUGGUGUGAUCUU -3’ 
5’-GGGAGAUUGAACAGGUGAU -3’ 
5’-UGCAGGAAAUCAAUGCUUA -3’ 
5’-AAACAUCUCUAAAGCCUGA -3’ 

 
 

ON-TARGETplus Non-targeting 

pool 

 
5’-UGGUUUACAUGUCGACUAA-3’ 
5’-UGGUUUACAUGUUGUGUGA-3’ 
5’-UGGUUUACAUGUUUUCUGA-3’ 
5’-UGGUUUACAUGUUUUCCUA-3’ 

 
 

 

5.2.5 CYP2B6 mRNA knockdown quantification 

Total RNA was isolated with TRIzol® reagent using the protocol described in 

4.2.5.1 and cDNA was synthesised from the isolated RNA as described in 4.2.5.2 with 

Taqman® reverse transcription kit.  

The magnitude of siRNA knockdown at each incubation time-point was 

determined by quantifying CYP2B6 mRNA expression relative to housekeeping gene 

GAPDH by qPCR.  The protocol is as follows: a 25 µl reaction mix consisting of 1.25 



 184 

µl of 20X Taqman® custom gene CYP2B6 (assay ID, Hs04183483_g1) or GAPDH 

(Hs02758991_g1) assay, 40 ng cDNA in 8 µl, 3.25 µl RNase free water and 12.5 µl of 

2X Taqman® Master Mix were dispensed into a 96-well plate. All samples were 

completed in triplicate. Negative controls with RNase-free water added in place of 

cDNA were also included. The plates were then covered with Microseal® adhesive 

PCR plate sealing film and centrifuged briefly up to 2000 rpm to mix the reaction 

contents to eliminate air bubbles from the solution mix. PCR conditions were run at 

95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min.  

Determination of the relative CYP2B6 mRNA expression against GAPDH was 

performed in an Opticon2™ Fluorescence Detector (MJ Research, UK). The cycle 

threshold [C(t)] was set to ignore any aberrant fluorescence to ensure that only gene 

amplification was measured. Data was normalised to the primary hepatocyte vehicle 

control or untreated control sample collected at time 0 (T0) and relative expression 

was derived using the Pfaffl method (Pfaffl 2001) as described in 4.2.5.4. 

 

5.2.6 CYP2B6 protein quantification 

5.2.6.1 Protein extraction and quantification 

Cellular protein was extracted using CelLytic™ M lysis buffer with extraction 

protocol as described in 4.2.6.1(ii). Quantification of the extracted protein was 

determined by Bradford assay as explained in 4.2.6.2.  

5.2.6.2. Protein detection by Western blotting 

20 µg of total protein, as determined by Bradford assay, and CYP2B6 

BACULOSOMES® plus reagent (positive control) was added to 5 µl of 4X 

NuPAGE® LDS sample buffer, 2 µl of NuPAGE® reducing agent and made up to 21 

µl volume using deoinised water. Samples were heated at 100°C for 5 min. 20 µl of 
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sample and 3 µl of Kaleidoscope™ prestained protein standard (Bio-Rad, UK) were 

loaded onto a NuPAGE® 4-12% Bis-Tris Gel with 200 µl NuPAGE® antioxidant and 

electrophoresed for 1 hour 30 min at 150 V. Following electrophoresis, the proteins 

were blotted onto a nitrocellulose membrane using a Criterion™ blotter method (Bio-

Rad, UK) run at 30 V for 60 min.  

After protein transfer, the membrane was blocked in 5% BSA in 0.01% 

Tween-tris buffered saline (T-TBS) for 2 hours RT, washed with 0.01% T-TBS 

solution 3 times for 5 min, followed by incubation with primary antibody anti-

cytochrome P450 2B6 (ab198870 at 1/500, ab140609 at 1/1000 or VMA00171 at 

1/1000 dilution) in 2% BSA in 0.01% T-TBS overnight at 4°C. The following day, 

the membrane was washed 3 times with 0.01% T-TBS for 5 min then incubated with 

secondary antibody (goat polyclonal to rabbit IgG [ab97080] at 1/2000 corresponding 

to ab198870 and ab140609 or goat polyclonal secondary antibody to mouse IgG, 

[STAR207P] at 1/5000 corresponding to VMA00171) in 2% BSA in 0.01% T-TBS 

for 2 hours at 4°C. For detection of loading control GAPDH, the membrane was 

blocked with 10% BSA in 0.01% T-TBS overnight at 4°C. The following day, 

membranes were washed 3 times with 0.01% T-TBS for 5 min before incubation with 

primary antibody (anti-GAPDH antibody, ab181602) at 1/10,000 in 2% BSA in 

0.01% T-TBS for 2 hours at 4°C. After primary antibody incubation, membrane was 

washed 3 times with 0.01% T-TBS for 5 min prior to incubation with secondary 

antibody (goat polyclonal to rabbit IgG, ab97080) at 1/10,000 in 2% BSA in 0.01% T-

TBS for 1 hour RT. Following incubation with secondary antibodies, membranes 

were washed 3 times in 0.01% T-TBS for 5 min followed by 2 times for 20 min. 

Between the detection of each protein, the membrane was stripped and re-

probed. After enhanced chemiluminescence (ECL) detection of CYP2B6 protein, 



 186 

membranes were washed for 5 min in 0.01% T-TBS, then 2 times 20 min with acidic 

glycine stripping buffer, followed by 2 times 10 min 1X Tris-buffer saline (TBS) 

solution and 2 times 10 min 0.01% T-TBS. The membranes were then blocked and 

probed for the GAPDH control protein, as indicated above. 

Protein bands were visualised by ECL detection. Following the final wash, the 

membrane was blotted dry and incubated with 3 ml Luminata™ Forte Western 

Horseradish Peroxidase (HRP) substrate solution for 5 min. Excess substrate was 

drained and membrane placed under plastic wrap. Detection was carried out in the 

dark room where an X-ray film was placed on the blot and the film was exposed 

between 10-600 s for CYP2B6 and GAPDH protein band detection. The X-ray film 

was then placed in a developing solution for approximately 30 s for the image to 

appear before immersing in fixing solution for 30 s followed by water for 30 s. 

Quantification of protein bands were achieved using GS-800™ calibrated 

densitometer (Bio-Rad, Hercules, CA) and ImageJ software (NIH). Relative protein 

quantification was determined by normalising CYP3A4 band against GAPDH loading 

control band density. 

 

5.2.7 CYP2B6 activity assessment by P450™ Glo assay 

CYP2B6 are reported to be lowly expressed at around 2-10% of total hepatic CYP 

abundance (Wang & Tompkins 2008), thus in anticipation of insufficient probe 

metabolite formation detectable by UV-HPLC, CYP2B6-Glo™ assay was employed 

to act as comparison to probe substrate activity assays. 3 M salicylamide stock was 

prepared in DMSO, as and stored at -20oC until use. Salicylamide was added to 

inhibit phase II conjugation of the CYP2B6-metabolised product. 
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Primary human hepatocytes were seeded at 1 x 105 cells per well in 24-well 

collagen-coated plates and treated with siRNA. At 0, 12, 24, 36, 48 and 60 hours post 

siRNA dosing, CYP2B6 activity was determined using the P450™ Glo assay 

(Promega, UK). At these incubation time points, the culture medium was removed 

and cells were washed twice with 500 µl HBSS, then 3 µM of luciferin-2B6 (1 in 

1000 dilution) containing 3 mM salicylamide dissolved in HBSS was added to each 

well and incubated for 90 min at 37°C with 5% CO2 and 95% humidity, according to 

manufacturer’s instructions. Untreated, vehicle-treated and no cell controls were 

included. Luciferin detection reagent was equilibrated to RT and made up to 1:1 of 

reconstitution buffer and detection reagent supplied by the kit. 150 µl of the incubated 

media containing luciferin-2B6 and salicylamide was transferred to a new opaque 24-

well plate and 150 µl of the luciferin detection reagent was added to the media. The 

plate was then left to incubate for 20 min at RT in the dark prior to reading 

luminescence on a CLARIOstar® microplate reader (BMG LABTECH, Aylesbury, 

UK). The background luminescence (no cell control) value was subtracted from all 

treated and untreated conditions containing primary human hepatocytes. 

 

5.2.8 Assessment of CYP2B6 activity by probe substrate turnover 

5.2.8.1 Buproprion probe substrate dosing 

Bupropion hydrochloride and (2S,3S)-hydroxybupropion were dissolved in HPLC 

grade 100% methanol to form a stock solution at 100 mM that was stored at -20°C 

until use. The probe substrate for CYP2B6 activity was 500 μM bupropion prepared 

in hepatocyte maintenance media in <0.5% methanol. The bupropion probe 

concentration used was described previously (Levy et al. 2015; Zhang et al. 2016). In 

the final 2 hours of incubation in control and siRNA-treated samples, cells were 
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spiked with bupropion to a final concentration of 500 μM and incubated for 2 h at 

37°C with 5% CO2 and 95% humidity. CYP2B6 activity was measured as (2S,3S)-

hydroxybupropion metabolite formation following incubation with bupropion at 0, 12, 

24, 48 and 60 hours after siRNA transfection. After 2 h incubation with bupropion, 

the media was removed and immediately stored at -80°C until analysis, to terminate 

further metabolism.  

5.2.8.2 Metabolite extraction from media matrix 

Two approaches for hydroxybupropion extraction from hepatocyte culture media was 

carried out to determine a suitable method for maximum recovery; the first involved 

using a range of organic solvents and the second included a protocol modified from 

Loboz et al. (2005).  

In the first approach, 1 ml of organic solvent including methanol, ACN, ethyl 

acetate, acetone or heptane were added 5:1 v/v to 200 μl of metabolite-containing 

media sample. The samples were then mixed on a turntable for 30 min at RT followed 

by centrifugation at 13,000 x g for 30 min at 4°C. The metabolite-containing 

supernatant fraction was removed and transferred to a 5 ml round-bottom glass tube. 

The supernatant fraction was dried overnight with no heat in a Savant SpeedVac 

rotary evaporator (Thermo Scientific, UK). The resulting dried compounds were 

reconstituted in 150 μL mobile phase A with 20% acetonitrile v/v.  

The second approach involved adding 100 μl of 0.5 M carbonate buffer (pH 

10.8) with 1.5% isoamyl alcohol and 1 ml heptane to 400 μl of media sample. The 

samples were vortexed for 20 s, mixed on a turntable for 20 min and followed by 

centrifugation at 1,500 x g for 15 min. The organic supernatant layer was transferred 

to a new 1.5 ml Eppendorf tube containing 100 μl of 0.1 M HCl. The samples were 

then vortexed for 20 s, mixed on a turntable for 20 min and centrifuged at 1,500 x g, 
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as before. The organic supernatant layer was then discarded and the drug-containing 

aqueous layer was transferred to a 5 ml round-bottom glass tube and dried in a Savant 

SpeedVac rotary evaporator (Thermo Scientific, UK) overnight with no heat. The 

dried compounds were reconstituted in 150 μL mobile phase A (with 20% ACN v/v) 

and 100 μL was injected into a Dionex HPLC system (Thermo, UK).  

5.2.8.3 Metabolite quantification by UV-HPLC 

Bupropion and (2S,3S)-hydroxybupropion were chromatographically separated and 

quantified by HPLC-UV. 100 μL of reconstituted sample was injected into a Dionex 

HPLC system (Thermo, UK). Two mobile phases were used for the chromatographic 

run and the run was conducted using a using a multi-step gradient with a reverse-

phase Fortis® column (3 μM, C18, 100 x 4.6 mm; Fortis® Technologies Ltd., 

Neston, UK). The conditions were as follows: 

 

Mobile phase A 80% 10 mM KH2PO4 in ddH2O, 20% 

ACN, pH 5.5 

Mobile phase B 100% ACN 

Wash 50% H2O, 50% MeOH 

Internal wash reservoir 100% H2O 

Flow rate 1 ml.min-1 

Injection volume 100 µl 

Run time 8.1 min 

Retention time of (2S,3S)-

hydroxybupropion 

4.22 min 

Detection wavelength 214 nm 

 

 

 

 



 190 

 

 

The gradient mobile phase run conditions are as follows: 

Time (min) Mobile phase A (%) Mobile phase B (%) 

0.0 80 20 

0.5 80 20 

5.0 40 60 

5.0 20 80 

7.0 20 80 

7.1 80 20 

8.1 80 20 

 

Calibration curves were prepared with 10 concentrations including blank 

media with no drug and a range of (2S,3S)-hydroxybupropion concentrations between 

0.02-20 μM. A linear calibration curve with R2≥0.999 was required for the assay run 

to be deemed acceptable.  Precision and accuracy were determined using 3 sets of 

quality controls (QCs; including low, 0.1 μM; medium, 0.5 μM and high, 3 μM) in 

each run, on 3 consecutive days. The average recovery of (2S,3S)-hydroxybupropion 

was determined by comparing peak area of the drug extracted from 3 QCs against 

samples directly injected with no extraction procedure taken to be 100%. The 

recovery for (2S,3S)-hydroxybupropion was calculated at >90% in all replicates for 

the extraction method using carbonate buffer and isoamyl alcohol (method 2). 

 

5.2.9 CYP2B6 kdeg and t1/2 calculations and statistical analyses 

CYP2B6 kdeg and t1/2 were calculated as detailed in 4.2.8. Statistical analyses were 

carried out using GraphPad Prism software. 
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5.3 Results 

5.3.1 Inducibility of CYP2B6 mRNA in HepG2 and Caco-2 cell lines 

CYP3A4 and CYP2B6 mRNA were not detected in HepG2 cells after 24, 48 

and 72 h incubation with RIF and PB despite detection of GAPDH across all 

conditions. CYP3A4 and CYP2B6 mRNA was detected across all time points in 

untreated samples of primary human hepatocytes. 

CYP3A4 mRNA was not detected in Caco-2 cells after incubation with RIF 

and PB over 72 h. Low levels of CYP2B6 mRNA expression was observed in Caco-2 

after 48 h incubation with RIF and PB at all concentrations as shown in Figure 5.1. 

Interestingly after 72 h of culture, CYP2B6 was detected at low levels in untreated 

and 1% MeOH treated Caco-2 cells.  

Figure 5.1 Relative induction of CYP2B6 mRNA in Caco-2 cell line after treatment with RIF 

and PB over 72 h. Data analysed by Pfaffl method and expressed as the mean fold expression 

relative to primary human hepatocyte (PHH) obtained at time 0. Positive control is untreated PHH 

collected at each incubation time-point. N=1 independent experiment with 3 technical replicates.  
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5.3.2 Optimisation of HPLC-UV conditions for (2S,3S)-hydroxybupropion detection 

Two extraction methods were employed to determine the maximum recovery 

of (2S,3S)-hydroxybupropion metabolite from Willam’s E primary human hepatocyte 

maintenance culture medium. A higher percentage of recovery was achieved with 

Method 2 (protocol adapted from Loboz et al 2005) compared with Method 1 even at 

lower concentrations, as shown in Table 5.3. Therefore, Method 2 was employed for 

all subsequent (2S,3S)-hydroxybupropion metabolite extraction for HPLC-UV 

detection for CYP2B6 activity analysis. Method 2 consistently gave over 100% 

recovery at all three concentrations, which suggests possible differences in compound 

stability between control standards and etracted samples. However the maximum 

variance from the 100% recovery value was observed at the low QC at 114.8%, which 

was within the acceptable limits of 15% variation to account for human error. 

 

Table 5.3. (2S,3S)-hydroxybupropion extraction efficiency from William’s E medium 

using two methods of extraction.  

Recovery (%) 
 
 
 

Method 1 
(N=1) 

Organic 
Solvent 

Low (0.5 µM) Medium (3 µM) High (10 µM) 

Acetone N/A 114.0 79.5 
Heptane 36.7 44.3 33.8 

Ethyl acetate 73.9 58.5 46.2 
Methanol N/A 108.1 97.7 

Acetonitrile N/A 119.8 96.0 
Recovery (%) 

 
 

Method 2 (N=3) 
 

Low (0.1 µM) Medium (0.5 µM) High (3 µM) 
 

114.8 (±12.7) 
 

108.8 (±1.6) 
 

104.9 (±3.1) 
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The standards extracted from primary hepatocyte maintenance media using 

Method 2 showed good linearity over the concentration range of 0.02 to 20 µM 

(R2≥0.999) for (2S,3S)-hydroxybupropion. As the bupropion parent drug was detected 

simultaneously with (2S,3S)-hydroxybupropion metabolite to determine level of 

CYP2B6 activity in hepatocyte cultures, a clear separation between the two drug 

peaks was required. Figure 5.3 shows a representative chromatogram in the co-

detection of buproprion and metabolite and a representative calibration curve for 

(2S,3S)-hydroxybupropion. 

 

 

 

Figure 5.3 A. Representative chromatogram for the co-detection of bupropion and 

(2S,3S)-hydroxybupropion. B. Representative calibration curve of extracted standards 

of (2S,3S)-hydroxybupropion over the concentration range of 0.02 to 20 µM.  

A 

B 
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Precision and accuracy of the (2S,3S)-hydroxybupropion detection assay were 

assessed and the percentage deviation are shown in Table 5.4 for each individual run. 

The percentage error of accuracy and precision was below 15% for all 3 repeats at all 

3 QC concentrations. 

 

 

Table 5.4 shows the accuracy and precision of 3 repetitions of the assay. Accuracy 

and precision were assessed in triplicate at 3 levels at low (0.1 µM), medium (0.5 µM) 

and high (3 µM). 

 

 

 

 

 

 
Low QC 

(0.1 µM) 

Medium QC 

(0.5 µM) 

High QC 

(3 µM) 

Assay 1 

Amount detected  (µM) 0.09 0.51 3.01 

Variance of accuracy (%) -13.00 2.12 0.50 

Variance of precision (%) 13.51 7.41 6.18 

Assay 2 

Amount detected (µM) 0.11 0.52 3.18 

Variance of accuracy (%) 10.27 4.89 5.91 

Variance of precision (%) 2.68 1.34 1.73 

Assay 3 

Amount detected (µM) 0.11 0.51 3.01 

Variance of accuracy (%) 8.50 2.05 0.48 

Variance of precision (%) 8.75 1.37 4.53 
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5.3.3 Inducibility of CYP2B6 activity in Caco-2 cell lines  

CYP2B6 probe substrate metabolite was not detectable in Caco-2 cells with 

HPLC-UV after induction with 10 µM RIF for 72 h (data not shown), despite this 

treatment condition generating the highest level of CYP2B6 mRNA expression 

detected, as shown in Figure 5.1. The Caco-2 cell line was therefore inappropriate for 

use in optimising CYP2B6 activity detection by HPLC-UV for subsequent siRNA 

investigations.  However, minor CYP2B6 enzyme activity was detected in Caco-2 

cells by the P450-Glo™ assay in untreated and induction with 10 µM RIF treatment 

conditions as shown in Figure 5.4.  

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Effect of RIF on CYP2B6 enzyme activity in Caco-2 cell line 

determined by P450-Glo™ assay. Caco-2 cells were seeded at 3 x 105 per well 

and incubated with 10 µM RIF for 72 h. CYP2B6 P450-Glo™ assay was 

conducted to determine CYP2B6 activity. Data shows mean ± SD of three 

replicates from one independent experiment corrected for background 

luminescence, where *P<0.05 compared with untreated cells. 
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5.3.4 Optimisation of mRNA knockdown time-course and siRNA dosage 

Primary human hepatocytes were treated with varying concentrations of 

CYP2B6 siRNA for 15 h and then incubated over 120 h to determine the achievable 

level of mRNA knockdown and the optimum time-course for prolonged knockdown 

after a single dose of siRNA. CYP2B6 mRNA expression declined over time without 

any siRNA treatment, as shown in Figure 5.5. This decline in untreated primary 

human hepatocytes was utilized to calculate kdeg in subsequent experiments. 

 

 

 

 

 

 

 

 

Figure 5.5 Relative CYP2B6 mRNA expression in untreated samples incubated 

over 72 h. Cryopreserved primary human hepatocytes (Hu1824) were seeded at 1 x 

105 per well and incubated over 72 h with culture medium replaced every 24 h. 

Relative CYP2B6 mRNA expression was calculated by Pfaffl method and expressed 

as percentage expression of hepatocytes at time 0 with mean  ± SD across 3 

technical replicates with N=1 independent experiment. Unpaired t-test was 

performed between each incubation time point and T0 where *P<0.05, **P<0.01 

and ***P<0.001. 
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Figure 5.6 shows that in optimisation experiments a statistically significant 

level of mRNA knockdown was achieved with CYP2B6-targeting siRNA. Over 50% 

CYP2B6 mRNA knockdown was detected in hepatocytes between 48-72 h incubation 

at all siRNA concentrations, with the exception of 50 nM CYP2B6 siRNA at 72 h. 

CYP2B6 mRNA expression resumed to over 90% of corresponding untreated controls 

at 120 h, suggesting that at 10 and 50 nM, siRNA was no longer silencing mRNA 

expression after 120 h from initial dosing (data not shown). CYP2B6 mRNA 

expression in non-targeting control (NTC) samples remained high across all time 

points and siRNA concentrations; the expected high expression for control conditions 

confirm the validity of using siRNA for specific gene knockdown. 
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Figure 5.6 Relative CYP2B6 mRNA expression after treatment with a single siRNA 

dose followed by incubation over 72 h. Data was analysed by Pfaffl method and 

CYP2B6 expression was normalised to GAPDH. NTC refers to the non-targeting 

siRNA negative control. CYP2B6 mRNA is expressed as the relative expression of 

untreated hepatocytes at each incubation time point. Data displayed as mean ±SD from 3 

technical replicates from 1 independent experiment from donor Hu1824. Unpaired t-test 

was performed between each treatment condition and corresponding untreated control, 

at each time point, where *P<0.05, **P<0.01 and ***P<0.001. 
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In order to optimise the siRNA concentration needed to achieve maximum 

mRNA knockdown, primary human hepatocytes were dosed with 10, 50 or 100 nM of 

CYP2B6 SMARTpool siRNA for 15 h before it was removed and cells were 

incubated over 120 h. Figure 5.7 shows that 100 nM of siRNA consistently achieved 

over 65% mRNA knockdown across all time-points from 24-72 h incubation. At 120 

h, CYP2B6 mRNA showed rebound and recovered to that of untreated control levels 

across all siRNA concentrations. Therefore, 100 nM CYP2B6 siRNA over the course 

of 60 h was selected as the optimum treatment conditions to derive CYP2B6 kdeg in 

subsequent protein and activity experiments.  
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Figure 5.7 Relative CYP2B6 mRNA expression after dosing with different siRNA 

concentrations and incubation over 72 h. Primary human hepatocytes (Hu1824) were 

seeded at 1 x 105 cells per well and dosed with 10, 50 or 100 nM CYP2B6 SMARTpool 

siRNA for 15 h. siRNA was then removed and hepatocytes were incubated with culture 

medium over 120 h. Data expressed as relative CYP2B6 expression to GAPDH control, 

calculated by Pfaffl method. Expression is shown as % of untreated at each time point 

with mean ± SD from 3 technical replicates of 1 independent experiment. Unpaired t-test 

was performed between each treatment condition and corresponding untreated control, at 

each time point, where *P<0.05, **P<0.01 and ***P<0.001. 
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5.3.5 Optimisation of Western blotting for CYP2B6 protein detection 

As discussed in Chapter 4, a positive control is required to identify the protein 

band of interest from other bands detected by non-specific binding in Western 

blotting. CYP2B6 BACULOSOME® plus reagent was included and blotted at 25 and 

250 nl to identify the optimum concentration to use as the positive control. Figure 5.8 

shows a strong protein band at around 50 kDa for CYP2B6 BACULOSOME® and 

this was likely to be for CYP2B6 protein expected at 56 kDa, however CYP2B6 

protein was not clearly detected in primary human hepatocytes as there were no 

corresponding bands shown for untreated primary human hepatocytes even at time 0 

where high levels of CYP2B6 would be expected. It is evident from Figure 5.8 that 25 

nl of CYP2B6 BACULOSOME® reagent was the more appropriate volume to use for 

positive control in subsequent blots.  

 

 

 

 

 

 

 

 

 

Figure 5.8 CYP2B6 protein expression in varying volumes of CYP2B6 

BACULOSOME® plus reagent and in untreated primary human hepatocytes 

(Hu1824) incubated over 96 h. Untreated control primary human hepatocytes were 

incubated over 96 h time course before total protein was extracted using CelLytic™ M 

and quantified by Bradford assay. Protein was detected after incubation with primary 

anti-CYP2B6 antibody (ab198870) at 1/500 and secondary antibody (ab97080) at 

1/2000 dilution. 

Baculosome (nl) Time (h) 

250 25 0 48 72 96 

50 kDa 
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Three different primary CYP2B6 antibodies (ab198870, ab140609 and 

VMA00171) were used for optimisation to blot for CYP2B6 protein. Figure 5.9 

shows that no corresponding CYP2B6 protein band to the baculosome control was 

detected with ab198870. With the same protein sample, VMA000171 was able to 

detect a corresponding protein band to baculosome that displayed a reduction in 

abundance across time-points as expected, whereas ab140609 did not detect this. Low 

expression at time 0 was detected with ab140609 where the highest CYP2B6 

expression was expected. VMA00171 was therefore used as the primary anti-

CYP2B6 antibody for all subsequent Western blotting for CYP2B6 protein. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Representative Western blots showing CYP2B6 protein expression in 

primary human hepatocytes detected by different primary monoclonal antibodies. 

250 nl baculosome (Bac) included as positive control. A. CYP2B6 protein detected by 

ab198870 antibody in hepatocytes following treatment with various siRNA and control 

conditions over 36 and 48 h. VC; vehicle control. B. CYP2B6 protein expression detected 

by ab140609 or C. VMA000171 antibody in hepatocytes following 100 nM CYP2B6 

siRNA treatment or no treatment and incubated over 0-60 h.  
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5.3.6 Magnitude of CYP2B6 knockdown 

Following incubation of primary human hepatocytes with 100 nM of CYP2B6 

SMARTpool siRNA for 0-60 h, 19 (± 20.5) %, 74 (± 13) % and 97 (± 4.7) % mRNA 

knockdown was achieved at 12, 24 and 60 hours, respectively. Figure 5.10 shows that 

at 36 and 48 hours of incubation, CYP2B6 mRNA was undetectable. Incubating 

primary human hepatocytes for 15 h with 100 nM CYP2B6 SMARTpool siRNA 

showed prolonged mRNA suppression following a single dose over the course of 60 

h. Figure 5.10 shows that at 60 h, CYP2B6 mRNA recovery was observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 204 

 

 

 

 

Figure 5.10 Impact of siRNA on CYP2B6 mRNA expression. Primary human 

hepatocytes were dosed and incubated with 100nM CYP2B6 SMARTpool siRNA 

for 15 h in reduced serum optiMEM™ I media. After siRNA incubation, media was 

replaced and cells were incubated for 12, 24, 36, 48 and 60 h in 37
o
C 5% CO

2
. 

CYP2B6 mRNA expression was determined by RT-PCR. The level of CYP2B6 

expression is given as a percentage of untreated control at each time point and time 0 

was taken after initial cell plating. Data represents mean ± SD from n=3 independent 

experiments. Unpaired t-test was performed between each incubation time point and 

T0 where *P<0.05, **P<0.01 and ***P<0.001. 
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5.3.7 Deriving CYP2B6 kdeg from protein expression after siRNA treatment 

The CYP2B6 protein degradation rate constant was derived with two methods, 

as described in 4.3.6; from tracking protein loss in untreated hepatocytes and in 

siRNA-treated hepatocytes over time. The relative CYP2B6 expression normalised to 

GAPDH was calculated (Figure 5.11) and the protein density at each time point 

compared to control (T0) was fit to a linear regression model as shown in Figure 5.12. 

The slope was taken as the rate of degradation, which is inversely proportional to  t1/2. 

NTC was not included in the blot shown in Figure 5.11A because there were not 

enough wells on the electrophoresis gel to accommodate all the NTC samples. 

Multiple protein bands were observed for CYP2B6 and possible explanations for this 

include degradation of the protein samples during handling or non-specificity of the 

primary detection antibody. Care was taken to reduce artefacts caused by protein 

degradation, including the use of protease inhibitors, keeping protein samples on ice 

during handling and minimising freeze-thaw cycles.  

The CYP2B6 protein kdeg values derived by the two methods are summarised 

in Table 5.5. The average kdeg from the 3 donors derived from untreated samples was 

calculated to be 0.048 (± 0.031) h-1 and t1/2 of 26.0 (± 26.7) h. The average kdeg 

derived from siRNA treated samples was 0.081 (± 0.009) h-1 and t1/2 of 8.63 (± 0.948) 

h. Overall, kdeg derived from untreated hepatocytes resulted in a longer average half-

life compared with siRNA-treated.  
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Figure 5.11 Determination of CYP2B6 degradation rate constant by protein 

analysis. A. Representative Western blot of donor Hu8241, CYP2B6 protein density 

was normalised to GAPDH. B. The CYP2B6 protein density ratio normalised to 

GAPDH shown for siRNA-treated hepatocytes and corresponding untreated control. 

Data represents mean ± SD of 1 replicate from N=3 donors. Unpaired t-test was 

performed between the siRNA-treated and corresponding untreated hepatocytes, at 

each time point. 
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Figure 5.12. Determination of CYP2B6 degradation rate constant by protein 

analysis. CYP2B6 protein degradation over time was quantified by Western blot. 

CYP2B6 protein density was normalized to GAPDH and is expressed as a 

percentage of T0. A. CYP2B6 kdeg derived from untreated hepatocytes. B. 

CYP2B6 kdeg derived from siRNA-treated hepatocytes. The natural logarithm of 

the percent of T0 is given and the slope of the loss of enzyme protein expression is 

used to calculate the protein half-life, which is equal to the rate of degradation. 

Data represents 1 replicate from N=3 donors. 
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5.3.8 Deriving CYP2B6 kdeg from P450-Glo™ activity assay  

CYP2B6 enzyme activity was determined by P450-Glo™ assay at 0, 12, 24, 

36, 48 and 60 h incubation following initial siRNA dosing. The percentage of activity 

at each time point compared to T0 was fit to linear regression models (Figure 5.13) 

based on first-order enzyme degradation kinetics. Kdeg was taken as the slope of the 

curve as described previously.  

Table 5.5 shows that the average kdeg from the 3 donors derived from 

untreated samples was 0.029 (± 0.007) h-1 and t1/2 of 24.6 (± 6.24) h. The average kdeg 

derived from siRNA treated samples were 0.058 (± 0.010) h-1 and t1/2 of 12.3 (± 2.26) 

h. Overall, kdeg derived from untreated hepatocytes resulted in a longer average half-

life compared with siRNA-treated.  
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Figure 5.13 Determination of CYP2B6 kdeg by CYP2B6 P450-Glo™ assay. 

Primary human hepatocytes were treated with siRNA and incubated over 0-60 h.  

CYP2B6 enzyme activity was quantified by Promega CYP2B6 P450-Glo™ assay 

at designated time points according to manufacturer’s protocol. A. CYP2B6 kdeg 

derived from untreated hepatocytes. B. CYP2B6 kdeg derived from siRNA-treated 

hepatocytes. The natural logarithm of the percent of T0 is given and the slope of 

the loss of activity curve is used to calculate the enzyme half-life, which is equal to 

the rate of degradation. Data represents 1 replicate from N=3 donors. 
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5.3.8 Deriving CYP2B6 kdeg from probe substrate metabolite formation  

CYP2B6 activity was measured by bupropion probe substrate turnover. The 

amount of (2S, 3S)-hydroxybupropion metabolite formation was measured at 12, 24, 

36, 48 and 60 hours after incubation with CYP2B6 targeting siRNA. Figure 5.14 

shows that concentration of (2S,3S)-hydroxybupropion detected was lower for 

CYP2B6 siRNA-treated hepatocytes compared with untreated and NTC-treated. 

However, statistically significant differences were not detected when unpaired t-test 

was performed between untreated and siRNA treated conditions.  

The percentage of activity at each time point compared to T0 was fit to linear 

regression models based on assumed first-order enzyme degradation kinetics as 

shown in Figure 5.15 to calculate kdeg. The CYP2B6 kdeg values were derived by 

tracking the decline of CYP2B6 activity in both untreated and siRNA-treated 

samples. The average kdeg from the 3 donors derived from untreated samples were 

calculated to be 0.036 (± 0.007) h-1 and t1/2 of 15.2 (± 3.81) h. The average kdeg 

derived from siRNA treated samples were 0.062 (± 0.006) h-1 and t1/2 of 11.3 (± 1.10) 

h. Overall, kdeg derived from untreated hepatocytes resulted in a longer average half-

life compared with siRNA-treated.  

A summary of the kdeg and t1/2 values calculated from protein and activity 

methods are given in Table 5.5. Mean values were derived from one experimental 

replicate of hepatocytes from three donors.  

 

 

 

 

 



 211 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 12 24 36 48 60
0

1

2

3

4

Time (h)(2
S,

3S
)-

hy
dr

ox
yb

up
ro

pi
on

 fo
rm

at
io

n 
(µ

M
) Untreated

NTC
CYP2B6 siRNA 

Figure 5.14 Determination of CYP2B6 activity by formation of probe 

substrate metabolite. Primary human hepatocytes were treated with CYP2B6 or 

non-targeting control (NTC) siRNA and incubated over 12, 24, 36, 48 and 60 h. 

Formation of (2S,3S)-hydroxybupropion after 2 h incubation with 500 µM 

buproprion was quanified with HPLC-UV. Data represents mean ± SD from n=3.  
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Figure 5.15 Determination of the CYP2B6 kdeg by (2S,3S)-hydroxybupropion 

formation. CYP2B6 activity was determined by formation of (2S,3S)-

hydroxybupropion. CYP2B6 activity is expressed as a percentage of T0. A. CYP2B6 

kdeg derived from untreated hepatocytes. B. CYP2B6 kdeg derived from siRNA-

treated hepatocytes. The natural logarithm of the percent of T0 is given and the slope 

of the loss of enzyme activity is used to calculate the protein half-life, which is equal 

to the rate of degradation. Data represents 1 replicate from N=3 donors. 
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Table 5.5 Summary of the kdeg and t1/2 values derived from protein and activity 

methods of analysis using untreated and siRNA treated samples. 

Parameter Donor 1 Donor 2 Donor 3 

t1/2 (h)  derived from protein determined by 
Western blot in untreated samples 

56.8 10.5 10.7 

kdeg (h-1) derived from protein determined by 
Western blot in untreated samples 

0.0122 0.066 0.065 

Average t1/2 (h) 26.0 (± 26.7 ) 
Average kdeg (h-1) 0.048 (± 0.031) 
t1/2 (h)  derived from protein determined by 
Western blot in siRNA treated samples 

9.50 7.62 8.77 

kdeg (h-1) derived from protein determined by 
Western blot in siRNA treated samples 

0.073 0.091 0.079 

Average t1/2 (h) 8.63 (± 0.948 ) 
Average kdeg (h-1) 0.081 (± 0.009) 
t1/2 (h)  derived from activity determined by P450 
Glo™ assay in untreated samples 

31.5 23.1 19.3 

kdeg (h-1) derived from activity determined by P450 
Glo™ assay in untreated samples 

0.022 0.030 0.036 

Average t1/2 (h) 24.6 (± 6.24 ) 
Average kdeg (h-1) 0.029 (± 0.007) 
t1/2 (h)  derived from activity determined by P450 
Glo™ assay in siRNA treated samples 

14.7 10.2 12.0 

kdeg (h-1) derived from activity determined by P450 
Glo™ assay in siRNA treated samples 

0.047 0.068 0.058 

Average t1/2 (h) 12.3 (± 2.26 ) 
Average kdeg (h-1) 0.058 (± 0.010) 
t1/2 (h)  derived from activity determined by probe 
substrate metabolite formation in untreated samples 

10.8 17.8 16.9 

kdeg (h-1) derived from activity determined by probe 
substrate metabolite formation in untreated samples 

0.028 0.039 0.041 

Average t1/2 (h) 15.2 (± 3.81 ) 
Average kdeg (h-1) 0.036 (± 0.007) 
t1/2 (h)  derived from activity determined by probe 
substrate metabolite formation in siRNA treated 
samples 

11.2 10.2 12.4 

kdeg (h-1) derived from activity determined by probe 
substrate metabolite formation in siRNA treated 
samples 

0.062 0.068 0.056 

Average t1/2 (h) 11.3 (± 1.10 ) 
Average kdeg (h-1) 0.062 (± 0.006) 
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5.4 Discussion 

Accurate CYP enzyme kdeg values are vital for the correct prediction of time-

dependent DDIs, but until now, most studies have focused on measuring the 

degradation rate of CYP3A4 (Table 1.3) with no consensus to the best approach. As 

CYP2B6 is highly polymorphic and inducible with an ever-growing list of new 

substrates, it is hypothesised that the enzyme has an important role in causing DDIs, 

especially in time-dependent induction interactions. In this Chapter, the siRNA-based 

methods used for deriving CYP3A4 kdeg, which was utilised in Chapter 4, was applied 

to measure CYP2B6 kdeg with the addition of a different method of detecting CYP2B6 

activity to further validate the approach.  

Previous work conducted from our laboratory reported that CYP2B6 and 

CYP3A4 mRNA were inducible after treatment with PB for 24 h in Caco-2 and 

HepG2 cell lines, respectively (Martin et al. 2008). Due to the expense of using 

primary human hepatocytes for initial protein and activity assay optimisations 

(Faucette et al. 2004), HepG2 and Caco-2 cell lines were incubated with known 

inducer compounds RIF and PB over a time-course of 72 h with the aim of increasing 

CYP2B6 expression to detectable levels of protein and activity for use in 

experimental optimisations. After induction with RIF and PB, CYP2B6 mRNA was 

undetectable in HepG2 cells at all inducer concentrations and across all time-points. 

This was inconsistent with the findings of Choi et al. (2015) who reported 8-fold 

induction of CYP2B6 mRNA after treatment with PB for 24 h. Li et al. (2010) 

reported detectable CYP2B6 activity in HepG2 when transfected with PXR vector, 

whilst other studies reported little or no induction after RIF or PB treatment (Gerets et 

al. 2012; Westerink & Schoonen 2007). In this study, a low level of CYP2B6 mRNA 

expression was detected in Caco-2 cells after induction with both RIF and PB and 
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after culture for 72 h, however, this was not in agreement with the much higher levels 

of CYP2B6 induction with PB reported by Martin et al (2008). The main disparity 

between the protocol published by Martin et al. (2008) and the methodology used 

here was that a lower seeding density was used (3 x 105 vs. 5 x 106 cells) and this 

difference in cell numbers may well give rise to the discrepancies observed. 

Furthermore, protein binding was not assessed and this could impact on overall free 

drug concentrations able to exert effects.  

Overall, insufficient levels of CYP2B6 expression was achieved after 

induction in both Caco-2 and HepG2 cell lines; therefore all protein and activity 

detection methods were optimised in primary human hepatocytes. In the wider 

context, Caco-2 and HepG2 are often used as cost-effective in vitro cell systems to 

study transporter activity and toxicity during human drug development (Brandon et al. 

2006) but are not used for studying metabolism and PK. Caco-2 cells express many 

transporters representative of the in vivo human gut and are routinely used to study 

absorption (Artursson & Karlsson 1991; Angelis & Turco 2011). HepG2 cells are 

highly differentiated hepatoma cells that display many genotypic similarities with 

liver cells; they express many hepatic enzymes and are often used as screening for 

toxicity of parent compound during drug development (Gerets et al. 2012). Both 

Caco-2 and HepG2 cells are not generally used to study metabolism due to the low 

expression of phase I DMEs (Prueksaritanont et al. 1996; Westerink & Schoonen 

2007) and caution must be exercised when using these cell systems as they may not 

be representative of the human situation or that of primary cells. 

To date, there are only two studies that have reported a t1/2 value for CYP2B6. 

Renwick et al. (2000) reported a t1/2 of 32 h estimated based on using immunoblot 

detection of decreasing protein levels in human liver slices in culture from a single 
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donor. Dixit et al. (2016) reported a t1/2 of 70 h and this was measured by induction of 

CYP2B6 in primary human hepatocytes to maximal levels then tracking the time 

taken to recover to basal pre-induced activity levels. The caveat to both approaches is 

that in order for the rates to be deemed accurate, it must be assumed that there was no 

further de novo synthesis during the time period investigated that would distort CYP 

abundance. The approach described in this study addresses this issue by introducing 

siRNA to impede de novo protein synthesis, thus rendering protein degradation as the 

rate-limiting step and therefore the loss of enzyme activity should be attributable to 

the t1/2 of the specific protein measured. Interestingly, the hepatic CYP2B6 kdeg values 

derived from untreated hepatocytes by protein expression loss and activity loss 

measured by P450-Glo™ assay generated kdeg vales of 0.048 h-1 and 0.029 h-1 with t1/2 

of 26.0 h and 24.6 h, respectively, which were in reasonable agreement with values 

obtained by Renwick et al. (2000).  

Overall, the kdeg values derived from untreated hepatocytes generated a longer 

t1/2 value compared with siRNA treated. This is unsurprising given the purpose of 

using siRNA to inhibit mRNA translation and therefore reducing downstream protein 

translation and activity. However, it must be noted that less variability was observed 

for both CYP3A4 (see Chapter 4) and CYP2B6 when kdeg was derived from siRNA 

treated hepatocytes and that kdeg cannot be consistently derived from untreated 

hepatcoyes, as with CYP3A4 activity where loss over time was not observed (see 

Figure 4.15). Moreover, CYP3A4 kdeg values of 0.0189 (± 0.0043) h-1 and 0.0202 (± 

0.0003) h-1 derived from siRNA treated hepatocytes in Chapter 4 were within the 

0.017 - 0.028 h-1 range recommended by Mao et al. (2013) and closer to the recently 

reported kdeg values of 0.019 h-1 and 0.03 h-1 (see Table 1.3) which were used in 

PBPK models to predict TDIs. The CYP3A4 and CYP2B6 kdeg values derived from 
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untreated hepatocytes were in reasonable agreement with Renwick et al. (2000), who 

tracked CYP apoprotein loss in non-treated liver slices. It would appear that the 

siRNA treatment approach generated more accurate kdeg values compared with non-

treated as de novo protein synthesis could be obscuring the true protein degradation 

rate. The kdeg values measured by all approaches ought to be incorporated into PBPK 

simulations of time-dependent CYP2B6 induction interactions and assessed in 

comparison to other available literature values, for DDI prediction accuracy to 

validate the physiological relevance and aid defining the best method. 

Interestingly, in agreement with findings in Chapter 4, using activity analysis 

to derive CYP2B6 kdeg appeared to be the more robust method compared with 

quantifying protein loss by Western blotting. There was a larger variation in CYP2B6 

kdeg calculated from protein compared to activity loss and this can be attributed to the 

semi-quantitative limitations of using Western blot to assess absolute protein 

abundance. Furthermore, there was good agreement of CYP2B6 kdeg 0.029 (± 0.007) 

h-1 and 0.036 (± 0.007) h-1 for untreated hepatocytes and 0.058 (± 0.010) h-1 and 0.062 

(± 0.006) h-1 for siRNA treated hepaotyctes, derived from two different activity 

measurement approaches. This suggests that tracking activity loss rather than protein 

may be the more robust approach for measuring kdeg.  

It should be noted that CYP2B6 is highly polymorphic and there can be large 

inter-individual variability in the expression and activity between donors (Zanger & 

Klein 2013) and this presents a limitation to the current study. Another potential 

limitation to our kdeg approach is that the quantification of a given protein with a long 

t1/2 in monocultured primary human hepatocytes is likely to be problematic. Although 

primary human hepatocytes are regarded as the gold standard in vitro model for 

assessing drug metabolism (Gerets et al. 2012), our studies showed that after 120 
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hours of incubation CYP2B6 mRNA expression reduced to 7.6% (± 1.3) of the 

expression level at time 0 and this differential decline in CYP2B6 expression is 

consistent with the well-documented parallel CYP decline over time in cultured 

human hepatocytes (Renwick et al. 2000; Rodriguez-Antona et al. 2002; Heslop et al. 

2016; LeCluyse 2001). Several studies have commented on the longevity and 

stabilisation of CYP expression in HepatoPac® model and indeed this model was 

used by Ramsden et al. (2015) and Dixit et al. (2016) to directly measure CYP kdeg. 

Thus, for proteins with t1/2 over 120 hours an alternative liver model with prolonged 

CYP expression, such as the HepatoPac® model may be preferred. There are several 

conflicting reports regarding the expression of CYPs in monocultured primary 

hepatocytes. For example, Rodriguez-Antona et al. (2002) reported significant mRNA 

decrease (to below 20%) after 24 hours of culture whereas protein levels were 

detectable at 72 hours. Heslop et al. (2016) were able to detect multiple CYP mRNA 

expression up to 168 hours in culture. Runge et al. (2000) showed detectable CYP 

protein expression at 30 days of culture. It is therefore clearly difficult to define a cut-

off; the current studies indicate that primary human hepatocytes can be used 

successfully up to 96 hours (in Chapter 4) but caution should be taken when 

investigating proteins beyond this time point. Where prior knowledge indicates that 

t1/2 is likely to be less than 96 hours, the use of monocultured primary hepatocytes 

offers a cost-effective and robust approach but variability across systems and 

experiments warrant validation for an appropriate cut-off for each experimental set-

up. In summary, a cost-effective and robust method for determination of protein 

degradation was validated by comparison to accepted values of CYP3A4 and 

employed to determine a value for CYP2B6. 
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6.1 Introduction 

As discussed previously in chapter 1.6, much of what is known about the 

specific mechanisms of CYP3A4 protein degradation are derived from studies in 

Sacchromyces cerevisae and rat hepatocytes but there is a high degree of evolutionary 

conservation in degradation pathways between these systems (Wang et al. 2011). 

Consequently, they can be considered to provide reliable clues to the endogenous 

human pathways of degradation. CYP proteins are thought to undergo degradation via 

the ERAD-C pathway of degradation and different CYPs undergo varying degrees of 

ERAD/UPD or ERAD/ALD. Studies in cultured rat hepatocytes have revealed that 

CYP3A protein degradation occurs predominantly via the UPD pathway involving the 

Ub-mediated 26S proteasomal system, but the ALD pathway is likely to contribute to 

a smaller extent (Kim et al. 2016). 

CYP3A4 is an integral monotopic type I ER-anchored protein with a 

cytosolic-facing haem active site that carries out oxidative reactions with a propensity 

to generate ROS; this makes it a model candidate for ERAD-C targeted degradation 

(Wang et al. 2015; Kim et al. 2016). CYP3A4 first undergoes post-translational 

phosphorylation by PKA and PKC protein kinases (Wang et al. 2009), followed by 

synergistic ubiquitination by two cytosolic E2/E3 Ub-ligase complexes: UbcH5a-

CHIP-Hsc70-Hsp40 and UBC7-gp78/AMFR. Molecular recognition of CHIP 

substrates occurs though the Hsc70-Hsp40 co-chaperone complex (Pabarcus et al. 

2009). gp78/AMFR complex recognition involves ‘phosphodegrons’ which are Lys 

residues within a negatively charged cluster of phosphorylatable DEST residues along 

cytosol-exposed surface loops and/or disordered regions within the CYP3A4 protein 

(Wang et al. 2015). Following ubiquitination by E2/E3 Ub-ligase complexes, the 

p97/VCP-AAA ATPase-Npl4-Ufd1 chaperone complex extracts the ubiquitinated 
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CYP3A4 protein from the ER membrane and translocates it to the cytosolic 26S 

proteasome for degradation (Faouzi et al. 2007; Acharya et al. 2011). CYP3A4’s LIR 

motifs, which are hallmarks of ERAD/ALD, are concealed within the protein fold and 

have restricted cytosol accessibility for ERAD/ALD recognition. This is therefore 

consistent with the finding that the protein predominantly undergoes ERAD/UPD 

over ALD (Faouzi et al. 2007; Kim et al. 2016). A schematic for the current best 

hypothesis for the components involved in CYP3A4 protein ERAD/UPD pathway are 

shown in Figure 6.1. 

Figure 6.1 A schematic of CYP3A4 ERAD/UPD pathway of protein degradation 

(adapted from Kim et al 2016).  
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The gp78 (glycoprotein 78) protein, encoded by the AMFR gene, is an E2 

ubiquitin-protein ligase that is involved in the degradation processes of not only 

CYP3A4, but also of human CD3D (T-cell surface glycoprotein CD3 delta chain), 

CFTR (cystic fibrosis transmembrane conductance regulator) and APOB 

(apolipoprotein B) proteins. Over 3,600 single nucleotide polymorphisms (SNPs) 

have been identified for the AMFR gene yet their propensity to cause drug 

interactions is not well studied. A handful of SNPs have been cited in published 

literature; Choi et al. (2011) found 3 SNPs (rs2440467, rs2432540 and rs6499837) to 

be significantly associated with AMFR protein expression levels. Cha et al. (2014) 

found rs2440472 to be associated with coronary artery disease in Chinese 

populations. UBE2G1 (ubiquitin-conjugating enzyme E2 G1) is the human 

homologue to yeast ubiquitin-conjugating enzyme E2 7 (UBC7) that has been 

previously found to be involved in the CYP3A4 ERAD-C pathway. Evangelou et al. 

recently found a significant association of UBE2G1 SNP rs9906760 with type 1 

diabetes (Evangelou et al. 2014). As these SNPs identified in AMFR and UBE2G1 

were likely to cause functional alterations to the gene product, it was hypothesised 

that these polymorphisms could potentially impact on CYP3A4 degradation.  

SNPs are a single nucleotide variation within a gene sequence that can give 

rise to clinical interactions, by generating disease through a dysfunctional gene 

product or through alteration in response to drugs. For example, CYP3A4*22 has 

been linked to reduced hepatic expression (Okubo et al. 2013) and an altered response 

to statin drugs (D. Wang et al. 2011; Elens et al. 2011). CYP3A4*1B has been 

associated with enhanced CYP3A4 activity and affects tacrolimus PK in renal 

transplant patients (Shi et al. 2015). Clearly, SNPs that alter CYP3A4 expression 

levels can give rise to major clinical interactions, given its importance role in drug 



 224 

metabolism. In theory, any SNP that elicits a significant impact on CYP3A4 protein 

degradation machinery may also alter its abundance and modify drug metabolism. 

Atazanavir (ATV) is a protease inhibitor (PI) used in the treatment of HIV 

subtype 1 (HIV-1) infections. It can be administered at a dosage of 400 mg once a day 

(unboosted) or 300 mg coupled with 100 mg dose of ritonavir (RTV) once per day 

(boosted; ATV/r) in treatment naïve patients (Bristol-Myers Squibb 2003). The use of 

unboosted ATV is not licensed in Europe and is currently not recommended but it 

remains the PI of choice for special populations of patients who are unable to tolerate 

ritonavir, such as in the case of hyperbilirubinaemia and moderate liver insufficiency 

(Siccardi et al. 2012; Achenbach et al. 2011). Atazanavir is predominantly 

metabolised by CYP3A isoenzymes (Goldsmith & Perry 2003; Bristol-Myers Squibb 

Company, 2004) and therefore quantifying plasma concentrations of ATV can be an 

indicator of the extent of CYP3A activity correlating with treatment response. The 

aim of this chapter was to investigate the impact of known functional SNPs in AMFR 

(rs2432540 A>G, rs6499837 C>T, rs2440472 A>G and rs2440467 C>T) and 

UBE2G1 (rs9906760 A>G) genes on ATV plasma concentration in two cohorts of 

patients; one given unboosted ATV and the other ATV/r. Plasma concentrations of 

ATV were therefore used as a surrogate measure of CYP3A4 activity.  
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6.2 Materials and methods 

6.2.1 Materials 

TaqMan® Genotyping Master Mix and TaqMan® SNP Genotyping assays for 

AMFR: rs2432540 A>G (C__16014493_10), rs6499837 C>T (C__29285325_10), 

rs2440472 A>G (C__26354979_10) and rs2440467 C>T (C__16240734_10) and 

UBE2G1 rs9906760 A>G (C__29654285_20) were purchased from ThermoFisher 

Scientific Inc. (Loughborough, UK). 96-well polymerase chain reaction (PCR) plates 

and Microseal® ‘B’ PCR plate sealing film were obtained from Bio-Rad (Watford, 

UK). Nuclease-free water (W4502) was purchased from Sigma-Aldrich (Dorset, UK). 

 

6.2.2 Patient samples 

Cohort A consisted of 47 patients administered with unboosted ATV and these 

patients were recruited in Torino. Cohort B included 50 patients administered with 

RTV-boosted ATV (ATV/r) recruited in Liverpool and Torino. Inclusion criteria for 

cohorts were as follows: receipt of unboosted ATV (400 mg once per day) for cohort 

A, receipt of ATV/r (300 mg ATV with 100 mg RTV once per day) for cohort B, age 

> 18 years and no receipt of other drugs known to affect plasma concentrations of 

ATV (except tenofovir). Data for age, sex, body weight, time after dose, concomitant 

antiretroviral drugs and other medications were collected for both cohorts. For cohort 

B, the plasma ATV concentrations taken at 24 (±4) h post dose were included. 

Sampling was performed after written informed consent was obtained in accordance 

with local ethics committee instructions. 

 

6.2.3 DNA extraction and atazanavir plasma concentration quantification 

Dr Marco Siccardi previously extracted genomic DNA and quantified ATV plasma 
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concentrations using UV-HPLC and HPLC-MS/MS in patient blood samples, as 

detailed in his publications (Siccardi et al. 2012; Schipani et al. 2010). The extracted 

genomic DNA was stored at -20oC until analysis. Upon analysis DNA was quantified 

using NanoDrop™ 1000 spectrophotometer (ThermoFisher Scientific Inc., Delaware, 

USA) to determine sample concentration and purity ratio. Only DNA samples with a 

260:280 absorbance of >1.4 and concentration of >2 ng/µl were included in the 

analysis. 

 

6.2.4 SNP genotyping 

Real-time polymerase chain reactions (qPCR) were made up to a final volume of 25 

µl per well on 96-well PCR plates. Each well consisted of 12.5 µl of 2X TaqMan® 

Genotyping Master Mix, 1.25 µl of 20X gene assay, 9.25 µl nuclease-free water and 2 

µl of genomic DNA (at least 2 ng/µl concentration). Negative controls were included 

for each gene assay where 2 µl of nuclease-free water was added in place of genomic 

DNA. Each sample was completed in duplicates. The 96-well plates were then 

covered with Microseal® adhesive PCR plate sealing film and centrifuged briefly up 

to 2000 rpm to mix the reaction contents and to allow all reagents to collect at the 

bottom of the well to eliminate air bubbles from the solution mix.  

  Genotyping was performed using real-time PCR allelic discrimination assay 

on a DNA Engine Chromo4 system (Bio-Rad Laboratories, California, USA). Four 

AMFR polymorphisms rs2432540 A>G, rs6499837 C>T, rs2440472 A>G and 

rs2440467 C>T, and one UBE2G1 polymorphism rs9906760 A>G were assessed in 2 

cohorts of patient samples (see Table 6.2). The PCR heat cycling protocol involved an 

initial enzyme activation step at 95oC for 10 min, followed by 40 cycles of 

amplification with denaturation at 95oC for 15 s, followed by final annealing at 60oC 
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for 1 min. Allelic discrimination plots (Figure 6.2) and genotype assignments were 

performed using Opticon Monitor, version 3.1 (Bio-Rad Laboratories Inc., UK) 

according to VIC® and FAM™ fluorescence.  

 

 

 

 

Figure 6.2 Representative allelic discrimination plot. Red dots indicate blanks with 

no expression. Green dots represent homozygous genotype for allele associated with 

VIC® dye. Blue dots represent heterozygous genotype. Orange dots represent 

homozygous genotype for allele associated with FAM™ dye. 
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Table 6.1 Applied Biosystem Assay IDs and sequence for selected SNPs (VIC® 

and FAM™ are TaqMan® reporter dyes) 

Assay ID SNP ID Gene SNP 

alleles 

Assay sequence ([VIC/FAM]) 

     
C__16014493_10 rs2432540 AMFR A/G GTGTTCAGAAAAGGTTAGATTATCC[A/G]C

CACAGAAATAAAATGAACGTTTCA 
 

C__29285325_10 rs6499837 AMFR C/T CCCTTCCAGAATGGTTCTACTCTTC[C/T]A
CTGGAGAAAACAGAAACTAAATTA 

 
C__26354979_10 rs2440472 AMFR A/G GCAGTTTACAAACATACATTCTGAC[A/G]T

ACTCTGGGATCTGCTGTTATTAAA 
 

C__16240734_10 rs2440467 AMFR C/T AGCTCCCACTCATTTCAATCTACCA[C/T]A
ATCTACTGTCCAACCCCTCGGGCA 

 
C__29654285_20 rs9906760 UBE2G1 A/G GGTCCTGTTGAGGTGGAAGAGTTGC[A/G]T

GGTGTGAACACTAAATCAAGTAAG 
 

 

 

6.2.5 Statistical analysis 

All genotypes were assigned 0 or 1 binary coding based on homozygous for common 

allele, or carrier of at least one variant allele, respectively, for regression analyses. 

Patient characteristics were analysed and categorical variables were described using 

relative frequencies, whilst continuous variables were described using median and 

range. Compliance with Hardy-Weinberg equilibrium was tested by χ2 test of 

observed and predicted genotype frequencies using an online Hardy-Weinberg 

equilibrium calculator (Rodriguez et al. 2009). The distribution of ATV plasma 

concentrations for both cohorts was determined individually by Shapiro-Wilk test for 

normality with P<0.05 considered significant. Categorical genotype data were 

compared using the Kruskal Walis one-way analysis of variance (ANOVA) and 

Mann-Whitney U test; P<0.05 was considered a significant association.  

A univariate linear regression analysis was carried out to identify patient 
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demographic variables associated with mean ATV plasma concentrations. 

Independent variables with a P-value up to 0.2 in the univariate analysis were carried 

through to a multivariate stepwise linear regression analysis where P<0.05 was 

considered significant. Because no significant associations were detected for any of 

the demographic variables or genotypes against ATV plasma concentrations in both 

cohorts, further statistical analyses were not conducted. All statistical analyses were 

performed with SPSS Statistics Software, version 22 (IBM) and charts were produced 

using GraphPad Prism 6 (GraphPad Software, CA, USA). 
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6.3 Results 

6.3.1 Patient characteristics 

A total of 47 patients of cohort A and 50 patients of cohort B met the inclusion 

criteria. The data available for characteristics for patients included were assessed and 

are presented in Table 6.2. 

Table 6.2 Patient characteristics for Cohorts A and B (values shown as median 

(range) or % of subjects). 

 

6.3.2 Summary of genotype frequencies 

Genotype was characterised for cohorts A and B for the 5 chosen SNPs and 

population frequencies were in agreement with published data, as shown in Table 6.3. 

Table 6.3 Summary of genotype frequencies (EUR = European population)	
 

Gene SNP EUR population 

allele frequency from 

1000Genome 

Cohort A 

genotype 

frequencies 

Cohort B 

genotype 

frequencies 

     
AMFR rs2432540 C 0.53 : T 0.47 C 0.53 : T 0.47 C 0.59 : T 0.41 

AMFR rs6499837 T 0.45 : C 0.55 T 0.42 : C 0.58 T 0.35 : C 0.65 

AMFR rs2440472 C 0.53 : T 0.47 C 0.54 : T 0.46 C 0.59 : T 0.41 

AMFR rs2440467 T 0.45 : C0.55 T 0.43 : C 0.57 T 0.35 : C 0.65 

UBE2G1 rs9906760 A 0.68 : G 0.32 A 0.62 : G 0.38 A 0.63 : G0.37 

Characteristics Cohort A Total (n=47) Cohort B Total (n=50) 

   
Age (years) 45 (44) 45 (45) 

Caucasian (%) 100 100 

Gender: Female (%) 40 28 

Weight (kg) 65 (47) 72 (70) 

Height (cm) 168 (35) 172 (38) 

BMI 23.74 (13.7) 23.81 (17.8) 
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6.3.3 Assessment of compliance with Hardy-Weinberg equilibrium 

The genotypes characterised for cohorts A and B were assessed for fit with the 

Hardy-Weinberg equilibrium by χ2 test of observed and predicted genotype 

frequencies. This data is presented in Table 6.4. All genotypes characterised for the 5 

SNPs in both cohorts displayed a P-value of >0.0001 and were therefore in 

compliance with the Hardy-Weinberg equilibrium.   

 

Table 6.4 Compliance of patient samples with Hardy-Weinberg equilibrium 
 

Gene SNP Cohort A (n=47) Cohort B (n=50) 

χ2 P-value χ2 P-value 

      
AMFR rs2432540 0.58 P > 0.05 1.98 P > 0.05 

AMFR rs6499837 0.43 P > 0.05 1.74 P > 0.05 

AMFR rs2440472 0.24 P > 0.05 1.98 P > 0.05 

AMFR rs2440467 0.81 P > 0.05 1.76 P > 0.05 

UBE2G1 rs9906760 5.78 0.05>P<0.01 3.66 P > 0.05 
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6.3.4 Non-association of SNPs with ATV plasma concentrations 

The Shapiro-Wilk test for normality for ATV plasma concentration (dependent 

variable) displayed a significant P-value of P=7.4x10-7 for cohort A and P=3.4x10-7 

for cohort B, therefore non-normal distributions were assumed. The effect of the 5 

SNPs on ATV plasma concentrations was determined by Kruskal Walis non-

parametric ANOVA test. No significant associations were found for all 5 SNPs for 

both cohorts (P>0.05) as depicted in Figures 6.3 and 6.4. Categorical data were 

assessed with Mann-Whitney U test for carrier and non-carrier genotype categories. 

No significance was detected for all 5 SNPs with Mann-Whitney U tests in both 

cohorts (P>0.05). Table 6.5 summarises the effect of the 5 selected SNPs on ATV 

plasma concentrations. 

 

Table 6.5 Effect of SNPs on ATV plasma concentration 
 

Gene SNP Cohort A Cohort B 
Kruskal 

Walis P-value 
Mann-Whitney 
U Test P-value 

Kruskal 
Walis P-value 

Mann-Whitney 
U Test P-value 

1-tailed 2-tailed 1-tailed 2-tailed 
        
AMFR rs2432540 0.44 0.11 0.22 0.36 0.18 0.37 

AMFR rs6499837 0.82 0.27 0.54 0.35 0.18 0.36 

AMFR rs2440472 0.65 0.22 0.44 0.59 0.29 0.60 

AMFR rs2440467 0.94 0.37 0.73 0.35 0.18 0.35 

UBE2G1 rs9906760 0.32 0.08 0.16 0.87 0.43 0.87 



 233 

 

GG AG & AA

0

200

400

600

800

A
T

V
 c

on
ce

nt
ra

tio
n 

(n
g/

m
l)

AMFR rs2432540

P = 0.44

A

GG AG & AA

0

200

400

600

800

A
T

V
 c

on
ce

nt
ra

tio
n 

(n
g/

m
l)

AMFR rs2440472

P = 0.65

C

AA AG & GG

0

200

400

600

800

A
T

V
 c

on
ce

nt
ra

tio
n 

(n
g/

m
l)

UBE2G1 rs9906760

P = 0.32

E

CC CT & TT

0

200

400

600

800

A
T

V
 c

on
ce

nt
ra

tio
n 

(n
g/

m
l)

AMFR rs6499837

P = 0.82

B

CC CT & TT

0

200

400

600

800

A
T

V
 c

on
ce

nt
ra

tio
n 

(n
g/

m
l)

AMFR rs2440467

P = 0.94

D

Figure 6.3 Comparison of ATV concentrations in carriers and non-carrier of selected 

SNPs in patient cohort A administered with unboosted ATV. A. AMFR A>G rs2432540, 

B. AMFR C>T rs6499837, C. AMFR A>G rs2440472, D. AMFR C>T rs2440467 and E. 

UBE2G1 A>G rs9906760. Statistical significance determined by Kruskal Walis ANOVA.  
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Figure 6.4 Comparison of ATV concentrations (24 ±4 h post dose) in carriers and non-

carrier of selected SNPs in patient cohort B administered with boosted ATV/r. A. AMFR 

A>G rs2432540, B. AMFR C>T rs6499837, C. AMFR A>G rs2440472, D. AMFR C>T 

rs2440467 and E. UBE2G1 A>G rs9906760. Statistical significance determined by Kruskal 

Walis ANOVA.  
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6.3.5 Univariate and multivariate analysis for associations with ATV plasma 

concentrations in unboosted patient samples (cohort A)  

Univariate regression analysis showed associations of gender (P=0.20), height 

(P=0.15) and rs9906760 (P=0.18) to ATV plasma concentrations for cohort A. 

Therefore, these characteristics were included in a stepwise multivariate regression 

analysis. Patient characteristics including age (P=0.97), weight (P=0.78) and body 

mass index (BMI; P=0.53) were not correlated to ATV concentrations in univariate 

analysis. No significant associations of gender, height or rs9906760 carrier/non-

carrier status to ATV concentrations were found (P>0.05) upon multivariate analysis, 

so no further statistical analyses were conducted. 

 

Table 6.6 Univariate and multivariate analysis of patient demographics and 

physical characteristics with plasma ATV concentrations for cohort A. 

 

 

 

Characteristics Univariate linear regression Multivariate linear regression 

P-value β-value (95% CI) P-value β-value (95% CI) 

     
Age (years) 0.970 0.000 (-0.014 – 0.014) - - 

Gender 0.201 0.167 (-0.092 – 0.426) 0.627 0.073 (-0.228 – 0.374) 

Weight (kg) 0.779 -0.002 (-0.013 - 0.010) - - 

Height (cm) 0.146 -0.012 (-0.029 – 0.005) 0.146 -0.012 (-0.029 – 0.005) 

BMI 0.526 0.013 (-0.027 – 0.053) - - 

rs2432540 0.248 -0.170 (-0.462 – 0.122) - - 

rs6499837 0.509 -0.091 (-0.367 – 0.185) - - 

rs2440472 0.447 -0.109 (-0.397 – 0.178) - - 

rs2440467 0.697 -0.055 (-0.337 – 0.227) - - 

rs9906760 0.177 -0.189 (-0.466 – 0.088) 0.259 -0.159 (-0.438 – 0.121) 
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6.3.6 Univariate and multivariate analysis for associations with ATV plasma 

concentrations in RTV boosted patient samples (cohort B)  

Univariate regression analysis showed no significant associations with 

demographics or physical characteristics including: age (P=0.72), gender (P=0.62), 

weight (P=0.82), height (P=0.33), BMI (P=0.38), tenofovir dose (P=0.99) and time 

post dose (P=0.85) to ATV plasma concentrations for cohort B (P>0.2). No 

significant associations were found with the 5 selected SNPs; therefore multivariate 

regression and further statistical analyses were not conducted for cohort B data. 

 

Table 6.7 Univariate analysis of patient demographics and physical 

characteristics with plasma ATV concentrations for cohort B.  

Characteristics Univariate linear regression 

P-value β-value (95% CI) 

   
Age (years) 0.722 0.002 (-0.009 – 0.013) 

Gender 0.617 -0.055 (-0.275 – 0.165) 

Weight (kg) 0.817 0.126 (-0.962 – 1.215) 

Height (cm) 0.327 -0.006 (-0.017 – 0.006) 

BMI 0.378 0.010 (-0.013 – 0.033) 

Tenofovir dose 0.992 0.001 (-0.208 – 0.210) 

Time post dose (h) 0.845 -0.005 (-0.059 – 0.048) 

rs2432540 0.466 -0.077 (-0.289 – 0.134) 

rs6499837 0.548 -0.060 (-0.261 – 0.140) 

rs2440472 0.729 -0.037 (-0.250 – 0.176) 

rs2440467 0.548 -0.060 (-0.261 – 0.140) 

rs9906760 0.979 -0.003 (-0.198 – 0.193) 
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6.4 Discussion 

Alterations to CYP3A4 abundance, whether through inhibition/induction or 

modulation of protein expression through genetic polymorphisms, can have 

significant impact on substrate drug metabolism and disposition. It was therefore 

hypothesised that any disruption to the CYP3A4 protein degradation machinery will 

alter overall protein abundance and subsequently impact on substrate PK. To test this 

hypothesis, four SNPs in the AMFR gene and one SNP in UBE2G1 gene, where both 

gene products were speculated to be involved in the human CYP3A4 ERAD/UPD 

pathway, were assessed for associations with substrate ATV plasma concentrations in 

two cohorts of HIV-1 infected patients. This study found that the 5 selected SNPs had 

no effect on plasma ATV concentrations in both cohorts of patients.  

Cohort B included patients given RTV-boosted ATV regimens. RTV is a PI 

class drug and a potent inhibitor of CYP3A4. It is often prescribed with additional PI 

drugs to boost concomitant drug exposure. Its rationale for use as a ‘booster’ is due to 

its ability to inhibit CYP3A4, resulting in reduced metabolism and increased exposure 

of concomitant drugs and therefore a ‘boosted’ therapeutic effect (Zeldin & 

Petruschke 2004; Hull & Montaner 2011; Boffito 2004). Less significant associations 

of SNPs to ATV PK were expected in cohort B as RTV’s effect on CYP3A4 and 

ATV PK could mask any effect of the AMFR or UBE2G1 SNPs. Both cohorts were 

included in this study with the ATV/r cohort B intended as a comparison with cohort 

A. However, no significant associations were found in either cohort. Our group had 

previously characterized an association of the PXR SNP rs2472677 C>T to reduced 

concentrations of unboosted ATV (cohort A) (Siccardi et al. 2008), however, 

associations CYP3A4*22 (rs35599367 C>T), a well-known polymorphism resulting 

in reduced CYP3A4 expression, was not analysed for these cohorts. 
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Several sources have documented that altered states of protein degradation 

have been a principal cause of pharmacogenetic related loss of function of different 

DMEs. Enhanced proteasomal degradation has been reported as a principal 

mechanism for thiopurine S-methyltrasnferase (TPMT) deficiency in mutant TPMT*2 

and TPMT*3 alleles (Tai et al. 1999).  Li et al. (2008) reported on the importance of 

SNPs in autophagic machinery for the protein degradation of TPMT*3A, which is a 

well-characterised variant allozyme known to cause clinical pharmacogenetic 

interactions. Additionally, the human N-acetyltrasnferase 2 (NAT2) enzyme 

polymorphism NAT2*5 allozyme yields large reduction in NAT2 protein due to 

enhanced protein degradation, which results in a slow acetylator phenotype (Zang et 

al. 2004). For the sulfotransferase (SULT) 1A1*2 allozyme, enhanced proteasomal 

degradation can be attributed for reduced metabolism of carcinogens and increased 

risk of urinary tract cancer (Nagar et al. 2006). More recently, altered proteasomal 

degradation in p.P187S polymorphism of NADPH quinone oxidoreductase 1 (NQO1) 

has been identified as a mechanism contributing to loss of function and non-activation 

of cancer pro-dugs (Encarnación et al. 2016). Nakagawa et al. (2011) reviewed the 

impact of protein degradation on ABC transporter protein expression and consequent 

effects on drug disposition. It is evident that protein degradation mechanisms should 

be considered amongst mechanisms responsible for the effects of 

pharmacogenetically significant polymorphisms. 

Polymorphisms in genes involved in protein degradation mechanisms give rise 

to clinical manifestations and disease. Deregulation of the UPD has been implicated 

in the pathology of many neurodegenerative disorders such as Alzheimer’s disease, 

Parkinson’s disease and Huntington disease, where inadequate degradation leads to 

aggregation of misfolded and dysfunctional proteins (Paul 2008; Schmidt & Finley 
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2014). Stintzing et al. (2015) reported that polymorphisms in genes involved in 

epidermal growth factor receptor (EGFR) turnover could be predictors of efficacy of 

cetuximab in colorectal cancer patients. This is the only published study, at the time 

of writing, which has validated a SNP in protein degradation machinery that is 

associated with disposition of a clinically used drug. Although polymorphisms in 

degradation proteins are a plausible mechanism for causing clinical interactions, 

clearly this area is under studied.  This is perhaps due to the complexity of the 

signaling and protein cascades involved in the degradation process and paucity in the 

understanding of molecular interactions and mechanisms for target recognition.  

To date, there are no published pharmacogenetic effects of protein degradation 

machinery on CYP degradation despite well-established associations of CYP protein 

abundance to clinical interactions (Nebert et al. 2013). This is perhaps due to 

insufficient understanding of the exact mechanisms of CYP protein degradation and 

further elucidation is needed to identify specific markers of degradation. CYP3A4 and 

CYP2E1 are the most extensively studied in terms of protein degradation and the 

pathways identified for these CYP proteins have provided clues to elucidate 

mechanisms for other CYPs. Human CYPs 3A4, 3A5 and 2B6 are likely to 

predominantly undergo ERAD/UPD whereas CYPs 2E1, 2C9, 2D6 showed biphasic 

turnover involving both UPD and ALD (Kim et al. 2016). As discussed previously 

gp78, the AMFR gene product, is involved in the ERAD/UPD degradation of many 

proteins other than CYP3A4, thus gp78 is specific but not limited to the CYP3A4 

degradation pathway (Chen et al. 2012; Zhang et al. 2015). UBE2G1 is a human 

homologue of UBC7 and is a speculated component of the human CYP3A4 

degradation pathway, however, the evidence of involvement of this protein is scarce 

compared with gp78. SNPs in UBE2G2 could be investigated instead, as it is another 
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UBC7 homologue and some studies have found this E2 protein to be clearly 

implicated in ERAD (Chen et al. 2006). As human CYP3A4 degradation is 

understudied, it is perhaps unsurprising that no associations of SNPs to ATV PK were 

found in this study. It must be noted that analysis for both cohorts across all 5 SNPs 

were also carried out using an additive model of inheritance, whereby alleles were 

coded as 0 (homozygous WT), 1 (heterozygous) and 2 (homozygous variant). 

However no significant associations were found correlating to ATV plasma 

concentrations and therefore the data was not presented. As the relative contributions 

of the identified components of the CYP3A4 degradation machinery to overall protein 

degradation are unknown, a limitation to this investigation was that only 5 SNPs in 2 

genes were studied. More SNPs in more genes of the recognised degradation 

machinery is likely to be needed to find any significant associations, such as in the 

study by Stintzing et al. where they analysed 20 SNPs in 7 genes. However, this 

machinery is involved in degradation of many proteins and a high-impact genetic 

abnormality would therefore likely impact many biological processes. For this reason, 

one might expect these systems to be well conserved. 

Characterising clinically relevant polymorphisms in the degradation process 

can provide predictive biomarkers of disease, provide new targets in treatments or 

inform treatment regimen design. The protein degradation pathway as a potential 

pathway for pharmacogenetics is a relatively new concept (Nakagawa et al. 2011). 

The UPD has been increasingly recognised as a potential pathway for biomarker and 

drug development but it is a field that requires further evaluation. Better elucidation 

of processes specific to CYP isozyme degradation will provide new targets for 

treatment and increase the likelihood of identifying significant pharmacogenetic 

relationships.  
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DDIs may result in serious clinical consequences and therefore the potential of 

a NME causing or being a victim of an interaction needs to be carefully studied. The 

ability to quantitatively predict DDIs early in the drug development process is 

essential to reduce risks of adverse effects manifesting during clinical studies. The 

potential for a DDI interaction can be assessed using in vitro, in vivo and in silico 

methods. In early preclinical drug development, in vitro methods are used to 

determine the metabolic pathways involved in the clearance of a NME and for 

screening interaction potential, then IVIVE can be used for predicting the risk of 

clinical DDIs of the compound and where signs of interaction potential based on in 

vitro and in silico studies are identified, full drug interaction investigations may be 

carried out (Jones et al. 2012).  

In silico approaches to predicting DDI potential can be applied at different 

points in the drug development process to aid drug candidate selection, inform drug 

trials and dosing regimen selection. The use of in silico approaches can reduce the 

costs of drug development considerably and in several instances simulations from 

PBPK models have been used in lieu of clinical studies (Bjornsson et al. 2003; Jones 

et al. 2012; Jamei 2016; Park et al. 2017).  

The use of PBPK models to replace clinical studies has been particularly 

prevalent when the mechanism of DDI is due to competitive inhibition of CYP 

substrates (particularly when the CYP isozyme involved is CYP3A4). In irreversible 

or quasi-irreversible inhibition where manifestation and reversal of the interaction is 

slow and time-dependent, such as in the case of MBI interactions, accurate 

predictions of DDI potential and magnitude is problematic due to the lack of data for 

some parameters that are critical for prediction. In MBI, the perpetrator drug 

irreversibly binds to the enzyme forming an inactivated drug-enzyme complex that 
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permanently removes the enzyme from the pool of active enzymes and recovery of 

enzyme activity is gained only by re-synthesis of the enzyme protein. Therefore, the 

consequences of MBI persist longer and can be more profound than reversible 

inhibition. To predict MBI interactions, specific parameters such as kinact and kdeg of 

the inhibited enzyme are essential for IVIVE. Using values only sufficient for 

reversible inhibition have resulted in under prediction or failure to identify MBI 

interactions. Although progress has also been made in predicting drug interactions 

caused by changes in the level of DMEs such as induction and MBI (Wagner et al. 

2015), there is still more work that needs to be done to improve the accuracy of DDI 

predictions for these mechanisms (Jones et al. 2015). 

The kdeg of CYP enzymes, characterising the in vivo turnover, is essential for the 

IVIVE of interactions caused by MBI. The first-order (where the rate is dependent on 

enzyme concentration) enzyme degradation rate is a physiological value depending on 

the enzyme, individual and species concerned. Ideally CYP kdeg ought to be derived in 

vivo in humans for effective IVIVE of human drug interactions. However, kdeg of 

DMEs cannot be easily measured directly in vivo therefore surrogate measures using 

in vitro systems have been used to obtain estimates. For many years, the prediction 

accuracy of MBI interactions have been hampered by the lack of a physiologically-

relevant enzyme kdeg values and where they are available, the values vary widely 

because they are generated from many different in vitro approaches with no 

consensus as to the best method. As the half-lives of CYPs vary between species, for 

example they are shorter in rats compared to humans, using preclinical species to 

derive kdeg values can under predict the risk and magnitude of MBI interactions. One 

of the major aims of this thesis was to develop a robust in vitro method for measuring 



 244 

DME kdeg in primary human hepatocytes as an accurate representation of the in vivo 

human condition.  

Initially, the simplest and most widely used in vitro approach for measuring 

protein degradation was explored and this involved using pharmacological 

interference by protein synthesis inhibitor compounds to stop de novo protein 

synthesis followed by tracking protein expression decline over time. However, protein 

synthesis inhibitor drugs exert their effects through inhibiting fundamental 

components of the universal protein synthesis pathway, therefore cytotoxicity was 

expected with prolonged use. Four commonly used protein synthesis inhibitor 

compounds including actinomycin D, cycloheximide, emetine and puromycin, were 

assessed as single agents and also in two-, three- and four-agent combinations for 

their capacity to stop de novo protein synthesis without producing overt cytotoxicity. 

However, all four inhibitor drugs in all combinations were found to be unsuitable for 

further use in deriving CYP kdeg due to cytotoxicity determined through several 

different toxicity assays, that was frequently observed at lower concentrations than 

required for protein synthesis inhibition. Therefore, a different approach for stopping 

de novo protein synthesis was required. The protein synthesis inhibitor agents 

investigated are commonly used in vitro for analysis of protein or mRNA stability 

with applications in many fields of cellular biology and the concentrations used in 

these studies far exceed the toxic concentrations reported here (Table 2.1). Work 

herein shows that for proteins that are likely to have longer half-lives (over 24 h), the 

use of pharmacological interference is unsuitable for determining protein turnover. 

Caution should be exercised when using other protein synthesis inhibitor compounds 

in in vitro cellular systems and ideally, drug concentrations should first be optimised 
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and deemed non-toxic through the use of appropriate toxicity assays prior to being 

used in downstream applications. 

It was hypothesised that introducing DME-specific siRNA to an in vitro culture 

system would exclusively knockdown expression of target gene mRNA and 

subsequent de novo protein synthesis with minimal cytotoxicity due to specificity of 

the siRNA target. A time-course of mRNA knockdown was validated in primary 

human hepatocytes and siRNA methods were found to be considerably less cytotoxic 

than using protein synthesis inhibitor agents. The CYP protein expression and activity 

decline through time was tracked by Western blotting and probe substrate metabolite 

formation, respectively, and the kdeg value was derived from the degradation curves 

assuming first-order kinetics in untreated and siRNA treated hepatocytes. The 

CYP3A4 kdeg values derived using the siRNA treated approach were found to be 

similar to recently published values (Ramsden et al 2015; Dixit et al 2016; Takahashi 

et al 2017) and within the range described by Mao et al. (2013). Therefore the same 

approach was applied to measure CYP2B6 kdeg, which is a less-well characterised 

CYP enzyme. There have only been two previous studies, at the time of writing, that 

have reported on the kdeg of CYP2B6 and both studies did not account for de novo 

protein synthesis during assessment of degradation and consequently the values 

varied widely. The CYP2B6 kdeg  values derived in this study was closer to 0.022 h-1 

(t1/2 of 26 h) reported by Renwick et al (2000) than 0.010 h-1 (t1/2 of 68 h) reported by 

Dixit et al (2016). The CYP2B6 kdeg values can now be incorporated into PBPK 

predictions of DDIs involving mechanism-based inactivators of CYP2B6 such as 

clopidogrel, ticlopidine (Richter et al. 2004; Nishiya et al. 2009), monoamine oxidase 

inhibitors (Sridar et al. 2012; Nirogi et al. 2015) and components of medicinal herbs 

(Cao et al. 2015; Ji et al. 2015; Lu et al. 2016). 
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A limitation to the use of cryopreserved primary hepatocytes as the in vitro model 

for deriving CYP kdeg is that several sources have documented significant decline of 

CYP expression over time in monolayer culture and thus they may not be 

representative of the endogenous human state. However, primary human hepatocytes 

are still regarded as the ‘gold standard’ for in vitro metabolism studies because they 

possess the full complement of DMEs and they have been found to be better 

predictors of in vivo drug clearance compared with liver microsome preparations in 

some studies. Moreover, cryopreserved hepatocytes express CYP proteins at levels 

comparable to freshly isolated hepatocytes (Smith et al. 2012). Indeed, better cell 

models that mimic the endogenous human liver will improve drug research and 

several models are under development to address this need. For example, 3D 

hepatocyte culture systems involving sandwich culture between an extracellular 

matrix and a scaffold-free approach in the self-aggregation of cells into spheroids 

with or without nutrient perfusion, have reported stable hepatocyte phenotype for 

longer duration (over weeks) compared with monoculture systems (Soldatow et al. 

2013; Zeilinger et al. 2016). Other methods include co-culturing hepatocytes with 

non-parenchymal cells such as Kuppfer and endothelial cells, which promote cell-to-

cell adhesion and have resulted in reduced de-differentiation during in vitro culture 

(Bhatia et al. 1999; Shulman & Nahmias 2013). Using such long-lived liver cell 

models to measure kdeg of hepatic proteins with long t1/2 (days) may be more 

appropriate than the current monoculture hepatocyte system and indeed, drug 

metabolism studies have increasingly come away from using monocultured 

hepatocytes in favour of the 3D culture models, especially in transporter studies.  

Of all the identified CYP enzymes, CYP3A4 is also the most extensively studied 

for its precise mechanisms of protein degradation. CYP3A4 predominantly undergoes 
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degradation via the ERAD/UPD degradation pathway that involves several 

components including the gp78 glycoprotein (encoded by AMFR gene) and the 

UBE2G1 enzyme (Correia et al. 2014). It was postulated that any dysregulation of the 

CYP enzyme degradation machinery would have an overall impact on steady-state 

protein abundance and therefore capacity to facilitate metabolism. Four SNPs in the 

AMFR gene and one in UBE2G1 were selected based on their reported likelihood of 

affecting the gene product function and were assessed for associations with CYP3A4-

mediated PK changes in the known substrate ATV plasma concentrations in two 

cohorts of HIV-1 infected patients. Significant associations were not observed with 

any of the 5 SNPs. The ERAD/UPD pathway for CYP enzymes has been more 

extensively studied compared with the ERAD/ALD pathway; the factors targetting 

CYP proteins to be degraded by ALD pathway remains mostly obscure (Kim et al. 

2016). Further elucidation of the precise mechanisms that target DME proteins for 

degradation may identify new targets to measure to better characterise DME kdeg 

values. Stintzing et al. (2015) identified associations between polymorphisms in the 

EGFR degradation machinery and PK of cetuximab in colorectal cancer patients. This 

presents the only study, at the time of writing, to identify associations between SNPs 

of proteins involved in protein degradation to drug disposition. Clearly, dysregulation 

of the protein degradation machinery offers a plausible mechanism for altering drug 

disposition but the magnitude of effect and whether they contribute to significant 

changes in PK remains understudied.   

Confidence in the prediction of DDIs for drugs eliminated via CYP enzymes, 

especially those mediated by CYPs 1A2, 2C8, 2C9, 2C19, 2D6 and 3A4, is generally 

high compared with those for transporter-based DDIs and non-CYP enzymes (Fowler 

et al. 2017). Significant challenges are still present in the prediction of complex drug 
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interactions where perpetrator drugs and metabolites affect both transporter and 

enzyme-mediated disposition processes, where multiple forms of interaction such as 

time-dependent inhibition, active uptake and enzyme induction occur simultaneously 

(Varma et al. 2014; Fowler et al. 2017). The HIV drug ritonavir, is one such example 

of a complex case where as well as being a CYP3A4 substrate, it inhibits, inactivates 

and induces CYP3A4 and also inhibits and induces other DMEs. Model validation for 

accurate prediction of DDIs is more difficult concerning non-CYP enzymes such as 

aldehyde oxidase (AO), flavin monooxygenases (FMO) and UGTs because PK data 

for specific substrates and in vivo interactions with inhibitors are lacking. Currently, 

much effort is focused on dissecting the relative contributions of DMEs and drug 

transporters on drug PK and therefore the potential for the DMEs and transporters to 

mediate DDIs. Increased knowledge in enzymology and better cellular models to 

investigate DDIs will overcome some of these problems. The methods presented in 

this thesis can be used to characterise kdeg for less well-characterised CYPs or non-

CYP DMEs. The data and discussions presented in this thesis will hopefully 

contribute to improving prediction accuracy of DDIs in the near future. 

 

 

 

 

 
 

 
 
 
 
 
 



 249 

References 
Aagaard, L. & Rossi, J.J., 2007. RNAi therapeutics: principles, prospects and 

challenges. Advanced drug delivery reviews, 59(2–3), pp.75–86. 
Acharya, P. et al., 2011. Liver Cytochrome P450 3A endoplasmic reticulum-

associated degradation: A major role for the P97 AAA ATPase in cytochrome 
P450 3A extraction into the cytosol. Journal of Biological Chemistry, 286(5), 
pp.3815–3828. 

Achenbach, C.J. et al., 2011. Atazanavir/ritonavir-based combination antiretroviral 
therapy for treatment of HIV-1 infection in adults. Future virology, 6(2), pp.157–
177. 

Akinboye, E., 2011. Biological Activities of Emetine. The Open Natural Products 
Journal, 4(1), pp.8–15. 

Alarid, E.T., 2006. Lives and times of nuclear receptors. Mol Endocrinol, 20(9), 
pp.1972–1981. 

Almira Correia, M., Sinclair, P.R. & De Matteis, F., 2011. Cytochrome P450 
regulation: the interplay between its heme and apoprotein moieties in synthesis, 
assembly, repair, and disposal. Drug Metabolism Reviews, 43(1), pp.1–26. 

Almond, L.M. et al., 2016. Prediction of drug-drug interactions arising from CYP3A 
induction using a physiologically-based dynamic model. Drug metabolism and 
disposition: the biological fate of chemicals, 44(6), pp.821–32. 

Almond, L.M. et al., 2009. Towards a quantitative framework for the prediction of 
DDIs arising from cytochrome P450 induction. Current drug metabolism, 10(4), 
pp.420–32. 

Alvarez-Castelao, B., Ruiz-Rivas, C. & Castaño, J.G., 2012. A critical appraisal of 
quantitative studies of protein degradation in the framework of cellular 
proteostasis. Biochemistry Research International, 2012. 

Angelis, I. De & Turco, L., 2011. Caco-2 cells as a model for intestinal absorption. 
Current protocols in toxicology, Chapter 20, p.Unit20.6. 

Artursson, P. & Karlsson, J., 1991. Correlation between oral drug absorption in 
humans and apparent drug permeability coefficients in human intestinal 
epithelial (Caco-2) cells. Biochemical and Biophysical Research 
Communications, 175(3), pp.880–885. 

Azzam, M.E. & Algranati, I.D., 1973. Mechanism of puromycin action: fate of 
ribosomes after release of nascent protein chains from polysomes. Proceedings 
of the National Academy of Sciences of the United States of America, 70(12), 
pp.3866–9. 

Bachmann, K., 2009a. Drug-Drug Interactions with an Emphasis on Drug 
Metabolism and Transport 1st ed., Elsevier Inc. 

Bachmann, K., 2009b. Drug Metabolism 1st ed., Elsevier Inc. 
Backman, J.T. et al., 2009. CYP2C8 activity recovers within 96 hours after 

gemfibrozil dosing: Estimation of CYP2C8 half-life using repaglinide as an in 
vivo probe. Drug Metabolism and Disposition, 37(12), pp.2359–2366. 

Von Bahr, C. et al., 1998. Time course of enzyme induction in humans: Effect of 
pentobarbital on nortriptyline metabolism. Clinical Pharmacology and 
Therapeutics, 64(1), pp.18–26. 

Bains, R.K., 2013. African variation at Cytochrome P450 genes: Evolutionary aspects 
and the implications for the treatment of infectious diseases. Evolution, medicine, 
and public health, 2013(1), pp.118–34. 

Bedford, L. et al., 2010. Assembly, structure, and function of the 26S proteasome. 



 250 

Trends in Cell Biology, 20(7), pp.391–401. 
Belle, A. et al., 2006. Quantification of protein half-lives in the budding yeast 

proteome. Proceedings of the National Academy of Sciences of the United States 
of America, 103(35), pp.13004–9. 

Bento, C.F. et al., 2016. Mammalian Autophagy: How Does It Work? Annual Review 
of Biochemistry, 85(1), pp.685–713. 

Berridge, M.V. & Tan, A.S., 1993. Characterization of the Cellular Reduction of 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular 
Localization, Substrate Dependence, and Involvement of Mitochondrial Electron 
Transport in MTT Reduction. Archives of Biochemistry and Biophysics, 303(2), 
pp.474–482. 

Bhatia, S.N. et al., 1999. Effect of cell-cell interactions in preservation of cellular 
phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB 
journal : official publication of the Federation of American Societies for 
Experimental Biology, 13(14), pp.1883–900. 

Bjornsson, T.D. et al., 2003. The conduct of in vitro and in vivo drug-drug interaction 
studies: a PhRMA perspective. Journal of clinical pharmacology, 43(5), pp.443–
469. 

Boddy, A. V. et al., 1995. The kinetics of the auto-induction of ifosfamide 
metabolism during continuous infusion. Cancer Chemotherapy and 
Pharmacology, 36(1), pp.53–60. 

Boffito, M., 2004. From Concept to Care : Pharmacokinetic Boosting of Protease 
Inhibitors. Physicians’ Research Network, 9(4), pp.15–19. 

Boisvert, F.-M. et al., 2012. A Quantitative Spatial Proteomics Analysis of Proteome 
Turnover in Human Cells. Molecular & Cellular Proteomics : MCP, 11(3), 
p.M111.011429. 

Bouligand, J. et al., 2010. Familial Glucocorticoid Receptor Haploinsufficiency by 
Non-Sense Mediated mRNA Decay, Adrenal Hyperplasia and Apparent 
Mineralocorticoid Excess P. H. Reitsma, ed. PLoS ONE, 5(10), p.e13563. 

Brandon, E.F.A. et al., 2006. Validation of in vitro cell models used in drug 
metabolism and transport studies; genotyping of cytochrome P450, phase II 
enzymes and drug transporter polymorphisms in the human hepatoma (HepG2), 
ovarian carcinoma (IGROV-1) and colon carcinoma (CaCo-2, LS. Toxicology 
and applied pharmacology, 211(1), pp.1–10. 

Bristol-Myers Squibb, 2003. Atazanavir Briefing Document May-2003. , pp.1–226. 
Burt, H.J. et al., 2012. Progress curve mechanistic modeling approach for assessing 

time-dependent inhibition of CYP3A4. Drug Metabolism and Disposition, 40(9), 
pp.1658–1667. 

Cao, J. et al., 2015. Mechanism-based inactivation of cytochrome P450 2B6 by 
isoimperatorin. Chemico-biological interactions, 226, pp.23–29. 

Carthew, R.W. & Sontheimer, E.J., 2009. Origins and Mechanisms of miRNAs and 
siRNAs. Cell, 136(4), pp.642–655. 

Cha, E. et al., 2014. A novel polymorphism of the GP78 gene is associated with 
coronary artery disease in Han population in China. Lipids in Health and 
Disease, 13(1), p.147. 

Chan, C. et al., 2017. Incompatibility of chemical protein synthesis inhibitors with 
accurate measurement of extended protein degradation rates. Pharmacology 
research & perspectives, 5(5). 

Chan, T.Y., 1995. Adverse Interactions Between Warfarin and Nonsteroidal 
Antiinflammatory Drugs: Mechanisms, Clinical Significance, and Avoidance. 



 251 

Annals of Pharmacotherapy, 29(12), pp.1274–1283. 
Chang, T.Y., Limanek, J.S. & Chang, C.C.Y., 1981. Evidence indicating that 

inactivation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by low 
density lipoprotein or by 25-hydroxycholesterol requires mediator protein(s) 
with rapid turnover rate. Journal of Biological Chemistry, 256(12), pp.6174–
6180. 

Chen, B. et al., 2006. The activity of a human endoplasmic reticulum-associated 
degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding 
site. Proceedings of the National Academy of Sciences of the United States of 
America, 103(2), pp.341–346. 

Chen, C.C. & Feigelson, P., 1979. Cycloheximide inhibition of hormonal induction of 
a2u-globulin mRNA. , 76(6), pp.2669–2673. 

Chen, L. & Madura, K., 2008. Centrin/Cdc31 is a novel regulator of protein 
degradation. Molecular and cellular biology, 28(5), pp.1829–1840. 

Chen, Y. et al., 2011. Determination of time-dependent inactivation of CYP3A4 in 
cryopreserved human hepatocytes and assessment of human drug-drug 
interactions. Drug Metabolism and Disposition, 39(11), pp.2085–2092. 

Chen, Z., Du, S. & Fang, S., 2012. gp78: a multifaceted ubiquitin ligase that 
integrates a unique protein degradation pathway from the endoplasmic reticulum. 
Current protein & peptide science, 13(5), pp.414–24. 

Chistyakov, D. V et al., 2014. Regulation of peroxisome proliferator-activated 
receptor β/δ expression and activity levels by toll-like receptor agonists and 
MAP kinase inhibitors in rat astrocytes. Journal of neurochemistry, 130(4), 
pp.563–74. 

Choi, J.M. et al., 2015. HepG2 cells as an in vitro model for evaluation of cytochrome 
P450 induction by xenobiotics. Archives of Pharmacal Research, 38(5), pp.691–
704. 

Choi, K.H. et al., 2011. Gene Expression and Genetic Variation Data Implicate PCLO 
in Bipolar Disorder. Biological Psychiatry, 69(4), pp.353–359. 

Chou, T.C., 2010. Drug combination studies and their synergy quantification using 
the chou-talalay method. Cancer Research, 70(2), pp.440–446. 

Chu, V. et al., 2009. Perspective In Vitro and in Vivo Induction of Cytochrome P450: 
A Survey of the Current Practices and Recommendations: A Pharmaceutical. 
Pharmacology, 37(7), pp.1339–1354. 

Ciechanover, A., 2005. Proteolysis: from the lysosome to ubiquitin and the 
proteasome. Nature reviews. Molecular cell biology, 6(1), pp.79–87. 

Ciechanover, A., 1998. The ubiquitin-proteasome pathway: On protein death and cell 
life. EMBO Journal, 17(24), pp.7151–7160. 

Cole, N.H., 2001. Compendium of drugs commonly used in cell biology research. 
Current protocols in cell biology, Appendix 1, p.Appendix 1B. 

Correia, M.A., 1991. Cytochrome P450 Turnover. Methods in Enzymology, 206(C), 
pp.315–325. 

Correia, M.A., 2003. Hepatic cytochrome P450 degradation: mechanistic diversity of 
the cellular sanitation brigade. Drug Metab. Rev., 35(2–3), pp.107–143. 

Correia, M.A. et al., 2014a. Hepatic cytochrome P450 ubiquitination: Conformational 
phosphodegrons for E2/E3 recognition? IUBMB Life, 66(2), pp.78–88. 

Correia, M.A. et al., 2014b. Hepatic cytochrome P450 ubiquitination: Conformational 
phosphodegrons for E2/E3 recognition? IUBMB Life, 66(2), pp.78–88. 

Curfman, G.D. et al., 1980. Suppression of myocardial protein degradation in the rat 
during fasting. Effects of insulin, glucose, and leucine. Circulation research, 



 252 

46(4), pp.581–9. 
Dai, C.-L. et al., 2013. Inhibition of protein synthesis alters protein degradation 

through activation of protein kinase B (AKT). The Journal of biological 
chemistry, 288(33), pp.23875–83. 

Danielson, P.B., 2002. The Cytochrome P450 Superfamily : Biochemistry, Evolution 
and Drug Metabolism in Humans. Curr Drug Metab, 3(6), pp.561–597. 

Darwich, A.S. et al., 2012. Trends in oral drug bioavailability following bariatric 
surgery: Examining the variable extent of impact on exposure of different drug 
classes. British Journal of Clinical Pharmacology, 74(5), pp.774–787. 

Delgado-Vega, A.M. et al., 2012. Fine mapping and conditional analysis identify a 
new mutation in the autoimmunity susceptibility gene BLK that leads to reduced 
half-life of the BLK protein. Annals of the rheumatic diseases, 71(7), pp.1219–
26. 

Diaz, D. et al., 1990. Omeprazole is an aryl hydrocarbon-like inducer of human 
hepatic cytochrome P450. Gastroenterology, 99(3), pp.737–47. 

Dixit, V. et al., 2016. Application of micropatterned cocultured hepatocytes to 
evaluate the inductive potential and degradation rate of major xenobiotic 
metabolizing enzymes. Drug Metabolism and Disposition, 44(2), pp.250–261. 

Doherty, M.K. et al., 2009. Turnover of the human proteome: determination of 
protein intracellular stability by dynamic SILAC. Journal of proteome research, 
8(1), pp.104–12. 

Doherty, M.K. & Beynon, R.J., 2006. Protein turnover on the scale of the proteome. 
Expert review of proteomics, 3(1), pp.97–110. 

Dorsett, Y. & Tuschl, T., 2004. siRNAs: applications in functional genomics and 
potential as therapeutics. Nature reviews. Drug discovery, 3(4), pp.318–329. 

Dresser, G.K., Spence, J.D. & Bailey, D.G., 2000. Consequences and Clinical 
Relevance of Cytochrome P450 3A4 Inhibition. Clinical Pharmacokinetics, 
38(1), pp.41–57. 

Dudani, A.K., Gupta, R.S. & Gupta, R., 1988. Species-specific differences in the 
toxicity of puromycin towards cultured human and Chinese hamster cells. FEBS 
Letters, 234(1), pp.141–144. 

Eden, E. et al., 2011. Proteome half-life dynamics in living human cells. Science (New 
York, N.Y.), 331(6018), pp.764–8. 

Einolf, H.J., 2007. Comparison of different approaches to predict metabolic drug-drug 
interactions. Xenobiotica; the fate of foreign compounds in biological systems, 
37(10–11), pp.1257–94. 

Elens, L. et al., 2011. Novel CYP3A4 intron 6 single nucleotide polymorphism is 
associated with simvastatin-mediated cholesterol reduction in the Rotterdam 
Study. Pharmacogenetics and genomics, 21(12), pp.861–866. 

EMA, 2012. Guideline on the investigation of drug interactions. Guidance Document, 
44(June), p.59. 

Emery, M.G. et al., 1999. Duration of cytochrome P-450 2E1 (CYP2E1) inhibition 
and estimation of functional CYP2E1 enzyme half-life after single-dose 
disulfiram administration in humans. The Journal of pharmacology and 
experimental therapeutics, 291(1), pp.213–219. 

Encarnación, M.-C. et al., 2016. Conformational dynamics is key to understanding 
loss-of-function of NQO1 cancer-associated polymorphisms and its correction 
by pharmacological ligands. Scientific reports, 6(February), p.20331. 

Eskelinen, E.-L. & Saftig, P., 2009. Autophagy: a lysosomal degradation pathway 
with a central role in health and disease. Biochimica et biophysica acta, 1793(4), 



 253 

pp.664–673. 
Evangelou, M. et al., 2014. A Method for Gene-Based Pathway Analysis Using 

Genomewide Association Study Summary Statistics Reveals Nine New Type 1 
Diabetes Associations. Genetic Epidemiology, 38(8), pp.661–670. 

Faber, M.S. & Fuhr, U., 2004. Time response of cytochrome P450 1A2 activity on 
cessation of heavy smoking. Clinical Pharmacology and Therapeutics, 76(2), 
pp.178–184. 

Fahmi, O.A. et al., 2008. A combined model for predicting CYP3A4 clinical net drug-
drug interaction based on CYP3A4 inhibition, inactivation, and induction 
determined in vitro. Drug metabolism and disposition: the biological fate of 
chemicals, 36(8), pp.1698–708. 

Fahmi, O. a & Ripp, S.L., 2010. Evaluation of models for predicting drug-drug 
interactions due to induction. Expert opinion on drug metabolism & toxicology, 
6(11), pp.1399–416. 

Faouzi, S. et al., 2007. Characterization of the physiological turnover of native and 
inactivated cytochromes P450 3A in cultured rat hepatocytes: A role for the 
cytosolic AAA ATPase p97? Biochemistry, 46(26), pp.7793–7803. 

Faucette, S.R. et al., 2004. Regulation of CYP2B6 in primary human hepatocytes by 
prototypical inducers. Drug metabolism and disposition: the biological fate of 
chemicals, 32(3), pp.348–58. 

Fayadat, L. et al., 2000. Degradation of human thyroperoxidase in the endoplasmic 
reticulum involves two different pathways depending on the folding state of the 
protein. Journal of Biological Chemistry, 275(21), pp.15948–15954. 

FDA, 2012. Guidance for industry. Drug interaction studies study design, data 
analysis, implications for dosing, and labeling recommendations. Guidance 
Document, (February), p.79. 

FDA, 2017. In Vitro Metabolism- and Transporter- Mediated Drug-Drug Interaction 
Studies (Draft). Guidance, (October). 

Fierro-Monti, I. et al., 2013. A Novel Pulse-Chase SILAC Strategy Measures 
Changes in Protein Decay and Synthesis Rates Induced by Perturbation of 
Proteostasis with an Hsp90 Inhibitor L. Martens, ed. PLoS ONE, 8(11), 
p.e80423. 

Fivelman, Q.L., Adagu, I.S. & Warhurst, D.C., 2004. Modified fixed-ratio 
isobologram method for studying in vitro interactions between atovaquone and 
proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium 
falciparum. Antimicrobial Agents and Chemotherapy, 48(11), pp.4097–4102. 

Foisy, M.M., Yakiwchuk, E.M. & Hughes, C.A., 2008. Induction effects of ritonavir: 
implications for drug interactions. The Annals of pharmacotherapy, 42(7), 
pp.1048–59. 

Foucquier, J. & Guedj, M., 2015. Analysis of drug combinations: current 
methodological landscape. Pharmacology Research & Perspectives, 3(3), 
p.e00149. 

Fowler, S. et al., 2017. Progress in Prediction and Interpretation of Clinically 
Relevant Metabolic Drug-Drug Interactions: a Minireview Illustrating Recent 
Developments and Current Opportunities. Current Pharmacology Reports, 3(1), 
pp.36–49. 

Friedman, E.J. et al., 2011. Effect of Different Durations and Formulations of 
Diltiazem on the Single-Dose Pharmacokinetics of Midazolam: How Long Do 
We Go? The Journal of Clinical Pharmacology, 51(11), pp.1561–1570. 

Fromm, M.F. et al., 1996. Differential induction of prehepatic and hepatic metabolism 



 254 

of verapamil by rifampin. Hepatology, 24(4), pp.796–801. 
Fujioka, Y., Kunze, K.L. & Isoherranen, N., 2012. Risk Assessment of Mechanism-

Based Inactivation in Drug-Drug Interactions. Drug Metabolism and 
Disposition, 40(9), pp.1653–1657. 

Galetin, A. et al., 2006. Prediction of time-dependent CYP3A4 drug-drug 
interactions: impact of enzyme degradation, parallel elimination pathways, and 
intestinal inhibition. Drug metabolism and disposition: the biological fate of 
chemicals, 34(1), pp.166–75. 

Galetin,  a, Burt, H. & Houston, J.B., 2005. Prediction of time-dependent drug-drug 
interactions - Impact of parallel pathways, enzyme degradation and intestinal 
inhibition. Drug Metabolism Reviews, 37(1), p.38. 

Gelman, M.S., Kannegaard, E.S. & Kopito, R.R., 2002. A principal role for the 
proteasome in endoplasmic reticulum-associated degradation of misfolded 
intracellular cystic fibrosis transmembrane conductance regulator. Journal of 
Biological Chemistry, 277(14), pp.11709–11714. 

Gerets, H.H.J. et al., 2012. Characterization of primary human hepatocytes, HepG2 
cells, and HepaRG cells at the mRNA level and CYP activity in response to 
inducers and their predictivity for the detection of human hepatotoxins. Cell 
Biology and Toxicology, 28(2), pp.69–87. 

Ghanbari, F. et al., 2006. A critical evaluation of the experimental design of studies of 
mechanism based enzyme inhibition, with implications for in vitro-in vivo 
extrapolation. Current drug metabolism, 7(3), pp.315–34. 

Goldberg, A.L. & Dice, J.F., 1974. Intracellular protein degradation in mammalian 
and bacterial cells. Annual review of biochemistry, 43, pp.835–69. 

Goldsmith, D.R. & Perry, C.M., 2003. Atazanavir. Drugs, 63(16), pp.1679-93–5. 
Gorka, A.P., Jacobs, L.M. & Roepe, P.D., 2013. Cytostatic versus cytocidal profiling 

of quinoline drug combinations via modified fixed-ratio isobologram analysis. 
Malaria journal, 12(1), p.332. 

Gottesman, S. & Maurizi, M.R., 1992. Regulation by proteolysis: energy-dependent 
proteases and their targets. Microbiological reviews, 56(4), pp.592–621. 

Greenblatt, D., 2003. Time course of recovery of cytochrome p450 3A function after 
single doses of grapefruit juice. Clinical Pharmacology & Therapeutics, 74(2), 
pp.121–129. 

Grimm, S.W. et al., 2009. The conduct of in vitro studies to address time-dependent 
inhibition of drug-metabolizing enzymes: A perspective of the Pharmaceutical 
Research and Manufacturers of America. Drug Metabolism and Disposition, 
37(7), pp.1355–1370. 

Guengerich, F.P., 2008. Cytochrome P450 and Chemical Toxicology Cytochrome 
P450 and Chemical Toxicology. Perspective, 21(December 2007), pp.70–83. 

Guillouzo, A. et al., 1985. Maintenance of cytochrome p-450 in cultured adult human 
hepatocytes. Biochemical Pharmacology, 34(16), pp.2991–2995. 

Guzelian, P.S. & Barwick, J.L., 1979. Inhibition By Cyclohexmide of Degradation of 
Cytochrome P-450 in Primary Cultures of Adult Rat Liver Parenchymal Cells 
and (iin vivo). Biochemical Journal, 180, pp.621–630. 

Handschin, C. & Meyer, U.A., 2003. Induction of drug metabolism: the role of 
nuclear receptors. Pharmacological reviews, 55(4), pp.649–73. 

Hanna, J., Leggett, D.S. & Finley, D., 2003. Ubiquitin depletion as a key mediator of 
toxicity by translational inhibitors. Molecular and Cellular Biology, 23(24), 
pp.9251–9261. 

Hattori, Y. & Gross, S.S., 1995. Cycloheximide induces nitric oxide synthase mRNA 



 255 

in vascular smooth muscle cells by prolonging mRNA lifetime. Biochemistry 
and molecular biology international, 37(3), pp.439–45. 

Hedrich, W.D., Hassan, H.E. & Wang, H., 2016. Insights into CYP2B6-mediated 
drug-drug interactions. Acta Pharmaceutica Sinica B, 6(5), pp.413–425. 

Hemeryck, A., De Vriendt, C.A. & Belpaire, F.M., 2001. Metoprolol-paroxetine 
interaction in human liver microsomes: Stereoselective aspects and prediction of 
the in vivo interaction. Drug Metabolism and Disposition, 29(5), pp.656–663. 

Henderson, C.J. et al., 2003. Inactivation of the hepatic cytochrome P450 system by 
conditional deletion of hepatic cytochrome P450 reductase. The Journal of 
biological chemistry, 278(15), pp.13480–13486. 

Heslop, J.A. et al., 2016. Mechanistic evaluation of primary human hepatocyte culture 
using global proteomic analysis reveals a selective dedifferentiation profile. 
Archives of Toxicology, 91(1), pp.1–14. 

Hewitt, N.J., Lecluyse, E.L. & Ferguson, S.S., 2007. Induction of hepatic cytochrome 
P450 enzymes: Methods, mechanisms, recommendations, and in vitro-in vivo 
correlations. Xenobiotica, 37(10–11), pp.1196–1224. 

Houston, J.B. & Galetin, A., 2010. Enzyme- and Transporter-Based Drug-Drug 
Interactions K. S. Pang, A. D. Rodrigues, & R. M. Peter, eds., New York, NY: 
Springer New York. 

Hsu, A. et al., 1997. Multiple-dose pharmacokinetics of ritonavir in human 
immunodeficiency virus-infected subjects. Antimicrobial Agents and 
Chemotherapy, 41(5), pp.898–905. 

Hull, M.W. & Montaner, J.S., 2011. Ritonavir-boosted protease inhibitors in HIV 
therapy. Annals of Medicine, 43(5), pp.375–388. 

Hummon, A.B. et al., 2007. Isolation and solubilization of proteins after TRIZOL?? 
extraction of RNA and DNA from patient material following prolonged storage. 
BioTechniques, 42(4), pp.467–472. 

Hutzler, M.J., Cook, J. & Fleishaker, J.C., 2011. Drug–Drug Interactions: Designing 
Development Programs and Appropriate Product Labeling P. L. Bonate & D. R. 
Howard, eds., Springer US. 

Imai, H. et al., 2008. The recovery time-course of CYP3A after induction by St John’s 
wort administration. British Journal of Clinical Pharmacology, 65(5), pp.701–
707. 

Iwano S, S.C., 2015. Species Differences in the Pharmacokinetic Parameters of 
Cytochrome P450 Probe Substrates between Experimental Animals, such as 
Mice, Rats, Dogs, Monkeys, and Microminipigs, and Humans. Journal of Drug 
Metabolism & Toxicology, 5(6). 

Jamei, M., 2016. Recent Advances in Development and Application of 
Physiologically-Based Pharmacokinetic ( PBPK ) Models : a Transition from 
Academic Curiosity to Regulatory Acceptance. Current Pharmacology Reports, 
pp.161–169. 

Jansens, A. & Braakman, I., 2003. Pulse-Chase Labeling Techniques for the Analysis. 
Methods in Molecular Biology, vol 232: Protein Misfolding and Disease: 
Principles and Protocols, 232, pp.133–145. 

Jayapal, K.P. et al., 2010. Multitagging proteomic strategy to estimate protein 
turnover rates in dynamic systems. Journal of Proteome Research, 9(5), 
pp.2087–2097. 

Jeong, W.-S. et al., 2005. Differential expression and stability of endogenous nuclear 
factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in 
HepG2 human hepatoma cells. Journal of biochemistry and molecular biology, 



 256 

38(2), pp.167–176. 
Ji, L. et al., 2015. Psoralen, a mechanism-based inactivator of CYP2B6. Chemico-

biological interactions, 240, pp.346–352. 
Jia, J. et al., 2009. Mechanisms of drug combinations: interaction and network 

perspectives. Nature reviews. Drug discovery, 8(2), pp.111–28. 
Joiakim, A. et al., 2004. Superinduction of CYP1A1 in MCF10A cultures by 

cycloheximide, anisomycin, and puromycin: a process independent of effects on 
protein translation and unrelated to suppression of aryl hydrocarbon receptor 
proteolysis by the proteasome. Molecular pharmacology, 66(4), pp.936–947. 

Jones, H. & Rowland-Yeo, K., 2013. Basic concepts in physiologically based 
pharmacokinetic modeling in drug discovery and development. CPT: 
pharmacometrics & systems pharmacology, 2(August), p.e63. 

Jones, H.M. et al., 2012. Application of PBPK modelling in drug discovery and 
development at Pfizer. Xenobiotica; the fate of foreign compounds in biological 
systems, 42(1), pp.94–106. 

Jones, H.M. et al., 2015. Physiologically based pharmacokinetic modeling in drug 
discovery and development: a pharmaceutical industry perspective. Clinical 
pharmacology and therapeutics, 97(3), pp.247–262. 

Ke, A. et al., 2016. Towards a Best Practice Approach in PBPK Modeling: Case 
Example of Developing a Unified Efavirenz Model Accounting for Induction of 
CYPs 3A4 and 2B6 (CPT: Pharmacometrics and Systems Pharmacology (2014) 
3 (e122))). CPT: Pharmacometrics and Systems Pharmacology, 5(7), pp.367–
376. 

Kern, A. et al., 1997. Drug metabolism in hepatocyte sandwich cultures of rats and 
humans. Biochemical pharmacology, 54(7), pp.761–72. 

Kharasch, E.D. et al., 2012. Mechanism of Efavirenz Influence on Methadone 
Pharmacokinetics and Pharmacodynamics. Clinical Pharmacology & 
Therapeutics, 91(4), pp.673–684. 

Kim, H.S.H.J. et al., 2014. Evaluation of protein expression in housekeeping genes 
across multiple tissues in rats. Korean Journal of Pathology, 48(3), pp.193–200. 

Kim, S.-M. et al., 2016. Hepatic cytochromes P450: structural degrons and barcodes, 
posttranslational modifications and cellular adapters in the ERAD-endgame. 
Drug metabolism reviews, 48(3), pp.405–33. 

Koeller, D.M. et al., 1991. Translation and the stability of mRNAs encoding the 
transferrin receptor and c-fos. Proceedings of the National Academy of Sciences, 
88(17), pp.7778–7782. 

Kuhlmann, J. & Mück, W., 2001. Clinical-Pharmacological Strategies to Assess Drug 
Interaction Potential During Drug Development. Drug safety, 24(10), pp.715–
725. 

Kuramoto, S. et al., 2017. Simple evaluation method for CYP3A4 induction from 
human hepatocytes; the relative factor approach with an induction detection limit 
concentration based on the Emax model. Drug Metabolism and Disposition. 

Lacsina, J.R. et al., 2012. Premature Translational Termination Products Are Rapidly 
Degraded Substrates for MHC Class I Presentation. PLoS ONE, 7(12). 

Lamba, J. et al., 2012. PharmGKB summary. Pharmacogenetics and Genomics, 
22(7), pp.555–558. 

Lamba, V. et al., 2010. Genetic predictors of interindividual variability in hepatic 
CYP3A4 expression. The Journal of pharmacology and experimental 
therapeutics, 332(3), pp.1088–99. 

Lecker, S.H., 2006. Protein Degradation by the Ubiquitin-Proteasome Pathway in 



 257 

Normal and Disease States. Journal of the American Society of Nephrology, 
17(7), pp.1807–1819. 

Leclerc, G.J., Leclerc, G.M. & Barredo, J.C., 2002. Real-time RT-PCR analysis of 
mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM 
and Nalm-6 cell lines. Cancer Cell International, 2(1), p.1. 

LeCluyse, E.L., 2001. Human hepatocyte culture systems for the in vitro evaluation of 
cytochrome P450 expression and regulation. European Journal of 
Pharmaceutical Sciences, 13(4), pp.343–368. 

Lee, A.J. & Maddix, D.S., 2001. Rhabdomyolysis secondary to a drug interaction 
between simvastatin and clarithromycin. Annals of Pharmacotherapy, 35(1), 
pp.26–31. 

Lee, W. & Wayne, N.L., 1998. The roles of transcription and translation in mediating 
the effect of electrical afterdischarge on neurohormone synthesis in Aplysia bag 
cell neurons. Endocrinology, 139(12), pp.5109–5115. 

Leong, R. et al., 2012. Regulatory experience with physiologically based 
pharmacokinetic modeling for pediatric drug trials. Clinical pharmacology and 
therapeutics, 91(5), pp.926–31. 

Levy, G. et al., 2015. Long-term culture and expansion of primary human 
hepatocytes. Nature biotechnology, 33(12), pp.1264–1271. 

Li, F. et al., 2008. Thiopurine S-methyltransferase pharmacogenetics: autophagy as a 
mechanism for variant allozyme degradation. Pharmacogenetics and genomics, 
18(12), pp.1083–94. 

Li, H., Ferguson, S.S. & Wang, H., 2010. Synergistically enhanced CYP2B6 
inducibility between a polymorphic mutation in CYP2B6 promoter and pregnane 
X receptor activation. Molecular pharmacology, 78(4), pp.704–13. 

Li, X. et al., 2011. Synergy of the antiretroviral protease inhibitor indinavir and 
chloroquine against malaria parasites in vitro and in vivo. Parasitology 
Research, 109(6), pp.1519–1524. 

Liao, M. et al., Cytochrome P450 Degradation and Its Clinical Relevance. In Enzyme 
Inhibition in Drug Discovery and Development. Hoboken, NJ, USA: John Wiley 
& Sons, Inc., pp. 363–406. 

Liao, W., Yeung, S.C.J. & Chan, L., 1998. Proteasome-mediated degradation of 
apolipoprotein B targets both nascent peptides cotranslationally before 
translocation and full-length apolipoprotein B after translocation into the 
endoplasmic reticulum. Journal of Biological Chemistry, 273(42), pp.27225–
27230. 

Lindley, C. et al., 2002. The effect of cyclophosphamide with and without 
dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug 
Metabolism and Disposition, 30(7), pp.814–822. 

Liston, H.L. et al., 2002. Differential Time Course of Cytochrome P450 2D6 Enzyme 
Inhibition by Fluoxetine, Sertraline, and Paroxetine in Healthy Volunteers 
HEIDI. Journal of Clinical Psychopharmacology, 22(2), pp.169–173. 

Loboz, K.K. et al., 2005. HPLC assay for bupropion and its major metabolites in 
human plasma. Journal of Chromatography B: Analytical Technologies in the 
Biomedical and Life Sciences, 823(2), pp.115–121. 

Lu, D. et al., 2016. Mechanism-based inactivation of cytochrome P450 2B6 by 
isopsoralen. Xenobiotica, 46(4), pp.335–341. 

Lucas, D. et al., 1995. Decrease in cytochrome P452E1 as assessed by the rate of 
chlozoxazone hydroxylation in alcoholics during the withdrawal phase. Alcohol 
Clin Exp Res, 19(2), pp.362–6. 



 258 

Lugowski, A., Nicholson, B. & Rissland, O.S., 2017. Determining mRNA half-lives 
on a transcriptome-wide scale. Methods, pp.4–12. 

Lutz, J.D. et al., 2013. Stereoselective inhibition of CYP2C19 and CYP3A4 by 
fluoxetine and its metabolite: implications for risk assessment of multiple time-
dependent inhibitor systems. Drug metabolism and disposition: the biological 
fate of chemicals, 41(12), pp.2056–65. 

Magnusson, M.O. et al., 2007. Pharmacodynamics of Carbamazepine-mediated 
induction of CYP3A4, CYP1A2, and Pgp as assessed by probe substrates 
midazolam, caffeine and digoxin. Clinical Pharmacology And Therapeutics, 
84(1), pp.52–62. 

Mahmood, T. & Yang, P.C., 2012. Western blot: Technique, theory, and trouble 
shooting. North American Journal of Medical Sciences, 4(9), pp.429–434. 

Majumder, P. et al., 2012. TDP-43 regulates the mammalian spinogenesis through 
translational repression of Rac1. Acta neuropathologica, 124(2), pp.231–45. 

Mann, M., 2006. Functional and quantitative proteomics using SILAC. Nature 
Reviews Molecular Cell Biology, 7(12), pp.952–958. 

Mao, J. et al., 2013. Prediction of crizotinib-midazolam interaction using the simcyp 
population-based simulator: Comparison of CYP3A time-dependent inhibition 
between human liver microsomes versus hepatocytes. Drug Metabolism and 
Disposition, 41(2), pp.343–352. 

Marroquin, C.E. et al., 2004. Osteopontin increases CD44 expression and cell 
adhesion in RAW 264.7 murine leukemia cells. Immunology Letters, 95(1), 
pp.109–112. 

Martin, P. et al., 2008. Comparison of the induction profile for drug disposition 
proteins by typical nuclear receptor activators in human hepatic and intestinal 
cells. British journal of pharmacology, 153(4), pp.805–19. 

Masaki, R., Yamamoto, A. & Tashiro, Y., 1987. Cytochrome P-450 and NADPH-
cytochrome P-450 reductase are degraded in the autolysosomes in rat liver. 
Journal of Cell Biology, 104(5), pp.1207–1215. 

Matthews, H. et al., 2017. Investigating antimalarial drug interactions of emetine 
dihydrochloride hydrate using CalcuSyn-based interactivity calculations. Plos 
One, 12(3), p.e0173303. 

Maurel, P., 1996. The use of adult human hepatocytes in primary culture and other in 
vitro systems to investigate drug metabolism in man. Adv Drug Deliv Rev, 
22(96), pp.105–132. 

Mayhew, B.S., Jones, D.R. & Hall, S.D., 2000. An in vitro model for predicting in 
vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex 
formation. Drug metabolism and disposition: the biological fate of chemicals, 
28(9), pp.1031–1037. 

Merry, C. et al., 1997. Saquinavir pharmacokinetics alone and in combination with 
ritonavir in HIV-infected patients. Aids, 11(15), pp.F29–F33. 

Meunier, B., de Visser, S.P. & Shaik, S., 2004. Mechanism of Oxidation Reactions 
Catalyzed by Cytochrome P450 Enzymes. Chemical Reviews, 104(9), pp.3947–
3980. 

Millward, D.J., Bates, P.C. & Rosochacki, S., 1981. The extent and nature of protein 
degradation in the tissues during development. Reproduction Nutrition 
Development, 21(2), pp.265–277. 

Montgomery, J.L. et al., 2003. Measurement of protein synthesis and degradation in 
C2C12 myoblasts using extracts of muscle from hormone treated bovine. 
Methods in Cell Science, 24(4), pp.123–129. 



 259 

Morel, F. et al., 1990. Expression of cytochrome P-450 enzymes in cultured human 
hepatocytes. Eur J Biochem, 191(2), pp.437–444. 

Murray, B.P., Zgoda, V.G. & Correia, M.A., 2002. Native CYP2C11: heterologous 
expression in Saccharomyces cerevisiae reveals a role for vacuolar proteases 
rather than the proteasome system in the degradation of this endoplasmic 
reticulum protein. Molecular pharmacology, 61(5), pp.1146–53. 

Nagar, S., Walther, S. & Blanchard, R.L., 2006. Sulfotransferase (SULT) 1A1 
Polymorphic Variants *1, *2, and *3 Are Associated with Altered Enzymatic 
Activity, Cellular Phenotype, and Protein Degradation. Molecular 
Pharmacology, 69(6), pp.2084–2092. 

Nakagawa, H. et al., 2011. Ubiquitin-mediated proteasomal degradation of ABC 
transporters: A new aspect of genetic polymorphisms and clinical impacts. 
Journal of Pharmaceutical Sciences, 100(9), pp.3602–3619. 

Nakayama, K.I. & Nakayama, K., 2006. Ubiquitin ligases: cell-cycle control and 
cancer. Nature reviews. Cancer, 6(5), pp.369–81. 

Nebert, D.W., Wikvall, K. & Miller, W.L., 2013. Human cytochromes P450 in health 
and disease. Philosophical Transactions of the Royal Society, B: Biological 
Sciences, 368(1612), p.20120431/1-20120431/21. 

Van Nguyen, T. et al., 1996. In vivo degradation of RNA polymerase II largest 
subunit triggered by α-amanitin. Nucleic Acids Research, 24(15), pp.2924–2929. 

Nirogi, R. et al., 2015. Evaluation of metabolism dependent inhibition of CYP2B6 
mediated bupropion hydroxylation in human liver microsomes by monoamine 
oxidase inhibitors and prediction of potential as perpetrators of drug interaction. 
Chemico-Biological Interactions, 230, pp.9–20. 

Nishiya, Y. et al., 2009. Mechanism-based inhibition of human cytochrome P450 2B6 
by ticlopidine, clopidogrel, and the thiolactone metabolite of prasugrel. Drug 
Metabolism and Disposition, 37(3), pp.589–593. 

O’Mathúna, B. et al., 2008. The consequences of 3,4-
methylenedioxymethamphetamine induced CYP2D6 inhibition in humans. 
Journal of clinical psychopharmacology, 28(5), pp.523–529. 

O’Shaughnessy, J. et al., 2002. Superior survival with capecitabine plus docetaxel 
combination therapy in anthracycline-pretreated patients with advanced breast 
cancer: phase III trial results. Journal of clinical oncology : official journal of the 
American Society of Clinical Oncology, 20(12), pp.2812–23. 

Obach, R.S., Walsky, R.L. & Venkatakrishnan, K., 2006. Mechanism-Based 
Inactivation of Human Cytochrome P450 Enzymes and the Prediction of Drug-
Drug Interactions. Drug Metabolism and Disposition, 35(2), pp.246–255. 

Okubo, M. et al., 2013. CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is 
associated with reduced CYP3A4 protein level and function in human liver 
microsomes. The Journal of toxicological sciences, 38(3), pp.349–54. 

Ono, S. et al., 1995. Chlorzoxazone is metabolized by human CYP1A2 as well as by 
human CYP2E1. Pharmacogenetics, 5(3), p.143–50. 

Pabarcus, M.K. et al., 2009. CYP3A4 ubiquitination by gp78 (the tumor autocrine 
motility factor receptor, AMFR) and CHIP E3 ligases. Archives of Biochemistry 
and Biophysics, 483(1), pp.66–74. 

Paine, A.J., 1990. The maintenance of cytochrome P-450 in rat hepatocyte culture: 
Some applications of liver cell cultures to the study of drug metabolism, toxicity 
and the induction of the P-450 system. Chemico-Biological Interactions, 74(1–
2), pp.1–31. 

Pan, Y. & Haines, D.S., 1999. The pathway regulating MDM2 protein degradation 



 260 

can be altered in human leukemic cells. Cancer Research, 59(9), pp.2064–2067. 
Park, M.H. et al., 2017. Prediction of pharmacokinetics and drug-drug interaction 

potential using physiologically based pharmacokinetic (PBPK) modeling 
approach: A case study of caffeine and ciprofloxacin. Korean Journal of 
Physiology and Pharmacology, 21(1), pp.107–115. 

Parkinson, A. et al., 2011. An evaluation of the dilution method for identifying 
metabolism-dependent inhibitors of cytochrome P450 enzymes. Drug 
metabolism and disposition: the biological fate of chemicals, 39(8), pp.1370–87. 

Paul, S., 2008. Dysfunction of the ubiquitin-proteasome system in multiple disease 
conditions: Therapeutic approaches. BioEssays, 30(11–12), pp.1172–1184. 

Pelkonen, O. et al., 2008. Inhibition and induction of human cytochrome P450 
enzymes: Current status. Archives of Toxicology, 82(10), pp.667–715. 

Peters, S.A. et al., 2012. Evaluation of the use of static and dynamic models to predict 
drug-drug interaction and its associated variability: impact on drug discovery and 
early development. Drug metabolism and disposition: the biological fate of 
chemicals, 40(8), pp.1495–507. 

Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time 
RT-PCR. Nucleic acids research, 29(9), p.e45. 

Pichard, L. et al., 1992. Effect of corticosteroids on the expression of cytochromes 
P450 and on cyclosporin A oxidase activity in primary cultures of human 
hepatocytes. Molecular pharmacology, 41(6), pp.1047–1055. 

Pitlick, W.H. et al., 1976. Pharmacokinetic Model to Describe Self‐Induced Decreases 
in Steady‐State Concentrations of Carbamazepine. Journal of Pharmaceutical 
Sciences, 65(3), pp.462–463. 

Posimo, J.M. et al., 2014. Viability assays for cells in culture. Journal of visualized 
experiments : JoVE, 2(83), pp.1–14. 

Pratt, J.M. et al., 2002. Dynamics of Protein Turnover, a Missing Dimension in 
Proteomics. Molecular & Cellular Proteomics, 1(8), pp.579–591. 

Princiotta, M.F. et al., 2003. Quantitating protein synthesis, degradation, and 
endogenous antigen processing. Immunity, 18(3), pp.343–54. 

Prueksaritanont, T. et al., 1996. Comparative studies of drug-metabolizing enzymes in 
dog, monkey, and human small intestines, and in Caco-2 cells. Drug metabolism 
and disposition: the biological fate of chemicals, 24(6), pp.634–42. 

Prueksaritanont, T. et al., 2013. Drug-drug interaction studies: regulatory guidance 
and an industry perspective. The AAPS journal, 15(3), pp.629–45. 

Punyawudho, B. et al., 2009. Characterization of the time course of carbamazepine 
deinduction by an enzyme turnover model. Clinical Pharmacokinetics, 48(5), 
pp.313–320. 

Puskarjov, M. et al., 2012. Activity-Dependent Cleavage of the K-Cl Cotransporter 
KCC2 Mediated by Calcium-Activated Protease Calpain. Journal of 
Neuroscience, 32(33), pp.11356–11364. 

Rakhmanina, N.Y. & van den Anker, J.N., 2011. Efavirenz in the Therapy of HIV 
Infection. National Institutes of Health, 6(1), pp.95–103. 

Ramsden, D., Zhou, J. & Tweedie, D.J., 2015. Determination of a degradation 
constant for CYP3A4 by direct suppression of mRNA in a novel human 
hepatocyte model, HepatoPac. Drug Metabolism and Disposition, 43(9), 
pp.1307–1315. 

Ravid, T. & Hochstrasser, M., 2008. Diversity of degradation signals in the ubiquitin–
proteasome system. Nature Reviews Molecular Cell Biology, 9(9), pp.679–689. 

Reitman, M.L. et al., 2011. Rifampin’s acute inhibitory and chronic inductive drug 



 261 

interactions: Experimental and model-based approaches to drug-drug interaction 
trial design. Clinical Pharmacology and Therapeutics, 89(2), pp.234–242. 

Renwick, A.B. et al., 2000. Differential maintenance of cytochrome P450 enzymes in 
cultured precision-cut human liver slices. Drug metabolism and disposition: the 
biological fate of chemicals, 28(10), pp.1202–9. 

Richter, T. et al., 2004. Potent mechanism-based inhibition of human CYP2B6 by 
clopidogrel and ticlopidine. The Journal of pharmacology and experimental 
therapeutics, 308(1), pp.189–97. 

Riley, R.J. & Wilson, C.E., 2015. Cytochrome P450 time-dependent inhibition and 
induction: advances in assays, risk analysis and modelling. Expert Opinion on 
Drug Metabolism & Toxicology, 11(4), pp.557–572. 

Riss, T.L. et al., 2004. Cell Viability Assays, 
Roberts, B.J. et al., 1995. Ethanol induces CYP2E1 by protein stabilization: Role of 

ubiquitin conjugation in the rapid degradation of CYP2E1. Journal of Biological 
Chemistry, 270(50), pp.29632–29635. 

Rodriguez-Antona, C. et al., 2002. Cytochrome P450 expression in human 
hepatocytes and hepatoma cell lines: molecular mechanisms that determine 
lower expression in cultured cells. Xenobiotica, 32(6), pp.505–520. 

Rodriguez, S., Gaunt, T.R. & Day, I.N.M., 2009. Hardy-Weinberg Equilibrium 
Testing of Biological Ascertainment for Mendelian Randomization Studies. 
American Journal of Epidemiology, 169(4), pp.505–514. 

Ronis, M.J. et al., 1991. Acetone-regulated synthesis and degradation of cytochrome 
P4502E2 and cytochrome P4502B1 in rat liver. Eur J Biochem, 198, pp.383–
389. 

Ronis, M.J.J. & Ingelman-Sundberg, M., 1989. Acetone-dependent regulation of 
cytochrome P-450j (IIE1) and P-450b (IIB1) in rat liver. Xenobiotica, 19(10), 
pp.1161–1165. 

Rostami-Hodjegan, A., 2012. Physiologically based pharmacokinetics joined with in 
vitro-in vivo extrapolation of ADME: a marriage under the arch of systems 
pharmacology. Clinical pharmacology and therapeutics, 92(1), pp.50–61. 

Rostami-Hodjegan, A. et al., 1999. Population pharmacokinetics of methadone in 
opiate users: Characterization of time-dependent changes. British Journal of 
Clinical Pharmacology, 48(1), pp.43–52. 

Rowland Yeo, K. et al., 2011. Prediction of time-dependent CYP3A4 drug-drug 
interactions by physiologically based pharmacokinetic modelling: Impact of 
inactivation parameters and enzyme turnover. European Journal of 
Pharmaceutical Sciences, 43(3), pp.160–173. 

Ruggiano, A., Foresti, O. & Carvalho, P., 2014. ER-associated degradation: Protein 
quality control and beyond. The Journal of Cell Biology, 204(6), pp.869–879. 

Runge, D. et al., 2000. Serum-Free, Long-Term Cultures of Human Hepatocytes: 
Maintenance of Cell Morphology, Transcription Factors, and Liver-Specific 
Functions. Biochemical and Biophysical Research Communications, 269(1), 
pp.46–53. 

Sawicki, S.G. & Godman, G.C., 1971. On the differential cytotoxicity of actinomycin 
D. The Journal of cell biology, 50(3), pp.746–61. 

Schipani, A. et al., 2010. Population pharmacokinetic modeling of the association 
between 63396C→T pregnane X receptor polymorphism and unboosted 
atazanavir clearance. Antimicrobial Agents and Chemotherapy, 54(12), pp.5242–
5250. 

Schmidt, M. & Finley, D., 2014. Regulation of proteasome activity in health and 



 262 

disease. Biochimica et biophysica acta, 1843(1), pp.13–25. 
Schneider-Poetsch, T. et al., 2010. Inhibition of eukaryotic translation elongation by 

cycloheximide and lactimidomycin. Nature chemical biology, 6(3), pp.209–217. 
Schuetz, J.D., Strom, S.C. & Schuetz, E.G., 1995. Induction of P-glycoprotein mRNA 

by protein synthesis inhibition is not controlled by a transcriptional repressor 
protein in rat and human liver cells. Journal of cellular physiology, 165(2), 
pp.261–72. 

Scripture, C.D. & Figg, W.D., 2006. Drug interactions in cancer therapy. Nature 
reviews. Cancer, 6(7), pp.546–58. 

Shi, W.-L., Tang, H.-L. & Zhai, S.-D., 2015. Effects of the CYP3A4*1B Genetic 
Polymorphism on the Pharmacokinetics of Tacrolimus in Adult Renal Transplant 
Recipients: A Meta-Analysis. PloS one, 10(6), p.e0127995. 

Shou, M. et al., 2008. Modeling, prediction, and in vitro in vivo correlation of 
CYP3A4 induction. Drug Metabolism and Disposition, 36(11), pp.2355–2370. 

Shulman, M. & Nahmias, Y., 2013. Long-term culture and coculture of primary rat 
and human hepatocytes. Methods in molecular biology (Clifton, N.J.), 945, 
pp.287–302. 

Siccardi, M. et al., 2008. Association of a Single‐Nucleotide Polymorphism in the 
Pregnane X Receptor ( PXR 63396C→T) with Reduced Concentrations of 
Unboosted Atazanavir. Clinical Infectious Diseases, 47(9), pp.1222–1225. 

Siccardi, M. et al., 2012. Pharmacokinetic and pharmacodynamic analysis of 
efavirenz dose reduction using an in vitro-in vivo extrapolation model. Clinical 
pharmacology and therapeutics, 92(4), pp.494–502. 

Silverman, R.B., 1995. [10] Mechanism-based enzyme inactivators. In pp. 240–283. 
Simões, A.E. et al., 2013. Efficient recovery of proteins from multiple source samples 

after trizol® or trizol®LS RNA extraction and long-term storage. BMC 
Genomics, 14(1), p.181. 

Smith, C.M. et al., 2012. A comprehensive evaluation of metabolic activity and 
intrinsic clearance in suspensions and monolayer cultures of cryopreserved 
primary human hepatocytes. Journal of Pharmaceutical Sciences, 101(10), 
pp.3989–4002. 

Soars, M.G., Grime, K. & Riley, R.J., 2006. Comparative analysis of substrate and 
inhibitor interactions with CYP3A4 and CYP3A5. Xenobiotica; the fate of 
foreign compounds in biological systems, 36(4), pp.287–99. 

Sobell, H.M., 1985. Actinomycin and DNA transcription. Proceedings of the National 
Academy of Sciences of the United States of America, 82(16), pp.5328–31. 

Soldatow, V.Y. et al., 2013. In vitro models for liver toxicity testing. Toxicol. Res., 
2(1), pp.23–39. 

Sridar, C., Kenaan, C. & Hollenberg, P.F., 2012. Inhibition of bupropion metabolism 
by selegiline: Mechanism-based inactivation of human CYP2B6 and 
characterization of glutathione and peptide adducts. Drug Metabolism and 
Disposition, 40(12), pp.2256–2266. 

Stintzing, S. et al., 2015. Polymorphisms in Genes Involved in EGFR Turnover Are 
Predictive for Cetuximab Efficacy in Colorectal Cancer. Molecular cancer 
therapeutics, 14(October), pp.1–9. 

Stordeur, P. et al., 1995. Spontaneous and cycloheximide-induced interleukin-10 
mRNA expression in human mononuclear cells. Molecular immunology, 32(4), 
pp.233–9. 

Strober, W., 2001. Trypan blue exclusion test of cell viability. Current protocols in 
immunology, Appendix 3, p.Appendix 3B. 



 263 

Su Yin Low, J. et al., 2009. Antiviral Activity of Emetine Dihydrochloride Against 
Dengue Virus Infection. Journal of Antivirals & Antiretrovirals, 1(1), pp.062–
071. 

Tai, H.L. et al., 1999. Enhanced proteasomal degradation of mutant human thiopurine 
S-methyltransferase (TPMT) in mammalian cells: mechanism for TPMT protein 
deficiency inherited by TPMT*2, TPMT*3A, TPMT*3B or TPMT*3C. 
Pharmacogenetics, 9(5), pp.641–50. 

Takahashi, R.H. et al., 2017. Applying Stable Isotope Labeled Amino Acids in 
Micropatterned Hepatocyte Coculture to Directly Determine the Degradation 
Rate Constant for CYP3A4. Drug Metabolism and Disposition, 45(6), p.581 LP-
585. 

Takei, S. et al., 2000. Destabilization of tumor necrosis factor-alpha mRNA by 5-
alpha dihydrotestosterone in Jurkat cells. Life sciences, 66(20), p.PL277-82. 

Tallarida, R.J., 2006. An overview of drug combination analysis with isobolograms. 
The Journal of pharmacology and experimental therapeutics, 319(1), pp.1–7. 

Tallarida, R.J., 2010. Combination analysis. Advances in Experimental Medicine and 
Biology, 678, pp.133–137. 

Tallarida, R.J., 2011. Quantitative methods for assessing drug synergism. Genes & 
cancer, 2(11), pp.1003–8. 

Tan, D. & Walker, A.M., 2010. Short form 1b human prolactin receptor down-
regulates expression of the long form. Journal of Molecular Endocrinology, 
44(3), pp.187–197. 

Tanaka, E., 1998. Clinically important pharmacokinetic drug-drug interactions: role 
of cytochrome P450 enzymes. J.Clin.Pharm.Ther., 23(0269–4727), pp.403–416. 

Thoene, J.G. et al., 1985. Inhibitors of Protein Synthesis Also Inhibit Lysosomal 
Proteolysis. Journal of Clinical Investigation, 75(February), pp.370–376. 

Tokunaga, F., Hara, K. & Koide, T., 2003. N-Linked oligosaccharide processing, but 
not association with calnexin/calreticulin is highly correlated with endoplasmic 
reticulum-associated degradation of antithrombin Glu313-deleted mutant. 
Archives of Biochemistry and Biophysics, 411(2), pp.235–242. 

Tolson, A.H. et al., 2009. Methadone induces the expression of hepatic drug-
metabolizing enzymes through the activation of pregnane X receptor and 
constitutive androstane receptor. Drug metabolism and disposition: the 
biological fate of chemicals, 37(9), pp.1887–94. 

Toyama, B.H. & Hetzer, M.W., 2013. Protein homeostasis: live long, won’t prosper. 
Nature reviews. Molecular cell biology, 14(1), pp.55–61. 

Tran, J.Q. et al., 1999. Morning spot and 24-hour urinary 6 beta-hydroxycortisol to 
cortisol ratios: intraindividual variability and correlation under basal conditions 
and conditions of CYP 3A4 induction. Journal of clinical pharmacology, 39(5), 
pp.487–494. 

Tsao, D.C. et al., 2012. Prolonged -amanitin treatment of cells for studying mutated 
polymerases causes degradation of DSIF160 and other proteins. RNA, 18(2), 
pp.222–229. 

Varma, M. V et al., 2014. Quantitative prediction of transporter- and enzyme-
mediated clinical drug-drug interactions of organic anion-transporting 
polypeptide 1B1 substrates using a mechanistic net-effect model. J Pharmacol 
Exp Ther, 351(1), pp.214–223. 

Venkatakrishnan, K. & Obach, R.S., 2007. Drug-drug interactions via mechanism-
based cytochrome P450 inactivation: points to consider for risk assessment from 
in vitro data and clinical pharmacologic evaluation. Current drug metabolism, 



 264 

8(5), pp.449–62. 
Venkatakrishnan, K. & Obach, R.S., 2005. In vitro-in vivo extrapolation of CYP2D6 

inactivation by paroxetine: prediction of nonstationary pharmacokinetics and 
drug interaction magnitude. Drug metabolism and disposition: the biological fate 
of chemicals, 33(6), pp.845–52. 

Venkatakrishnan, K., Obach, R.S. & Rostami-Hodjegan, A., 2007. Mechanism-based 
inactivation of human cytochrome P450 enzymes: strategies for diagnosis and 
drug-drug interaction risk assessment. Xenobiotica; the fate of foreign 
compounds in biological systems, 37(10–11), pp.1225–56. 

Verma, S. et al., 2005. Capecitabine plus Docetaxel Combination Therapy. Cancer, 
103(12), pp.2455–2465. 

Vilei, M.T. et al., 2001. Comparison of pig, human and rat hepatocytes as a source of 
liver specific metabolic functions in culture systems--implications for use in 
bioartificial liver devices. The International journal of artificial organs, 24(6), 
pp.392–6. 

Vozza-brown, L., Grepper, S. & Sahi, J., 2005. Suppression of OATP1B1 , 
OATP1B3 , and OATP2B1 Transporters in Primary Cryopreserved Human 
Hepatocytes Following Lipid Delivery of Stealth siRNA TM. , 1(1999), p.92008. 

Wagner, C. et al., 2015. Predicting the effect of cytochrome P450 inhibitors on 
substrate drugs: analysis of physiologically based pharmacokinetic modeling 
submissions to the US Food and Drug Administration. Clinical 
pharmacokinetics, 54(1), pp.117–27. 

Walsky, R.L., Astuccio, A. V & Obach, R.S., 2006. Evaluation of 227 drugs for in 
vitro inhibition of cytochrome P450 2B6. Journal of clinical pharmacology, 
46(12), pp.1426–1438. 

Wang, A. et al., 2012. Crystal Structure of Human Cytochrome P450 2D6 with 
Prinomastat Bound. Journal of Biological Chemistry, 287(14), pp.10834–10843. 

Wang, D. et al., 2011. Intronic polymorphism in CYP3A4 affects hepatic expression 
and response to statin drugs. The pharmacogenomics journal, 11(4), pp.274–86. 

Wang, H. & Tompkins, L.M., 2008. CYP2B6: new insights into a historically 
overlooked cytochrome P450 isozyme. Current drug metabolism, 9(7), pp.598–
610. 

Wang, Y. et al., 2009. A role for protein phosphorylation in cytochrome P450 3A4 
ubiquitin-dependent proteasomal degradation. The Journal of biological 
chemistry, 284(9), pp.5671–5684. 

Wang, Y. et al., 2015. Human liver cytochrome P450 3A4 ubiquitination: molecular 
recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-
CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes. The Journal of biological 
chemistry, 290(6), pp.3308–32. 

Wang, Y. et al., 2011. Ubiquitin-dependent proteasomal degradation of human liver 
cytochrome P450 2E1: identification of sites targeted for phosphorylation and 
ubiquitination. The Journal of biological chemistry, 286(11), pp.9443–56. 

Wang, Y.H., 2010. Confidence assessment of the Simcyp time-based approach and a 
static mathematical model in predicting clinical drug-drug interactions for 
mechanism-based CYP3A inhibitors. Drug Metabolism and Disposition, 38(7), 
pp.1094–1104. 

Warren, J.W. et al., 1980. Kinetics of a carbamazepine-ethosuximide interaction. 
Clinical Pharmacology & Therapeutics, 28(5), pp.646–651. 

Waterlow, J.C., 1984. Protein turnover with special reference to man. Quarterly 
Journal of Experimental Physiology, 69(3), pp.409–438. 



 265 

Watkins, P.B. et al., 1985. Identification of an inducible form of cytochrome P-450 in 
human liver. Proceedings of the National Academy of Sciences of the United 
States of America, 82(18), pp.6310–6314. 

Weitzel, H.E. et al., 2004. Differential stability of beta-catenin along the animal-
vegetal axis of the sea urchin embryo mediated by dishevelled. Development 
(Cambridge, England), 131, pp.2947–2956. 

Welch, P.J. & Wang, J.Y., 1992. Coordinated synthesis and degradation of cdc2 in the 
mammalian cell cycle. Proceedings of the National Academy of Sciences of the 
United States of America, 89(7), pp.3093–3097. 

Westerink, W.M.A. & Schoonen, W.G.E.J., 2007. Cytochrome P450 enzyme levels in 
HepG2 cells and cryopreserved primary human hepatocytes and their induction 
in HepG2 cells. Toxicology in vitro : an international journal published in 
association with BIBRA, 21(8), pp.1581–91. 

Whitehead, K. a, Langer, R. & Anderson, D.G., 2009. Knocking down barriers: 
advances in siRNA delivery. Nature reviews. Drug discovery, 8(2), pp.129–38. 

Wienkers, L.C. & Heath, T.G., 2005. Predicting in vivo drug interactions from in 
vitro drug discovery data. Nat Rev Drug Discov, 4(10), pp.825–833. 

Williams, J.A. et al., 2004. Drug-drug interactions for UDP-glucuronosyltransferase 
substrates: a pharmacokinetic explanation for typically observed low exposure 
(AUCi/AUC) ratios. Drug metabolism and disposition: the biological fate of 
chemicals, 32(11), pp.1201–8. 

Williams, P. A. et al., 2000. Mammalian microsomal cytochrome P450 
monooxygenase: structural adaptations for membrane binding and functional 
diversity. Molecular cell, 5(1), pp.121–131. 

Wittrup, A. & Lieberman, J., 2015. Knocking down disease: a progress report on 
siRNA therapeutics. Nature reviews. Genetics, 16(9), pp.543–52. 

Wong, S.G., Lee, M. & Wong, B.K., 2016. Single concentration loss of activity assay 
provides an improved assessment of drug–drug interaction risk compared to 
IC50-shift. Xenobiotica, 8254(March), pp.1–14. 

Woosley, R.L. et al., 1993. Mechanism of the cardiotoxic actions of terfenadine. 
JAMA, 269(12), pp.1532–6. 

Xie, F., Ding, X. & Zhang, Q.-Y., 2016. An update on the role of intestinal 
cytochrome P450 enzymes in drug disposition. Acta pharmaceutica Sinica. B, 
6(5), pp.374–383. 

Xu, Y. et al., 2015. Physiologically Based Pharmacokinetic Model to Assess the 
Influence of Blinatumomab-Mediated Cytokine Elevations on Cytochrome P450 
Enzyme Activity. CPT: Pharmacometrics & Systems Pharmacology, 4(9), 
pp.507–515. 

Yamashita, F. et al., 2013. Modeling of Rifampicin-Induced CYP3A4 Activation 
Dynamics for the Prediction of Clinical Drug-Drug Interactions from In Vitro 
Data. PLoS ONE, 8(9). 

Yang, J. et al., 2008. Cytochrome P450 Turnover: Regulation of Synthesis and 
Degradation, Methods for Determining Rates, and Implications for the Prediction 
of Drug Interactions. Curr Drug Metab, 9, pp.384–393. 

Yang, J. et al., 2005. Kinetic values for mechanism-based enzyme inhibition: 
Assessing the bias introduced by the conventional experimental protocol. 
European Journal of Pharmaceutical Sciences, 26(3–4), pp.334–340. 

Yen, H.C. et al., 2008. Global protein stability profiling in mammalian cells. Science, 
322(5903), pp.918–923. 

Yeo, K.R., Jamei, M. & Rostami-Hodjegan, A., 2013. Predicting drug-drug 



 266 

interactions: application of physiologically based pharmacokinetic models under 
a systems biology approach. Expert review of clinical pharmacology, 6(2), 
pp.143–57. 

Yewdell, J.W. et al., 2011. Out with the old, in with the new? Comparing methods for 
measuring protein degradation. Cell biology international, 35(5), pp.457–62. 

Yubero-lahoz, S. et al., 2000. Sex Differences in 3,4-
Methylenedioxymethamphetamine (MDMA; Ecstasy)-Induced Cytochrome 
P450 2D6 Inhibition in Humans. Clinical Pharmacokinetics, 50(5), pp.319–329. 

Zang, Y. et al., 2004. The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 
yields slow acetylator phenotype by enhanced protein degradation. 
Pharmacogenetics, 14(11), pp.717–723. 

Zanger, U.M. & Klein, K., 2013. Pharmacogenetics of cytochrome P450 2B6 
(CYP2B6): Advances on polymorphisms, mechanisms, and clinical relevance. 
Frontiers in Genetics, 4(MAR), pp.1–12. 

Zanger, U.M. & Schwab, M., 2013. Pharmacology & Therapeutics Cytochrome P450 
enzymes in drug metabolism : Regulation of gene expression , enzyme activities 
, and impact of genetic variation. Pharmacology and Therapeutics, 138(1), 
pp.103–141. 

Zeilinger, K. et al., 2016. Cell sources for in vitro human liver cell culture models. 
Experimental Biology and Medicine, 241(15), pp.1684–1698. 

Zeldin, R.K. & Petruschke, R.A., 2004. Pharmacological and therapeutic properties of 
ritonavir-boosted protease inhibitor therapy in HIV-infected patients. Journal of 
Antimicrobial Chemotherapy, 53(1), pp.4–9. 

Zhang, H. et al., 2016. Content and activity of human liver microsomal protein and 
prediction of individual hepatic clearance in vivo. Scientific Reports, 5(1), 
p.17671. 

Zhang, L. et al., 2007. Method for real-time monitoring of protein degradation at the 
single cell level. BioTechniques, 42(4), pp.446–450. 

Zhang, T. et al., 2015. gp78 functions downstream of Hrd1 to promote degradation of 
misfolded proteins of the endoplasmic reticulum. Molecular biology of the cell, 
pp.5–6. 

Zhang, X. et al., 2010. Inhibition of CYP3A by erythromycin: in vitro-in vivo 
correlation in rats. Drug metabolism and disposition: the biological fate of 
chemicals, 38(1), pp.61–72. 

Zhang, Z.-Y. & Wong, Y.N., 2005. Enzyme kinetics for clinically relevant CYP 
inhibition. Current drug metabolism, 6(3), pp.241–257. 

Zhao, P., Rowland, M. & Huang, S.-M., 2012. Best practice in the use of 
physiologically based pharmacokinetic modeling and simulation to address 
clinical pharmacology regulatory questions. Clinical pharmacology and 
therapeutics, 92(1), pp.17–20. 

Zhou, P., 2004. Determining protein half-lives. Methods in molecular biology 
(Clifton, N.J.), 284, pp.67–77. 

Zhou, S.-F., 2008. Drugs behave as substrates, inhibitors and inducers of human 
cytochrome P450 3A4. Current drug metabolism, 9(4), pp.310–22. 

Zhou, X. et al., 2016. Synergistic effects of Chinese herbal medicine: A 
comprehensive review of methodology and current research. Frontiers in 
Pharmacology, 7(JUL), pp.1–16. 

 


