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Abstract

Recent advances in communication, sensors and processors have made pervasive systems more

computationally powerful and increasingly popular. These systems are deployed everywhere

all the time while remaining transparent. Take smartphones as an example; they have become

an integral part of human life and people carry them wherever they go. Coupled with the

popularity of pervasive systems and user tracking, this has opened up excellent opportunities

to analyse human mobility. This can be applied to a broad range of location-based services

such as smart navigation and recommendation systems.

Data from pervasive systems has temporal, spatial and spatio-temporal aspects that can

be leveraged for mining human mobility patterns. Temporal data such as time series from

embedded sensors on smartphones does not usually have any information about locations,

while time stamps are discarded in spatial data. The list of significant locations visited by

the user is an example of spatial data. The third group of data is spatio-temporal data

that has both temporal and spatial aspects such as users’ trajectories. In this dissertation,

we analyse human mobility by mining these three kinds of data. In each chapter, we look

at a specific aspect to infer key information about users mobility including transition time

detection, movement graph summarisation, and trajectory prediction.

We analyse temporal information from time series data to extract transition times in daily

activities. The transition times denote when user activities change such as when the user

goes to work or when the user goes shopping. In addition to applications in location-based

services, extracting the transition times helps us to understand human mobility patterns

across the whole day.

We tackle scalability to enable processing to take place on resource-constrained devices.

We introduce Shrink as a new summarisation method to compress large scale graphs. Tra-

jectories and movements of the user can be transformed into a graph in which each node

represents stay points and each edge represents distance. Since this graph is very large,



Shrink is used to reduce the size of the movement graph while preserving distances between

nodes. The property that is preserved in the compressed graph, also known as the coarse

graph, is the distance between the nodes. Shrink is a query friendly compression, which

means the compressed graph can be queried without decompression. As the complexity of

distance-based queries such as shortest path queries is highly dependent on the size of the

graph, Shrink improves performance in terms of time and storage. We also investigate the

effect of compression on the human mobility mining algorithms and show that the summari-

sation provides a trade-off between efficiency and granularity.

We also analyse spatial-temporal data by predicting user trajectory based on historical

data. Specifically, given the historical data and the users trajectory in the first part of

the current day (e.g. trajectory in the morning), we predict how users will complete their

trajectory in that particular day (e.g. predicting the trajectory for the rest of the day or

the afternoon). The granularity of the predicted trajectory is the same as the granularity of

the given trajectories. We emphasize that the predicted trajectory includes the sequence of

future locations, the stay times, and the departure times. This enhances the user experience

because by having the detailed trajectory in advance, location-based services can notify users

about the consequence of the movement.

In summary, this thesis contains efficient algorithms that can be applied to diverse as-

pects of pervasive signals for mining human mobility. The new algorithms are aimed at

problems in transition time detection, summarisation, and prediction. The solutions address

the scalability issues and can work in big pervasive temporal and spatial data effectively and

accurately.
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Chapter 1

Introduction

Human tracking has become ubiquitous nowadays with explosive advances in sensor tech-

nology, communication and mobility technologies. This pervasive data is collected from

different sources: smartphone sensors, wearable sensors, positioning systems, network traffic

controllers, geo-referenced datasets, mobile computer logs, smartphone connectivity data,

Bluetooth connectivity data, location-aware and wireless communication devices and many

more. Mobile devices such as smartphones are very popular and rich in terms of data since

they are embedded with various kinds of sensors. Geospatial technology is another source of

data that provide us with pervasive signals. Modern geopositioning technologies are growing

rapidly, which results in more geospatial information.

The pervasive systems enable us to capture and analyse human mobility for different pur-

poses as they are deployed all the time and everywhere. Devices such as smartphones have

become an indispensable gadget for everyone. Whether a businessman, student, or employee

in any company, everyone carries at least one smartphone. As a result, the collection of

movement data offers us a new source of information to study human mobility behaviours.

Mobility data, nowadays, is collected on a very large scale and with a high level of precision

without causing any disruption for people. Consequently, the information related to hu-

man movement behaviour has become widely available, contributing to research for mining

mobility patterns.

In this thesis, we process various types of pervasive data ranging from sensor data to

trajectory data to analyse human mobility and to discover hidden patterns. The data can

be viewed from three different aspects:

1. Temporal aspect: From this aspect, we focus on temporal information such as when
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dealing with time series from sensors.

2. Spatial aspect: The temporal information of data such as time stamps are discarded

when focusing on this aspect. For example, when processing a map of the user’s city,

only the spatial aspect is taken into account.

3. Spatio-temporal aspect: By considering spatio-temporal aspects, temporal and spa-

tial information are both considered. Processing the users trajectories is an example of

mining spatio-temporal data.

1.1 Motivation

Understanding human mobility plays a key role in many context-aware applications such as

targeted advertising and location-based services. Developing the science to analyse human

activities and to describe how people move in their daily lives promises to address a wide

range of challenges.

In social networks, mining human mobility is the foundation in many areas such as friend

recommendation and community discovery [Cho et al., 2011] [Lancichinetti and Fortunato,

2009]. For friend recommendation, similarities in mobility patterns are investigated and the

person with the most similar mobility pattern is recommended as a friend. For example, two

students with the same routine have similar mobility patterns and could be recommended as

friends. The similarity of mobility patterns could also be a way of discovering communities

in social networks as people in a community usually share the same mobility pattern.

Another application of mining human mobility patterns is in location-based services [Lian

et al., 2015] [Noulas et al., 2012]. Users interact with the services using mobile devices and

tend to get recommendations based on their location [Lian et al., 2015]. Searching for specific

destinations, finding good nearby places to eat, receiving suggestions depending on location

and finding friends in our area are just a few applications of location-based services [Noulas

et al., 2012]. Inferring the current location or predicting the future location improves the

service and enhances the user’s experience. For example, the user may want to receive a

notification just after they leave home or ten minutes before going to a gym.

In urban computing, understanding the mobility pattern of a crowd or a citizen individu-

ally can assist city planners [Zheng et al., 2014]. Data containing human mobility information

has been produced by sensing technologies and large-scale computing infrastructures in urban

spaces, which has yielded a large range of knowledge and can help tackle challenges in a city
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when used correctly. For example, Rinzivillo et al. leverage human mobility data to address

the problem of detecting real city boundaries, not boundaries defined by the government.

The result can provide policymakers with optimal administrative borders for the city. In one

study, the problem of optimal retail store placement in New York is addressed by collecting

and mining human mobility data [Karamshuk et al., 2013]. Human mobility combined with

other data sources such as urban geography can also help predict the ranking of residential

real-estate in a city at a future time [Fu et al., 2014].

The underlying problems in a city’s road network can be detected and addressed by

mining city-wide human mobility data. For example, mining mobility pattern enhances

traffic management by improving traffic forecasting [Ribeiro et al., 2014] [Kitamura et al.,

2000]. Another application is improving public transportation systems. As urbanization

keeps changing cities, the transport services have to adapt their routes continuously in order

to continue to meet the mobility demands of citizens. Analysing the mobility of the citizens

enables us to update the transport routes regularly to meet their demands[Bastani et al.,

2011].

In the domain of health and safety behaviours, the spreading of biological viruses is af-

fected by human mobility. By mining data on human mobility, it is possible to recognize the

group of people that are at high risk and, as a result, reduce the number of infections [Col-

izza et al., 2007]. Disasters such as earthquakes cause large, abnormal human population

movements for evacuation. Disaster management requires an understanding and predicting

of these movements to plan effective humanitarian relief [Song et al., 2013].

Mining human mobility patterns also benefits location recommendation systems [Lian

et al., 2015]. The problem is defined as follows: given a set of users and some information

about their past location preferences, the goal is to identify and recommend a set of loca-

tions they are more likely to enjoy. Mining users’ mobility patterns is an important stage

and essential for having an effective recommendation system. Figure 1.1 shows an example

where the importance of understanding the mobility pattern is highlighted. In this exam-

ple, Restaurant A is closer to the user’s location but an effective recommendation system

enhances the user’s experience by suggesting Restaurant B, which is on the user’s way home.

1.2 Research questions

The main research objective of this thesis is to analyse human mobility through mining tem-

poral and spatial data. To overcome the aforementioned research challenges, the following
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Home

Figure 1.1: The recommendation system suggests Restaurant A while considering the
users location only. However, having knowledge of the user’s mobility pattern, Restaurant
B is suggested because it is on the user’s way home.

research questions are defined and addressed:

Temporal aspect

RQ1: Given multivariate time series from sensors, what is an appropriate temporal seg-

mentation approach to extract transition times in human daily routine? For this research

question, we analyse human mobility pattern by mining temporal data including time series

from different types of sensors embedded in the smartphone.

Spatial aspect

RQ2: How to summarise graphs containing human movements in an efficient way? For this

research question, the time stamps are discarded and we only focus on the locations and

movements.

Spatio-temporal aspect

RQ3: Given the historical data and the user’s trajectory in the first part of the current day

(e.g. trajectory in the morning), how to predict the trajectory for the rest of the day? Here,

both locations and time stamps are considered.

6
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1.3 Challenges

Dealing with pervasive data and mining human mobility patterns both pose various chal-

lenges. First, the data is very heterogeneous and may be recorded in a variety of different

formats ranging from time series to text logs and spatio-temporal data such as GPS data.

Time series alone have many characteristics that vary from one case to another. The source

of time series could be an accelerometer, gyroscope or any other sensor embedded in mobile

devices. For example, temperature does not usually change rapidly, while the accelerometer

signal changes very frequently from negative values to positive values and vice versa. Fur-

thermore, the range, unit, and frequency of time series are different even for the same type

of sensor depending on the manufacturer. One specific type of sensor probes temperatures

between 0◦ to 30◦ while another temperature sensor is designed to report temperatures in

the range of 0◦ to 50◦. Diversity in data makes mining difficult. As a result, we need to

develop a generic method that can handle different types of data.

Another challenge is the diversity in human mobility patterns. Each person has a different

mobility pattern compared to another person. For some people, it is hard to predict their

daily activities as their activities change every day based on the user’s decision. For example,

a retired person or a housekeeper may decide what to do every morning and they do not have

a strict routine. In contrast, other people’s lives are characterized by strong patterns across

all time scales such as an employee of a company that has strict working hours. Furthermore,

some people visit a few places limited to one region in one day while others travel across the

city for different purposes such as a taxi driver. Since a mobility pattern varies from one

user to another, there should not be a presumption of the user’s mobility before mining the

data. The data mining models proposed in this area should be capable of handling all type

of mobility patterns.

Every method proposed for mining human mobility should be scalable. Recent advances

in communication, sensors and processors have provided a rich and large amount of the

pervasive data for each individual including sensor data, connectivity data and smartphone

logs. Furthermore, we sometimes apply a mining algorithm to a large group of people such

as citizens of a city. In this case, the algorithm should be fast enough to respond in an

acceptable time.

The methods applied to pervasive signals ideally need to be unsupervised rather than

supervised. Supervised methods require data to be labelled. The labelling process not only

requires time and energy but also is obstructively opposed to pervasive systems.
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Temporal Data

Spatial Data
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Data

Temporal Segmentation
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Figure 1.2: Relationships between the contributions of the thesis

1.4 Gaps and contributions

In this research, we propose new approaches for different problems in human mobility in-

cluding temporal segmentation to detect transition times, graph summarisation to compress

the mobility graph and trajectory prediction to complete the daily user trajectory. Each

approach tackles a specific type of data including temporal data, spatial data and spatial-

temporal data. Figure 1.2 shows an overview of the contributions.

1.4.1 Temporal segmentation for extracting the transition times

In Chapter 3, we analyse mobility patterns by extracting transition times in daily human

activities. Extracting the transition times provides us with valuable information and helps

us understand human mobility patterns across the whole day. For example, assume one

leaves home at 7 am, works at the office from 9 am to 5 pm and goes outdoors until 12 am

every day. With this interpretation, his daily routine can be expressed as home (7 am) →
commuting (9 am) → office (5 pm) → outdoors (12 am) → home. [12 am–7 am], [7 am–9

am], [9 am–5 pm] and [5 pm–12 am] are the temporal segments in this example that convey

semantic meaning from the routine.

To extract the transition times, we proposed a new temporal segmentation method that

has practical features in comparison to the current methods. Most existing temporal seg-

mentation methods are only applied to a single time series while our method is able to
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process multivariate time series. Moreover, the proposed temporal segmentation method is

able to deal with heterogeneous data from different types of sensors. Unlike the existing

information gain-based methods that cannot handle positively correlated time series, our

method segments multivariate time series with or without correlation. Other state-of-the-art

methods usually focus on a specific form of data and use specific characteristics of that data

while the proposed method is generic and can process time series regardless of the type and

frequency. As the number of the transition times in human activity is unknown, we also

propose a heuristic method to detect the best candidate for the number of the segments.

The complexity and computational cost of our algorithm are also investigated in Chapter 3.

1.4.2 Summarisation of movement graphs

Considering spatial aspects, we introduce Shrink in Chapter 4 as a new summarisation

method to compress the graph that represents mobility data. Trajectories and movements of

the user can be transformed into a graph in which each node represents stay points and each

edge represent a distance. Since this graph is very large, Shrink is used to reduce the size

of the movement graph while preserving distances between nodes. The compression is based

on the iterative merging of the nodes in a way that the new weights have the least effect on

the distances. The merging of the nodes continues until the desired size of the compressed

graph is reached. As the complexity of distance-based queries such as shortest path queries

is highly dependent on the size of the graph, Shrink improves performance in terms of time

and storage. The approach has been applied to both weighted and unweighted graphs includ-

ing road network, friendship network, collaboration network, web graph and social network.

In the experiment, a road network with more than 2.5 million nodes is reduced by a fifth

while the average relative error is less than 1%. We also investigate the effect of the graph

summarisation on problems surrounding human mobility analysis.

Our graph summarisation method, Shrink, differs from the current methods in the fol-

lowing ways: (1) Shrink is developed for reachability and distance-based queries; (2) most

methods are designed for unweighted graphs while Shrink can be applied to both unweighted

and weighted graphs; (3) Shrink provides a compressed data structure, the coarse graph, that

can be directly queried without decompression; (4) some compression methods only reduce

the number of edges while Shrink reduces the number of nodes and edges; (5) Shrink can

be performed incrementally for temporal graphs while most of the above methods are batch

algorithms, requiring the decompression of the whole graph to perform minor changes such

9
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as edge insertion or node removal; and (6) Shrink not only specifies the distance between the

two nodes but also provides the actual path containing laying nodes.

1.4.3 Partial trajectory prediction

For analyses of the spatial-temporal aspects of the smartphone data, we predict the trajectory

of the user based on the user’s historical data. This problem is addressed in Chapter 5.

Given the historical data and user’s trajectory in the first part of the current day (e.g.

trajectory in the morning), we predict the user’s full movement by completing the trajectory

for the rest of the day (e.g. prediction of the afternoon trajectory). We emphasize that

the predicted trajectory includes the sequence of future locations, the stay times and the

departure times. Furthermore, the granularity of the predicted trajectory is the same as the

given daily trajectory.

Most of the existing research on human mobility prediction focuses on the prediction of

the next location; a relaxed version of the trajectory prediction problem, which is the pre-

diction of the place visited by the user at a certain time. Others predict a set of locations

visited over a period of time without considering arrival/departure times or the sequence of

the locations. Furthermore, existing methods pick a location only from significant locations

(e.g. home and office) or stay points and the other locations are discarded, even for evalu-

ation. Another important factor is the granularity of the predicted locations. The location

prediction methods usually discretise the spatial data and return a sequence of regions. The

discretization stage uses density-based clustering techniques to detect significant locations,

stay points or points of interest (POIs). Some studies simply transform the trajectories into

cells in the gridded map. While on the one hand discretization reduces the complexity of

the problem and increases the certainty of the results, it also reduces the precision of the

approach due to the coarse granularity of the regions. Another problem in human mobility

is the prediction of departure times in which the lengths of the stays or dwell times are

estimated.

Despite the importance of the knowledge contained in the user’s trajectory, none of the

existing research on human mobility focuses on the prediction of the trajectory that completes

the users currently available daily trajectory. This trajectory includes the sequence of future

locations with time stamps that will be visited by the user for the rest of the day. Specifically,

it consists of spatio-temporal points such as GPS (Global Positioning System) coordinates

with time stamps. The information embedded in the predicted trajectory includes 1) the
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geographic properties of the locations (e.g. latitude and longitude), 2) the sequence of the

predicted locations (i.e. which place is visited first) and 3) the duration of the stays and

departure times.

1.5 Thesis Organization

This chapter mainly discusses the challenges and motivation behind mining human mobility.

The rest of this dissertation is structured as follows. In the next chapter, we provide the

necessary background on different aspects of pervasive signals and human mobility mining.

The main contributions of this dissertation are included in Chapters 3 to 5 as shown in Figure

1.3. In Chapter 3, a novel temporal segmentation method for extracting the transition times

is presented. In Chapter 4, we address the movement graph summarisation by introducing a

new distance preserving graph compression. In Chapter 5, we predict the user’s trajectory

containing the sequence of locations and transition times. Finally, Chapter 6 concludes the

thesis with a summary of the major findings of the research conducted in each of the chapters

and suggests developments of new approaches for future work.
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Chapter 2

Background

The analysis and mining of human mobility have a history spanning more than two centuries.

The first work in this area belongs to Ravenstein et al., in which a set of principal laws that

govern human migration is studied [Ravenstein, 1885]. From then until the advent of smart

devices, the primary source for the study of human movement was surveys. As discussed in

Chapter 1, recent advances in communications, sensors and processors enable the recording

of human mobility through smart devices that generate various pervasive signals.

In this chapter, we provide some background on human mobility mining while focusing

on each aspect separately. For temporal aspects, we discuss typical time series problems

and applications. From the spatial point of view, we consider movement graphs as a way

of representing human mobility and visits. Finally, for spatio-temporal aspects, we present

the background on trajectory mining, including definitions and motivations. In each of the

following three sections, we focus on a single aspect of pervasive data to address a problem

in human mobility mining.

2.1 Time series mining

A time series is a sequence of data points that are typically ordered by time and each data

point represents a value. In other words, time series data is a collection of observations

with the timestamps measured at successive time intervals. Time series are available in

many applications ranging from health to financial applications. Electrocardiograms, elec-

troencephalograms and gene expression data are a few examples of the time series generated

and used in the health domain alone. In addition, time series are widely used in industry,

entertainment and finance [Keogh and Kasetty, 2003].
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Table 2.1: Time series: algorithms, descriptions, and applications

Algorithms Description Sample applications

Query by Content

Given a query time series, and some
similarity/dissimilarity measure, find
the most similar time series in
database DB

-Tool for exploratory data analysis
-Important element of other time
series algorithms

Clustering
Find natural groupings of the time
series in a database under some sim-
ilarity/dissimilarity measure

-DNA analysis (Bioinformatics)
-Discovering similar trends in fi-
nance

Classification
Given an unlabelled time series, as-
sign it to one of two or more prede-
fined classes

-Braincomputer interface based on
EEG signals
-Human activity recognition from
smartphone data

Segmentation (Change
point detection)

Given a time series, partition it into
several internally homogenous sec-
tions.

-Change in electricity consumption
-Change human posture detection

Anomaly Detection
Given a time series find all sections
which contain surprising, interesting,
or unexpected occurrences

-Network intrusion detection sys-
tems
-Anomaly consumption detection

Prediction (Forecast-
ing)

Given a time series, predict the up-
coming values of the time series in
the future.

-Tourism and citizens demand fore-
casting
-Medical surveillance

The ubiquity and wide use of time series have motivated researchers to mine and explore

time series data. As a result, many new algorithms have been proposed for representation and

indexing [Keogh et al., 2001a], similarity measure [Chen et al., 2007], segmentation [Keogh

et al., 2004], classification [Xi et al., 2006], clustering [Liao, 2005] and visualisation of the time

series [Kumar et al., 2005]. Most of these methods usually use a high-level representation

of the data rather than the raw data. Table 2.1 shows the different applications of the time

series in different areas [Fu, 2011].

Smartphones, smartwatches and wearable devices also generate time series in different

ways [Lara and Labrador, 2013]. The embedded sensors are a common source of time se-

ries [Su et al., 2014]. Here, we briefly mention some of the common sensors. The smart devices

come equipped with magnetometers that act as a compass and are able to sense magnetic

fields. Gyroscope sensors measure angular velocity around three axes and determine if the

device is twisted in any direction. Accelerometers also provide three-dimensional time series,

reporting device acceleration in any given linear direction. The closeness of the device to

an outside object is measured by proximity sensors. Barometers, ambient light sensors and

fingerprint sensors are other types of sensors that are usually available in a gadget. In ad-

dition to the sensors, information about the status of the smart device such as connectivity

data or logs can be collected in the form of time series. For example, considering smartphone
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connectivity data, the signal strength can be reported continuously in a time series format.

The number of calls in a day, number of running applications and battery level are other

examples of capturing the status of the smartphone in the form of time series [LiKamWa

et al., 2013].

Although time series do not include spatial information inherently, user mobility can be

inferred from the time series [Sun et al., 2014] [Farrahi and Gatica-Perez, 2008]. Sensors

such as accelerometers and gyroscopes can be used to detect user activity related to their

mobility such as walking or running. If this information is combined with the magnetometer,

the direction of the movement can be inferred. Time series from other sources are also

informative if the relationship between user mobility and those time series are investigated.

For example, we may infer that the user does not call anyone during working hours in the

office. Therefore, history of calls is an appropriate source to detect user location.

2.2 Representation of spatial aspect of mobility

The spatial aspect of a user’s mobility includes locations visited by the user. This information

can be represented in different ways. One common way of representing the spatial aspect of

the user’s mobility is to build a movement graph [Gambs et al., 2012] [Zheng et al., 2010].

In the movement graph, each node represents a location such as a point of interest (POI),

a region covered by a cell tower ID (CID), a region covered by a WiFi access point, suburb,

region defined by geographic coordinates, stay point1 or road intersection. Similarly, each

edge between two nodes can denote different parameters between the nodes such as distances,

traveling times or frequencies of commutes [Giannotti et al., 2011].

The way the movement graph is defined depends on the data and problem. For example,

Zheng et al. create a graph to extract travel sequences in which each node represents a

cluster of stay points and each edge represents the frequency of the commutes between the

nodes [Zheng et al., 2009]. In another piece of research, Hsu et al. use the weighted waypoint

mobility model, in which the directed edges denote probabilities of choosing a destination

based on the users current area. Therefore, the graph not only presents the locations that

the user visits but also gives information about the relationship between the locations [Hsu

et al., 2005]. Figure 2.1 shows an example of a movement graph where each node represents

a stay point and the edges denote the movements between the nodes.

1A stay point can be defined as the location where the user spends a significant amount of time (e.g. one
hour)
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Figure 2.1: Sample movement graph of a user commuting between a shopping centre,
restaurant, home, library and university

The size of the movement graph can be large or small depending on several factors. The

first factor is the granularity of the locations. For example, if we only consider the POIs

as the nodes of the graph, the user path consists of two nodes when the user goes from

home to office. However, when the graph is the road network and the nodes represent the

intersections, the user path would include more nodes. The second factor is the period of

the time from which we collect data from the user. The user visits more places in a year

compared to in a week. The last factor is related the user’s behaviour. Some people visit

more locations than others due to their lifestyle or their jobs. For example, the movement

graph of a taxi driver would be much bigger than that of an employee in a company with

set working hours. The processing and storage of the movement graph are challenging if the

graph is large [Leskovec and Faloutsos, 2006] [Gubichev et al., 2010]. Furthermore, in some

cases, processing becomes costly because the goal is to process not just one user but a group

of users (such as people in a city) to analyse the behaviour of the group.

2.3 User trajectory mining

The mobility of the user can be directly presented by the trajectories that contain both

spatial and temporal aspects. A trajectory is a trace in geographical spaces, represented

by a series of chronologically ordered points, p1 → p2 → ... → pm, where each point

consists of a location and a timestamp p = (loc, t). Thus, < p1, · · · , pi, · · · , pm >=<
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(loc1, t1), · · · , (loci, ti), · · · , (locm, tm) >. The trajectory can be categorised into two groups

based on the information embedded in loc. The first group is geographical trajectories such

as for GPS data, where loc is a geospatial coordinate set identifying the real location of the

user. A GPS trajectory is an example of this group. The second group are the labelled tra-

jectories; e.g. a sequence of Cell IDs of WiFi access points, and loc is the label assigned to a

location. The labelled trajectories can be converted into geographical trajectories providing

the mapping between the labels and the geographical coordinates. In some cases, mapping is

not available due to privacy issues and therefore the trajectory is represented by a sequence

of the labels where the location is unknown [Zheng, 2015].

The advances in location acquisition and mobile computing techniques have made tra-

jectory data that can be captured in different ways increasingly popular. In an open area, a

GPS receiver generates geographical trajectories containing the latitude and longitude of the

location as well as timestamps. Indoor localisation techniques identify the user’s location in

a building. These techniques usually use WiFi signal to localise the user. Some methods use

Bluetooth or RFID signals for localisation. In this case, the proximity to Bluetooth iBeacons

or RFID tags in conjunction with timestamps define the trajectory.

From the connectivity data, the sequence of the WiFi access points connected to the

smartphone can be considered as the labelled trajectory of the user. If the locations of the

access points are known, the trajectory can be converted into a geographical trajectory. In

addition to WiFi networks, the connectivity to the phone network can be used by reporting

the connection to the CIDs. The granularity of the trajectory locations depends on the

area that the access point or CID covers. Another way of capturing the users trajectory

is by monitoring the activities that have logs on the smartphone. For example, the user

transaction records reported on the smartphone when sorted chronologically also indicates

the trajectory because each transaction contains the location where the transaction occurred

and a timestamp. Another example is the check-ins of the user in a location-based social

network that are accessible on smartphones [Song et al., 2010].

Mining the trajectories, which record the movement of a user, we can detect hidden mo-

bility patterns and predict the locations that will be visited by the user. A lot of research

confirms that human trajectories show a high degree of temporal and spatial regularity [Gon-

zalez et al., 2008] [Song et al., 2010]. Consequently, it is possible to generate theories and

models of human mobility behaviour and use them for prediction [Giannotti et al., 2007].
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2.4 Routine and predictability in human mobility

Recent research conducted by Song et al. has shown that humans are typically highly pre-

dictable in their movements, which is a key finding in this area [Song et al., 2010]. Analysing

the location traces of 50,000 mobile phone users, they show that location prediction accuracy

cannot be higher than 93% on average given the location of the users in the previous hour.

A great deal of research attempts to reach this level of predictability [Scellato et al., 2011;

Sadilek and Krumm, 2012; Bayir et al., 2010].

Many researchers have deployed the concept of entropy to measure the predictability in

human behaviour [Pham et al.; McInerney et al., 2013]. In a study called reality mining,

Eagle et al. use the entropy of cell tower connectivity distribution (BTS antennas) to measure

the amount of predictable structure in an individual’s life [Eagle and Pentland, 2006]. The

predictability of the user’s life can be quantified using entropy, which is typically measured

in bits. People who have entropic lives tend to be more variable and harder to predict. In

contrast, low-entropy lives are characterised by strong patterns across all time scales.

Eagle and Pentland extract the structure inherent in daily behaviour by using the prin-

cipal component called eigenbehaviours. In this model, an individual’s behaviour over a day

is approximated by the sum of the eigenbehaviours gained from their historical behaviour.

In fact, the eigenbehaviours are the eigenvectors of the covariance matrix of behaviour data,

and the high-weighted vectors represent a type of repeated behaviours. The approach is

applied to the reality mining dataset containing 100 subjects at MIT over the course of 9

months [Eagle and Pentland, 2009].

Sometimes, routine extraction is used for location and trajectory prediction. For example,

Morzy et al. combine two well-known algorithms, PrefixSpan [Han et al., 2001] and FP-

tree [Han et al., 2000], to discover moving rules of objects for prediction [Morzy, 2007]. Some

methods extract frequent patterns from the historical data of all the users in the database

and provide a global strategy that works for the prediction. The main assumption in these

methods is that people tend to follow a crowd in their movements [Monreale et al., 2009;

Chen et al., 2010; Lei et al., 2011]. For prediction purposes, using the frequent patterns

approach alone does not always work because the user may not follow one of the frequent

patterns.
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2.5 Temporal aspects of human mobility mining

In some cases, only the temporal aspects of human mobility are considered and explored [Sun

et al., 2014] [McInerney et al., 2013]. For example, some researchers focus on the prediction

of departure times in which the lengths of stays or dwell times are estimated [Manweiler

et al., 2013; Chen et al., 2012; Lee and Hou, 2006; Meng et al., 2015; Thajchayapong and

Peha, 2006]. Specifically, the next location that the user goes to is not important but the

time when the user leaves the current location is estimated.

McInerney et al. develop a mobility model that captures the tendency of users to depart

from routine [McInerney et al., 2013]. First, they deploy an entropy estimator based on

Lempel-Ziv to measure instantaneous predictability [Bhattacharya and Das, 1999]. Then, a

Bayesian model is deployed to predict the time at which the user departs from a routine.

They show that departures from routines correlate with mobile application usage; especially

with the applications that provide information about local surroundings (e.g. maps).

2.6 Spatial aspects of human mobility mining

In some research questions about human mobility mining, it is mainly spatial aspects of

mobility that are explored. Ashbrook et al. present a system that automatically clusters

GPS data into significant locations [Ashbrook and Starner, 2003]. In some next location

prediction methods, the time elapsed in the current location is not taken into account and it

is only the next location that the user goes to that is predicted, be it after a short time or a

long time [Gambs et al., 2012; Gidófalvi and Dong, 2012].

Modelling the spatial information of mobility with graphs is common in different analysis

tasks such as location prediction, location inference, traffic anomaly detection, travelling

time estimation and the detection of the most popular route [Zheng, 2015]. The nodes in

these graphs are often intersections or important locations (e.g. home or office), and the

edges are road segments with travelling times as the weights. However, there are different

ways to define the graph. In [Yuan et al., 2012], the nodes are defined as regions and two

nodes are connected with an edge if there is a certain minimum number of commutes between

them. Chen et al. extract the turning points from raw trajectory data and, after clustering,

they construct a graph that identifies the travelling probability to find the most popular

route [Chen et al., 2011]. Zheng et al. construct a bipartite graph including users and

locations for travel recommendations. In the graph, an edge between a user node and a

19



CHAPTER 2. BACKGROUND

location node exists if the user has visited the location [Zheng et al., 2009].

2.7 Spatio-temporal aspects of human mobility mining

Finally, some research explores both spatial and temporal aspects of human mobility [Scellato

et al., 2011]. The problem of human location prediction falls into this area of research

as both time and location are considered. Some location prediction methods predict the

location of the user after a specific time, Δ, which is specified in each study. Δ could be

from 10 minutes [Do and Gatica-Perez, 2014] to a couple of hours [Song et al., 2010] or

even a year [Sadilek and Krumm, 2012]. In some studies, the effect of Δ on performance is

investigated [Scellato et al., 2011; Jeung et al., 2010]. Do et al. changed Δ to predict a set of

locations visited by the user [Do et al., 2015]. Furthermore, any other methods that process

GPS data captured from users’ smartphones are in fact looking at the spatio-temporal aspects

of human mobility [Zheng et al., 2009] [Bastani et al., 2011].

2.8 Conclusion

Due to the vast application of understating human mobility in a variety of domains such

as urban planning [Zheng et al., 2014], traffic management [Kitamura et al., 2000] and the

spread of mobile [Kleinberg, 2007] and biological [Colizza et al., 2007] viruses, it has received

considerable attention [Gonzalez et al., 2008]. Mining mobility patterns also benefits the

users of mobile devices as it enables the mobile devices to offer context-aware assistance and

information [Zhuang et al., 2011].

Mining human mobility requires dealing with diverse types of data, which results in

addressing a wide range of problems ranging from segmentation to prediction. This chapter

provides the necessary background on human mobility mining and pervasive signals. In a

similar structure to the thesis, we discuss human mobility mining based on three aspects:

temporal, spatial, spatio-temporal. We start with different types of pervasive signals and we

then discuss human mobility problems while dealing with each type of data.
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Chapter 3

Extracting transition times in daily

activities

3.1 Introduction

This chapter of the thesis is concerned with finding transition times when one changes his/her

activity during a specific period of time. The activity could be a fine-grained activity (e.g.,

sitting, standing or running) or a coarse-grained activity, which is an aggregate of low-

level activities and has a more complex semantic (e.g., shopping, working at the office or

commuting). In this chapter, we define fine-grained activities as low-level activities, and

coarse-grained activities as high-level activities. Human daily mobility pattern is related to

high-level activities because the user’s location is affected by the user’s high-level activities.

Studying the transition times of human daily activities is important not only for un-

derstanding the mobility patterns but also for providing context-aware services in pervasive

systems [Roy et al., 2010]. For example, a user may want to get the news whenever he arrives

home or before commuting to work. Furthermore, extracting transition times from daily ac-

tivities is very useful in urban computing because it shows when people usually change their

locations during a day. City planners use this information to improve transportation, urban

planning, and environment [Zheng et al., 2014].

In this chapter, we present an information gain-based temporal segmentation method

applicable to a wide range of pervasive data. Temporal segmentation approaches split time

series into several homogeneous and non-overlapping intervals (segments). The output of

applying temporal segmentation to the human activity data is a set of transition times (See
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Figure 3.1: Temporal Segmentation with m time series [c1 . . . cm] and 3 segments. t1 and
t2 are the transition times and [t0-t1], [t1-t2] and [t2-t3] are the segments.

Fig. 3.1).

To introduce our approach, Information Gain-based Temporal Segmentation (IGTS), let

us consider smartphone connectivity data. Connectivity data specifies that the smartphone is

connected to which access point or cell tower at each time. In this case, the results illustrate

when users usually change their locations during a day. We treat the mean values of the time

series (i.e. connectivity to the Cell Tower IDs) in each segment as a random variable and

thus each segment has an entropy. Based on information theory, entropy reflects uncertainty.

Correspondingly, in our case, entropy refers to the predictability of user locations. The IGTS

algorithm finds low-entropy segments that means the users’ locations are ‘predictable’. As

information gain gives the expected reduction in entropy after the segmentation, it is used as

an effective cost function for finding coherent segments. As a result, the best segmentation

is the one with the highest information gain value.

To find the best segmentation with the highest information gain, an optimization method

should be deployed. We propose two approaches for optimization: TopDown and Dynamic

Programming (DP). TopDown optimization is faster while it cannot guarantee to provide the

global optima. On the other hand, DP optimization results in the global optima. In order to

apply DP to our approach, the cost function is modified otherwise DP and the cost function

are not compatible. Both TopDown and dynamic programming approaches are useful for

specific applications due to the trade-off between the accuracy and running time.

In the next section, related work in temporal segmentation is discussed. We formally state

the problem in Section 3.3. In Section 3.4, we present IGTS as a new temporal segmentation

method that can be used for human activity data. The experiment results of our algorithm

are reported in Section 3.5. Finally, Section 3.6 concludes our work.
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3.2 Related Work

In this section, we briefly review the related work on temporal segmentation, the estimation

of the number of segments, and transitions times in human activities.

3.2.1 Temporal segmentation

Time series segmentation approaches can be divided into three main groups: dynamic pro-

gramming, heuristic, and probabilistic approaches [Panagiotou, 2015]. Dynamic Program-

ming (DP) research dates back to 1950s and it has been used in many different contexts such

as waveforms [Jackson et al., 2005] [Pavlidis and Horowitz, 1974], DNA sequence [Braun

et al., 2000], and piecewise linear segmentation [Bellman, 1961]. The main idea of dynamic

programming is that a complex problem is divided into small problems that are solved first.

The results of the subproblems are saved into a table of results and used to solve the main

problem. In temporal segmentation problem, dynamic programming is used as an optimiza-

tion method in conjunction with a cost function. The basic dynamic programming method for

segmentation is called k-segmentation that minimizes the variance inside the segments [Him-

berg et al., 2001] [Hiisila, 2007]. Kehagias et al. used DP algorithm for minimization of

Hubert’s segmentation cost to segment hydrological and environmental time series [Kehagias

et al., 2006]. Guo et al. deploy dynamic programming and Schwarz’s Bayesian information

criterion for segmentation [Guo et al., 2015]. However, not all types of the cost functions are

compatible with dynamic programming [Gionis and Mannila, 2005]. The total complexity

of k-segmentation is O(kn3) that consists of the complexity of the optimization approach

(i.e. DP) and the cost function (i.e. variance). However, using some reprocessing steps, it

is improved to O(kn2) [Gionis and Mannila, 2005]. Nevertheless, it is still impossible to use

k-segmentation for large datasets.

Heuristic approaches can be divided into three groups: sliding window, TopDown, and

BottomUp approaches [Keogh and Kasetty, 2003] [Gensler et al., 2013]. In sliding window

approaches, a window slides over the time series and a new segment is started when a specified

error criterion is met. Online change-point detection approaches are similar to sliding window

approaches but the window size is not fixed. These methods only consider local boundaries

and thus are not able to provide a global model. Specifically, the transition times are chosen

based on the whole time series not just a window of the time series. Although online methods

do not need to estimate k, other parameters such as thresholds should be set that indirectly

affects k [Banos et al., 2014]. If the thresholds for the change is set too low, the number
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of segments becomes too many. On the other hand, a high threshold results in a small

number of segments. TopDown approaches start with one segment. Then, the time series

is recursively partitioned until a specified error criterion is met in each step [Cheng et al.,

2015; Yuan et al., 2013]. Cheng et al. also apply TopDown algorithm as an optimization

method and use mutual information as a cost function for co-clustering on a co-occurrence

matrix. They consider the table as a joint probability distribution of two discrete random

variables for clustering in text analysis domain [Cheng et al., 2015]. In contrast to TopDown

approaches, BottomUp approaches start with the maximum number of segments and the

segments are merged until a specified error criterion is met.

Probabilistic-based segmentation algorithms consider the distribution of the data and

transition times. For example, Bayesian techniques assume that the data originates from a

Bayesian distribution and find the number and location of segments [Adams and MacKay,

2007]. Another example of probabilistic-based approaches is Hidden Markov Models (HMM)

that assigns each segment to a state in the HMM. A change-point is alarmed when switching

from one state to another [Mori et al., 2005]. Kawahara et al. deploy the ratio of prob-

ability densities instead of the probability densities themselves [Kawahara and Sugiyama,

2012]. Probabilistic methods can lead to acceptable results if the predefined model is cor-

rect. Matteson et al. do not make any assumptions about the distribution[Matteson and

James, 2014]. The non-parametric estimation of the number of change-points is based on

the divisive hierarchical algorithm included in the ecp package in the R statistical software.

This uses divergence measure to detect any distribution change within an independent se-

quence. They deploy hierarchical significance testing to determine the statistical significance

of change-points used as a stopping criterion for the iterative estimation procedure. Gener-

ally, Probabilistic-based methods require high computational time [Panagiotou, 2015].

There have also been proposed other methods in addition to the three aforementioned

main categories. For example, Keogh et al. use a hybrid approach called SWAB (Sliding

Window And BottomUp) to combine the advantages of Sliding Window and BottomUp

algorithms [Keogh et al., 2001b]. Some approaches combine gradient decent and TopDown

algorithm to escape local optima [Himberg et al., 2001]. The evolutionary method proposed

by Chung et al. searches for a set of pattern templates which is determined by the user [Chung

et al., 2002]. Yu et al. apply a cost function that depends on a covariance matrix using a

low-complexity Pruned Exact Linear Time (PELT) method [Yu et al., 2014].

Similar to our method, E-Clustering introduced in [Yuan et al., 2013] applies the concept

of entropy and information gain for road traffic segmentation across a day to find when the
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traffic changes. However, our proposed method is different in several aspects. First, the way

we use entropy is different because we calculate the entropy considering the distribution of

the average of the time series in each segment. On the other hand, in [Yuan et al., 2013], the

entropy is calculated considering the distribution of members of the clusters extracted from

the previous stage (i.e. V-Clustering). Second, E-clustering is not applicable to continuous

time series. Third, E-clustering is not able to handle positively correlated data. Specifically,

if the clusters’ members reduce by a ratio at the same time, the entropy does not change

and thus it is not possible to use the entropy calculation proposed by E-Clustering for the

segmentation of heterogeneous activity data. On the other hand, our method is modified to

handle both negatively and positively correlated time series.

3.2.2 k estimation

Estimating the number of segments/clusters, k, is also a challenging problem in segmenta-

tion/clustering. Typically, five common approaches are: cross-validation [Smyth, 2000] [Smyth,

1996], penalized likelihood estimation, permutation tests [Vasko and Toivonen, 2002], re-

sampling [Roth et al., 2002], and knee point detection in evaluation metric graph [Salvador

and Chan]. Probabilistic approaches use penalized likelihood estimation such as Bayesian

Information Criterion (BIC) [Fraley and Raftery, 1998], Akaike Information Criterion (AIC),

Minimum Message Length (MML) [Baxter and Oliver, 1996] and Minimum Description

Length (MDL) [Hansen and Yu, 2001]. When there is an evaluation metric for the num-

ber of segments, the knee point in “number of clusters vs. evaluation metric” graph reveals

k. In our case, information gain of each split performs as the evaluation metric. Therefore,

the knee point reveals the best k because with the larger k there is no sharp increase in

information gain. Various methods are used to find the knee point of the graph such as the

largest magnitude difference between two points, the first data point with the second deriva-

tive above some threshold value [Foss and Zäıane, 2002], and the data point with the largest

second derivative [Scott Harris et al., 2000]. While these methods consider local trends in

the graph, other methods such as L-method [Salvador and Chan] try to find a point on the

curve that is farthest from lines fitted to the entire curve.

3.3 Problem Definition

The heterogeneous time series in this chapter are sequencesX, which consist of n observations

over various m-dimensional heterogeneous channels, X = 〈x1, · · · ,xi, · · · ,xn〉, where xi ∈
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R
m denotes the i-th observation over m different channels. From the matrix perspective,

X denotes an m × n matrix where xji denotes the i-th observation over j-th time series

(xji > 0). In this matrix, column i is xi and presents i-th observation while row j is cj and

presents all observations over the j-th time series.

The segmentation 〈s0, ..., sk〉 of the data set X consists of k non-overlapping segments sj

by k transition times t0 < · · · < tk < tk+1, where t0 = 1 and tk+1 = n. Each observation

belongs to exactly one continuous segment sj = 〈xtj , ...,xtj+1−1〉 and T = 〈t0, ..., tk〉 is the

set of transition times. L : Nk → R is the cost function and the problem is finding a set of

transition times that maximizes the cost function.

From the application point of view, we deploy temporal segmentation to detect transition

times in human activities. In other words, temporal segmentation algorithms help us to

capture human activity from multivariate time series. We aim to deal with the following

problem:

Problem: Given time series data from multiple heterogeneous channels, how to detect times

when the user changes his activities (e.g from “walking” to “running” or from “dining” to

“commuting”).

3.4 Temporal Segmentation based on Information Gain (IGTS)

In this section, we propose the Information Gain-based Temporal Segmentation (IGTS)

method. After providing background on the concept of entropy, we introduce a novel in-

formation gain-based cost function. Then, we propose two optimization strategies to find the

best set of transition times, and finally, we discuss a heuristic algorithm to find the best k.

3.4.1 Background: High/Low entropy variables

In information theory, Shannon entropy (H) measures the variance of a Probability Distri-

bution Function (PDF) to show the information about the quantity of interests. When the

variance of a PDF is high, little information can be inferred about the quantity of interests.

H = −
m∑
i=1

p(i) log p(i) (3.1)

where p(i) denotes the probability of ith outcome andH denotes the entropy of the probability

distribution.

Many researchers have deployed the concept of entropy to measure the predictability in
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Figure 3.2: Segmentation of a day based on the user connectivity data. In this segmen-
tation, the time intervals are [12am, 7am], [7am, 9am], [9am, 5pm], and [5pm, 12am].
Between 7am and 5pm, the user’s location is less predictable.

human’s behavior [Pham et al.] [McInerney et al., 2013]. Eagle et al. use the entropy of the

cell towers (BTS antennas) connectivity distribution to measure the amount of predictable

structure in an individual’s life [Eagle and Pentland, 2006]. The predictability of the user’s

life can be quantified using entropy which is typically measured in bits. People who have

entropic lives tend to be more variable and harder to predict. In contrast, low-entropy lives

are characterized by strong patterns across all time scales.

The connectivity of the smartphone to the cell towers of the phone network has a PDF

and entropy. Fig. 3.2 shows access duration distributions for four intervals for a specific

user. The user has a high-entropy access duration between 7 am and 5 pm because the

smartphone can be connected to all of the CIDs with the same probability. Therefore, it is

hard to predict to which cell tower ID (CID) the user’s phone is connected. In contrast, the

access distribution to the CIDs has low entropy during midnight because the user is likely to

connect to the dominant CID in this time period.

The main idea of the proposed method is that we try to find the segments with the lowest

entropy so the user locations are predictable within each segment. Assume that the input

time series is the CID connectivity data. In this case, each segment has an access distribution

(as shown in Fig. 3.2). After calculating information gain for each segmentation, we find the

best one with the highest information gain value. In fact, information gain performs as a cost

function in this method. For the optimization method, we present two strategies that have

their own pros and cons. Afterward, we propose a formula to identify the best candidate

for the number of segments, k. Finally, we show that dealing with heterogeneous data, the

positive correlation between the time series should be removed first.
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Figure 3.3: (a) Average access duration to the CIDs for a sample user (b) Each time
interval has its own distribution and S presents the total distribution over a day.

3.4.2 Information gain-based cost function

Given a segmentation, we propose a cost function L by deploying the concept of Information

Gain, which is the expected reduction in entropy caused by splitting the time series for a

given segmentation [Shannon and Weaver, 2015]. Specifically, L is the expected reduction in

the entropy caused by splitting S further, and is defined as follows:

L = H(S)−
k∑

i=0

|si|
|S|H(si), (3.2)

where k is the number of segments and |si| is the length of the i-th segment. S is the entire

time series as a segment and H(S) is the entropy of the whole time series. In our example,

si is the CID access distribution over the ith segment (see Fig. 3.3).

To calculate the entropy of the segments, the CID access distributions are considered as

random variables. Therefore, in Eq. 3.1, p(i) is the probability that user’s smartphone is

connected to the ith CID. The following equation is used to calculate the entropy of the jth

segment:

H(sj) = −
m∑
i=1

pji log pji, (3.3)

pji =

∑tj
q=tj−1

ciq∑m
p=1

∑tj
q=tj−1

cpq
(3.4)
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where m denotes the number of CIDs (or time series), pij is the probability that the smart-

phone is connected to the ith CID in the jth segment, and ciq denotes the qth observation of

the ith channel (CID).

To speed up the algorithm, we take advantage of the cumulative sum (or integral function)

of ci. In this case, first, the cumulative sum of all the time series should be computed to be

used in each entropy calculation.

pji =

∑tj
q=tj−1

ciq∑m
p=1

∑tj
q=tj−1

cpq
=

Fi(tj)− Fi(tj−1)∑m
p=1 Fp(tj)− Fp(tj−1)

, (3.5)

Fi(t) =
t∑

j=1

cij , (3.6)

Fi is the cumulative sum of ci. This modification makes the algorithm much faster because

there is no need to sum up the observations for each entropy calculation. Specifically, the

complexity of calculating cost function L is reduced from O(mn) to O(m).

3.4.3 Optimization method

In addition to defining a cost function, an optimization method is needed to find the best

segmentation, which is a NP-hard problem [Kleinberg et al., 2004] [Gionis et al., 2004]. Con-

sidering the complexity of full search, it is clearly impossible to be used for real-world data.

We propose two optimization methods: TopDown and dynamic programming. TopDown

optimization is faster while it cannot guarantee to provide the global optima. On the other

hand, dynamic programming optimization is able to detect global optima but in a slower

manner. As there is a trade-off between time and accuracy, either of the methods could be

useful in different applications.

TopDown based optimization

A well-known and fast optimization method is the TopDown or binary-split approach that

runs in a hierarchical and greedy manner. This is initialized by treating all observations as

one segment. Then, in each step, one transition time is added without making any changes

in the transition times it has once set. The split that reduces the total cost most is chosen in

each step. The pseudo code of the recursive implementation is shown in Algorithm 3.1. The

IG-Seg(S, k) returns the transition times by adding one to the output of IG-Seg(S, k − 1).
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TopDown optimization is fast with the complexity of O(nk). However, it may result in local

optima.

Algorithm 3.1: IGTS and TopDown optimization

1 FUNCTION: IGTS-TopDown(S,k) /* TopDown optimization; recursive

implementation */

Input: S, k
2 −S:Set of m time series with the length of n
3 −k:Number of transition times
Output: T

4 −T :Set of transition times

5 if k == 0 then
6 return φ; /* terminating case of the recursive function */

7 Tk−1 = IGTS-TopDown(S,k-1);
8 IGMax = 0; tk = 0;
9 for i = 1 to n do

10 if IG(S, Tk−1 ∪ i) >= IGMax then
11 IGMax = IG(S, Tk−1 ∪ i); /* IG(S,T) calculates the information gain

of the segmentation */

12 tk = i; /* tk is the kth transition time */

13 T = Tk−1 ∪ tk;
14 return T ;

Dynamic programming based optimization

Dynamic programming is a popular optimization strategy in the field of temporal segmenta-

tion [Hiisila, 2007] [Guo et al., 2015]. The main idea of dynamic programming is to divide a

complex problem into small problems that are solved first and their results are saved to solve

the whole problem. However, information gain is not compatible with dynamic programming

because it is not a separable cost function for each segment.

Here, we define a variant version of L to fit the dynamic programming framework:

Max(L) = Max(H(S)−
k∑

i=0

|si|
|S|H(si)) = H(S)−Min(

k∑
i=0

|si|
|S|H(si)) (3.7)

This means that instead of maximizing the information gain, we minimize
∑k

i=0
|si|
|S|H(si)

called weighted entropy (WH) because H(S) is a constant and it is the same for all segmen-
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Figure 3.4: To compute WH(1, i, h), the best possible point for the last change-point, j,
is investigated. The best j is the one that maximizes WH(1, j, h− 1) +WH(j + 1, i, 1).

tation. Now, we can apply dynamic programming optimization to find a segmentation with

minimum weighted entropy.

Dynamic programming-based IGTS is shown in Algorithm 3.2 and Fig. 3.4. WH(j, i, h) in-

dicates minimum weighted entropy with h segments when the input time series is 〈xj , · · · ,xi〉.
Clearly, we are looking for WH(1, n, k). In the first part of the algorithm, WH(j, i, 1) is cal-

culated for all 1 � j < i � n. In the second part, WH(1, i, h) is calculated recursively for

all 1 < i � n and 1 < h � k. To find WH(1, i, h), all possible situations for the (h − 1)-th

transition time are examined and the one that minimizes the weighted entropy is selected.

The computational complexity of the optimization method based on dynamic programming

is of order O(kn2).

3.4.4 k estimation

Estimating the number of the clusters/segments is still an open problem in clustering/segmentation.

Some methods ignore providing a framework for identifying k although k is usually unknown

before segmentation in real-world applications. For example, in routine discovery problems,

k could be different from one user to another or from one day to another and depends on the

mobility pattern of the user. In this section, we discuss how to choose the best k in a given

range.

In our case, we use information gain as an evaluation metric and the knee point in number

of segments vs. evaluation metric graph reveals k. The knee point, which is the point of

maximum curvature of the graph, reveals the best k because with the larger k there is no

remarkable increase in information gain.

Depending on the application, various methods can be used to find the knee point of the

graph such as the largest magnitude difference between two points, the first data point with

the second derivative above some threshold value [Foss and Zäıane, 2002], and the data point

31



CHAPTER 3. EXTRACTING TRANSITION TIMES IN DAILY ACTIVITIES

Algorithm 3.2: IGTS and Dynamic Programming optimization

1 FUNCTION: IGTS-DP(S,k)
Input: S, k

2 −S:Set of m time series with the length of n
3 −k: Number of transition times
Output: T

4 −T :Set of transition times

/* First part */

5 for i = 1 to n do
6 for j = 1 to i do

7 WH(j, i, 1) = |s1|
|S| H(s1) =

i−j
n H(s1);

/* Second part */

8 for h = 2 to k do
9 for i = 1 to n do

10 WH(1, i, h) = WH(1, i, h− 1);
11 for j = 1 to i− 1 do
12 if WH(1, j, h− 1) +WH(j + 1, i, 1) � WH(1, i, h) then
13 WH(1, i, h) = WH(1, j, h− 1) +WH(j + 1, i, 1);
14 P (i, h) = j;

/* The position of the last transition time is stored in

P (i, h). */

15 T = φ;
16 NextT = n;
17 for h=0 to k-2 do
18 NextT = P (NextT, k − h);
19 T = T ∪NextT ;

20 return T ;

32



CHAPTER 3. EXTRACTING TRANSITION TIMES IN DAILY ACTIVITIES

with the largest second derivative [Scott Harris et al., 2000]. These methods consider local

trends in the graph. On the other hand, non-local methods are more complex and analyse

the entire graph. For example, L-method [Salvador and Chan] finds a point on the curve

that is farthest from lines fitted to the entire curve. Local methods work well for smooth and

monotonically increasing or decreasing curves. Here, we first prove that “number of segments

vs. information gain” is a monotonic and non-decreasing graph. Then, we propose a local

method to determine the optimal k.

Lemma: Information gain is non-negative.

Proof: Proof is based on Jensen’s inequality [Peajcariaac and Tong, 1992] and details can

be found here1. �
Theorem: Maximum L is a monotonic non-decreasing function of k.

Lk � Lk+1 (3.8)

where Lk denotes the maximum information gain with k segments.

Proof: Let Tk = (t1, t2, . . . , tk), 0 < t1 < · · · < tk < n be the transition times of the

segmentation with maximum information gain consisting of k + 1 segments and Lk be the

information gain of this segmentation. We prove that Tk+1 = (t1, t2, . . . , tk, tk+1), tk < tk+1 <

n results in higher information gain than Tk. Based on Tk+1 and Tk, we have

Sk
i =

⎧⎪⎪⎨
⎪⎪⎩

Sk+1
i , 1 ≤ i ≤ k

Sk+1
i ∪ Sk+1

i+1 , i = k + 1

(3.9)

where Sk
i is the i-th segment when the transition times are Tk. In fact, we add one transition

time and split the last segment into two segments.

In this proof, we show that the segmentation caused by Tk+1 has more information gain

than segmentation caused by Tk. Consequently, the best segmentation with k + 1 transition

1https://www.cs.cmu.edu/ ggordon/780-fall07/fall06/homework/15780f06-hw4sol.pdf
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times has more information gain than the best segmentation with k transition times.

Lk+1 − Lk ≥(
H(S)−

k+2∑
i=1

|Sk+1
i |
|S| H(Sk+1

i )

)
−

(
H(S)−

k+1∑
i=1

|Sk
i |
|S| H(Sk

i )

)
=

− |S
k+1
k+1 |
|S| H(Sk+1

k+1)−
|Sk+1

k+2 |
|S| H(Sk+1

k+2) +
|Sk

k+1|
|S| H(Sk

k+1) =

|Sk
k+1|
|S|

(
H(Sk

k+1)−
|Sk+1

k+1 |
|Sk

k+1|
H(Sk+1

k+1)−
|Sk+1

k+2 |
|Sk

k+1|
H(Sk+1

k+2)

)
=

|Sk
k+1|
|S| IGtk ≥ 0

(3.10)

where IGtk is the information gain caused by adding tk+1. This inequality results from the

lemma and information gain formula.�
The above theorem clarifies that there is an increase in information gain with each split.

Therefore, the number of segments vs. information gain is a monotonic, non-decreasing and

local knee point detection approaches can be applied to our problem. In our study, we found

that none of the previous knee point detection methods gives a satisfactory result with our

algorithm. We define the ratio ρ between the current and next increase in L to reveal the

relationship between the number of segments and L:

ρi =
Li − Li−1

Li+1 − Li
(3.11)

The best k among the given range is the one that has the largest ρ because the deviation

of the trend has a sharp decrease. Fig. 3.5(b) shows an experiment on Human Activity

Dataset (HAD), illustrating the effectiveness of ρ. The maximum value of ρ shows the best

k is 5, which is equivalent to ground truth. In the experiments, we show that this formula

works significantly better than other knee point detection formulas.

The proposed method can be applied to high-level activities and low-level activities.

Therefore, to extract transition times without any information about k, we should provide

a range in the search space to inform the model which one we are looking for. For example,

if we want to find transitions in one day of data, we should specify that we are interested

in transitions in high-level activities or transitions in low-level activities. We apply IGTS-

TopDown to a day of data from Daily Life Routine Dataset that contains both high-level and

low-level activity labels. The range of k is set between 1 and 150. Eq. 3.11 identifies the ρ.
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Figure 3.5: (a) L from segmentation for different k. The actual k is 5 in this example.
(b) The k with the maximum ρ is selected as the number of segments.

Figure 3.6: There are two peaks around the two red lines that shows the number of high-
and low- level activities.
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Figure 3.7: (a) Two time series with positive correlation. Transition times cannot be
detected by simply applying information gain as a cost function because [t0, t2], [t0, t1],
and [t1, t2] have the same distribution. (b) Two complement time series are added. Thus,
the time series are not positively correlated any more.

The high value of ρ shows a sharp increase in information gain that reveals the appropriate

candidate for k. In this dataset, the number of high-level activities and low-level activities

are 9 and 108 respectively. Fig. 3.6 shows the ρ for each k. The red lines are ground truth and

knee point formula is calculated for each split. The proposed method for finding the number

of segments works because there are two peaks around the actual number of segments for

both high- and low- level activities.

3.4.5 Low-level activity and heterogeneous data

Here, we discuss how IGTS works with heterogeneous and positively correlated data sources,

e.g. the time series from various sensor data. A positive correlation between two time series

exists when by decreasing one of them, the other one also decreases and vice versa. The

time series of CID access distributions do not have positive correlation because when the

access to one CID increases in an interval, the access to the others decreases. On the other

hand, the channels of sensor data, such as 3-axial linear acceleration and angular velocity,

are highly correlated. Fig. 3.7(a) illustrates two time series with positive correlation, where

the distribution is the same in [t0, t1] and [t1, t2]. Simple information theory-based temporal

segmentation methods are unable to detect the transition times in this case because the

entropy is constant in all the segments. Thus, possible transition points could not be identified

by using information gain as a cost function.

Assume X is an m× n matrix that presents the input time series where xij denotes the

j-th observation over i-th time series (channel). ci is the i-th row and denotes all observations
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over the i-th channel. To handle data heterogeneity problem, X is transformed as follows:

• Normalize ci ∈ X with
∑n

j=1(xij −minci):

ci ← ci −minci∑n
j=1(xij −minci)

, (3.12)

where minci is the minimum of ci. This will remove the scale effects in heterogeneous

data and give all the observations in different channels the equal priority. Without

normalization, the algorithm relies only on the certain channels and leaves the other

time series.

• Remove positive correlation by adding the negative value to the maximum value of

each time series. Equation 3.13 shows the new matrix.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 . . . x1n
...

...

xm1 . . . xmn

maxc1 − x11 . . . maxc1 − x1n
...

...

maxcm − xm1 . . . maxcm − xmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.13)

where maxci denotes the maximum of ci. After this stage, the number of rows is

doubled and the input matrix becomes a 2m × n matrix. The time series are not

positively correlated anymore because when one time series falls, the corresponding

negative one rises. Consequently, information theory metrics, e.g. information gain,

can effectively distinguish the transition times.

Fig. 3.7(b) illustrates X transformed from time series in Fig. 3.7(a). Experiment results

show that considering the negative time series not only makes the method more generic but

also improves the accuracy. Furthermore, without this transformation, it is not possible to

analyse a single time series because the entropy is always zero for one channel.

3.5 Experiments and Evaluation

In this section, we examine the proposed IGTS method on a variety of different data sources,

including sensor data [Zhang and Sawchuk, 2012], device-free RFID data [Yao et al., 2015],
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Table 3.1: Semantic of the datasets

Dataset Meaning of a
transition time

Meaning of a
segment

Example of segments

Device-Free pos-
ture recognition
[Yao et al., 2015]

change in the pos-
ture

a posture is per-
formed

standing freely, standing
straightly, sitting, sitting leaning
back, sitting leaning left, sitting
leaning right, sitting leaning
forward, lying in bed, etc

USC Human Activ-
ity Dataset [Zhang
and Sawchuk, 2012]

change in the low-
level activity

a low-level activity
is performed

walking forward, walking up-
stairs, walking downstairs, run-
ning forward, jumping, sitting,
standing, sleeping, etc

Movement
detection by
Bluetooth iBeacons

movement of the
device collecting
Bluetooth RSSI

The device is still different locations of the device

Daily Life Routine
Dataset [Huynh
et al., 2008]

change in the high-
level activity

a high-level activity
is performed

commuting, office work, lunch,
dinner

Device analyser
connectivity data
[Wagner et al.,
2014]

usual change in lo-
cation during a day

The smartphone is
connected to a cer-
tain set of CIDs

working hours when the smart-
phone is connected to the CIDs
near the workplace

connectivity data [Wagner et al., 2014], and mobility data [Huynh et al., 2008]. The

proposed method has no limitation on activities. In the experiment, our main focus is to

demonstrate the generality of the method on various datasets collected with different types of

devices and for various purposes. Table 3.1 shows the semantics of each dataset. We compare

IGTS with different segmentation methods. All the datasets contain multivariate time series

either from correlated or from uncorrelated channels. USC-HAD [Zhang and Sawchuk, 2012]

and Device Analyser [Wagner et al., 2014] are heterogeneous. USC-HAD consists of time

series from accelerometer and gyroscope, and device analyser consists of different connectivity

data, such as Cell Tower IDs and Wi-Fi access points. We apply the proposed method to an

unlabelled connectivity dataset and measure the inner cluster distance. Finally, we show the

performance of the proposed method for finding the actual k.

3.5.1 Datasets

Synthetic data (Syn): It contains 2-4 time series with the length of 420. The transition

times are selected randomly with the uniform distribution. The value of the time series in

each segment is set to a random integer between 1 to 6. To make the data more realistic,
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we add white Gaussian noise with the signal to noise ratio (SNR) of 10dB. In this case, the

transition times can hardly be recognized by eye. Fig. 3.8(b) illustrates a sample synthetic

time series.

Device-free posture recognition by RFID (RFID): The data is collected from an

array of 9 passive RFID tags to recognize 12 different human postures [Yao et al., 2015].

Each posture is performed by 6 subjects for 60 seconds. The data collection is device-free.

The tags are placed on a wall and the subject performs predefined postures between the wall

and the RFID antenna. The corresponding sequence of RSSI is collected at the sampling

rate of 2Hz.

USC Human Activity Dataset (HAD): The dataset includes the most basic and

common low-level human activities in daily life from a diverse group of human subjects [Zhang

and Sawchuk, 2012]. In total, it contains 12 activities collected from 14 subjects while each

consists of 1000 to 10000 samples. The 12 human activities include: walk forward, walk

left, walk right, go upstairs, go downstairs, run forward, jump up and down, sit and fidget,

stand, sleep, elevator up, and elevator down. To make the data more real, each subject was

asked to perform 5 trials for each activity on different days. The data is captured by a 3-axis

accelerometer and a 3-axis gyroscope, sampled at 100 Hz (See Fig. 3.8(b)).

Movement detection by Bluetooth iBeacons (iBeacon): iBeacon hardware trans-

mitters are a class of Bluetooth low energy devices that broadcast their locations to nearby

portable electronic devices such as smartphones and tablets. We use a smartphone to collect

the data receiving signal strength indicator (RSSI) of four Bluetooth iBeacons. During the

data collection, a smartphone with fixed position starts collecting RSSI of the iBeacons. Af-

ter 1-2 minutes, the position of the smartphone is changed within the experiment area and

the change time is recorded. Over the experiment, 5326 RSSI samples are collected from

iBeacons at the frequency of 2.5 Hz. We apply temporal segmentation to this dataset to find

the transition times when the position of the smartphone is changed.

Daily Life Routine Dataset: This dataset contains not only 34 daily low-level activity

labels but also 4 high-level routine class annotations such as commuting, lunch, office work,

and dinner [Huynh et al., 2008]. Two wearable accelerometer-based sensors were placed at

the dominant wrist and in the right pocket of a single male subject as he was performing his

everyday activities. The accelerometer sampling rate data is 100Hz, and the features (i.e.,

mean and variance of acceleration of each axis) are computed over a 0.4-second window.

Smartphone logs from Device Analyser: Device Analyser gathers data about run-

ning background processes, wireless connectivity, GSM communication, and some system
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Figure 3.8: (a) Sample multivariate time series from USC Human Activity dataset (b)
Sample synthetic time series

status and parameters. For privacy purposes, MAC addresses, WiFi SSIDs, CIDs, and other

forms of identification are hashed. Therefore, there is no ground truth or information about

the subjects and semantic of the location [Wagner et al., 2014]. In our experiments, the time

series are CIDs access distributions. In our experiment, the proposed algorithm is applied to

27789 days of CID connectivity data that is collected from 271 devices. Each device has at

least two weeks of data.

3.5.2 Labelled low-level activity datasets

We evaluate different versions of our algorithm on low-level activity datasets while k is known.

Furthermore, we examine the proposed k estimation method.

Evaluation metrics and experiment setting

The detected transition times are evaluated from two aspects: i) FN (False Negative) is the

number of missed transition times ii) closeness of the detected transition times to the actual

transition times. For the first aspect, the precision of the detection is reported. A detected

transition time is considered as true positive if the closest actual transition time is closer

than 10% of the length of the total time series. For the second aspect, Root Mean Square

Error (RMSE) is calculated among the true positive detected transition times. Thus, it is

always below 10%.

For k estimation method, the output of our proposed method is compared with the actual

k. For each k, we run the algorithm 40 times on different synthetic time series. The results

include confusion matrix as well as the accuracy over 320 runs.
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The experiments run on a desktop PC with the configuration of Intel(R) Core i7, 3.4GHZ

and 8G RAM.

Baseline and proposed methods

For comparison, we use k-segmentation, which is a foundation of segmentation algorithms in

many works [Hiisila, 2007]. It is based on dynamic programming and finds the segmentation

with the minimum variance inside the segments. The second baseline is a state-of-the-art

method proposed by Matteson et al. in which the positions of the change-points are estimated

based on hierarchical clustering and measuring the differences in multivariate distributions

[Matteson and James, 2014]. This method is included in the ecp package in the R statistical

software.

We evaluate the three versions of our algorithm. IGTS-TopDown and IGTS-DP are

presented in Algorithm 3.1 and Algorithm 3.2, respectively. We also evaluate IG-Based,

which is a simple version of our algorithm without normalization, transformation, and speed-

up stages. The difference between IGTS-TopDown and IG-based is that in IGTS-TopDown,

the time series are doubled and normalized. Furthermore, the cumulative sum or integral of

the time series is used to speed up the algorithm. IG-Based is similar to E-Clustering [Yuan

et al., 2013] in terms of the cost function and optimization method. However, E-Clustering

is not applicable to continue and multivariate time series because it takes advantage of

information gain in a different way.

For k estimation method, we find 10 transition times and the corresponding information

gains. Then, we compare our method with 4 knee point detection formulas [Foss and Zäıane,

2002], including:

• Li − Li−1: difference between magnitudes;

• 2Li − Li−1 − Li+1: second derivative;

• Li
Li−1

− Li+1

Li
: deference between the ratios;

• Li−Li−1

Li−1
: relative difference between magnitudes.

Results

Table 3.2 shows the experiment results for 4 datasets including one synthetic and three real-

world datasets. The dataset name, the number of segments, the number of time series, and the

41



CHAPTER 3. EXTRACTING TRANSITION TIMES IN DAILY ACTIVITIES

average length of the time series are specified in each row. The performance and the running

time are the average values over 20 runs. The only exception is k-segmentation on USC-

HAD in which the number of runs was reduced to four because it was too time-consuming.

In experiments with the precision value less than %50, the MSE is not mentioned because it

is non-meaningful.

Four issues can be inferred from the results. First, IGTS methods are faster than the

baselines. k-segmentation is very slow specially for large n. The method proposed in [Matte-

son and James, 2014] is slow on USC-HAD dataset because it takes a long time to estimate

the distribution of the heterogeneous time series. Second, IG-based works as well as IGTS-

DP and IGTS-TopDown on the iBeacons and RFID datasets because the time series in these

datasets have negative correlations. Increasing the RSSIs of some iBeacons leads to decreas-

ing the other RSSI because when the smartphone gets closer to some iBeacons, it becomes

farther from others. Third, neither IG-based nor k-segmentation can capture the transition

times in USC-HAD that contains heterogeneous data from accelerometer and gyroscope.

Fourth, IGTS-DP is slower than IGTS-TopDown but it provides better results. The output

of IGTS-DP and IGTS-TopDown are different if TopDown approach results in local optima.

Otherwise, both methods find the global optima and the results are the same. The proba-

bility that TopDown approach ends up in local optima or global optima depends on the size

and type of the time series. HAD time series are long and IGTS-TopDown cannot usually

find the global optima, which is the best answer. That is why IGTS-DP performs better

than IGTS-TopDown on HAD dataset.

Fig. 3.9 shows the confusion matrix of the proposed k estimation formula. Each row of the

confusion matrix represents the instances in a predicted class while each column represents

the instances in an actual class. The entry in the row i and column j denotes how many

times our approach detected k as i while the actual number is j. As we run the experiment 50

times for each k, the sum of each column is 50. The results show that the proposed approach

can find the correct k.

The accuracy of our k estimation method and other knee point detection formulas are

reported in table 3.3. Obviously, for IGTS, the proposed formula works significantly better

than other knee point detection formulas.
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Table 3.2: Experiment Results for low-level activity

Input {Matteson k-segmentation IG-Based IGTS IGTS
2014} TopDown TopDown DP

Data k m n P∗ T∗ R∗ P T R P T R P T R P T R

Syn

6 2 420 100 0.1 0.1 100 2.4 0.1 76 1.0 5.9 100 0.1 0.1 100 1.4 0.1
7 2 420 100 0.1 0.1 100 2.7 0.1 76 1.1 8.5 100 0.1 0.1 100 1.4 0.1
6 3 420 100 0.1 0.1 100 2.6 0.1 80 1.2 8.4 100 0.2 0.1 100 1.5 0.1
5 5 420 100 0.1 0.1 100 2.8 0.1 67 1.2 8.0 100 0.2 0.1 100 1.5 0.1

RFID
3 9 748 100 0.1 1.1 100 10.2 1.1 100 0.1 1.3 100 0.1 1.1 100 3.4 1.1
7 9 1496 100 0.8 1.1 100 80.8 1.2 100 0.9 1.0 100 1.0 1.0 100 17.6 1.0
11 9 2244 100 2.4 1.0 100 430.7 0.9 100 3.4 1.1 100 3.7 1.1 100 38.1 1.1

iBeacon
3 4 790 100 0.1 1.1 100 0.1 1.7 100 0.1 1.5 100 0.1 1.6 100 0.1 0.9
4 4 988 100 0.1 0.8 97 0.1 2.2 100 0.1 2.0 100 0.1 1.8 100 0.1 1.4
5 4 1185 100 0.1 1.7 97 0.2 1.7 100 0.1 2.1 100 0.1 1.8 100 0.1 1.3

HAD
2 6 12600 95 21.8 0.2 25 804.6 - 19 130.0 - 95 0.3 0.5 98 4.2 0.1
3 6 16800 93 132.8 0.4 50 2766.8 - 16 539.5 - 98 0.3 0.6 100 19.1 0.1
4 6 21000 93 782.9 0.3 33 4498.2 - 17 811.5 - 98 0.4 0.5 98 35.9 0.1

* P (%): Precision, T (s): Running Time, R(%): Root Mean Square Error (RMSE)

Table 3.3: Evaluation on different knee point detection approaches to find k

Method Li − Li−1 2Li − Li−1 − Li+1
Li

Li−1
− Li+1

Li

Li−Li−1

Li−1

Li−Li−1

Li+1−Li

Description
magnitude
difference

second
derivative

ratio
difference

relative magnitude
difference

proposed
formula

Accuracy 10% 32% 25% 22% 71%

Figure 3.9: Confusion matrix of k estimation approach
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Figure 3.10: Qualitative comparison between the proposed method and Latent Dirichlet
Allocation (LDA) [Sun et al., 2014]

3.5.3 Labelled high-level activity datasets

In this experiment, we apply IGTS-TopDown and IGTS-DP to Daily Life Routine dataset

to extract transition times in high-level activities. The high-level activities in this dataset

are commuting, lunch, office work, and dinner.

Baseline method

For comparison, we choose the method proposed in [Sun et al., 2014]. They use Latent

Dirichlet Allocation (LDA) to infer high-level activities and report qualitative evaluation.

Results

IGTS-TopDown and IGTS-DP have the same results on Daily Life Routine dataset. The

qualitative evaluation of our method as well as LDA is shown in Fig. 3.10.

It is obvious that our approach has less false positive errors. Using the proposed heuristic

approach, detected k is 7 while LDA approach finds 15 transition times. The two false

positives of our approach are around 6 pm. By investigating the ground truth labels, we

found that “walking freely” is frequent between 5 pm and 6 pm. Furthermore, LDA is costly

because it has two complex stages (see related work). On the other hand, the total running

time for segmentation and finding the best k is only 10 seconds for our algorithm.

If we continue the segmentation, next transition times show the transitions in low-level

activities. IGTS algorithm, first, extracts the transitions in the coarse-grained activities, and

then finds the transitions in the fine-grained activities. We define coarse-grained activities

as high-level activities, and fine-grained activities as low-level activities. Specifically, the

earlier transition times denote the transition times in high-level activities. By continuing

segmentation, the segments become shorter and later transition times denote transitions in

low-level activities. As discussed, by choosing the range of k, we can specify whether we are
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Figure 3.11: (a) Transition times in midnight and morning. (b) Transition times in
afternoon and night. The number of transition times for all users is reported hourly. It
can be inferred that users mainly change their places during 8am and 5pm.

interested in low-level or high-level activities. For example, in figure 6, if the range is between

2 and 10, the best k is 8, which indicates the number of segments for high-level activities.

3.5.4 Segmentation at the routine level from unlabelled dataset

Device Analyser dataset provides the connectivity data for each user and identifies the con-

nected CID at each time. By processing connectivity data, we segment 24 hours of a day into

several parts. The output of segmentation shows when the user usually changes his location

during a day. In this experiment, the accuracy is 15 minutes which means the transition

times have only four possible formats: hh:00 , hh:15, hh:30, and hh:45, where hh indicates

the hour of the day. IGTS-TopDown processes the whole data which is 33 Gigabytes in just

4 hours.

Results

Fig. 3.11 shows the frequency distribution of the transition times for all users per hour. For

example, 65 users usually change their locations between 1 pm and 2 pm. According to the

graphs, users are less likely to change their locations during nights. In contrast, 5 pm in the

evening and 8 am in the morning are the times when the users have the most movements.

This information can help city planners to improve transportation, urban planning, and

environment [Zheng et al., 2014].
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Figure 3.12: Comparison between proposed approach and inner cluster distance.

Validation

Because of the lack of ground truth in Device Analyser dataset, we examine our method by

computing inner cluster distance. We show that our algorithm tends to find coherent seg-

ments that means the connected CID does not change so much within the segments. There

have been several ways for measuring coherence of the segments. When a segmentation is

evaluated based on the segments themselves, it is called inner cluster distance. The exper-

iment illustrates that segmentation with the higher information gain value results in lower

inner cluster value.

To calculate inner cluster distance, the distance between each couple of instances is cal-

culated for each segment. In the CID example, each instance is a 15-minute slot and the

distance between two instances is calculated based on the difference in access distributions.

For example, [10:00, 10:15] and [11:45, 12:00] have a lower distance value if their user’s

smartphone connects to similar CID during these periods. Finally, the average over all such

distances indicates the inner cluster distance. To compare the outcome of our algorithm with

the inner cluster distances, first 10 different segmentations and 10 users are chosen randomly.

Then, information gain and inner cluster distance are calculated for each segmentation and

each smartphone data. The average of both information gain and inner cluster distance

shown in Fig. 3.12. Considering the reverse order of information gain axis, it is clear that the

segmentation with high information gain value has less inner cluster distance which means

access durations to the CIDs have a little change within each interval. It should be noticed

that measuring information gain is much faster than measuring the inner cluster distances

because it does need to compare every two instances. In this experiment, it takes 478.9 ms

to calculate the inner cluster distances while our method accomplishes in just 3.7 ms.
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3.6 Conclusion

In this chapter, we present a new temporal segmentation method, IGTS, for extracting

transition times in daily activities (e.g. when the user goes to work from home) that contain

rich information for analyzing human mobility pattern. Although we introduce IGTS for

mining human mobility data, it is quite generic and can be applied to other domains as

well. We deploy the concept of entropy in our method. For each segment, the distribution

of the average values of the time series is considered as random variables. The entropy

of the distribution is calculated for each segment and then, information gain, which is the

average reduction in entropy, is obtained for the segmentation. We argue that the best

segmentation is the one with the highest information gain. To the best of our knowledge,

none of the previous works has applied information gain in this way. Two processing stages

are introduced to enable the proposed IGTS method to handle heterogeneous data. We also

show that working with the cumulative sum (or integral function) of the time series instead

of the original time series decreases the computational cost leading to a faster algorithm.

The proposed cost function is used in conjunction with two optimization methods: Top-

Down and Dynamic Programming. The original concept of information gain is not applicable

to dynamic programming, and we have introduced a modified cost function to be fit with

dynamic programming optimization. Furthermore, we prove that information gain increases

with each split and proposed a local knee point detection formula to find the number of seg-

ments. Experiments show that the proposed formula performs much better than the existing

ones.

To evaluate IGTS in the domain of human mobility, we apply it to Daily Life Routine

dataset containing 4 high-level routine class annotations such as commuting, lunch, office

work, and dinner. The qualitative evaluation shows that our method has less false positive

errors and outperforms LDA. We also apply our method to the connectivity data collected

by Device Analyser software. In this case, the transition times denote the usual transitions

in a day such as when the user goes to work. Integrating the result from 271 users, the most

number of transitions happens at 5 pm and 8 am. In addition to human mobility data, IGTS

is examined on a range of datasets including activity recognition data, connectivity data,

and movement data from smartphones, wireless infrastructure, and device-free environment.

The results reveal the effectiveness and robustness of the proposed approach.
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Movement graph summarisation

4.1 Introduction

The efficient modeling of user’s mobility on a limited storage allows us to perform the mo-

bility analysis algorithms on smartphones and other resource-limited devices. An intuitive

approach is to model the user’s movement with a movement graph. The graph-based mo-

bility models realize graphs in which nodes are the locations visited by the user and edge

weights denote the distances or traveling times between locations. It should be noted that the

movement graph can be defined in different ways. A node may represent region covered by

a WiFi access point, region covered by a cell tower ID (CIDs), region defined by geographic

coordinates, suburb, point of interest (POI), stay pint, or road intersection. Similarly, each

edges between two nodes can denote a relation between the nodes such as distances, traveling

time, frequency of commutes.

Dealing with an original movement graph poses several challenges. First, the graph is

usually large that cannot be fitted into the smartphone memory. In this case, the user’s

movement cannot be analysed on the smartphone device and need to be passed to the server,

which reduces the reliability of the services. Second, due to the size of the graph, it is hard

to visualize, understand and query the graph. Figure 4.1 (a) shows a sample movement

graph of a student at RMIT University commuting between the library, shopping centre and

campus. Figure 4.1 (b) shows the same graph summarised and easy to understand where the

edge weights denote the number of the movements. Furthermore, when the graph is big the

queries are processed slowly, especially when running on a resource-limited device such as a

smartphone. These challenges can be addressed by summarising the movement graph to get

a summarised graph where each node represents a cluster of nodes.
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Figure 4.1: (a) Sample movement graph (Original graph). Each node is a stay point. (b)
Summary of the same movement graph (Coarse graph). Each node represents a cluster
of stay points.

In this chapter, we present Shrink, a summarisation method that reduces the size of the

graph while preserving the distances between the nodes. In the summarised graph, known as

the coarse graph, each node, called supernode, represents several nodes in the original graph.

The edge weights in the coarse graph are defined in the way that the distances between the

nodes are preserved. The coarse graph can be easily analysed and stored in lower space.

Furthermore, as the complexity of distance-based queries such as shortest path queries is

highly dependent on the size of the graph, Shrink improves the performance in terms of

time and storage. Although Shrink is designed to summarise the movement graph, it is

quite generic and can be applied to other types of graphs including road network, friendship

network, collaboration network, web graph and social network.

Summarising the movement graph, we compute the changes in the distances caused by

summarisation. Furthermore, we investigate its effect on two human mobility mining prob-

lems: location prediction and similarity mining. The location prediction algorithm on the

coarse graph causes coarse-grain results. Regarding computing the similarity, summarisation

reduces the computational cost but at the same time increases the uncertainty of the results.

summarisation also addresses privacy issues as the exact location of the user cannot be de-

termined in the coarse graph easily. Although in some situations, the user’s location can be

still inferred, the location prediction generally becomes harder after summarisation.

The main contributions of this chapter are as follows:
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• We propose a compression method Shrink that has the least effect on the distances

between the nodes.

• The proposed method is evaluated on not only movement graphs but also other real-

world data sets, including road network, friendship network, collaboration network,

web graph and social network, etc.

• We investigate the effect of summarisation on the performance of two human mobility

mining problems.

In the next section, we provide background on graph summarisation. We formally state

the problem in Section 4.4. In section 4.5, first, we present the baselines for defining the

equations and discuss why the equations are suitable for assignment of the new weights.

Then, an overview of Shrink is provided. Three stages of Shrink are described in section

4.6 and 4.7. We evaluate our method in terms of time, accuracy and storage in section 4.8.

Finally, sections 4.2 and 4.9 discuss related work and conclusion, respectively.

4.2 Related work

Graph compression methods can be categorized into two groups: general compression and

query-friendly compression also known as summarisation. General compression methods pre-

serve the information of the entire graph and answer all types of queries. However, these

methods highly depend on the graph type, coding mechanism, and extrinsic information. Fur-

thermore, these methods need decompression before querying the graph [Chierichetti et al.,

2009]. Specifically, the graph should be restored first to answer even simple queries. Some

works has been studied graph compression for Web graph and social networks [Raghavan and

Garcia-Molina, 2003] [Boldi et al., 2011] [Chierichetti et al., 2009]. Similar to our work, graph

summarisation approaches target specific classes of queries, such as neighborhood [Maserrat

and Pei, 2010] [Navlakha et al., 2008] [Brisaboa et al., 2014], reachability [Feder and Motwani,

1995] [Moyles and Thompson, 1969] [van Schaik and de Moor, 2011] [Fan et al., 2012], path

[Buneman et al., 2003], pattern queries [Fan et al., 2012], connectivity [Zhou et al., 2010],

and distance-based queries [Ruan et al., 2011] [Toivonen et al., 2011]. For example, Aho et

al. reduced graphs by substituting a simple cycle for each strongly connected component

to speed up reachability queries [Aho et al., 1972]. Brisaboa et al. focus on compression of

web graphs to reduce the space requirements while running queries such as successors and

predecessors extraction is possible on the compressed graph [Brisaboa et al., 2014]. Some
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researches address the similar problem as a graph simplification problem [Ruan et al., 2011]

[Zhou et al., 2010] and graph summarisation [LeFevre and Terzi, 2010] [Čebirić et al., 2015]

[Seah et al., 2012].

Shrink differs from the current compression methods in the following: (1) Shrink is de-

veloped for reachability and distance-based queries; (2) most of the methods are designed

for unweighted graphs while Shrink can be applied to both unweighted and weighted graphs

[Boldi et al., 2011] [Maserrat and Pei, 2010] [Fan et al., 2012]; (3) Shrink provides com-

pressed data structure, the coarse graph, that can be directly queried without decompression

[Chierichetti et al., 2009] [Navlakha et al., 2008]; (4) Some of the compression methods only

reduce the number of the edges while Shrink reduce the number of nodes and edges [Feder

and Motwani, 1995] [Moyles and Thompson, 1969] [van Schaik and de Moor, 2011]; (5) Shrink

can be performed incrementally for temporal graphs while most of the above methods are

batch algorithms, requiring to decompress the whole graph to do the change such as edge

insertion or node removal [Ruan et al., 2011] [van Schaik and de Moor, 2011]. (6) Shrink not

only specifies the distance between the two nodes but also provides the actual path containing

laying nodes [Gubichev et al., 2010].

Fan et al. extract a coarse graph from a directed unweighted graph to speed up reach-

ability queries [Fan et al., 2012]. Shrink has several advantages compared to Reachability

Preserving Compression (RPC). First, RPC only preserves reachability while Shrink is ad-

vantageous for all types of distance-based queries. Second, Shrink compresses the graph much

faster. The complexity of compression is linear in the number of nodes for Shrink while it is

quadratic for RPC (i.e. O(σ|V |2) where σ denotes the average degree in the graph). Third,

unlike RPC, Shrink grantees the reachability with any compression ratio. RPC has a limit

for compression ratio to preserve the reachability ranging from 0.02% to 14.70%. Fourth, the

error and compression ratio is flexible in Shrink. Therefore, it is possible to terminate the

coarsening process at any time while having a semi-compressed graph.

Ruan et al. propose a Distance Preserving Graph Simplification (DPS) for unweighted

graphs [Ruan et al., 2011]. In the first stage, some nodes are selected from the original

graph and then the selected nodes are connected to each other with weighted edges. This

method is designed to preserve the distance between every non-local pair (∀x, y d(x, y) ≤ ε).

The output is a weighted coarse graph that cannot be simplified again. DPS is costly and

the largest examined graph contains less than 63,000 nodes. The compression ration is also

fixed. Another distance preserving compression method is Compression of Weighted Graphs

(CWG) which is compared with Shrink [Toivonen et al., 2011]. Table 4.1 summarises the
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Table 4.1: Feature comparison between RPC [Fan et al., 2012], DPS [Ruan et al., 2011],
CWG [Toivonen et al., 2011] and Shrink

Properties RPC DPS CWG Shrink

Target Graphs
Directed

Unweighted
Undirected
Unweighted

Undirected
Un/Weighted

Undirected
Un/Weighted

Query Type Reachability Distance-based Distance-based Distance-based

Adjustable CR × � � �
Flexible Running Time × × � �

Provide the Path × × × �
Compression works for all pairs non-local pairs all pairs all pairs

Required Parameters Nonparametric ε λ Nonparametric

Largest examined graph
for distance-based queries

- 62K (nodes) 200K (nodes) 2.7M (nodes)

* σ: average degree in the graph

features of RPC, DPS, CWG, and Shrink.

4.3 Graph summarisation

Nowadays, it is increasingly common to find graphs with millions of nodes in various domains.

Due to the commonness of large graphs, graph summarisation is becoming an important

research topic. In this process, also known as graph simplification, the complexity of the graph

is reduced while certain characteristics of the graph are preserved. Graph summarisation can

be performed by reducing the number of edges, nodes or extracting a high-level abstraction

of the graph. A similar problem is graph summarisation where summary graph uncovers

the underlying topology of the original graph [LeFevre and Terzi, 2010] [Čebirić et al., 2015]

[Seah et al., 2012] [Chan et al., 2013] [Leskovec and Faloutsos, 2006].

Graph summarisation has three main purposes. First, graph summarisation algorithms

produce a simpler graph that can be queried faster than the original graph. This is useful

for graph-based mining algorithms and also more complex problems (e.g. measuring similar-

ities between graphs). Distance-based queries such as shortest-path have a great importance

[Sommer, 2014] [Zhu et al., 2013] [Akiba et al., 2013] [Akiba et al., 2015] [Gao et al., 2011].

Many fundamental tasks in graph mining, such as computing diameter, closeness, central-

ity, and betweenness centrality, are dependent on computing shortest path distance. It has

countless applications in transportation networks [Zhu et al., 2015] [Hong et al., 2017] [Abra-

ham et al., 2011], networking [Althfer et al., 1993] [Wu et al., 2014], and databases [Schenkel

et al., 2004]. Distance preserving graph summarisation speeds up the shortest path queries

because they run on a smaller graph. Second, the compressed graph, also known as the
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coarse graph, can be stored in less space. Over the past few years, due to increasing the

size of graph-structured databases, it becomes challenging and expensive to store the data,

and graph summarisation techniques are deployed to reduce space consumption [LeFevre

and Terzi, 2010] [Brisaboa et al., 2014] [Lohrey et al., 2013]. Third, graph summarisation

algorithms help the users to understand and visualize the high-level structure of the graph

[Aggarwal and Wang, 2010] [Hennessey et al., 2008] [Rafiei, 2005]. It is almost impossible to

understand the information encoded in large graphs with thousands or even millions of nodes

by only visual inspection [Tian et al., 2008]. The coarse graph, produced by compression, is

smaller and easier to be visualized [Fjällström, 1998].

In this chapter, we introduce a novel distance preserving compression method Shrink,

which can be used to query and store both weighted and unweighted graphs, e.g. enhancing

shortest-path or other distance-based algorithms. Compressing with Shrink has the least

effect on the distances between nodes. Specifically, when merging two nodes to a supernode,

a system of equations is introduced to minimize the distance variations caused by this merge.

The rationale behind this is to keep the mean of caused error equal to zero. These equations

determine the edge weights connected to the supernode. After each merging, the number

of nodes decreases by one and merging stage, called coarsening stage, continues until the

desired size is achieved. The next stage is executing stage where the distance based query

runs on the coarse graph. The last stage, refining stage, is optional that provides the path

between the queried nodes. We have theoretically proved that for long paths, the error of

compression converges to zero if merging errors are independent.

4.4 Problem formulation

In this section, we first introduce the necessary notation to describe the problem formulation,

and then we state the problem.

Definition 1: Original graph is the input graph which is a triple G = (V,E,w) where

V is a set of nodes (or vertices), E ⊂ V × V denotes edges, and w : E → R+ assigns a

non-negative weight to each edge e ∈ E.

Here, the original graphs can be either unweighted or weighted. For unweighted graphs,

the same weight can be assigned to all edges. The notations used in this chapter are listed

in Table 4.2.

Definition 2: Coarse graph, G′ = (V ′, E′, w′), is the compressed graph. V ′ = {v1′, ..., vn′}
is a partition of V (i.e. vi

′ ⊂ V for all i,
⋃

i vi
′ = V , and vi

′⋂ vj
′ = ∅ for all vj = vi). Namely,
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Table 4.2: Definition of the variables

Variable Definition

G Original graph: G = (V,E,w)
V Set of the nodes in the original graph
E Set of the edges in the original graph: E ⊂ V × V
w Weights on E in the original graph:w : E → R+

x, y two nodes in the original graph x ∈ V, y ∈ V
u, v To be merged nodes in the original graph u ∈ V, v ∈ V

G′ Coarse graph: G′ = (V ′, E′, w′)
V ′ Set of the nodes in the coarse graph
E′ Set of the edges in the coarse graph: E′ ⊂ V ′ × V ′

w′ Weights on E′ in the coarse graph: w′ : E′ → R+

v′ Supernode in the coarse graph v′ ∈ V ′

k Number of v′’s neighbours
N(u) Set of u’s neighbours that are not connected to v
N(v) Set of v’s neighbours that are not connected to u
N(uv) Set of Common neighbours of u and v
N Set of neighbours of u and v: N = N(u) ∪N(v) ∪N(uv)
vi A neighbour of u or v
wvi weight of the edge between vi and v
wui weight of the edge between vi and u
w′
vi weight of the edge between vi and v′

l(vi, vj) Length of the path that connects vi and vj
and crosses u or v in the original graph

l′(vi, vj) Length of the path that connects vi and vj
and crosses v′ in the coarse graph
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each node vi
′ ∈ V ′, also known as a supernode, may consist of some nodes in G. E′ denotes

the edges set E′ ⊂ V ′ × V ′, w′ : E′ → R+. In contrast to the nodes, there is no mapping

between the edges.

E′ = {(u′, v′)|u ∈ u′, v ∈ v′, (u, v) ∈ E} (4.1)

Specifically, two supernodes are connected if and only if there is a node in one supernode

that is connected to a node in the other supernode. Here, the main problem is assigning

weights to the new edges. To this end, we define and solve equations to have new weights

with the least effects on the distances between nodes.

Definition 3: The distance between x and y is d(x, y), which is the length of the shortest

path between x and y in the original graph. The shortest path is a path with the lowest total

sum of edge weights. Similarly, d′(x, y) denotes the length of the shortest path between the

supernodes that contain x and y in the coarse graph.

Definition 4: Error of the compression for nodes x and y, Err(x, y), is the difference

between the distance of x and y in the original graph and the distance of the supernodes

that x and y belongs to in the coarse graph.

Err(x, y) =
∣∣d(x, y)− d′(x, y)

∣∣ , x = y (4.2)

Definition 5: Normalizing Err(x, y) with d(x, y), we have the relative error of nodes x

and y.

RErr(x, y) =
|d(x, y)− d′(x, y)|

d(x, y)
, x = y (4.3)

where RErr(x, y) denotes the relative error.

Definition 6: Given G and G′, the compression ratio of the coarsening stage is defined

as CR(G′) = |V ′|
|V | . The number of edges is not included in the definition.

Problem: Given the original graph G and a compression ratio CR, 0 < CR < 1, how

to define G′ such that the sum of the errors is minimum over all pairs. Specifically, the cost

function that should be minimized is as follow:

∑
x,y∈V

Err(x, y) , x = y (4.4)
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4.5 Shrink method

In this section, we introduce the overview of the proposed method. Then, we present pre-

liminary concepts and discuss the rationale behind the method.

4.5.1 Overview

Shrink consists of three components: 1)Coarsening stage: This is the first stage in which the

coarse graph is constructed by merging pairs of connected nodes iteratively until the desired

size is achieved. The main challenge is finding the new edge weights for the supernodes with

the least effect on the distances in the graph. We define a system of linear equations to find

the new weights. We also propose a speed-up technique to solve the equations. It should be

noted that the coarse graph is constructed once and after that, it can be queried for all types

of the distance-based queries. 2) Executing stage: In this stage, the query is executed on

the coarse graph. As the coarse graph is smaller than the original graph, execution is faster

and requires lower heap size. 3) Refining stage: This stage is optional. If only an estimation

of the distance is enough, the refining stage is not needed, and the original graph can be

discarded. On the other hand, if the laying nodes on the path are needed, the refining stage

is necessary. In the refining stage, we extract a subgraph by projecting the output path to the

original graph. Then, the path is refined by rerunning the query on the subgraph from the

original graph. Figure 4.2 demonstrates the flowchart of Shrink including the three stages.

Our main focus is on the coarsening stage where we try to compress the graph while

preserving the distances. In the next subsection, we discuss our principal for assigning the

new weights to edges connected to a supernode.

4.5.2 Preliminary

Merging a pair of nodes changes the distances because by merging, the structure of the graph

is changed. The merging error is consequently defined in terms of the change in the length

of a shortest-path caused by the merging.

Definition 7: Assume that v and u are merged into v′ (See Figure 4.3). pa is a shortest-

path between two unknown nodes in the original graph that passes through u or v. As a

result, the length of pa will be affected by the merging. The merging error caused by merging

u and v on pa (Muv(pa)) is defined as follow:

Muv(pa) = l(pa)− l′(pa) (4.5)
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Figure 4.2: Shrink has three stages: Coarsening, Executing, Refining. Queries are run
on the coarse graph produced in the coarsening stage.

where l(pa) is the length of the part of pa in the original graph that will be changed after

merging. This part of pa consists of edges connected to u and v. l′(pa) is the length of the

part of pa in the coarse graph that is changed after merging. This part of pa consists of two

edges connected to v′.

The value of the merging error depends on how the path passes through the merged nodes

and their neighbors. For example, in Figure 4.3, if pa passes through vi, u, v, and vj , l(pa)

is wui +wuv +wvj . In the coarse graph, l′(pa) is w′
vi +w′

vj . The merging error of u and v on

this path is (wui+wuv +wvj)− (w′
vi+w′

vj). The merging error could be positive or negative

depending on vi, vj , w
′
vi and w′

vj .

By considering the occurrence of the neighbors of u and v in the shortest paths, we

define a random variable regarding the merging error. To have a better understanding of

this random variable, assume that someone starts marking the edges on the shortest paths

one by one and we can only see u and v neighbours and the rest of the graph is a black

box. The random variable presents the merging error when the edges connected to u or v

are marked. Specifically, a probability assigned to the random variable, such as pij , denotes

the probability that edges connected to vi and vj from the visible part are marked.
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The PDF (Probability Density Function) of the random variable shows the impact of the

merging on the distances/shortest paths. For example, from the PDF, we can calculate the

probability that a random path passing through u or v becomes shorter after the merging.

The PDF is computed based on the probability of occurrence of each pair of neighbors. Figure

4.4 illustrates a long path in the coarse graph consisting of many supernodes as well as the

PDF of the merging errors. The total error, the difference between the length of the path in

the coarse and original graphs, is equal to the sum of the merging errors of the supernodes

laying on the path. The total error is also a random variable and has a PDF.

After each merging, new weights should be assigned to the supernode edges. Our main

principle for defining the new weights is to keep the mean of each merging error equal to zero.

Here, we investigate the effect of this principle on mean and variance of total error.

Mean of error

According to probability theory, the mean of the sum of some random variables is equal to

the sum of the random variable means [Wackerly et al., 2007]. In our problem, we have

E(M(pa)) = E(Mu1v1(pa)) + ...+ E(Mumvm(pa)) (4.6)

where pa is the shortest path between two random nodes and M(pa) is the total error which

is the difference between the length of pa in the original graph and the length of pa in the

coarse graph. ui and vi is a merged node pair laying on pa. Therefore, the mean of the error

of a path is zero regardless of the correlation between merging errors of the supernodes laying

on the path because it is equal to the sum of the merging error means that are set to zero.

To sum up, if we consider the shortest path between two random nodes, the compression has

zero effect on the path length on average.

We also argue that when the average error is zero, Mean Square Error (MSE) is mini-

mum. According to probability theory, if μ and σ2 are the mean and variance of the error

respectively, MSE is equal to μ2 + σ2 [Wackerly et al., 2007]. Based on this theorem, if the

variance of error is σ2, the minimum MSE is when μ = 0. This means our weight assignment,

which leads to a zero-mean error, is the best one when the variance is fixed.

Variance of error

The average of a sufficiently large number of iterates of independent1zero-mean random vari-

ables converges to zero, regardless of the underlying distributions (Law of Large Numbers
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Figure 4.3: (a) u and v are merged into v′ connected to the neighbors of both u and v.
The connectivity pattern of the other parts of the graph remains the same. (b) A simple
example where A and B are merged into A′. The weights of the new edges connected to
A′ are determined by Shrink.
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Figure 4.4: Each supernode on the path causes merging error that has a PDF. The pro-
posed weight assignment makes every merging error mean equal to zero.

[Wackerly et al., 2007]). Merging errors are zero-mean. Based on Law of Large numbers, if

they are independent, for long paths, the relative errors are zero and the distances are pre-

served. Intuitively, some supernodes increase the length of the path while others decrease the

path length. Overall, the change is negligible because the increases and decreases compensate

for each other.

lim
m→ 8

E(Mu1v1(pa)) + ...+ E(Mumvm(pa))

m
= lim

m→ 8

E(M(pa))

m
= 0 (4.7)

lim
m→ 8

E(M(pa))

m× l(pa)
= RErr(pa) = 0 (4.8)

where l(pa) is the average value of l(pa)uivi over ui and vi. RErr(pa) is the relative error of

path pa.

To sum up, zero-mean merging error has two advantages. First, the total error of a path

becomes a zero-mean random variable that has the least MSE. Second, for the long paths,

the total error is nearly zero if merging errors are independent.

1Two random variables are independent when receiving information about one of the two does not change
our assessment of the probability distribution of the other.
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4.6 Coarsening stage

The coarsening stage is the main stage where the size of the graph is reduced. By considering

the underlying idea, our method seeks to reduce the graph size by merging pairs of nodes

one after another, setting though the mean of merging error to zero. Let u is the closest

neighbor of v. It should be noted that u and v could be supernodes that result from the

previous steps. The edge weights and the connectivity pattern of u and v are sufficient to

define a system of equations and find the new weights.

Figure 4.3 (a) illustrates the general overview of the problem, focusing on the connectivity

of nodes u and v. All of the nodes that are connected to either u or v are connected to

supernode v′ but with different weights. The neighbors of u and v can be divided into three

sets: N(u), N(v), and N(uv). Nodes in set N(u) are connected to u but not to v. Set N(uv)

consists of the nodes that are connected to both u and v, while N(v) is the mirror of N(u)

and consists of the nodes that are connected to v but not u. Suppose N is the set of the

neighbors of u and v, N = N(u) ∪ N(v) ∪ N(uv) and k is the total number of neighbors,

k = |N |. wuv denotes the weight between u and v. Figure 4.3 (b) shows a simple example in

which A snd B are merged.

Given the edge weights in the original graph, the problem is finding k new edge weights

between v′ and the nodes in N(u), N(v), and N(uv) so that the mean of the merging error

becomes zero. For each merging, the equations should be defined and solved, and then new

weights should be assigned to the new edges.

4.6.1 Defining equations

In this section, we define a system of k linear equations in the k variables to find the new

weights where k is the total number of the neighbors of u and v. The equations imply that

the changes in the length of paths that pass through the merged nodes after and before

merging have a zero mean. We only consider parts of the paths that contains u or v and new

edges because other parts do not change.

Each of the k equations is based on one of the new edge weights connecting v′ to vi ∈ N .

The main principle states that the mean of the difference between the paths in the original

and coarse graphs should be zero. Therefore, the mean (or average) value of path lengths

that pass vi ∈ N and u or v in the original graph should be equal to the mean value of path

lengths that pass vi and v′ in the coarse graph.

To calculate the mean value, the probabilities of the occurrence of the neighbors in the
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shortest paths are needed. Following the principle of indifference [Jaynes, 2003], it is assumed

that all pairs of neighbors have the same probability of occurrence in the shortest paths

because there is no information about the other parts of the graph. This assumption may

not be true, and it drops accuracy since low weight edges are used more in shortest paths.

Future work involves new techniques to estimate the usage probability distribution of the

neighbors.

Lemma: If the sum of l(vi, vj) and the sum of l′(vi, vj) over vj are the same, the merging

error of u and v for the paths that pass vi and v′ is a zero-mean random variable.

Proof: We show that if the sum of l(vi, vj) and the sum of l′(vi, vj) are the same, then

the mean of l(vi, vj) and the mean of l′(vi, vj) become the same. Therefore, the merging

error becomes a zero-mean random variable because merging error is the difference between

l(vi, vj) and l′(vi, vj).

∑
vj∈N,j �=i

l′(vi, vj) =
∑

vj∈N,j �=i

l(vi, vj) (4.9)

∑
vj∈N,j �=i

p× l′(vi, vj) =
∑

vj∈N,j �=i

p× l(vi, vj) (4.10)

E(Muv(vi)) =
∑

vj∈N,j �=i

p× l′(vi, vj)−
∑

vj∈N,j �=i

p× l(vi, vj) = 0 (4.11)

where p is the probability that vi and vj occur on a shortest-path connecting two nodes of

the graph. l(vi, vj) indicates the length of the part of the paths that includes vi, vj , and the

edges to be deleted in the original graph. Likewise, l′(vi, vj) indicates the length of the part

of the paths that includes vi, vj , and new edges in the coarse graph. Muv(vi) is merging error

of the shortest paths passing vi and v′. In these equations, it is not necessary to consider the

complete length of the paths since other parts of the graph remain unchanged. Equations

4.9-11 focuses on vi and the sum in these equations is over vj (vi is fixed). This means we

have one equation for each neighbour. l′(vi, vj) is a function of variables to be determined

such as w′
vx, w

′
v′y, and w′

v′z while l(vi, vj) is a function of wux, wvy, and wuz which are known

and constant. Equation 9 is a key equation that clarifies that sum of the part of the shortest

paths’ lengths that pass through vi should be the same in the original and coarse graphs. In

fact, if we want the merging process to have the minimum change in the shortest paths, the

sum of l′(vi, vj) and l(vi, vj) should be the same. Based on the lemma, k linear equations are

defined.

62



CHAPTER 4. MOVEMENT GRAPH SUMMARISATION

..… … ….. .… …… ….. ..

(a)

… … ….. .… … …… ....

(b)

..… … .. .… …….. ....

(c)

..

u v v'

N(u) N(uv) N(v)
u v v'

u v v'

N(u) N(uv) N(v)

vi vj vi vj

vi
vivj vj

wuv

wuv

N(u) N(uv) N(v) N(u) N(uv) N(v)

N(u) N(uv) N(v) N(u) N(uv) N(v)

vi vj vi vj

Figure 4.5: When vi is in set N(u), the shortest paths that crosses vi and vj can be
categorized into three cases: (a) vj ∈ N(u), (b) vj ∈ N(uv), and (c) vj ∈ N(v). (See
rows 1-3 in Table 4.3)

∑
j �=i,vj∈N(u)

l′(vi, vj) +
∑

j �=i,vj∈N(v)

l′(vi, vj) +
∑

j �=i,vj∈N(uv)

l′(vi, vj) =

∑
j �=i,vj∈N(u)

l(vi, vj) +
∑

j �=i,vj∈N(v)

l(vi, vj) +
∑

j �=i,vj∈N(uv)

l(vi, vj)

(4.12)

Eq. 4.12 is the extension of Eq. 4.9. The left side of the equation contains variables

that should be computed while the right side of the equation is constant. The constant part

can be determined based on the given edge weights in the original graph. In the rest of this

section, l(vi, vj) and l′(vi, vj) are computed based on whether vi and vj are in set N(u), N(v),

or N(uv).

Equations for vi ∈ N(u)

In this subsection, we write an equation for a node vi ∈ N(u). l′(vi, vj) and l(vi, vj) are

computed based on whether node vj belongs to N(u), N(v) or N(uv). Figure 4.5 shows
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three possible situations for vj that is used to find the length of the part of the shortest

paths which contains vi and merged nodes. This path is shown by bold lines in the new

and original graphs. Figure 4.5(a) demonstrates a situation in which vj belongs to set N(u).

Therefore, we can determine the first part of the right and the left side of Eq. 4.12.

∑
vj �=vi,vj∈N(u)

l′(vi, vj) (4.13)

=
∑

vj �=vi,vj∈N(u)

(w′
vi + w′

vj)

=(|N(u)| − 1)w′
vi +

∑
vj �=vi,vj∈N(u)

w′
vj

∑
vj �=vi,vj∈N(u)

l(vi, vj) =
∑

vj �=vi,vj∈N(u)

(wui + wuj) (4.14)

In other words, if both i and j belong to N(u), Eq. 4.13 and Eq. 4.14 indicate the

sum of the length of the affected paths in the new and original graph, respectively. Figure

4.5(b) is more complex. The exact value of the l(vi, vj) depends on the wuj , wuv, and wvj .

If wuj < wuv + wvj then l(vi, vj) is wuj otherwise it is wuv + wvj .

∑
vj∈N(uv)

l′(vi, vj) =
∑

vj∈N(uv)

(w′
vi + w′

vj) = |N(uv)|w′
vi +

∑
vj∈N(uv)

w′
vj (4.15)

∑
vj∈N(uv)

l(vi, vj) =
∑

vj∈N(uv)

(wui +min(wuj , wuv + wvj)) (4.16)

Finally, if vj belongs to set N(v), the path that includes vi, u, v, and vj could be part of

a shortest-path whose length is wui +wvj +wuv. Nodes in set N(uv) cannot be in this path

because v is the closest neighbor of u and wuv has the minimum weight among the neighbors

of u.

∑
vj∈N(v)

l′(vi, vj) =
∑

vj∈N(v)

(w′
vi + w′

vj) = |N(v)|w′
vi +

∑
vj∈N(v)

w′
vj (4.17)
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∑
vj∈N(v)

l(vi, vj) =
∑

vj∈N(v)

(wui + wuv + wvj) (4.18)

Identifying l(vi, vj) and l′(vi, vj), it is possible to write the equation for vi which is in set

N(u). Based on the main principle, replacing u and v with v′ should not change the mean

length of the shortest path. The idea results in the lemma that implies that the summation

of the shortest path lengths that contain vi should remain the same after merging. From

equations 14 to 18 we have

∑
vj �=vi,vj∈N(u)

l′(vi, vj) +
∑

vj∈N(v)

l′(vi, vj) +
∑

vj∈N(uv)

l′(vi, vj) (4.19)

=(|N(u)| − 1)w′
vx + |N(uv)|w′

vx + |N(v)|w′
vx

+
∑

vj �=vi,vj∈N(u)

w′
vj +

∑
vj∈N(uv)

w′
vj +

∑
vj∈N(v)

w′
vj

=(k − 2)w′
vi +

∑
vj∈N

w′
vj

This equation presents the left side of Eq. 4.12 that contains to be determined variables

such as w′
vi. On the other hand, the right side of Eq. 4.12 is constant and can be calculated

based on the edge weights in the original graph. To simplify the equations, let Ci be the

constant value in the equation of node vi:

Ci =
∑

vj �=vi,vj∈N(u)

l(vi, vj) +
∑

vj∈N(uv)

l(vi, vj) +
∑

vj∈N(v)

l(vi, vj) (4.20)

Based on equations 12, 19, and 20, we have:

(k − 2)w′
vi +

∑
vj∈N(u)

w′
vj +

∑
vj∈N

w′
vj = Ci (4.21)

To sum up, for each node such as vi, if the new weights are defined in a way that satisfy

Eq. 4.21, the mean value of the shortest path lengths crossing through vi does not change in

the coarse graph.
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Figure 4.6: When vi ∈ N(v), the shortest paths that crosses vi and vj can be categorized
into three cases: (a) vj ∈ N(u), (b) vj ∈ N(uv), and (c) vj ∈ N(v). (See rows 4-6 in
Table 4.3)

Equations for vi ∈ N(v)

Let vi belong to set N(v) that is connected to v not u. Similar to the previous subsection,

we want to define right value for w′
vi and keep the average shortest path lengths that cross

through vi. Based on Figure 4.6, l′(vi, vj) and l(vi, vj) are computed and reported in Table

4.3. Based on lemma and Eq. 4.12, we have the following equation for node vi ∈ N(v).

(k − 2)w′
vi +

∑
vj∈N

w′
vj = Ci (4.22)

where Ci is constant and equal to the sum of l(vi, vj) when vj ∈ N(v).

Equations for i ∈ N(uv)

The formulas for vi ∈ N(uv) are shown in the last three rows in Table 4.3 (Figure 4.7). Based

on the main principle and the lemma, we have:

(k − 2)w′
vi +

∑
vj∈N

w′
vj = Ci (4.23)
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Figure 4.7: When vi ∈ N(uv), the shortest paths that crosses vi and vj can be categorized
into three cases: (a) vj ∈ N(u), (b) vj ∈ N(uv), and (c) vj ∈ N(v). (See rows 7-9 in
Table 4.3)

Similarly, Ci is the constant and it is equal to the sum of l(vi, vj) when vj ∈ N(uv).

Equations 21, 22, and 23 are similar. However, for each equation, the constant part of

the equations should be computed separately.

4.6.2 Solving the equations

In the previous section, a system of k linear equations is defined to find the new weights.

Specifically, for merging a couple of nodes, a system of linear equations should be solved

which is a costly process. The complexity of solving a system of k linear equations scales

with k3, making the approach impractical for very large graphs. Fortunately, the proposed

system of equations is not a general one and in this section, we demonstrate a straightforward

way to solve the equations with the complexity of O(k). Hence, there is no need to solve a

general linear system of equations for each merging which is a time-consuming task.

To solve the equations, we define S as the sum of the weights of the new edges.

S =
∑
vj∈N

w′
vj (4.24)
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Table 4.3: l(vi, vj) and l′(vi, vj) in different cases. All the sums are over vj. (vi is fixed)

vi vj
∑

vj �=vi
l(vi, vj)

∑
vj �=vi

l′(vi, vj)

1 N(u) N(u)
∑

vj �=vi
(wui + wuj) |N(u)|w′

vi − w′
vi +

∑
vj �=vi

w′
vj

2 N(u) N(uv)

∑
(wui+

min(wuj , wuv + wvj))
|N(uv)|w′

vi +
∑

w′
vj

3 N(u) N(v)
∑

(wui + wuv + wvj) |N(v)|w′
vi +

∑
w′
vj

4 N(v) N(u)
∑

(wuj + wuv + wvi) |N(u)|w′
vi +

∑
w′
vj

5 N(v) N(uv)

∑
(wvi+

min(wvj , wuv + wuj))
|N(uv)|w′

vi +
∑

w′
vj

6 N(v) N(v)
∑

vj �=vi
(wvi + wvj) |N(v)|w′

vi − w′
vi +

∑
vj �=vi

w′
vj

7 N(uv) N(u)

∑
(wuj+

min(wui, wuv + wvi))
|N(u)|w′

vi +
∑

w′
vj

8 N(uv) N(uv)

∑
vj �=vi

min(wvj + wvi,

wuj + wui, wvj + wuv+
wui, wvi + wuv + wuj)

|N(uv)|w′
vi − w′

vi +
∑

vj �=vi
w′
vj

9 N(uv) N(v)

∑
(wvj+

min(wvi, wuv + wui))
|N(v)|w′

vi +
∑

w′
vj

By replacing the sum of the new weights with S in Equations 21, 22, and 23, we have the

system of k linear equations.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k − 2)w′
v1 + S = C1

...

(k − 2)w′
vi + S = Ci

...

(k − 2)w′
vk + S = Ck

(4.25)

S can be computed by summing up all the k equations.

(k − 2)(
∑

vi∈N(u)

w′
vi +

∑
vi∈N(uv)

w′
vi +

∑
vi∈N(v)

w′
vi) + kS = C (4.26)

(k − 2)S + kS = C (4.27)

S =
C

2k − 2
(4.28)

where C denotes the sum of the constant values in Eq. 4.25. After identifying S, the new
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weights can be calculated. Eq. 4.29 provides new weights if k > 2.

w′
vi =

Ci − S

k − 2
(4.29)

Thus, the system of linear equations is solved in O(k). Defining the equations requires

the complexity of O(k2) because each of the constant values in Eq. 4.25 requires O(k) to be

determined. Therefore, the complexity of our method to merge one pair of nodes is O(σ2).

The number of mergings is (1−CR)|V | which makes the total complexity equal to O(σ2|V |).
In large graphs, it is common that σ << |V |. In this case, the total complexity is O(|V |).

Special cases(k ≤ 2)

If k = 2, then both of the equations become the same. In this case, the system of equations

has infinite solutions because there are two variables and only one equation. Specifically,

every set of values for w′
vi and w′

vj that satisfy the following equations lead to a zero-mean

error.

w′
vi + w′

vj = S = Ci (4.30)

w′
vi = w′

vj = Ci/2 (4.31)

q̃i, or r̃i. Figure 4.8(a) illustrates the situation when |N(u)| = |N(v)| = 1.

If k = 1, then u and v cannot be part of a shortest-path unless they are the source or

destination nodes. Here, for finding the new weight, we apply the same fact used for Shrink :

for the least mean square error, the mean of error has to be zero. In fact, the w′
vi should be

equal to the mean of the paths passing through vi. Similarly, the probabilities of starting

the paths from v and u are assumed to be the same (i.e 1/2). Figure 4.8(b) illustrates the

situation when |N(u)| = 1. The following equations are applied to assign the new weights

for k = 1.

|N(u)| = 1, w′
vi =

wui

2
+

wui + wuv

2
= wui +

wuv

2
(4.32)

|N(uv)| = 1, w′
vi =

wui

2
+

wvi

2
=

wui + wvi

2
(4.33)

|N(v)| = 1, w′
vi =

wvi

2
+

wuv + wvi

2
= wvi +

wuv

2
(4.34)
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Figure 4.8: k = 2, |N(u)| = 1, |N(v)| = 1. The sum of new weights should be p1+q1+wuv.
(b) k = 1, |N(u)| = 1. The figure shows u, v, and v′ when |N(u)| = 1.

To sum up, if k = 2 or k = 1, equations 31-34 determine the new weights. If k = 0 then

we do not need to define new weights and v′ will be a single node.

Algorithm 4.1: Node selection algorithm

Input: v, u, Θ

1 −v, u: candidate pair for merging

2 −Θ: threshold

Output: Acceptance/Rejection of the pair, updated Θ

3 if (N(u) +N(uv))× (N(v) +N(uv)) < Θ then

4 Θ = Θ− 1;

5 return true;

/* the pair is accepted */

6 else

7 Θ = Θ+ 1;

8 return false;

/* the pair is rejected */

9 end

4.6.3 Node selection criteria

To minimize the error, we define the following rule for the nodes that are going to be merged

(i.e. v and u): the node pair is desirable for merging if it has a small number of neighbours.

Specifically, given two nodes u and v, we define the multiplication of the number of the
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neighbours of the nodes, as a way for node selection. Hence, if the result is small enough, the

selected nodes are suitable for merging. The simple way is setting a constant threshold, Θ,

on the multiplication result that has two drawbacks. First, it makes the method parametric.

This means the threshold should be defined beforehand and the appropriate threshold is

different for each graph. Second, by using threshold, the algorithm may fall into an infinite

loop. After merging v and u, the average degree increases because the degree of v′ is often

bigger than the degree of v and u. Therefore, after plenty of merging, there may be no pair

of nodes that satisfies the threshold condition.

To solve this problem, we update the threshold after each selection. The update is based

on whether the current pair satisfies the threshold condition or not. Specifically, after picking

a pair of nodes, if N(u)×N(v) > Θ then theta increases by one otherwise it decreases by one.

Based on this criteria, the candidate pairs are mainly from those with the smaller degree.

Algorithm 1 shows the proposed method for node selection. The algorithm starts with Θ = 1.

The proposed node selection criteria improve the accuracy of Shrink. The improvement

results from the probability distribution of occurring the neighbors of v and u in shortest

paths. In our model, the uniform probability distribution function is used which is closer to

reality when merging nodes with few neighbors.

4.7 Executing and refining stages

The output of the coarsening stage is the coarse graph in which distances between nodes

are almost the same as those in the original graph. As each node in the coarse graph is a

supernode containing some nodes, there is a mapping between the nodes of the coarse and

original graphs. Therefore, instead of querying a pair of nodes in the original graph, we can

query the equivalent pair in the coarse graph.

Distance-based algorithms run faster on the coarse graph because it is smaller. The

smaller the coarse graph is, the faster a query executes. However, the accuracy drops by

decreasing the size of the coarse graph. As one node is eliminated in each merging, the

number of nodes in the coarse graph is equal to the number of nodes in the original graph

minus the number of mergings. The reduction in the number of edges in each merging

depends on the number of the common neighbours of the merged nodes. Specifically, the

number of edges is reduced by |N(uv)|+ 1 in each merging.

Integrating with any distance-based algorithms, Shrink can improve the performance.

To investigate the effect of Shrink on the performance, the complexity of the distance-based
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Figure 4.9: Results for the subgraphs of NY road network with CR = 50% (a) coarsening
time, tc (b) average relative error for different setups (c) Shrink query time with and
without refining stage, tq2, and the query time on the original graph tq1.

algorithms should be taken into account that depends on the number of nodes and edges.

For example, if the complexity of an algorithm is O(|V |2) and CR = 50%, it runs four times

faster on the coarse graph.

The output of the executing stage is a path in the coarse graph that consists of the

source and destination nodes. However, the actual shortest path is still unknown because a

supernode on the path is representative of several nodes. In the refining stage, the path is

projected from the coarse graph to the original graph. As a result, a small subgraph of the

original graph is obtained. Each node in this subgraph belongs to one of the supernodes of

the extracted path. Rerunning the algorithm on the extracted subgraph specifies the laying
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nodes on the shortest path in the original graph. Furthermore, it provides a better estimation

of the distance. It should be noted that rerunning the algorithm on the subgraph is much

faster than running the algorithm on the original or coarse graph because the subgraph is

very smaller than the whole graph.

The refining stage is an optional stage. In some applications, just a fast estimation of the

length of the shortest path is needed. Hence, the refining stage is not necessary. Furthermore,

sometimes there is not enough space to store the original graph. In these cases, we can

discard the original graph and work on the coarse graph instead. For example, maintaining

APSP results on disk for quick lookups requires O(|V |2) space which is unfeasible in many

applications. In this case, Shrink reduces the storage size by CR2 by processing the coarse

graph.

4.8 Experiments

In this section, we evaluate Shrink in terms of time complexity and accuracy. Furthermore,

we investigate the impact of the graph size, compression ratio, graph type, and node selection

criteria. We compare Shrink performance with one of the state-of-the-art graph summari-

sation method introduced in [Toivonen et al., 2011]. We choose this method as a baseline

because it is compatible with weighted graphs. Furthermore, it aims to preserve the query

over all node pairs and hence it is comparable with our method.

4.8.1 Experiment setting

Most of the experiments run on New York City road network (NY road network), an undi-

rected weighted graph with 264,346 nodes and 733,846 edges2. In this graph, a node repre-

sents an intersection or a road endpoint and the weight of an edge represents the length of the

corresponding road segment. Furthermore, to investigate the performance of our approach

on different datasets, we examine graphs from Stanford network data collections including

friendship network, collaboration network, web graph and social network in section 4.8.6

[Leskovec]. The experiment runs on PC with the configuration of Intel(R) Core i7, 3.4GHZ

and 8G RAM. The PC runs Windows 7 and JDK 7 that runs on NetBeans 7.4. The al-

gorithm has been implemented using the free Java graph library JGraphT, which includes

mathematical graph-theory objects and algorithms [Naveh].

2http://www.dis.uniroma1.it/ challenge9/download.shtml
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Figure 4.10: Results for the subgraphs of NY road network. (a) coarsening time, tc (b)
Query times tq2 and tq1 (c) Average relative error

The actual distances in the original graph are compared to the outputs of Shrink. The

following parameters are measured in the evaluation procedure: 1) coarsening time (tc): the

required time to produce coarse graph 2) original graph query time (tq1): the query time

for 100 random pairs before compression 3) Shrink query time (tq2): the query time for the

same 100 pairs using Shrink (4) relative error: the average relative error over the 100 pairs.

4.8.2 Primary results

In this set of experiments, the effect of our compression method on NY road network is

investigated while the compression ratio is 50%. Specifically, we apply Dijkstra algorithm on
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NY road network and its coarse graph and evaluate the impact on the distances. We run this

experiment 5 times, and each time only a part of the graph is loaded. For covering graphs

with different sizes, the number of loaded nodes ranges from 50,000 to 250,000 by a step of

50,000.

Figure 4.9(a) shows the running time for the coarsening stage, tc. It takes only 20 seconds

to compress the whole graph to half. When applying node selection criteria, tc increases to

31 seconds because some selected pairs are not merged and are discarded. The trend is

linear because coarsening time has a linear relationship with the number of merged nodes.

Figure 4.9(b) shows the relative error with and without the refining stage and node selection

criteria. Node selection criteria have a bigger effect on the relative error compared to applying

refining stage. However, considering node selection criteria, we need more time to compress

the graph. Figure 4.9(c) shows the improvement in the query time caused by Shrink with

and without the refining stage.

4.8.3 Impact of compression ratio

The compression ratio affects the speed, required storage, and accuracy of Shrink. When

the compression ratio increases, the new graph has fewer nodes, and hence the shortest-path

algorithms run faster but with lower accuracy. Therefore, the performance is adjustable

which means for a given graph, the compression ratio should be set based on the desired

speed and storage and acceptable error rate. Specifically, we can continue merging until the

desired performance is achieved.

In this experiment, the original graph is NY road dataset (with 264,346 nodes) and the

compression ratio changes from 10% to 100%. Results are reported in Figure 4.10. The

coarsening stage running time for different compression ratios is shown in Figure 4.10(a).

The trend is not quite linear because the average degree has an increase after compressing

the graph. As discussed, the average degree in the graph affects coarsening time. Figure

4.10(b) shows how the query time changes when compression ratio increases. Without using

Shrink, the query time for the original graph lasts for 13 seconds. When the number of nodes

in the coarse graph decreases, the queries run faster. Figure 4.10(c) demonstrates the effect

of the compression ratio on the average relative error for Shrink. It can be inferred that the

more the nodes are merged, the less accurate the estimated lengths are. Figure 4.10 validates

the effectiveness of the proposed approach. As an illustration, if the size of the graph three

to 20%, SSSP algorithms runs three times faster while the average error is only 3%. In this
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Figure 4.11: Computing APSP for the subgraphs of NY road network with CR = 50%.
(a) required time for the original and coarse graphs (b) the average relative error over all
pairs

case, by using the refining stage, the nodes on the shortest path are also provided.

4.8.4 Impact of graph size

The evaluation in this subsection is different from that in other subsections. Here, we as-

sess the performance of Shrink using All-Pair Shortest Path (APSP) method while in other

experiments we use single-source shortest-path (SSSP) method and compare the distances

between 100 pair of nodes in the original and coarse graphs. For APSP, the average error

over all distances is calculated, but it cannot be applied to a graph with millions of nodes.

The Floyd Warshall, a classic APSP algorithm, computes all shortest paths between each

pair of nodes with O(n3) comparisons. Considering the heap size and computational cost, it

is not possible to apply Floyd Warshall algorithm on the whole NY dataset. Thus, in this

experiment, the number of nodes ranges from 1000 to 5000 by a step of 1000. Figure 4.11(a)

has two trends. The first one shows the Floyd Warshall running time for the original graph

and the second one shows Shrink total running time including the coarsening, executing and

refining stages. Figure 4.11(b) shows the average relative error over all shortest paths. It
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can be seen that for improving the speed of the algorithm up to 6 times, we only lose less

than 3 percent of the accuracy. For the larger graph, the estimated distance is more accu-

rate because the paths are long and according to section 4.5.2, the effect of our compression

method on the long paths is little.

The required storage and heap size is another challenge while working with the large

graph. As the coarse graph has less node and edges, it can be stored in less space. In our

experiments, the maximum heap size of the virtual machine is 512MB which can handle only

12500 nodes to run Floyd-Warshall algorithm. However, if the graph is reduced by half, it

can handle up to 24000 nodes.

4.8.5 Comparison with a state-of-the-art method

Here we compare Shrink with Compression of Weighted Graph (CWG) method introduce

by Toivonen et al. [Toivonen et al., 2011]. CWG is based on merging nodes and edges to

supernodes and superedges. Toivonen et al. define the difference between the edge wights

and the superedges weights as the distance between the original graph and the coarse graph.

They claim that the distance is minimized when the superedge weight is the mean of the

original edge weights. Therefore, the main focus is on the common neighbours of u and v

(i.e N(vu)). They also consider the number of the nodes that u and v include. Based on our

notations, Equation 4.35 gives the new weights for CWG.

w′
vi =

|u|wui + |v|wvi

|u|+ |v| , vi ∈ N(uv) (4.35)

where |v| is the number of original nodes in supernode v.

To make the comparison fair, we run Shrink without refining stage. We also do not

consider node selection criteria and the same set of node pairs are merged in both algorithms.

Figure 4.12(a) shows that it takes approximately the same time to compress the graph with

either of methods. The reason is that in each merging both algorithms focus on one pair of

nodes and spend the same time to find new edge weights. However, it can be seen from figure

4.12(b) and 4.12(c) that our method outperforms CWG. While the average relative error is

around 2% for our method with CR = 50%, this value is around 18% for CWG. The reason

is that Shrink takes more parameters into account compared to CWG. For assigning a new

weight to the edge between two nodes, Shrink considers not only the edge weights between

the nodes in the original graph but also the edge weights of their neighbours.
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Table 4.4: Experiment Results for different datasets with CR = 20%

Input Graph Results

Name (type)∗ |V | |E| Diameter tc tq1 tq2 RE

DBLP (collaboration) 317,080 1,049,866 21 62s 31s 10s 19%

Brightkite (friendship) 58,228 214,078 14 12s 7s 3s 9%

Epinions (social) 75,879 508,837 14 27s 13s 9s 9%

New York (road) 264,346 365,050 1589 49s 13s 6s 3%

Notre Dame (web) 325,729 1,497,134 46 97s 20s 8s 2%

Florida (road) 1,070,376 1,343,951 2957 181s 52s 17s 0.5%

Great Lakes (road) 2,758,119 3,397,404 4145 629s 151s 54s 0.4%

* tc: Coarsening time, tq1: Query time for the original graph, tq2: Shrink query time, RE:Relative Error
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Table 4.5: summarisation results for four users when the compression ratio is 10.

#days Original Graph Coarse Graph Error
nodes/edges supernodes/edges

U1 466 117/298 12/22 4%

U2 668 161/373 17/35 3%

U3 454 81/140 9/16 6%

U4 81 47/98 5/12 7%

4.8.6 Impact of graph type and graph density

In addition to road networks, we apply our method to different types of graphs including

friendship network, collaboration network, web graph and social network. These datasets

can be downloaded from Stanford network data collections [Leskovec]. Since the graphs are

unweighted, all of the edges are assigned the same weight and the direction of the edges

are not considered. We also apply Shrink to larger road network including Florida and

Great Lakes road network with 1 and 2.7 million nodes, respectively. In this experiment, the

reduction ratio is set to 20%.

Table 4.4 shows the results. As expected, when the input graph is dense, the accuracy of

our method drops. For example, Brightkite friendship network is a very dense graph because

the diameter (longest shortest path) is just 14. As in our model, we assume that the input

graph is large and has long paths, Shrink provides less accurate compression compared to NY

road network, which is a quasi-planner sparse graph. Furthermore, in Brightkite network,

more than 40% of the nodes have only one neighbour that drops the accuracy. The reason

is that our model tries to minimize the effect on the paths that pass through the supernodes

while no path passes through a one-degree node (unless the node is the start or end node).

Shrinks compresses larger graphs better because they usually have longer shortest paths.

According to Table 4.4, Shrink is practical for large graphs as it can compresses a graph with

2.7 million nodes into fifth in 10 minutes.

4.8.7 Summarisation effect on movement graphs

Here, we investigate the effect of Shrink on two human mobility mining algorithms in terms

of time, accuracy, and granularity. After constructing the movement graph, we apply Shrink

and consequently, we obtain the coarse graph. we apply the mobility mining algorithms

before and after summarisation to investigate the summarisation effect.
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Movement graph construction

In this section, we describe the procedure of constructing the movement graph from a real-

world dataset, Device Analyser [Wagner et al., 2014]. The Device Analyser dataset includes

data gathered from running background processes, wireless connectivity, GSM communica-

tion, and some system status and parameters. In this dataset, MAC addresses, Wifi SSIDs,

and other forms of identification are hashed due to privacy purposes. As a result, there is

no ground truth or information about the geography and semantic of the locations [Wagner

et al., 2014]. In our experiments, we extract the cell tower IDs (CIDs) connected to the

smartphone. A CID is a labeled location whose geographical coordinates is unknown.

To construct the movement graph, we start with identifying the stay points that can be

defined in different ways. Based on our definition, a CID is considered as a stay point if the

user is connected to it longer than one hour. A node is assigned to each stay point, and two

nodes are connected if the user moves from one to the other stay point. The weight of the

edge between the nodes denotes the traveling time from the time the user leaves the source

stay point until he arrives at the destination one. If the user commutes between two nodes

more than once, the mean values of traveling times is considered as the weight of the edge.

A movement graph belongs to a user movement during a specific period. Table 4.5 shows

the details of movement graphs extracted from Device Analyser. The size of the graphs and

the amount of the processed data are reported.

Movement graph summarisation

After building the user’s movement graph, we apply Shrink to summarise the graph. Shrink,

applicable to a weighted graph, reduces the size of the graph by merging nodes while trying

to preserve the distance between the nodes. After merging two nodes, a set of new weights

are assigned to the edges connected to the nodes in the way that the distances have the least

change. Hence, the distances between the nodes in the original and coarse graphs are almost

the same. Therefore, to find the traveling distance between two CIDs, it is possible to run

the shortest path algorithm on the coarse graph instead of the original graph. Each node in

the coarse graph is a supernode representing a cluster of nodes from the original graph.

Shrink is flexible about compression ratio (CR), which is the ratio of the number of

nodes in the original graph to the number of nodes in the coarse graph. However, when the

compression ratio is high, the distances are not preserved well. As the compression ratio is

flexible, the user can set it based on the available storage. After storing the coarse graph, it
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can be queried without decompression. For any distance-based query such as shortest path

query, the result is almost the same as running the query on the original graph.

In our application, a supernode in the coarse graph represents a cluster of CIDs that

may belong to a specific location such as university or shopping center. For example, assume

several CIDs exist in the university and the user does not always connect to the same one.

Shrink merges all the CIDs in the university to a supernode and updates its new edge weights.

Table 4.5 reports the error when the compression ratio is equal to 10. The error is the

average relative difference between the distances in the original and coarse graphs over 100

node pairs. The small value of the error indicates that the distances have been preserved

well. We run our experiments on 4 different users containing 1689 days of data in total.

Effect on prediction algorithms

Here, the goal is to predict the location of the user based on the historical data and the

time of the day. Specifically, we compute the probabilities of the presence of the user in all

locations at a specific time of the day (e.g. 6 pm) by processing the historical data. Then,

we choose the location with the highest probability as the location of the user. This method

is one of the baselines for location prediction [Do et al., 2015]. In our experiment, the Device

Analyser dataset is used where the locations are labeled with CIDs.

After summarisation, the prediction algorithm is applied to the coarse graph. The number

of experimental instances is 1520 from 4 Device Analyser users mentioned in Table 4.5. For

each instance, the location of the user is predicted at a specific time that is identified by a

supernode. If the predicted supernode in the coarse graph includes the actual CID that the

user is connected to, the prediction is considered as successful. The accuracy is the number

of successful predictions divided by the total number of experimental instances.

The compression ratio (CR) ranges from 1 to 256. CR equal to 1 indicates the case

that no summarisation is performed and the experiments run on the original graph. On the

other hand, when CR is equal to 256, all of the nodes are merged into a single node and all

information is lost. The length of the historical data ranges from 5 to 40 days.

The accuracy is reported in Figure 4.13 (a). As it can be seen, when the compression

ratio is high, the accuracy increases because the number of the possible locations for the user

decreases which makes the prediction easier. In Figure 4.13 (b), Shannon entropy is reported.

Intuitively, the entropy denotes the average amount of information gained by knowing the

user’s location. From the figure, it can be seen that when the compression ratio increases, the
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Figure 4.13: Effect of the summarisation on the (a) accuracy of prediction (b) information
gained by knowing the location of the user.

entropy decrease as there are less possible locations. When CR is 256, we gain no information

by knowing the user’s location as there is only one location (i.e. supernode). Furthermore,

when the historical data is big, the number of CIDs visited by the user increases, the graph

is larger, and the entropy is higher. Reporting the entropy is a proper way to measure how

much privacy is lost by disclosing the user’s location.

Effect on similarity mining algorithms

In this section, we show how the summarisation changes the performance of the methods

that measure the similarity between the movement graphs. Specifically, given two movement

graphs of a user related to two different periods, the aim is to compute the similarity between

the graphs. The result states how much the user’s mobility pattern changes over time, and

it is based on the locations that the user visits and their frequencies. For example, let us

consider a user that goes to the university every day but during the exam period, he goes to
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the library to study. By building the movement graph in exam period and comparing it with

user’s normal movement graph, we can detect when the user’s mobility pattern changes [Sadri,

2016].

In our experiments, we deploy Graph Edit Distance (GED) to measure the similarity

between two graphs [Sanfeliu and Fu, 1983]. Using this approach, the dissimilarity between

two graphs is defined as the minimum number of operations required to convert one graph

to the other. The operations include edge insertion/removal, node insertion/removal, and

increasing/ decreasing an edge weight.

Figure 4.14 shows the effect of the summarisation on the processing time for the GED

algorithm. When the compression ratio is high, the coarse graph has fewer nodes. Conse-

quently, comparing the graphs is performed faster. In Figure 4.15, we show that comparing

the coarse graphs is almost the same as comparing the original graphs. In fact, the summari-

sation has a little effect on the GED results and if two graphs are similar/dissimilar, after

the summarisation, the similarity/dissimilarity remains the same. However, by increasing

the compression ratio, the uncertainty is increased too. For CR=2, the Pearson correlation

coefficient is 0.98 but when the compression ratio becomes bigger, the correlation decreases.

To sum up, by increasing the compression ratio, the processing time of GED algorithm de-

creases but at the same time, the uncertainty of the result increases, which means the results

is less reliable.
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Figure 4.15: By increasing the compression ratio (CR), the correlation decreases.

4.9 Conclusion

In this chapter, we introduce Shrink as a new distance preserving graph summarisation

method. In the first stage, the graph size is reduced by replacing node pairs with supernodes.

The queries run more efficiently on the reduced graph, called coarse graph. To find the exact

shortest path including the laying nodes on the path, we rerun the query on a subgraph of the

original graph. Shrink is a generic compression method that can be applied to different types

of the graph. In the experiment section, we investigate the impact of different parameters

on the performance. We also deploy Shrink to summarise the movement graph to produce

an abstract (coarse) graph easy to be processed and queried.

Although Shrink is quite generic, our main focus in this chapter are the graphs that

contain spatial information of the user’s mobility such as road network and connectivity data.

We evaluate our graph summarisation algorithm by applying to New York road network in

which the nodes represent the intersections and edges represent distances. This graph have

the user’s mobility information when he moves from one intersection to another. Furthermore,

we also apply Shrink to connectivity data from Device Analyser dataset in which the nodes

represent the CIDs and edges shows the changes in the connection. After summarisation,

each supernode in the road network represents several intersections while in the connectivity

data each node represents several CIDs.

The performance of Shrink depends on how much the differences between the distances

in the coarse and original graphs. In the experiments, we investigate the impact of graph
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type, graph size, and compression ratio on the performance. Shrink has better performance

on sparse graphs with large diameters. Furthermore, we prove that Shrink is more suitable

for larger graphs. The compression ratio has a reverse effect on the performance which means

when the large compression ratio is high, the distances are not preserved well.

We specifically investigate the effect of summarisation on two algorithms related to human

mobility mining: location prediction and similarity mining. First, a location prediction

algorithm is applied to both original and coarse graphs. We show that there is a trade-off

between the granularity and accuracy of the results. Specifically, the prediction based on the

coarse graph results in a better accuracy but the output is coarse-grain that includes several

locations. Second, we study the effect of the summarisation on computing the similarity

between two movement graphs. To this end, we apply a graph similarity metric to both

original and coarse graphs. As the coarse graph has fewer nodes, the summarisation speeds up

the calculation of similarity. However, if the compression ratio is too big, we lose information

and the similarity cannot be calculated correctly.
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Chapter 5

Partial daily trajectory prediction

5.1 Introduction

Understanding human mobility has always been a substantial pursuit in academic research

due to the multitude of potential applications, such as link prediction [Wang et al., 2011],

urban planning [Gonzalez et al., 2008; Li et al., 2012], and resource management, such as

wireless system management [Cheng et al., 2003] or smart home heating systems schedul-

ing [Das et al., 2002], to name a few. It also benefits location-based service providers that

deliver services to users based on their location, such as traffic updates, suggested routes, or

location-based advertisement [Ribeiro et al., 2014; Bastani et al., 2011]. However, for these

suggestions to be precise, there is a need for trajectory prediction containing both spatial

and temporal information of the user’s future movements.

While there are many techniques for human location prediction, they all have one or more

limitations that have reduced their applicability for trajectory prediction in practice [Barzaiq

and Loke, 2015; Barzaiq et al., 2015; Chen et al., 2014; Jeung et al., 2010; Scellato et al., 2011;

Jeung et al., 2008]. This observation has motivated us to purpose a trajectory prediction

approach. Given the historical data and the user’s trajectory in the first part of the current

day (e.g. trajectory in the morning), our approach completes the user’s daily trajectory by

predicting the trajectory for the rest of the day (e.g. prediction of the afternoon trajectory).

The proposed approach is unique in offering all the following features:

• Sequence of locations: Most approaches in the literature focus on next location

prediction, which is the prediction of the user’s location at a certain time [Chen et al.,

2014; Jeung et al., 2010; Scellato et al., 2011; Sadilek and Krumm, 2012; Jeung et al.,
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2008]. Although next location prediction approaches are designed to predict only one

location, they can predict the sequence of locations by multiple implementations (e.g.

every one hour) [Do et al., 2015]. In this case, the departure times are not estimated and

the duration of stays is assumed to be constant. In contrast, our approach inherently

returns the sequence of visited locations and can predict the location at any particular

time in the future.

• Departure times: Some location prediction approaches focus on only the next lo-

cation that the user visits regardless the time elapsed [Gambs et al., 2012; Gidófalvi

and Dong, 2012]. The departure times from the locations are not estimated in these

approaches. In contrast, our method can predict both the location and time of the

departure from each point and all the following sequences.

• Granularity: The past location prediction methods largely rely on discretizing the

trajectory first, and then returning regions rather than accurate locations [Ashbrook

and Starner, 2003; Chen et al., 2014; Morzy, 2007; Monreale et al., 2009; Lei et al.,

2011]. For example, the prediction model is trained on GPS data, but the predicted

location is a cell grid rather than GPS coordinates [Chen et al., 2014]. In our approach,

the predicted trajectory has the same granularity as the training/historical data.

• Generality: Most prediction techniques are designed for a specific type of data. Some

handle labelled locations such as WiFi access points where the geographical information

(e.g. latitude and longitude) may not be available while others process geographical

locations such as GPS data. The proposed method in this chapter is able to handle

both labelled and geographical trajectories.

• Diversity of the predicted locations: Some existing methods predict the location

from a finite set of locations, such as significant locations (e.g. home and office) or stay

points, while discarding other locations [Ashbrook and Starner, 2003]. For example,

Eagle et al. consider only four discrete locations for prediction [Eagle and Pentland,

2009]. In contrast, our method does not ignore any location that exists in the historical

trajectories.

Table 5.1 summarizes the differences and shows the unique aspects of trajectory predic-

tion approaches. Prediction of the departure times in which the lengths of the stays are

estimated [Lee and Hou, 2006; Meng et al., 2015] has also been tackled by previous research
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and is mentioned in the table. Table 5.1 also illustrates the sample outputs for a typical

scenario. Assume that the user is at the office at 3 pm and wants to buy groceries on his

way home from the office. What location prediction and departure time approaches can

contribute to a recommendation system is to advise the departure time (i.e. 4 pm) and the

location at 6 pm (i.e. home). Predicting the user’s location, the recommendation system

suggests only places near the home or office for shopping. However, having the trajectory

of the user between the office and home, the recommendation system can also suggest the

closest shops on the route home for the user. It can also check if that shop is open at the

time the user will reach the shop.

Despite its importance to applications, none of the existing works has focused on the com-

pletion of a partial daily trajectory of a user while predicting spatial and temporal sequences

with fine granularity for both labelled and geographical trajectories. Routing and traffic

recommendations would greatly benefit from such an approach. For example, assume that

the user is on her way to work in the morning. By predicting the path to the office and the

departure time, a location-based service provider could notify her of transport disruptions in

advance and suggest alternative routes with added precision. A short summary of our ap-

proach starts with a user’s trajectory up to a certain time of the day. Our algorithm predicts

the trajectory for the rest of the day. For example, we have a trajectory for the morning

(e.g. up to 12:00) and the problem will be to predict the trajectory in the afternoon (e.g.

from 12:00 to 23:59). We predict a trajectory which includes the sequence of future locations

with timestamps that will be visited by the user for the rest of the day. If the trajectory is

a geographic one, e.g. GPS locations, then the granularity of the prediction is at the GPS

level rather than, like in other approaches, with a coarser granularity of regions [Sadri et al.,

2017].

Methodologically, our approach investigates the similarities between the given sub-trajectory

of the current day and the historical data for prediction. Specifically, the trajectories from

the historical data similar to the given sub-trajectory play an important role in the predic-

tion of the succeeding part of the new day’s trajectory. For example, it may be inferred

from the historical data that if a user goes to university early in the morning, she would

leave the university early. Therefore, if the trajectory in the morning shows that the user

goes to university early, a reasonable prediction should anticipate that the user does not stay

at the university for a long time. Defining a comprehensive similarity metric between the

trajectories is essential in the proposed method. To do this, we combine two similarity met-

rics by considering the spatio-temporal properties of the trajectory as well as the sequence
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Table 5.1: Comparison between Location prediction, departure time prediction, and our
problem (trajectory prediction)

Location prediction Departure prediction
Partial human daily
trajectory prediction

Question to
be answered

Where will the user be at
a certain point in time?

When will the user de-
part from the current
location?

What is the user’s trajec-
tory (sequence of locations
and time points) for the
rest of the day?

Location
granularity
of the output

Region (e.g. POI, grid-
ded map, area covered by
a cell tower)

N/A Same as the input (e.g.
latitude and longitude for
GPS trajectories)

Sample out-
put inference

The user is at home at 6
p.m.

The user leaves the of-
fice at 4 p.m.

The user leaves the office
at 4 p.m., passes along
George St., and arrives
home at 5 p.m. The user
stays home for the rest of
the day.

of the locations. We evaluate our method with both labelled trajectories and geographical

trajectories, and the results demonstrate the effectiveness and efficiency of the method com-

pared to baselines. Using our method, the prediction error is reduced by 10% and 35% for

labelled trajectories and geographical trajectories, respectively. This saves the user’s time

and enhances her experience. For example, assume that a recommendation system recom-

mends the user to watch fireworks in the main square at 9 p.m. based on the prediction.

However, the user arrives at 8 p.m. and she has to discard the recommendation or wait for

one hour. On average, our approach reduces the waiting time to 40 minutes. Similarly, from

the spatial point of view, the recommended location might be one kilometer away from the

user’s location. Using our method, the distance decreases to around 650 meters.

The main contributions of this chapter are as follows:

• We introduce a mechanism that combines similarity metrics over temporal sequences

of locations to estimate similarity of user trajectories. This new metric provides an

effective comparison between two trajectories.

• We complete the partial daily trajectory by predicting the trajectory for the rest of the

day. To ensure the quality of the predictions, different components are deployed in our

method, including temporal correlation, temporal segmentation, and outlier removal.

• We apply the method to two real-world datasets consisting of labelled trajectories and
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geographical trajectories, and we show the reduction in the prediction error, which is the

difference between the predicted trajectory and the actual trajectory. The considerable

decrease in prediction error unlocks more precise spatio-temporal user recommendations

in the context of location services.

In the next section, we discuss related work. In Section 5.3, we formally state the problem.

In Section 5.4, we discuss the rationale behind our approach by leveraging on the salient

characteristics of human mobility. Our approach for trajectory prediction is described in

Section 5.5. The experiment results of our algorithm are reported in Section 5.6. Finally,

Section 5.7 concludes the chapter.

5.2 Related work

Extensive research has been undertaken on mobility prediction, and it is a key issue in a

large number of applications, such as mobile wireless systems [Cheng et al., 2003], road

networks [Kim et al., 2007; Jeung et al., 2010], and smart homes [Das et al., 2002]. In

the networking community, some researchers focus on prediction in WiFi networks, while

others predict the connectivity to GSM mobile phone towers (i.e. CID) [Nicholson and

Noble, 2008; Song et al., 2006]. These methods anticipate client connectivity to the network

to enhance mobility management [Liu and Maguire Jr, 1996], cell assignment [Das and Sen,

1999], paging [Bhattacharya and Das, 2002], and call admission control [Yu and Leung, 2002].

In addition to the mobility pattern of smartphone users, trajectory prediction is used in road

networks where movements are constrained to roads on the map [Kim et al., 2007; Jeung

et al., 2010; Krumm and Horvitz, 2006]. Location prediction systems are also used in smart

home environments to maximize occupant comfort and minimize operation costs [Das et al.,

2002].

5.2.1 Next location prediction

Some methods focus on the next location prediction problem, which is a relaxed version of

trajectory prediction [Chen et al., 2014; Do et al., 2015; Gidófalvi and Dong, 2012; Jeung

et al., 2010; 2008; Scellato et al., 2011]. The next location prediction methods can be classified

into two groups according to their prediction method. The first group predicts the location of

the user after a specific time, Δ, which is specified in each study. For example, Δ is 10 minutes

and one hour in studies [Do and Gatica-Perez, 2014] and [Song et al., 2010] respectively.

Sadilek et al. proposed a model for long-term prediction up to multiple years [Sadilek and
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Krumm, 2012]. In some studies, the effect of Δ on performance is investigated [Scellato

et al., 2011; Jeung et al., 2010]. Do et al. changed Δ to predict a set of locations visited by

the user [Do et al., 2015]. The second group uses methods that do not take into account the

time elapsed, but just focus on the next location that the user goes to, whether it is after

a short or a long time [Gambs et al., 2012; Gidófalvi and Dong, 2012]. In both groups, the

GPS coordinates are quantized into cell grid, and the output of the prediction is a cell rather

than GPS coordinates.

Some approaches take advantage of other contextual factors to improve the perfor-

mance [Cho et al., 2011; De Domenico et al., 2013]. For example, Domenico et al. improve

the accuracy of the prediction by considering traces of multiple users and show the correla-

tion between the trajectories which can be a signal of social interaction [De Domenico et al.,

2013]. Next location prediction approaches mainly focus on making predictions at fixed and

short time-scales, while our approach predicts the entire remainder of a person’s day.

5.2.2 Machine learning models

Predicting one location among a set of finite locations (e.g., POIs, cells in a gridded map)

makes the trajectory prediction problem similar to a classification problem. In this case, the

locations are considered as the classes, and machine learning classification techniques are used

for the next location prediction [Anagnostopoulos et al., 2011; Krumm and Horvitz, 2006;

Tran et al., 2012]. Krumm et al. propose Predestination to predict drivers’ destinations by

producing a probabilistic map of destinations via Bayesian inference [Krumm and Horvitz,

2006]. Anagnostopoulos et al. consider visited locations as the feature vector, and then

evaluate three classification methods [Anagnostopoulos et al., 2011]. Tran et al. extract the

semantics of the visited locations and use them as the features for a classification tree [Tran

et al., 2012]. To predict the next location within a smart building, Petzold et al. evaluate five

machine learning approaches including Dynamic Bayesian Network, Multi-layer Perceptron,

Elman net, Markov predictor, and State predictor [Petzold et al., 2006]. In [Do and Gatica-

Perez, 2014], the performances of machine learning models such as Random Forest, Linear

Regression and Logistic Regression for predicting 10 semantic location labels are compared

in both personalized and user-independent modes. The more relaxed problem is occupancy

detection, in which the number of the classes is two [Krumm and Brush, 2011; Scott et al.,

2011]. Classification models cannot be applied to GPS data to predict coordinates that

consist of continuous values. On the other hand, our method is able to predict the continuous

91



CHAPTER 5. PARTIAL DAILY TRAJECTORY PREDICTION

values such as the latitude and longitude of the locations.

5.2.3 Markov models

In the literature, one of the common approaches for addressing the location prediction prob-

lem is the Markov model [Asahara et al., 2011; Gidófalvi and Dong, 2012; Chen et al., 2014;

Gambs et al., 2012; Mathew et al., 2012; Do and Gatica-Perez, 2014]. The difference between

Markov-based approaches is the way that the states are defined. For example, for GSM data,

the cell towers are considered as states, while for WiFi data, WiFi access points are Markov

model states [Zhao et al., 2011]. In a smart environment, proximity to a sensor can be con-

sidered as a state [Petzold et al., 2006]. Unlike those using fixed sensors, approaches using

GPS data apply a prior spatial discretization (i.e. vector quantization). Some approaches

simply use fixed grid on the spatial space [Morzy, 2007; Monreale et al., 2009; Chen et al.,

2010], while others extract significant locations by clustering spatially or temporally [Lei

et al., 2011; Ashbrook and Starner, 2003; Chen et al., 2014]. For example, Ashbrook et al.

first, cluster GPS data points to find significant locations and then use Markov model to

predict the user’s movement from one significant location to another [Ashbrook and Starner,

2003]. Banovic et. al use a Markov Decision Process (MDP) framework to model routine

behavior described as the user’s daily commute. In the first step, the location logs, including

latitudes, longitudes, and timestamps, are converted into states and actions representing the

user’s mobility for each day. The states indicate the day of the week, the hour of the day

(0-24), the location of the user, and whether the user left, arrived, or stayed at the location

for the past hour. The state transition probabilities are modeled with a stochastic MDP to

consider the environment’s influence on arrival time (e.g. travel distance, traffic) [Banovic

et al., 2016].

Using Markov models for the trajectory prediction problem has two weaknesses. First,

only the last location visited by the user is taken into account for the prediction of the

next location. Some approaches use different orders of Markov models to obtain better

accuracy [Chen et al., 2014; Ashbrook and Starner, 2003]. Second, the output of a Markov

model is limited to the states representing a significant location, point of interest, CID, or any

labelled location. Therefore, the Markov model is not applicable to GPS data unless a prior

spatial discretization is applied (e.g. using a gridded map), and this reduces the granularity of

the predicted locations. The discretization stage may use density-based clustering techniques

to detect significant locations, stay points, or points of interests (POI) [Morzy, 2007; Chen
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et al., 2010]. The discretization, on one hand, reduces the complexity of the problem and

increases the certainty of the results. On the other hand, it also reduces the precision of the

approach due to the coarse granularity of the regions. As a result, predicted locations could

include several important locations which are common in crowded cities where buildings are

in close proximity to each other. For example, if the office and home are located in the

predicted region, the location-based service cannot distinguish when the user goes to the

office. Compared to the Markov models used for location prediction, our method can be

used to predict the next transition time in the trajectory and the location at any particular

time. Furthermore, there is no need for discretization in our method, which results in fine

granularity.

5.2.4 Summary of gaps

This work addresses human mobility prediction across a day. Existing approaches do not

make use of the rich information contained in the previous part of a user’s daily trajectory.

Furthermore, most of the current methods have been designed for discrete data, while our

method can handle both continuous and discrete data (i.e. geographical and labelled trajec-

tories). Unlike the other methods that predict the destination only, our method predicts the

trajectory to the destination using spatio-temporal points. We believe this is vital for an ef-

fective location-based service. With trajectory prediction, we investigate not only where will

the user be in the future but also how the user gets to that location and when. Specifically,

our approach provides spatio-temporal points that can be either geographical coordinates or

labelled locations. By obtaining this information, the user can be notified about the conse-

quence of her movements in advance. In this way, a location-based system alerts the user

about events that may happen during the trip to the destination.

5.3 Problem definition

In this section, after introducing the notations, we define the problem. Table 5.2 lists the

symbols used in this chapter.

Definition 1: A trajectory is a trace of locations, represented by a series of chronologi-

cally ordered points, p1 → p2 → ...→ pm, where each point consists of a location and a times-

tamp p = (loc, t). Thus, < p1, · · · , pi, · · · , pm >=< (loc1, t1), · · · , (loci, ti), · · · , (locm, tm) >.

For geographical trajectories, such as for GPS data, loc is a geospatial coordinate set; in la-

belled trajectories, e.g. a sequence of Cell IDs of WiFi Access points, loc is the label assigned
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Table 5.2: Definitions of symbols

HT set of historical trajectories
i index of trajectory in HT
n number of historical trajectories
T time when the prediction starts
Tr trajectory of the current day
Trpre given sub-trajectory of the current day from 00:00 to T
Trpost to be predicted sub-trajectory of the current day from T to 23:59
Tripre the first sub-trajectory of the i-th day from 0:00 to T
Tripost the second sub-trajectory of the i-th day from T to 23:59
W(Tr

i) weight between Trpre and Tripre ∈ HT
μ mean value
σ variance

to a location.

Definition 2:The historical trajectories of the user containing n days of data is HT =〈
Tr1, ..., T rn

〉
where Tri denotes the trajectory of the user during the i-th day. A day starts

at 0:00 and ends at 23:59.

Definition 3: Current day is the target day when the prediction takes place. The

trajectory of the current day is Tr.

Definition 4: Prediction time (T ) is the time of the current day when the prediction

starts.

Definition 5: Tripre is the first sub-trajectory of the i-th day that is from 0 : 00 to T

while Tripost is the second sub-trajectory of i-th day that is from T to 23 : 59. For the current

day, the sub-trajectory from 0 : 00 to T is Trpre and the sub-trajectory from T to 23 : 59 is

Trpost.

The definitions of the symbols are listed in Table 5.2. Given these definitions, we can

now define our problem statement.

Problem: Given the historical trajectory, HT , and the user’s initial trajectory of the

current day, Trpre, our problem is the prediction of the trajectory for the rest of the day,

Trpost.

5.4 Observations in human daily trajectory

In this section, we discuss the rationale behind our approach by discussing three observations,

each of which is examined on data described in the following subsection.
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Figure 5.1: Correlation between the trajectories in the mornings and in the afternoons
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Figure 5.2: Temporal correlation between the trajectories that have Δ days difference
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5.4.1 Data description

To validate the observations, we evaluate two types of datasets: a labelled dataset (Device

Analyser) and a geographical dataset (Mobile Data Challenge). We use these same two

datasets for our subsequent experiments.

• Device Analyser: The Device Analyser app gathers data about running background

processes, wireless connectivity, GSM communication, and some system status and

parameters. In this dataset, MAC addresses, WiFi SSIDs, and other forms of identi-

fication are hashed due to privacy purposes. Therefore, there is no ground truth or

information about the geography or semantics of the locations. The trajectories consist

of labelled cell tower IDs (CID), and the sampling rate is every 15 minutes. This makes

the trajectory length equal to 96 for one day. In our experiments, we consider 225 users

who have more than 40 days of data. For each user, we apply our approach to the last

10 days [Wagner et al., 2014].

• MDC dataset: The Mobile Data Challenge (MDC) dataset provides geolocation in-

formation for nearly 200 users. In addition to GPS data, WLAN data is also used

for inferring user location. The location of WLAN access points was computed by

matching WLAN traces with GPS traces during the data collection campaign. As an

adequate amount of data is needed for prediction, we exclude users who do not have

enough data and only considered users with more than 40 days of data. 136 users sat-

isfy this condition. Similar to Device Analyser dataset, we process the same amount of

data (i.e. 10 days) for each user and RMSE is reported over all instances [Kiukkonen

et al., 2010].

The Device Analyser data provides hashed cell tower IDs (CIDs) and we call it the

labelled trajectory dataset trajectory, composed of CIDs and timestamps. The MDC dataset

provides the geographical location of the user and the trajectories include latitude, longitude,

and timestamps and we call it the geographical trajectory dataset. When T is 12 : 00, the

trajectory of a day is split into morning and afternoon sub-trajectories.

5.4.2 Observation 1: Positive correlation between the morning and afternoon

sub-trajectories

People’s morning trajectories are positively correlated with their afternoon trajectories. That

is to say, if a user has the same trajectories over two mornings, it is highly likely that she
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will have the similar trajectories in the afternoons.

Figure 5.1 shows the scatter plot for similarities in the mornings and in the afternoons

measured by Dynamic Time Warping (DTW). (We explain later how we apply DTW to

our labelled and geographic datasets.) In Figure 5.1a, each of the 2000 points represents 2

random days taken from the same user in the labelled dataset. The vertical axis represents

the morning DTW difference of the two days, and the horizontal axis represents the afternoon

DTW difference, where a smaller difference indicates higher similarity. Since this is labelled

data, the DTW differences are integers ranging from 0 (high similarity) to 48 (high difference).

The strongest cluster in this plot is centered around (10,10). This indicates that days that are

relatively similar in the morning and also relatively similar in the afternoon. Exact matches

are rare, hence there are no points at (0,0). The size of each point is proportional to the

number of points occupying that coordinate.

Figure 5.1b shows the same analysis for 2000 random pairs of days in the geographic

dataset, where the DTW difference is a continuous value. We again see a large cluster near

(0,0). Taken together, the plots in Figure 5.1 imply that if two trajectories are similar in the

morning, it is expected that they are similar in the afternoon, too. This validates the first

observation. For example, if someone works for two companies and has two routines, the

morning trajectory often identifies which routine will be followed in the afternoon. We make

use of this observation by predicting a person’s afternoon trajectory based on their morning

trajectory

5.4.3 Observation 2: Positive temporal correlation

The importance of each historical trajectory varies and depends on its date. To show the

date effect, 2000 random trajectory pairs are selected from each dataset. Each trajectory pair

includes two trajectories from two days with less than 30 days gap from the same user. Figure

5.2 shows how much the closeness of the dates reflects the similarity between two trajectories,

where similarity is again measured by DTW. Specifically, the x-axis indicates the gaps (Δ)

in days between the dates of two trajectories, while the y-axis reflects the average similarity.

It is observed that 1) overall, as Δ increases, the similarity decreases, and 2) when Δ = 7,

the weekly periodicity appears, which means trajectories are more similar between two days

with 7 days difference. Thus, in general, the closer the date of a historical trajectory to the

current prediction date, the more important it is. The reason is that people often have a

similar routine in two close days (e.g. two consecutive days) [Cho et al., 2011]. This temporal
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correlation indicates that higher priority should be given to the trajectories with the closer

dates or dates that are one week apart. For example, for prediction of Monday mobility, this

observation implies that it is better to use the trajectory of the last Monday rather than the

trajectory from the last Tuesday. We use the temporal correlation to compute weights on

each previous day to use for predicting the current day. Days with higher correlation are

given more weight.

5.4.4 Observation 3: Outlier trajectories

There are outlier trajectories, which are different from people’s normal routine (i.e. visit

to a location by exception) and which are unlikely to happen again (especially considering

the entire trajectory as a whole). Then, when making trajectory predictions, these outlier

trajectories should be excluded. Here, we elaborate one example to clarify the effect of

outlier removal stage. Assume that the user has a strict routine on Wednesdays and we want

to predict the afternoon trajectory given a Wednesday morning trajectory. The temporal

correlation specifies to pick the afternoon trajectory of the last Wednesday because it is

the closest day to the current day with similar morning trajectory. Now, assume that on

Wednesday afternoon last week, the user deviated from his routine to visit a new location

(e.g. visiting a friend in a hospital) and this visit had never been repeated in the historical

data. Observation 3 implies that such a visit was temporary and unlikely to happen again.

In other words, the predicted trajectory should not be nor include an outlier.

In summary, the proposed method is based on the above observations. 1) We predict

Trpost using the historical trajectories that have the sub-trajectories similar to Trpre. 2) We

calculate temporal correlation to give priority the historical trajectories based on their relative

date. 3) The historical trajectories that include outliers are not used for the prediction.

5.5 Partial human daily trajectory prediction

In this section, we provide an overview of the proposed approach to partial human daily

trajectory prediction, as shown in Figure 5.3:

(a) The first stage is to compare Trpre with Tripre, the morning sub-trajectories from the

historical trajectories. The goal is to weight the historical trajectories based on their

similarities to Trpre. Two similarity metrics are deployed in our approach: Dynamic

Time Warping (DTW) [Keogh and Pazzani, 2000] and Edit Distance(ED) [Chen et al.,

2005]. We will describe these metrics later in the section.
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Figure 5.3: Diagram of the approach to partial human daily trajectory prediction

(b) The temporal correlations are processed to quantify the impact of date differences on

the prediction.

(c) Together with (a), the temporal correlation between Trpre and Tripre are used to en-

hance the corresponding importance of Tripre. For example, the afternoon trajectory

of yesterday might receive a higher weight compared to the afternoon trajectory of a

day from last month.

(d) The two similarity measures (DTW and ED) are normalized in this stage. After nor-

malizing the similarity measures, they are combined to form the final weight of each

historical trajectory. The final weights indicate the similarity of the morning parts of

the historical trajectories to Trpre. The afternoon part of the trajectories that received

high weights will be used for prediction in the final stage.

(e) Information Gain Temporal Segmentation (IGTS), introduced in Chapter 3, is deployed

on the historical afternoon trajectories. Then, the prediction is performed within each

segment. Ideally, each temporal segment represents the period over which an activity

is undertaken. For example, if the user often goes for lunch between 12:00 and 13:00,

[12:00, 13:00] is one of the temporal segments.

(f) In each afternoon segment, a distance matrix is built. The distance matrix indicates

the distance/similarity between two sub-trajectories in the historical data during that

segment. Based on the distance matrix, we discard the outlier sub-trajectories that

represent the trajectories that are unlikely to happen during the current day. From the
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Figure 5.4: Similarity matrix for 20 successive days. The darker the cell, the stronger
the similarity.

rest of the trajectories, we choose the sub-trajectory of a day with the highest weight

assigned in stage (d). The predicted sub-trajectory are linked together to form Trpost.

We detail each of the above components in the following sections, including trajectory

similarity metrics, temporal correlation, temporal segmentation, and outlier removal.

5.5.1 Similarity metric

There are several metrics to measure the similarity between two trajectories. For example, the

four most common metrics are Fréchet Distance, Dynamic Time Warping (DTW), Longest

Common Sub-Sequence (LCSS), and Edit Distance (ED), all of which have been introduced

and compared by Toohey and M. Duckh [Toohey and Duckham, 2015]. Of these metrics,

DTW relies on matching points in trajectories. Specifically, a single point in one trajectory

can be matched to multiple points on the other trajectory based on the distances. The

calculation of distances between the points is performed using a chosen distance function.

For labelled trajectories, the distance function only checks whether the two labels are equal

or not. If the two labels match, the distance is zero. Mismatched labels have a distance

of one. For geographic trajectories, the distance between points is the great circle distance

measured from the two latitude/longitude pairs. DTW considers delays in the trajectories.

This means that similar sub-trajectories are matched together even though their timestamps

are different. However, outliers can significantly affect DTW because there has to be a match
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between every point in both trajectories [Toohey and Duckham, 2015]. ED aims to count the

minimum number of edits needed to make two trajectories equivalent. This means after the

edits all of the locations in the trajectories have to be the same. For geographical trajectories

(i.e. MDC dataset), we consider two locations as the same location if they are within 0.1

range in latitude and longitude. Among different variations of edit distance, we use the one

described by Chen et al. [Chen et al., 2005]. ED compares the trajectories in every fine-

grained time slot and does not consider delays in the trajectories. ED is more robust in the

treatment of outliers than DTW.

As the similarity metric plays a critical role in our approach, we propose a metric that

integrates DTW and ED together to provide a comprehensive similarity measure. This is

reasonable, because 1) Fréchet distance and DTW are highly correlated (R = 95%); 2)

LCSS and ED are highly correlated (R = 83%) [Toohey and Duckham, 2015]. Furthermore,

DTW and ED are compatible with non-geographic (labelled) trajectories such as trajectories

represented by cell tower IDs.

Figure 5.4 shows the similarity matrix over 20 successive days using DTW based on

the Device Analyser (labelled) dataset. Specifically, each entry denotes the similarity value

between trajectories in two days. It is observed that days 17-20 are very different from the

other days. The user may have gone for a trip in that period to visit new places in other

cities. And the calendar shows that this period is from Friday to Sunday, which strengthens

this hypothesis.

5.5.2 Weighting historical trajectories

Here, we specify how we combine DWT and ED with the observed temporal correlation

between trajectories. Given Trpre, its DTW similarity to Tripre ∈ HT is defined as follows:

WDTW (Tri) = DTW (Trpre, T r
i
pre)× TDTW

cor (Δ), (5.1)

where Tcor denotes the effect of the temporal correlation in the weighting. Δ denotes the

difference between the dates when Trpre and Tri happened. To calculate Tcor(Δ), we use the

historical trajectories to find the correlation between the trajectories with Δ days difference.

Here, we are emphasizing the effects of Observation 2 that Δ is an important factor governing

the similarity between days based on how far apart they are in time.” Similarly, the ED
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simialrity is defined as follows:

WED(Tr
i) = ED(Trpre, T r

i
pre)× TED

cor (Δ). (5.2)

Small values of WDTW (Tri) and WED(Tr
i) mean that the Trpre and Tripre are similar.

According to Observation 1, among the historical trajectories, ones that are most similar to

Trpre in the morning should get higher weights when predicting the afternoon trajectory.

Before summing up the ED and DTW similarity values, they are z-normalized. That

is, each type of similarity values has zero mean and a variance of one. This provides a

comprehensive similarity measure that plays a critical role in our approach.

W (Tri) =
WDTW (Tri)− μDTW

σDTW
+

WED(Tr
i)− μED

σED
, (5.3)

where μ and σ denotes the mean and variance that are calculated for each user separately, and

they are based on the user’s historical data. W () is the total weight assigned to a historical

trajectory considering ED and DTW metrics and temporal correlations. WDTW (Tri)−μDTW

σDTW

and WED(Tri)−μED

σED
are the normalization for DTW and ED, respectively. This normalization

is introduced to remove the scale effects and gives both metrics an equal priority.

5.5.3 Temporal segmentation

Factorizing a time period into several temporally homogeneous segments is called temporal

segmentation. Considering trajectories from a user, temporal segmentation reveals the de-

parture times when the user changes her activities. For example, assume one leaves home at

7 am, works at the office from 9 am to 4 pm, and then goes outdoors until 6 pm every day. In

this example, 7am, 9am, 4pm, and 6pm are the departure times and [7am-9am], [9am-4pm],

[4pm-6pm], and [6pm-7am] are the temporal segments .

To predict the trajectory of the user in the afternoon, Information Gain Temporal Seg-

mentation (IGTS), introduced in Chapter 3, is applied to historical trajectories to find the

usual changes in the user’s daily activities, such as when the user usually goes from home to

work. Then, a sub-trajectory is predicted for each segment. Temporal segmentation allows

us to analyse fine-grained segments and discard the outlier sub-trajectories in each segment.

As discussed in Chapter 3, IGTS computes the distribution of the user’s locations in

each segment and tries to capture the segments that have the lowest entropy. Low-entropy

segments imply that the user’s location is predictable in that segment. For example, [12am-
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Figure 5.5: Three sample instances from one user. Each block represents one day.

6am] is a low-entropy segment for a common user because the user is probably at home during

this period. If the trajectories contain geographic locations, before using IGTS, the locations

should be quantified (e.g. by using gridded map). To find the number of the segments, IGTS

uses a formula to choose the best candidate from a range of numbers based on knee-point

detection. If the number of the segments is too large, the predicted trajectory will have a

high variation. Therefore, we select the best candidate for the number of segments ranging

from 2 to 6.

5.5.4 Outlier removal

In this stage, we discard the historical trajectories that have abnormal sub-trajectories in

the afternoon. According to Observation 3, these trajectories are discarded because it is

unlikely to have a sub-trajectory similar to the abnormal sub-trajectories. The abnormal

sub-trajectories are sub-trajectories that are not found in the historical data such as going to

the airport to pick up someone, visiting a friend in a hospital, or inspecting an apartment to

buy. The outlier removal stage is done regardless of similarities in the morning parts. This

means we discard the historical trajectories with abnormal sub-trajectories in the afternoon

even if the morning parts are similar to the current day.

To remove the outliers, we build a distance matrix for each afternoon segment results

from temporal segmentation stage (e.g. from 1 pm to 4 pm). The distance matrix, DS1,

is an n × n matrix where DS1
ij denotes the distances between the sub-trajectories i and j

in segment S1. We use DTW to compute the distance matrix. An outlier sub-trajectory is

based on its closest neighbour (the most similar sub-trajectory). If the closest distance is

higher than a threshold, the sub-trajectory is considered as an outlier. The outlier removal

is performed in each segment independently.

103



CHAPTER 5. PARTIAL DAILY TRAJECTORY PREDICTION

5.5.5 Linking trajectories

Finally, we make the prediction for each segment obtained from the component of temporal

segmentation, then link these predictions together to form the prediction of Trpost. Namely,

the corresponding segment in Tripost ∈ HT with the highest weight W (Tri) is selected as

the prediction for each segment in Trpost. Then, we naturally link the predictions for each

segment together to make the prediction for Trpost.

5.6 Experiments

Before evaluating the effectiveness of the proposed method thoroughly, we clarify the exper-

iment setting. For each user, we pick m consecutive days of trajectories (m > n), where n

denotes the size of historical trajectories used for the prediction of one day afternoon trajec-

tory. For each day, we run our approach while considering the past n days as the historical

data, using the (n+1)-th day as the first test trajectory. Based on the morning trajectory

(i.e. the given part of the trajectory of the current day), we predict the afternoon part of the

(n+1)-th day. For the next day, again, we predict the afternoon trajectory based on the past

n days and the morning trajectory of that day. We continue the prediction of the afternoon

sub-trajectories for each day until we reach the m-th day. Therefore, we have (m − n) test

instances for each user. In other words, each day of data is treated as a test instance. Figure

5.5 shows three sample instances from one sample users’ trajectories.

For each instance, the predicted trajectory is compared to the actual trajectory and the

error is calculated using DTW. The prediction error shows how much the predicted trajectory

is similar to the actual trajectory. If the predicted trajectory is exactly the same as the actual

trajectory, DTW returns zero. Otherwise, the error is the DTW distance between the two

trajectories. DTW is an effective way to evaluate the prediction, because it accounts for

both the spatial and temporal differences between the prediction and the actual trajectory.

Calculating the error for each instance, the Root Mean Square Error (RMSE) is reported for

all data. Specifically, RMSE is the root mean square of the prediction errors measured by

DTW. For the labelled trajectories, we also report precision and recall in addition to RMSE.

However, it should be noted that precision and recall only consider the set of the predicted

locations and do not consider the sequence and transition times. In the experiment results,

our method is denoted by ”TrAf”.
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5.6.1 Baselines

For comparison, we use the following baselines:

• Last week trajectory: According to Section 5.4.3, of the historical trajectories, one

of the most similar trajectory to Trpost is the trajectory of the afternoon of the last

week. We use this as our first baseline. This baseline is similar to ”Same place” baseline

used in the next location prediction methods [Do et al., 2015].

• Most Frequent visit: This baseline finds the most visited locations at each time of

the day. For example, for finding the location at 1 pm, the method searches for the

location in the historical trajectories that is most often visited at 1 pm [Do et al., 2015;

Do and Gatica-Perez, 2014].

• PreHeat: This algorithm was designed for the problem of occupancy detection. Specif-

ically, given the historical records and the morning occupancy, PreHeat predicts the

occupancy in the afternoon. To this end, this method detects 5 days that have the most

similar occupancy patterns to the current day in the morning and then, the probability

of the occupation is calculated based on the detected days. We adapt PreHeat to make

it applicable to our data. For labelled trajectories, we consider one day instead of 5

days because it is not possible to calculate the mean value of labels. For geographical

trajectories, the mean values of the latitude and longitude are considered as the coor-

dinate of the predicted location. We also evaluate the algorithm when the number of

the detected similar days is 10. [Scott et al., 2011].

• Markov model: It is one of the most popular approaches for mobility prediction

problem [Asahara et al., 2011; Gidófalvi and Dong, 2012; Chen et al., 2014; Gambs

et al., 2012; Mathew et al., 2012; Do and Gatica-Perez, 2014]. However, Markov models

cannot be applied directly to the GPS data and there should be a discretization stage

for defining Markov states. In our implementation, we use a grid map for discretization,

and each cell is considered as a state.

5.6.2 Experiments on labelled trajectories

In this experiment, we predict the labelled afternoon trajectories of 2250 days from 225

Device Analyser users (10 for each user). The length of the historical data is 30 days, i.e.

n = 30, which means for prediction of the afternoon trajectory, Trpost, we process the morning
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Table 5.3: Tests show that our algorithm’s mean performance is better than the baseline
algorithms on the Device Analyser dataset by a statistically significant margin

TrAf PreHeat Most frequent visit Last week trajectory

RMSE 25.6 26.1 28.5 31.4

Wilcoxon test - 0.0015 0.00001 < 0.0001
p-value

trajectory, Trpre, as well as the trajectories of the user during the previous 30 days. Here, T

is 12 pm which means we have the trajectory of the current day up to 12 pm and trajectory

between 12 pm and 12 am is unknown. This makes the lengths of Trpre and Trpost equal to

48. The impacts of the prediction time and size of historical trajectories are investigated in

the following subsections.

In Figure 5.6, the y-axis denotes the similarity between the predicted trajectory and the

ground truth. The box plot containing inter-quartile range (IQR), a measure in descriptive

statistics. The IQR is the 1st quartile (25%) subtracted from the 3rd quartile (75%). The

box demonstrates the values between 1st quartile and 3rd quartile while whiskers extend to

data within 1.5 times the IQR. The median is also shown in the box. The maximum error

is 48 and this happens when none of the predicted Cell tower IDs (CIDs) is the same as

the actual CIDs. The figure shows that the trajectories predicted by our method are more

similar to the actual trajectories. To show that this superiority is not by chance, a statistical

analysis, Wilcoxon test, is conducted. RMSE and the p-values are reported in Table 5.3. All

the tests show our algorithm’s mean performance is better than the baselines’ means to the

0.0001 significance level.

It can be seen that the variation of the result is high and the certainty of all methods

are low. The reason is that the human mobility has some limits for prediction and it is not

completely predictable [Song et al., 2010]. In fact, it is likely to see new trajectories that are

different from the historical trajectories. For example, the user may leave the office earlier,

or she may catch up with her friends after the working hours.

The reality is that the performance of each method depends on the user’s behaviour. For

example, if morning trajectories and afternoon trajectories of a user are highly correlated

then our method works better. For users that have strict routine over a week, the trajectory of

the last week is an appropriate estimation for today’s trajectory compared to other methods.

However, our method has the best result on average.

In addition to DTW, which considers temporal and spatial aspects at the same time, we
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Figure 5.6: Results for 2250 instances from the Device Analyser(labelled) dataset. �
denotes the mean value.
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Figure 5.7: Distribution of precision and recall of predicting the full set of locations of
the whole day (Device Analyser dataset). The temporal aspects of the errors are not
considered in this experiment.
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Figure 5.8: Average error in predicting the departure times (Device Analyser dataset).
The spatial aspects of the errors are not considered in this experiment.

conduct temporal and spatial evaluation separately. For spatial evaluation, we report the

distribution of precision and recall in Figure 5.7. To calculate precision and recall, the set

of predicted locations is compared to the actual locations visited by the user. Clearly, the

temporal aspects such departure time are not considered. For temporal evaluation, we report

the difference between the actual and predicted first departure time after 12 p.m. Figure

5.8 shows the results. It can be seen that our method outperforms the baselines in both

experiments.

5.6.3 Experiments on geographic trajectories

From the MDC dataset, all the users with more than 40 days data are chosen for evaluation

(136 users). The size of the historical trajectory is 30 days in this experiment, i.e. n = 30.

The total number of test instances is 1360 (10 for each user). For each instance, we measure

the similarity between the predicted trajectory and the ground truth.

Figure 5.9(a) shows the box plot. For each method, the � indicates the mean value

while the box plots report inter-quartile ranges (IQR). To show the impact of Temporal

Segmentation (TS) and Outlier Removal (OR), we run our method with and without these

stages. The results indicate the positive impact of TS and OR. Figure 5.9(b) shows the

distributions of the DTW distance between the actual and predicted trajectories, where we

can see that the trajectories returned by our method are closer to the ground truths with

higher probabilities of low DTW.

The RMSE of our method is 35% less than the best baselines, which has a significant

impact on the level of accuracy that location service recommendation can achieve and there-

fore on the user experience. Similar to other experiments, we evaluate the performance using
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Figure 5.9: (a) Box plots for the baselines and different settings of our approach. y-axe
shows the similarities between the predicted trajectories and ground truths. �: mean value,
OR: Outlier Removal, TS: Temporal Segmentation (b) Distributions of the similarities for
three methods
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Table 5.4: Tests show that our algorithm’s mean performance is better than the baseline
algorithms on the MDC dataset by a statistically significant margin

TrAf TrAf TrAf (Excl. PreHeat PreHeat Most frequent Last week
(Excl. OR) OR & TS) (5 days) (10 days) visit trajectory

RMSE 6.3 7.5 7.6 8.6 10.1 13.0 14.7

Wilcoxon test - < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
p-value
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Figure 5.10: Effect of the historical trajectory size on the accuracy of prediction. The
performance of our approach improves with increasing the historical trajectory size.

DTW, which is able to consider both the temporal and spatial deviation. 35% reduction in

error means, on average, that the user is 35% closer to the predicted location or the user has

to wait for 35% less time for an event to take place. In practical terms, this means that the

user spatial and temporal proximity to a recommended event (e.g., a show, a train to catch)

is more than doubled.

5.6.4 Impact of historical trajectory size

Here, we investigate the impact of the size of the historical trajectories, n, on the accuracy

of the prediction. Specifically, we vary n from 2 to 60 days with the step length 1 on the

Device Analyser (labelled) dataset. In this experiment, we use three users with a total of 943

days of data ( 467, 221, and 255 for the three users). The RMSE is reported in Figure 5.10.

From Figure 5.10, we can observe that: 1) the last week trajectory approach is not

affected because it does not consider the historical trajectories; 2) increasing n makes the

most frequent visits approach more accurate. This trend continues until n = 7, and after that

increasing the historical trajectory size makes the approach worse. The reason is that the

user may change behaviour and may not go to the places that she used to go. A long series

of historical data causes the most frequent visits approach to promote the locations that
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Figure 5.11: Impact of prediction time on the performance. Having more data from the
current day leads to more accurate prediction.

have been frequently visited a long time ago; 3) the proposed method handles the size of the

historical trajectories well. There are two reasons for this. First, by considering the temporal

correlation, we give priority to the trajectories from consequential dates. Generally, closer

dates are more consequential. This gives the trajectories from a long time ago less effect.

Secondly, our method only uses the historical trajectories that have the similar morning

trajectory as Trpre. Therefore, if the behaviour of the user changes, our method recognizes

it by analyzing and comparing the morning trajectories.

Changing n causes a trade-off between the accuracy and processing time. For a large value

of n, we have accurate results but at the same time, our approach becomes more costly. In

our experiment, we set n to a number between 20 to 30, because increasing n more than 30

does not lead to a significant increase in accuracy.

5.6.5 Impact of prediction time

According to our problem formulation, the current day trajectory of the user up to prediction

time T is known. Here, we investigate the impact of prediction time, T , on the accuracy. To

this end, we design the experiments by varying T from 1 am to 11 pm with a step length

of 1 hour, and we use the last 20 days as the historical trajectories, i.e. n = 20. In this

experiment, the same set of users as Section 5.6.3 are analysed. Specifically, the experiment

on the geographic dataset is repeated 23 times (once for each T ). Figure 5.11 shows the

relationship between prediction accuracy in RMSE and prediction time. It is observed that:
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Figure 5.12: Impact of the threshold of the outlier removal on the accuracy of prediction.
The dashed line shows when there is no outlier removal stage.

1) the trends are decreasing because DTW returns smaller values for short trajectories; 2)

furthermore, when we have more data from the current day, the prediction is more accurate.

If the prediction time is after 7 pm, our method and ”most frequent visits” overlap, otherwise

our method outperforms the baselines; 3) there is a steeper decrease starting around 12 pm

in the DTW of our method. This means the trajectories from 11 a.m. to 12 p.m. is very

informative and more predictive.

5.6.6 Impact of outlier removal

In this experiment, the effect of the outlier removal stage with different thresholds is inves-

tigated. Figure 5.12 shows the impact of the threshold used for detecting outliers on the

accuracy of the proposed approach on the geographic dataset. The x-axis has a logarith-

mic scale to assist interpretation. When the threshold is too small, a high portion of the

sub-trajectories is recognized as outliers. In this case, the error is high because some useful

information for the prediction is discarded. By increasing the threshold up to 0.0128, the re-

sults improve further. When the threshold increases, fewer sub-trajectories are recognized as

outliers. When the threshold is higher than 1.638, none of the sub-trajectories are recognized

as outliers and the performance is the same as the approach without outlier removal.
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(a) (b)

Figure 5.13: (a) Sample output of the proposed approach. The red dashed line shows the
predicted trajectory of our method. The black line is the actual trajectory of the user (b)
Sample output of the Markov model. The red cells in the gridded map show the prediction
of the Markov model.
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Figure 5.14: Comparison between our method and the Markov model for different grid
size. The y-axis indicates the ratio between the error of our method and the Markov
model. The blue dashed line shows when both approaches have the same performance.
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5.6.7 Experiments on the gridded map

Here, we compare our method with a first-order Markov model. To run Markov model on

the geographic dataset, we use a gridded map to discretize the GPS data. In this case, each

state is one of the cells in the gridded map. Consequently, the locations predicted by Markov

model are cells rather than geographic coordinates. Figure 5.13 shows the difference between

the outputs of our method and the Markov model. To compare the results, we discretize the

output trajectory from our method. Figure 5.14 shows the effect of the gridded size on the

performances of both methods. For large grid sizes, the Markov Model performs better than

our method. However, when the grid size is reduced, our method performs better, because

the data becomes sparse and there is not enough historical data to build a Markov Model.

5.7 Conclusion

This chapter presents a method for completing the user’s daily trajectory using the initial

trajectory of the current day and historical trajectories. The algorithm takes both temporal

and spatial aspects into account to investigate the similarities between the sub-trajectories.

To improve the performance and reliability of the method, we add some other phases including

temporal segmentation, extracting temporal correlation, and outlier removal. The method is

applied to the situation where user trajectories are either labelled or geographical.

This chapter concentrates primarily on the issues of accuracy. We compare our method

to four baselines with different parameters, and the results show that the proposed method

significantly outperforms the baselines in terms of accuracy. The positive impacts of tempo-

ral segmentation and outlier removal stages are reported in the experiments. Furthermore,

we investigate the impact of different parameters on our method including the prediction

time, historical trajectory size and granularity. The experiment results clarify that the larger

historical data contains more information and improves the accuracy of the prediction. Fur-

thermore, having more data from the current day makes the prediction more accurate. The

high level of precision obtained by the technique has the power to unlock more precise location

service recommendations.
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Chapter 6

Conclusion

Human mobility plays a significant role in numerous applications and therefore has become

a core subject in multiple disciplines. In urban computing, understanding human mobility

enhances services in smart cities. Social scientists have long been theorising with models

that describe the mobility of individuals through a day. Similarly, ecologists use mobility

models to explain resource consumption norms in ecosystems. These models are built based

on specific types of data such as temporal, spatial or spatio-temporal data, depending on the

data sources. In some cases, the mobility of a user is captured through pervasive temporal

data such as sensor data, while in other cases the spatial aspect of their mobility is captured.

Furthermore, the desired computational cost varies depending on the application. In some

applications, due to resource restrictions, it is not feasible to process and store detailed

locations.

In this dissertation, we have taken a step forward in both the abstract modelling of a

human movement graph and the development of approaches that could analyse temporal and

spatio-temporal pervasive signals. Although the proposed approaches are designed to mine

pervasive signals, they are quite generic and we evaluate their application to other types of

datasets too. For temporal segmentation, the proposed method has been applied to a device-

free posture recognition dataset, Bluetooth movement detection dataset, and human activity

dataset in addition to datasets that capture human mobility such as the Device Analyser

connectivity dataset. For graph summarisation, Shrink has been applied to a friendship

network, collaboration network, web graph and social network in addition to a movement

graph and road network. Similarly, our trajectory prediction approach is generic and has

been applied to both labelled and geographical trajectories.
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6.1 Summary of contributions

The first question that should be clarified before tackling human mobility challenges is the

type of data involved. In this thesis, we have proposed new approaches for each type of data

separately, including temporal, spatial, and spatio-temporal data.

In Chapter 3, while blind to the locations, we have proposed an Information Gain-based

Temporal Segmentation method (IGTS), an unsupervised segmentation technique, to find

the transition times in human daily life, from heterogeneous sensor data. We have analysed

time series to find times when the user changes their behaviour. In our method, there are

no restrictions to the time series and they could be from any source with any frequency.

No generic method has been proposed for extracting transition times at different levels of

activity granularity. Existing work in human behaviour analysis and activity recognition

has mainly focused on either at low-level, such as standing or walking, or high-level, such

as dining or commuting to work. The proposed IGTS method is applicable for low-level

activities, where each segment captures a single activity, such as walking, that is going to

be recognized or predicted, and also for high-level activities. The heterogeneity of sensor

data is dealt with a data transformation stage. The generic method has been thoroughly

evaluated on a variety of labelled and unlabelled activity recognition and routine datasets

from smartphones and device-free infrastructures. The experiment results demonstrate the

robustness of the method, as all segments of low- and high-level activities can be captured

from different datasets with minimum error and high computational efficiency.

In Chapter 4, we have introduced a new method for graph summarisation while preserving

the distances within the graph. Applying Shrink to a movement graph that contains spatial

information, we have changed the granularity of the locations. We have also investigated

the impact of summarising on the accuracy and efficiency. To sum up,Shrink possesses the

following features that make it practical for real-world applications: (1) it is linear in the

number of nodes when σ << |V | , where |V | is the number of nodes and σ is the average

degree (see Section 4.6.2). This is common in large graphs with thousands or millions of

nodes; (2) the larger the original graph is, the more accurate Shrink is. The reason is that

large graphs usually have long paths and Shrink has less effect on the length of the long paths

(see Section 4.5.2 and 4.8.4); (3) the error rate and the compression ratio are adjustable; (4)

it provides not only distances but also the corresponding instances (nodes) of the shortest

paths;(5) it is applicable to all types of distance queries, including reachability, single-source

shortest-path (SSSP), all-pairs shortest path (APSP), closeness centrality and betweenness
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centrality. The experiment results show that compressing a two-million-node graph into fifths

has the average error less than 1%.

In Chapter 5, we have predicted the user’s trajectory by mining spatio-temporal data

and leveraging similarities between trajectories in mornings and afternoons. Existing work

on human mobility prediction has mainly focused on the prediction of the next location

(or the set of locations) visited by the user, rather than on the prediction of the sequence of

further locations and the corresponding arrival and departure times. However, in our method,

the predicted trajectory includes the sequence of future locations, the staying times, and the

departure times. Furthermore, existing approaches often return predicted locations as regions

with coarse granularity rather than geographical coordinates, which limits the practicality of

the prediction. The proposed method does not reduce granularity, and predicted trajectories

have the same character as historical trajectories. Our evaluation shows results on both

labeled and geographical trajectories with a prediction error reduced by 10-35% compared to

the baselines. This improvement has the potential to enable precise location services, raising

usefulness to users to unprecedented levels.

6.2 Future research

In this dissertation, we have analysed user data individually without considering the impact

of the users on each other. In fact, for each user, one model is trained based on the data from

that user. For future work, one can leverage the relationship between the mobility patterns

of the users to improve the results of the analysis. For example, having information about a

user’s friend location can improve the prediction accuracy.

Using other contextual factors in addition to the location also enhances the mining of a

user’s mobility pattern. By leveraging other types of data, performance can be improved.

For example, considering smartphone logs can help us to infer the user’s location. The user

may use specific apps at specific locations. The call log is another contextual factor that,

if analysed in a correct way, can improve the performance of the analysis. In the Device

Analyser dataset, using context values such as smartphone logs, sensor data, and a user’s

activities could make the trajectory prediction and transition time detection more accurate.

Future work would involve improving and specialising the techniques proposed in this

thesis.

• Regarding temporal data, the next step after temporal segmentation can be temporal

clustering, where similar segments are grouped together. From a human mobility point
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of view, the segments in one cluster denote the same activity such as working at the

office. For future work, it would also be possible to investigate how to utilise the

proposed algorithm in an incremental mode for online processing.

• Shrink is a generic way for preserving distance in graph summarisation. However,

Shrink’s performance can be improved by focusing on the summarisation of movement

graphs. One of the important issues is finding the close and similar nodes in the

movement graph for merging. In practice, these nodes denote the same location (e.g.

CIDs in a campus) and merging them results in a reasonable coarse graph. Shrink node

selection criteria concentrate on preserving the distances while if another approach

identifies which nodes should be merged, the performance improves for mining human

mobility patterns.

• To better perform in terms of trajectory prediction, a more complex model can be

deployed. The model should be able to compare trajectories by extracting features.

Similar to our method, the predicted trajectory should be similar to the trajectory

with a similar morning part. Another way of improving performance is to analyse

the user’s behaviour before applying the prediction method. In the proposed method,

we assume that the morning trajectory is an informative clue in the prediction of an

afternoon trajectory. This assumption is generally correct. However, for some users,

the trajectories from previous days may provide a better clue. Future work would

involve clustering the users and training models for each cluster.

6.3 Outlook

New advances in technology and mobile devices have generated large amounts of pervasive

signals in the field of human mobility. Processing this data enables us to address different

questions about human mobility that can benefit numerous areas including urban computing,

social science, traffic management, and controlling the spread of biological and mobile viruses.

The pervasive signals for mining human mobility can be captured from different channels and

hence have different characteristics.

In this dissertation, we have attempted to understand and predict human mobility by

mining different types of pervasive signals. We also proposed a solution to store and analyse

data when resource are limited. We hope that the new approaches proposed in this thesis

will be used by researchers in various academic disciplines.
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