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1. Introduction 

We begin with a discussion of the simple harmonic oscillator which has equation of 
motion 

mx=-mco'x (1) 

where the potential corresponding to the restoring force is written as V(x) = --ma)2x2. The 

V appearing in the potential is the frequency of the periodic motion as can be seen from 
the integral of equation (1) which is 

x(f) = A cos (ot + Bsin cot (2) 

where A and B are constants which can be determined from the initial values of x(t) and 

x(t). The energy Eof the particle is given by the sum of the kinetic (K) and the potential 

energies and is found to be 

E = ±mx2 +±m(o2x2 =±<o2(A2 + &). (3) 

The frequency of motion is a constant co determined by the strength of the potential and is 
independent of the initial condition. The energy which determines the size of the orbit in the 

phase space (the x-xspace) is, however, dependent on the initial condition. We can 
calculate the average kinetic and the potential energies, (K) and (V) respectively, over a 
cycle as 

w-U l?™*^™ T + T <4a) 
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and M*ff0>^*4™2(T+f ̂  
Clearly, (K) = (V) for simple harmonic oscillator. 

(4b) 

If we consider the more general potential v = m £7* 2 " (with n>0), then equation of 

motion is 

x = -Ax2"-1 (5) 

which for all n * 1 is a non-linear equation. The first integral is the energy expression 

E=-/nx2+—mAx2". 
2 2fi (6) 

If 'a' is the amplitude of the motion, then the total energy is given by: 

E =—mte2" 
2/i 

since at the maximum displacement x = o. Combining equations (6) and (7) we get 

x ^ A ^ - x 2 " ) 

(7) 

vM^-x2" ^ " - x 2 " ) 

(8) 

(9) 

The time period T is the time required to go from x = 0 to x = a and thence to x = -a and 
return to the origin. Since things are symmetric about x=0, we have 

7 = 4 B> dx - J I ^ p f
C0S^ 

V ^ a 2 " - ^ " ) IP Jo^(l-sin2"0)-

Setting sin'10 = sin#, with /isin"'1 cos0d0 = cos0d0 and using the relation (7) 

r = 4 ^ a , " " i / s i n i " 1 ^ 

Am: 

(10) 

HHS-IHSS 
$ • * ) 

(11) 

(12) 

For n »1, we have T=-^L = — , if we write A = <u2 to make the potential agree with that 

taken in equation (1). This is as expected from our previous analysis. For n * 1, the period 
depends on the energy and hence on the initial conditions. Interestignly enough, Tincreases 
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with increasing energy if n< 1 and decreases with increasing energy Efor n > 1 . The latter 
could be understood if we associate with larger E, a faster motion and hence a shorter 
period. This does not explain the situation for / * < 1 . To get a different perspective, we 
calculated the average kinetic and potential energies 

w 7 Jo 2 27 Jo dx 2T' 

while, 

1 tTmk 2UJ. mX [X2" m pit x2" 
2/iT* x ~27 \ /J / ^ _ x 2 ^ 

The ratio of the average kinetic to the average potential energy turns out to be 

(14) 

l-i 
(*) JoVO"^)^ Jfon*" ecos2ede 

Joi-y 2" Jo s in" 6dd 

w fell *(iHf) 
(15) 

For /i s 1y(K) = (t/) and the time period is energy independent. For /x > 1, the kinetic 
energy dominates, hence the particle moves faster relative to the simple harmonic oscilla­
tor and the time period decreases. For n< 1 on the other hand, the kinetic energy dimin­
ishes and the period increases with increasing energy. 

We would like to end this section by pointing out the existence of a non-simple harmonic 
potential for which the time period is independent of the amplitude. This is the potential (see 
Figure 1) 
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(0,0) 

Figure 1. In the sketch, the curve 'a' represents V(x) ~ x2fi, where \i is an integer. Compare it with 

the shape of the curve 'b' which is the plot for the potential 

«*•{**?} A>0. (16) 

Suppose the total energy of the oscillator E is entirely due to potential energy at the posi­
tions x = a and x = b (at these points the oscillator is at rest), i.e., 

Hence, the time-period T is given by 

(17) 

r=a 
dx 

JPR3 (18) 

Using the expression (17) to find a and b in terms of A and E, we can calculate 7 from 
relation (18) 

7 = n 
J2X (19) 

which evidently is independent of the amplitude! 
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(20) 

2. Frequency of Undamped Anharmonic Oscillator: Direct calculation 

The typical anharmonic oscillator has a potential energy which can be written as 

2 2/i 

with equation of motion 

x = -a>2x-Ax*"\ (21) 
The motion is bounded and periodic with the first integral expressing the energy conserva­
tion as : 

E = - mx2 +-ma)2x2 +—x2/x. 
2 2 2^ 

The period of motion Tis given by the integral 

T-.if 
CO 

dx 

T-x * + _ ^ ( a * ' - x * ' ) 

(22) 

(24) 
JLUD 

For any value of A and the total energy E (this determines the amplitude 'a' from equation 
(23)), the time period can be found from equation (24) by a numerical integration for all 
positive values of ft. In general, the integral in equation (24) cannot be evaluated analyti­
cally and so we can resort to some approximations to get a feeling for what the time period 
looks like. 

The first approximation that we can try is a small value of non-linear term in equation of 
motion. In this case, we can write the expression (24) as 

r.ir 
Q)JO 

dy 

F-y'+^O-y2*) 
H(0 

r-irjU 
fl)Jo^ 

1 Aa2*-2(1-y2") 
2juo) 1 - y 

(25) 

(26) 

(the expansion parameter is Aa2" / (a>2a2), the ratio of the potential energy for the anharmonic 

term to that for the simple harmonic term). The period to 0(A) accuracy 

_ 2 * 2Aa 2 * - 2
f i ( l - y 2 ' l ) „ 

T = 5— - r0y+... 
to nm3 Jo. > ' 

0-y2)2 
filo* 

2JI Zla2*-2 r f l - s i n 2 " ^ 
Jo -J-; CO IUO -sure 
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1 V, 2sinZn0dl9H-... 
CO LUU" i T7.Jo I oo P " | S 

2* 2Aa2-2g^jK| + 

Since we need the correction only upto 0(A), we can substitute for 'a' from equation (23) as 

a = 2E/(mo)2), so that the above relation becomes: 

T_2n 2Aa(2E^ 

/ =y-1 . 2 ' ^2 
where / = y " " - t y

 v
v . For the most studied case of the potential 

V(x) = -mo>2x2 + - x 4 / . e . , ju = 2 , we have to 0(A), 

2 £ _ 3 nAE 2»( 3 AE 
a) 2 2/rto)3 £0 4n*o4 ( 2 8 ) 

From equation (27), we note that the dimensionless parameter for the perturbation series is 

XE"^ I [mti~*co2'') i.e. for /j. > 1, the expansion will break down as easily at high A as at high 

E 

If AE"'1 /(mM~W)»'\, then the second term in the denominator of R.H.S. of the 
relation (24) dominates and the leading term in the time period is found to be given by 
equation (12). Specialising for the case of n = 2, we and for AE/ (m<o 4 )»1 

0 
l) _(3y (29) ^<A% 

The next correction in equation (29) can be obtained by reverting to equation (24), setting 
M=2 and expanding as 

4 f . . °x J'-xffe^-4 r« dx L m'laf- x 
Q)JO 

12(0 
2 . A l a 4 - x « 
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= 2^2. 

At this point, we note that the energy expression has to be expanded as 

E =—mAa4 + -ma>2a2 

4 2 

4E 2m<o2a2 AE 2mco2 

=>a" = mA mA ImAj 

Inserting the expression in equation (30) 

_ 1 \m . rm 
7=V2 VE 1 + ^f 

f—f ImX) BE\mX 45) 

(30) 

(31) 

(32) 

(33) 

2424m (o2 m(AE\* 
' 4 E{rra) 

ir\- 1 
/-[ m V ' mew2 ( E V „ 2 m4 

4 
A£ 

=v*U£j r m 1+4v^£i"^rmvl^J 

i, £A J 4 & J± (34) 

r1 dy 
where, / = . J Once again the expansion parameter is the dimensionless 

quantity XE/(mof)t which we hereafter denote by j3. The perturbation series of equations 
(28) and (34) can now be expressed as 

r-^(i-!H "«1 
(35a) 
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T.^L^LL 
(0 

1—1,+... p»1 
jff]/jH ^ "' 05b) 

The series for /J»1 is what known as an asymptotic series. 
The p « 1 and p » 1 forms of equations (35a) and (35b) allow us to introduce a common 
technique for connecting the low P and the high P ends. We note that what is required is a 
function f(p) such that 

with 

fr'M 06, 

f(0) = 1-|p+..., 0 « 1 (37a) 

1 ^ 1 
m-^AiU ''IT '"' • <™> 

A Pad6 approximant constructs f(P) as N (p)/D (j3), where N (p) and D (p) are polynomi­

als of the appropriate power of J3. From equation (37b)f we notice that p* s a is the appro­

priate choice of the variable for a polynomial and we have 

1-—a4+..., a«^ 
4 

ijqipl1-^-}a>>1 <38) 

Clearly, N(a) has to be a polynomial of order three, while D(a) has to be a polynomial of 
order four to match the known results of equation (38). We try 

v ' l-i-ata + asa' + aaa' + ^ a 4 

the coefficients a/s are the same in the numerator and denominator so that for <*«ci,the 

coefficients of <x,a? and o? may cancel out and 

g(a) = 1-*yz4 (40) 

This fixes 

* . £ . <41> 
4 
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The large a expansion for g(or), reads 

**»=£i i+ % a3 1 
—+ (a, b,)a {% to, 

«i ^ 

a 
.4. 

So that comparing with the expression (38) we can set 

£ L =
 1 

=> a , = 8V5rrf3 

where we have used the relation (41). And, 

£.-±2.1 = 0 
a3 b, 

* % 3 4* 

Finally, 

leading to 

a,= -G) 
8V*r(3 2 / K9J 

2 "] 

• -1 
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Thus, 

1 + 

m=-

IT) 
•*<!) 

1 
2lt 
m m\ 

2 

* \0< + 
16JT 

ilk 
t!) 

* ) ) 

M) 
3 

1 + fl 
8VJr r f 

1 
2* 

r 

r 
(i)l 
(!)l 

^2 

- 1 !/34 + 
16;r 

« ) 

if) 
j/3* + m 

6^ J 3 P ! * ( ! > 

is the required Pad6 approximant. 

3. Lindstedt poincare perturbation theory 

In this section, we demonstrate how a perturbation theory can be developed for the 
anharmonic oscillator of equation (21) written as 

x + to2x = -Ax2^- (50) 
We first begin with the naive expansion 

x=x0+Ax1+A2x2+ (51) 
and inserting in equation (50) equate the same power of A on either side. This leads to, 

at the zeroth order, 

x0+to2x0=0 (52) 
with the solutions 

x0 = Acoscot (53) 

with the initial conditions: x0 = A and x0 = 0 . Turning to U(X), 

x, + co2x, = - x f - 1 = A2"-' cos2""1 cot. (54) 

We note that cos2""1 cot can be expanded as a Fourier series. The coefficient of cos2""1 cot is 

1 1 , 
^ + o ' o l . s o 2'2J 

cos 
1 (ot = — J3| U + —t— cosarf + other harmonics tot. 

n I 2 2) 
Consequently, equation (54) becomes 

- = — A 2 ^ d a + —,— }cos(ot + other harmonics of (ot. 
n { 2 2) 

(55) 

X, + OTX, 

The cos (ot term on the R.H.S. of equation (56) causes a resonance which is spurious 
since the solution of equation (50) is quite well defined as we have seen in the earlier 
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section. Terms causing spurious resonances are known as secular terms and they have 
arisen because we have not paid attention to the fact that the frequency of motion is no 
longer co, but has to be changed to some new value Q which can be expanded in power of 
A as 

Q2=co2+Xco*+£«>\ • (57) 
This is what we have seen in the earlier sections and this is what we need to do to make 

the perturbation theory work. 
We rewrite equation (50) as 

x + Q2x = -Ax2""1 + AG)2 + X2co\. (58) 

This is an identity since equations (57) and (58) simply reproduce equation (50). We now 
carry out the expansion of equation (51) and equating the same power of A" on the either 
side of equation (58), obtain at the 0(1) 

x0+X22x0=0 (59) 

with 

x0=AcosQt (60) 

for the same initial condition as before. At 0(A), we now get: 

x, + co2x, = -x2/""1 + Q)2x0 (61) 

=> x, + <o2x, = --A^pLi + - , -Jcosf l f + co2AcosGt + other harmonics of Qt .(62) 

The correction to the frequency is an unknown and we choose it so that the resonance 
inducing cos at term is removed from the R.H.S. of equation (62). This leads to : 

f^M"4i (63) 

Since the energy E is given by E=—ma)2Az + ^ ~ ^ 2 " , as have 

A = ^ + 0{X) <64> 

and hence 

Correct to 0(A), we get 
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A ( 2E M"1 1 -f 
ncoymo)* 2 2 : l ; ' <67) 

For the special case of /x = 2 

in exact agreement with the result obtained in the previous equation (28). This method of 
doing perturbation theory is known as the Lindstedt Poincare technique. 

4. Multiple time scale perturbation theory 

We can imagine to do the perturbation theory in yet another fashion. The final result, where 
the frequency gets shifted means that if we consider the displacement of the oscillator to 
occur with the unperturbed frequency, then the phase of the oscillator, instead of being 
constant gets shifted slightly in time i.e., it picks up a slow time variation. We picture the 
displacement x being a function of different time scales f0, tv f2, ... etc., where t0=Xntt 
n=0,1,2,3... Thus, x= x ^ , tv f2,...) and 

E M orn ^ dx 

Similarly, for the acceleration 

d2x ^ d (dx\dtn d2x _. d2x 

W=^{^)lF^+2A-^+--- <70> 
Returning to equation of motion (50) and specialising to the case of \i = 2, 

d x ~~ d x o 1 3 
-T-2-+2A——+...+arx = -Ax3 . 
dtQ dt0dty 

We also need to expand x= x ^ , flf ^,...)+^x(^, tv 4,..,)+ At the zeroth order, 

(71) 

<?zx, 0 , , ,..2 
2 + +GTX0 = 0 (72) 

leading to x0 = Acas(cot0 + 0), where A and 6 can be functions of t , f1f £, ... efc. At O(k), 

equation (71) yields 

^ L + a>\ + 2 ^ - ^ - = -x0
3 = - * 3 c o s 3 K + 0) (73) 

Now, | k = -,tosin(arf0 +0) a n d h e n c e j-l^U~cosin((ot0 + 0)-A»cos(firfo + 0 )J^ t 

which leads to 
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-^~ + <u2x, + 2 -—(usin((uf0 + 6) - A(ocos{<ot0 + 0 ) — = —— [3cos(arf0 + 6) + cos3(ttrf0 + 6)\ 

(74) 

Equating the coefficients of the different time harmonics, we have 

af*° <75a> 
O A & 3 A3 

-2o>A— = --A (75b) 

<?2x A3 

—± + ofx, = -—cos3(o>f0 + 0). (75c) 

3A2 

We note that A remains a constants at this order while 9 = --—f,. The solution for x 
8(0 

becomes 

x - i4cos| a>f0 + f, | + Ax^... 
8(0 

= Aco®(ot + A f +Ax«+... 

= >4cosi2/ + Ax1+... (76) 

where, 

Q = (o + A—— +...= ft) + - r + 0 ^ 77 

in exact agreement with the results of the previous sections. 
The perturbation theory, delineated in this section, is the multiple scales perturbation 

theory and is designed to work when we have a periodic and an almost periodic solution 
which can be captured by a slowly varying amplitude and/or phase over an unperturbed 
periodic state. 

5. Coordinate perturbation 

In this section we again fall back on equation (50); setting A=-e and o>=1, for convenience, 
we write 

x + x = ex3. (78) 

Suppose we formulate it into an initial value problem by supplementing this equation 
(78) with initial conditions : 

x(£,0) = 1 

xte.01 = 0. (79) 
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We assume |e| <c1 and so write the following perturbative form of the solution to equation 

(78) 

x(e,f) = x0{e) + ex,(t) + ex2(f)+..„ ( 8 0 ) 

and set out to find an approximate solution. We shall encounter a subtleness involved in 
finding the solution and in the process touch upon the possible existence of a class of 
problems known as singular perturbation problems and a method to deal with them. 
Substituting the expression (80) in-equations (78) and (79) and subsequently equating the 
coefficients of the power of e, we get following set of infinite set of coupled differential 
equations and corresponding initial conditions : 

x 0 + x 0 = 0 x0(0) = 1,x0(0) = 0 

x, + xt = -x0
3 x,(0) = 0, x,(0) = 0 . ( 8 1 ) 

etc. etc. 

Solution to the leading equation of the set (81) is cos /putting which in the next equation of 
the set (81) we arrive a t : 

1 3 1 
Xi(e,0 = — c o s f +—fsinf cos3f. (82) v ' 32 8 32 

Hence, the solution (80) approximates to: 

r 1 3 1 A 
x(e, t) = cos t + e\ —cos t +—f sin t - —cos t + 0{&) . (83) 

Obviously, this approximation is non-uniform in the range o < t < «> due to the the presence 

t sin f term. This point about non-uniformity is clarified later in a section. For the time-being 

it suffices to note that for large /(/.e.,»0(1/e)),terms of 0(e2 f) dominator and the series 

(80) is no longer convergent. So, what is the way out? Well, setting 

t = Tfar) = r + eT,(r) + e72(r)+... (84) 

we, expand the independent variable t in the powers of e. Here r is called the strained or 
perturbed coordinate. Putting the expression (84) in the relation (83), we get: 

x(ett) = X(£,r) = COST + e[-'r1(r)sinr + — C O S T + - r s i n r - — C O S S T J + C ^ (85) 

Now is the time to force T^T) to take such a value so that the term (f sin 1) which causes 
non-uniformity of the approximation (83) vanishes. This method is called coordinate 
perturbation method. This means that from the expression (85), we choose: 

W i ) - ! * . (86) 
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Hence, within the error of 0(£?) we have the solution to equation (78) as : 

where, 

x(e,t) = X(e,r) = COST + -^-(cosr - cos3r) (87a) 

f = T + - e r + 0(£z). (87b) 
8 

This process can be carried out ad infinitum reducing the error at each step by finding 
successive values of T2, T3, eta so that culprit terms are forced out of the solution. 

6. Non-perturbative approximation ("Hartee Approximation" or equivalent 
linearisation) 

Returning once again to equation (50), we want to explore how we can think of it as a linear 

system. This would require replacing x2"~1 by a linear term. Keeping the dimensionality of 
the term unaltered, we can imagine making the replacement 

x2'-1=a(x2)/'~1x (88) 

where a is a dimensionless number. Since the motion is periodic, we can think of (x2) as an 
average over a cycle. We do not a priori know what (x2) is therein lies the strength of the 
method. The determination of (x2) in self consistent manner leads to a non-perturbative 
determination of the frequency of the oscillator. This is similar to the mean field theory of the 
ferromagnetic transition and the Hartee approximation in the many body context. The 
equation of motion (50) is, under the approximation of relation (88), 

X + G) \1 + ̂ ( x T 1 ) x = ̂  + fl2x = 0 (89) 
where, 

from which we find the time period of the oscillation. The energy of the oscillator of equation 

(89) is E = —mQ2A2 and the amplitude A is given by 2(x2) for the simple harmonic motion. 
2 

Consequently, 

( * • > • m£2z ™tiv<*r) (91) 

- £ T ( * * M * , ) - - E T - 0 (92) 
o r x ' * ' rmr y 

This is the self consistent equation which determines (x2^ and thence determines Ci from 
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*<* ' ) ' 
F u 

equation (92), we can write (*2) ~—T and equation (90) becomes 

equation (90). It is instructive to examine the limiting cases. If 

JL 
/77ft>* 

\imr ) 

is small, then from 

(93) 

Comparing with the expression (67), we can see that the correct structure has been obtained 
and the exact agreement can be achieved if we can choose 

(94) 

Now, we switch to the other extreme, A (x 2 ^ /CO2 »1, a limit that is totally inaccessible in 

the perturbation theory. In this case, the relation (92) yields 

(» • ) ' . . 
amX 

and from equation (90), we find 

The time period in this limit is 

f_Y 
1 1 1-1 r 

m M"4i 

(95) 

(96) 

Q 
n 

» + \ \ 

The exact answer in this limit, according to equation (12) should have been 

(97) 

T„=2%*-\-*[2] 
iH)' (98) 

The A, m and E dependences tally exactly; the perfecter, however, is different. For the usual 

ruJ rev 
of the two prefactors is JV\ {3) , case of m =2, the ratio 

unity and is an indicator of the accuracy of our method. 

which is quite close to 
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For ju=2, we can solve equation (92) exactly and get: 

<**}• 

-1±J1 + J 
V mco 
2aX 

co2 

(99) 

From eq. (94), a = 3/2 and keeping only the positive square root 

{ « • > -
_ V ma 

3A 
w3 

(100) 

and from eq. (90) 

i2z=o)z+- I' ^ J (101) 

This formula gives an extremely good rendering of the frequency of the oscillator with 

the potential V(x) = *-ma)2x2 +--mkxA for all values of A. By noting that Q is dependent on 

the dimensionless parameter 6AE/ mcoA which is nothing but the P used in expression 
(49), this result (101) may be compared with the Pade approximant. 

To end this section, we show that the perturbation theory of Lindstedt and Pioncare can 
be vastly improved by using some appropriate scalings coming from the non-perturbative 
results of equations (100) and (101). Starting with 

x + G)2x = -Ax3 

we write it as 

(102) 

| M x ] x . - A [ x » . | ( x « ) x j (103) 

x+^2x = -A^x3- |(x2)xj ( 104) 

with Q given by equation (101) and (x 2 ) by equation (100). We define % = £2t and / = 

=» XH 

to write 

A2 ' S?V 2yl 

(*•) 

(105) 
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We note that 

Q2 

M1 
yi rm* ) 

(106) 

This quantity goes to a constant viz. mo}* / £ for A -> 0 and goes to 3A / 2 for \ _»«>. 
Ergo, the scaled coupling 

* = ^ (107) 

is of the o(X) for A -> 0 and is 2/3 for A -> «>. This I never becomes too large and is ideally 
suited for carrying out a perturbation calculation for the dynamics of equation (105) which 
can be rewritten as : 

*»-+'-* 
( 3 3 1 

- — (108) 

we can now carry out the standard Lindstedt Pioncare perturbation theory. 

7. Renormalisation and the non-linear oscillator 

The nonlinear oscillator can be used to illustrate another very significant development in the 
theoretical physics-the idea of renormalisation. The necessity for renormalisation arose 
when one tried to calculate physical quantities like cross-section in the quantum theory of 
the electromagnetic field-quantum electrodynamics. Perturbation calculations lead to 
divergence which had to be removed by invoking the concept of dressed masses and 
charges. In what follows, we will see how that approach can be invoked in our case. We 
have already seen, that a blind perturbation theory will lead to resonances. Let us take that 
approach at its face value and write down the divergent solution upto O(X). We write the 
zeroth order solution as (see sec. 3) 

x0=4,cos(wf + e0) (109) 

Specialising to the case m = 2 the 0(1) correction, xv is 

Xi+a)2x,=-xZ=-A0cos3{o)t + e0) (110) 

=» x1+a)2x1=-^.[3cos(fi)r+eo)-cos3(a)f+0o)]. (111) 

The solution can be written down as 

x,(t) = Rcos(<ot + eo)-^(t-to)sin{0t + eo)--^cos3((ot + Oo) (112) 
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If we maintain the boundary condition that x = x0 + Axi+...= AQ at t = -0O /co, then R is 

forced to be Ap (32co2) and the solution for x(f) to 0(A) is 

A* -{cos(arf + 0O)-cos3(arf + 0O)}- j^.(f-f0)sin(arf + 0O) |+... x(f) = 4ocos(flrf + 0o) + A| 
32a>' 

(113) 

We note that the initial condition can be considered arbitrary and the solution can be written 

starting from any point in true. This freedom aflows us to set up a renomalisation group flow. 

This is the divergent solution which is obtained at 0(A) . Our aim is to define the 

renormalisation constants Z, and Z2 for the amplitude and the phase to absorb the infinities 

that occur. Accordingly, 

S(to) = A0=Zi{t0lT)A{T) (114a) 

0(fo) = 0o=0(T) + Z2(fotr). (114b) 

In the above r is an arbitrary time scale which can always be introduced since 

f - f 0 - f - r + r - f 0 . The ZX2 are to be perturbatively calculated as 

^ = 1 + 5>„An 

n«1 

4=Ev. 
n=1 

(115a) 

(115b) 

Working to 0(A), we can write 

x(f) = >»(T)(1 + a,A)cos(a)f+0{t) + b,A) 

43 

+A -A_/COs(<uf + 60) - cos3(fi)f + 0O)} - — ( f - f0)sin(a>f + 0„) 
32© ft''*, 8ft) 

+ 0(A2) (116) 

x(f) = 4 (TX1 + a,A)(cos(<ur + 0(f)) - fc,A sin(tuf + 0 (T) ) ) 

+A + 0(A2) (117) ^ - { c o s ^ f + 0O) - cos3(wf+0O)} -^-{t - f0)sin(<of + 0O) 

=> x(f) = A(r)cos((ot + 0(T))+A[a, A{T)cos{o)t+6(r)) - b,-4(T)sin(<uf + 0(f)) 

A 3 ( T ) 3>43W 
+ ^ f { c o s ( © / + 0 (T) ) -cos3( (» /+0)}—^(f - f o )s in(o) f+0(T) ) + 0(A2). (118) 
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Now, a1 and ^ have to be chosen such that they connect t0 and x. This is possible for b 

since t - 1 0 in the coefficient of sin(arf + 0) in equation (118) can be split as t - x + x - 1 0 . 

However the coefficient of cos(orf + 0) does not allow for this facility. Ergo, we choose 

a, = 0 

*-£<*-« 
(119a) 

(119b) 

With this choice, the solution of equation (118) becomes upto 0(X): 

x(t, T) = Acos((ot + 6) + A: 4o3 

32a>: 

Q A3 

-\cos((ot + 0) - cos3(fl)f + 0)} (f - r)sin(arf + 0) 

(120) 

But x is an arbitrary time on which the solution cannot depend. Hence, we demand 

dx (121) 

Differentiating the relation (120) with respect to r we arrive a t : 

dx dA , . -v . c # . , . M , 3A3 , , . M , l U . cW G(0 
— = —cos(o)t + 0) - ,A—sin(firf + 0) + A smmrf + 0) + 0(A)terms in — , 
dx dx dx ft^ flfo* Wr 

c/x ctt , . ^ . d9 . , . ^ . 3 d 3 

8o) 

Which in accordance with the condition of equaton (121) yield : 

dx 

d 0 ^ 3 / l 2 

dx 8co 

3A2 

leading to 0 = x. Inserting this solution for 0 in the expression (120), we get 
8o) 

dx1 dx 

(122) 

(123a) 

(123b) 

x(f,r) = Acos Q)t + 
3kA2 

8(0 
•T + A 

32<y' 

3/43 

r {cos(<tff + 0) - cos 3(cot + 0)} - — - (f - T) s\n((ot + 0) 

we now remove the divergence in equation (124) by choosing x = t, whence 

x(f,r) = i4cos 
' 3XA2 ^ 
(0 + X 

8(0 
k+A 

32<w 
- [cos((ot + 0) - cos 3((ot + 0)} 

(124) 

(125) 

and we recognise the new frequency as 
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S2 = o>+™* 026) 
8co 

which is in accordance with the previous results in relations (28) and (68). 

8. Resonances in forced systems 

The forced system 

x + co2x = f(t) (127) 

has a particularly straightforward solution when f(t) is oscillatory i.e. f(t) = Fcos cot. The 
solution 

x(t) = Acos(cot + 0) + 2 2 cos Qt (128) 

where A and 0 are to be determined from the initial condition. Resonance occurs when 
G = co. The solution can no longer be written in the form given in equation (128). Instead it 
becomes 

x(t) = Acos(o)t + 0) + — r s i n Qt (129) 

which clearly shows that even if we have x = x = 0 at t = 0 . the solution x(f) exists and 
actualy increase with time. The solution changes if we are dealing with a non-linear oscillator 

x + fi/x + Ax3 = Fcosi2f . (130) 

For small A, we can replace the non-linear oscillator 

x + [a)2+— A/42 ]x = Fcos.Qf (131) 

with the solution 

x(t) = /4, costw + A, sinatf + 
^ - t f + 3 ^ 032) 

If G> = X2, and A is small, the last term in the R.H.S. of eqation (132) will dominate (also in 
any realistic system, the damping will eventually diminish the first two terms) and we have 

(with 0)«JQ(1 + S ) ) 

x(t) = - , =±Acos£2t 
[26Q2+-XAZ 033) 

depending on the sign and magnitude of S and this implies 

j r . . * 
2St2'+2-M' 034) 



An introduction to nonlinear oscillators: a pedagogical review 1137 

This determines the amplitude tt'self-consistently via the cubic equation in A2. We pause 
rather abruptly here to jump onto the topic of parameteric resonance in the next section. 
Discussion on the issue discontinued here will be taken up later in this review after extending 
the scope to damped oscillators. 

9. Parametric resonance 

Unlike in the previous section, where resonance was produced because of a coordinate 
independent periodic external force, a parametric resonance occurs when a parameter in 
equation of motion becomes a periodic function of time. In the context of our simple harmonic 

oscillator x + co2x = 0 »this means that the frequency o> becomes a function of time, i.e., 
we now have 

x + co2(t)x = 0 (135) 

with 

co(t) = G){t + T) (136) 

making co a periodic function of time. We imaging that x ^ a n d x2(f)are two linearly 

independent solutions of equation (135). Then any other solution can be written as a linear 

combination of x^(t)and x2(f). In particular, we note that if x(f)is a solution of equation 

(135), so is x(/ + T) due to the relation (136). Then both x,(t + T) and x2(t + T) are solutions 
of equation (135) and we must have 

x,{t + T) = cux,{t) + c12x2{t) (137a) 

x ^ + r ^ c ^ O + c ^ f ) (137b) 

The matrix of the coefficient c/ycan be diagonalised with the eigenvalues A12and in that 

basis the solutions X,(t)and X2(t) have the property 

Xu(t + T) = X„Xu(t). (138) 

Returning to equation (135), we note that: 

x + (o2(t)x,=0 (139a) 

x + a>2(0*2=O. (139b) 

Multiplying equation (139a) by x2, the second on i.e., equation (139b) by x, and subtracting 

one from the other, we get 

^ ( x 1 x 2 - x 2 x , ) = 0 (140) 

=> x,x2 - x2x, = constant (141) 
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Thus, 

* ( f ) * ( 0 - ^ ( f ) ^ (142) 

for any pair of solution x,(t) and x2(f). When applied to our pair of X,(t) and X2(t) (see 

equation (138)), equation (142) yields the vital relation 

A,A 2 =1 . (143) 

From equation (138) 

Xu(t + nT) = Xn
uXu(t) (144) 

for any integer a We now note that if the A's are real then, we have two possibilities : 

1. A, > 1A2 < 1 :ln this case, one of the solutions X12 grows with time and the motion is 

unbounded leading to instability. 

2. A, = A2 = ±1 : If we have the positive sign, then the solution is periodic with period 7. 
If the negative sign holds, then the solution has period 27- the phenomenon of period 
doubling. 

If the A12 are complex, then they need to be complex conjugate and if we write A12 in the 

form re®, equation (143) yields r=1 making A12 = e±». The solution X(t) has the general 

structure 

X(0 = A^77(0 (145) 

where n(t) is a periodic function of t with period 7 This ensures X(t + 7) = XX(t). The 

motion X(t) can be have the following form : 

1. If A>1, X(t)is unbounded. 

2. If A = ±1, X(t) is periodic with period 7 and for A = - 1 , X(t) is periodic with period 2 7 

3. If A = ei ,X(t) is bounded and quasi-periodic in general since e T is periodic with 

frequency co = ——. 
ZnT 

The periodic orbits separate regions of bounded and unbounded motion. The eigenvalues 
A are usually known as Floquet multipliers. 

The most studied equation of this class is the Mathieu equation, where 

x+[(o\ + £Cos.Gf)x = 0. (146) 

The situations which can be tackled analytically is the one where e**:] and perturbation 

theory can be used. We note that for e = 0, the solution is x0 = Acosco0t + 0sino>of. When 

e is switched on, we find the term ecos(£2t)x will contribute a response at frequency co0 with 



An introduction to nonlinear oscillators: a pedagogical review 1139 

x(t) approximated as x0 provided i2 = 2<y0. This implies that fi = 2<y0 will provide a 

response at 0(e). Any other Q will respond at a higher order. We accordingly let 

Q = 2(00 + 8 and seek a response of frequency co0 + 512. The trial solution for x(t) is written 

as 

5> 

x(t) = A(t)cos[co0+^t + B(t)i sin G>n +-- f (147) 

We have deliberately made 4 and S weakly time dependent since the response is not 
expected to be exactly periodic from our previous discussion. We will be able to explore the 
region near the resonance by the form that we have assumed in equation (147). Weak time 

dependence of A and B implies that A» A, S » B. With this in mind, we try equation (147) 
as a solution to equation (146). So we have : 

x = ->4 lea* + 

-ef©o + g ) s i n r °o + g V + 2sfco0 + - j< 

colx = colAcos \co0 + — f + G)oSsin \co0 + — ; 

(148a) 

(148b) 

excos(2fi>0 +<5f)f = - f + >4cos W n + T f 

+Ssin| 3a>0 + — f - Ssin coQ + — f 
(148c) 

The trial solution x(t) gives (on adding equations (148a) to (148c)) 

x+ (col + ecos(2co0 + <5)f)x= -2/« e G>0 x - s i n ( y 0 T 

{«.+f)-f 

• | j + 2 ^ « 0 + | } c o s ( a ) 0 + | j f 

( « > 0 + f ) f - £ J ( a > 0 + f ) -col s i n ^ o + | j 

+—4cos| 
2 

Ssinl U.+f) 

>| *cos(3» 0 + ̂ ) f - | s s i n ( « 0 + ^ J f (149) 

For x(l) to be a solution, the R.H.S. has to be zero. The different harmonics and the sines 

and cosines have to separately vanish. We have to ignore the harmonic 3(CD0 +8/2) since 
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the trial solution did not have such term to begin with. It is easy to check that if equation 

(147) had contained terms A,cos3(a>0 +S/2)t and fi^sin3(o>0 +S/2)t, then the corre­

sponding equation (149) would have immediately shown that A - 0(^4>) • Consequently, 

for the lowest order calculation in e, A, and hence the higher harmonics can be dropped. 

The sine terms in equation (149) need to satisfy: 

a^w^+IJ + B\ 
2 \ 

X 5 

(o08+— 
+-B=0 

2 

while the cosine terms yield 

2e(o>0+|}-- / 
a)ao + — + -A = Q 

2 

Keeping only the leading order terms in 8, 

A+B\*-+-± 
2 4(0, 

= 0 
oy 

B+A 
S e 

— + — , 
2 4o>0) 

= 0 

(150) 

(151) 

(152a) 

(152b) 

The solutions for A and B are of the form e ^ , with 

- + — 
_£+_£_ 2 + 4a>t 

2 4w 0 ft 
= 0 

yielding 

n = ±- -s2+-
,.2 ^ 

4(0* 

(153) 

(154) 

If 5 < \e 12<o0\, \i has a positive root and the solution is unbounded. If -e 12a>0 > 5 > +e 12a>0, 

then /x is purely imaginary and the solution x(r) of equation (147) does not have a definite 

periodicity. Periodic solutions are obtained on the dividing line: S = ±el 2o>0. The periodicity 

of the solution is twice the periodicity of the forcing term corresponding to the eigen value 

A = 1 in equation (138). Thus, fora>0 / a »1 / 2 , we have in the e-S plane two branches 

starting out from <o0 IQ « 1 / 2 , along which period doubled solutions exist separating the 

regions of unbounded and bounded trajectories. The higher order corrections to the curve 

8 = ±e/2(o0 is obtained by keeping the higher harmonics in a systematic manner. 

Shifting to the region a>0 / Q - 0 , we have the differential equation: 

x + (e 5,+ e2 52+...+£C0Sflf)x = 0 (155) 
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where we have used co2
0 = 0 + ed, + e2S2 + . Using the perturbative expansion of x(t) in the 

powers of e in equation (155), we get 

x 0 =0 
x, = -x0cosi2/-<S1x0 

x2 =-x,cosi2f ~<52x0 - S , ^ (156) 

etc... 

From these equations we have 

*o=4> (157) 

as the periodic solution. Where A0 is a constant. Putting relation (157) in the second equa­
tion of the system (156), we obtain 

_4> . *Jt x^^cosflf+^-iVt, 
r*2 

+Ci'J. (158) 2 

Where >41 and C, are constant. Periodic solution sequences 8, = 0 . Again, using (157) and 
(158) in the second equation of (156), we arrive at 

(c2A A) V 2 A)COs2X2f A>cos£2t A^ A 

and demanding periodicity of 2n IQ implies : 

5 2 ^ + ^ 2 - = 0; ^ = 0 . (160) 

Therefore, periodic solutions are obtained for 

a . - a S r (16D 

=* C y o = ~ £ 2 ^ - < 1 6 2 > 

As a final example, we explore the region where Q~ca0 i.e., we write equation (146) in the 
form 

x + (x>\x + ex cos(co0 + S)t = 0 (163) 

We seek a solution which will have the same period as the forcing i.e., 

x{t) = 4f)cos(o>0 +<5)f + fl(f)sin(o)o + <?)' (164) 

clearly, this solution is inadequate and we need to introduce 

X(f) = > f̂)cos(a>0 +5)f + fl(f)sinK +*)f+ «,(*) (165) 
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4 * 1 • " • • V . " if 
* ' 1 0 1 2 3 4 9 4 7 

Figure 2 . This is a rather exact plot obtained numerically in contrast to the perturbative analysis done in the 
review. The shaded region is unstable while the unshaded one have all bounded solutions and hence is 
unstable. The dashed lines correspond to the periodic solutions with angular frequency Q whereas the solid 
curves represent solutions of angular frequency £/2.0ne may check that the perturbation technique adopted 
gives correct hints about the solutions. 

with 

x, + G)QX1 = — (1 + cos2(a>0 + 8)t) cos2(<o0 + S)t (166) 

leading to 

xt = 
A A co$2(a)0+8)t B sin2(a;0+<S)f 

2"o 2 [ 2 ( a ) o + < 5 ) ] < - ^ 2[2(<D0+*)r-a>5 

Trying equation (165) in equation (163), we find 

-2A(co0 + 5)sin(o)0 + S)t + uo2
Q - (o)0 + S)2 \ACOS(CD0 + S)t 

+28(<w0 + <5)cos(fl>0 + <5)f+ [G>O -(fi)0 +5)2]scos(a>0 + * ) * 

(167) 

H^r|C0SK+<5)f + m co$((o0+8)t fe2B^ sin(©0 + 5)f 

3c>* 
= 0 (168) 

where we have kept only the leading order terms in e and 5 and the lowest harmonics. 

Equating the coefficients of cos(a>0 +S)t and sin(a>0 + S)t separately to zero. 

12a>2 

B=\8+ 
5£ 

12et>; * 

(169a) 

(169b) 
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Trying AB~exp(/iJ), we have 

Se2 

/«aH«--^a
 5+ 

12o)l 12o)? (170) 

Clearly, M2 is positive for 8 < ̂ 3 - a n d $ > ——* where there is unbounded motion. 

e2 ° 5e2 

The peri odic motion occurs on the curves s = ^ J T and 5 = ""^TT and outside these 

curves the motion is bounded but in general aperiodic. Starting from the points 

co01Q = 0,1 / 2,3 / 2,..., we have curves which limit the unbounded motion. As the amplitude 

of the modulation increases, the width of the region of the unbounded motion increases and 

at a critical e, the regions starting from different parts on the (o01Q axis merge and the 

bounded motion disappears altogether. Refer to Figure 2. 

It is instructive to consider an exactly solvable version of this problem. Instead of the 

sinusoidal modulation of equation (135), we consider a situation, where the modulation is 

such that Q)2(t) = col+e for o < f < 7 7 2 and (o\-eiox 7 / 2 <f <T- We now have 

x + [col + e)x = 0 0 < t < 112 

x + (fi)g-e)x = 0 T/2<t<T (171) 

yielding respectively : 

x(t) = ACOSJ(Q)2
0 + e)t + Bs\nJ(a)2

0 + e)t, 0<t<T/2 (172) 

and x(t) = Ccos^col - e)t + Dsm^j(o)l - e)f, 7 7 2 < f < 7 . (173) 

Matching the position and the velocity at f = T / 2 . one gets respectively (defining 

a± = Jcol±e 

AcosQ + — + Bsinfl + — = CcosX2~ + Dsinf l -~ (174) 

-AQ + s\x\Q + ~ + BQ + co$Q + - = -CQ-s\nQ-- + DQ-co$Q---. (175) 

Again, matching the values of the position and the velocity at the boundaries of the periodic 
domain [0,7] we obtain respectively: 

±A = Ccosfl_T+ Dsinfl.T (176) 

±SQ+ = -CosQJ+DQ_ sinfl.T (177) 

± sign is to include two different directions of the possible periodic motion—clockwise and 
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anti-clockwise respectively. For a non-trivial solution for A;B;P;D, the determinant of the 
matrix formed from the coefficients of the A,B,C9D in equations (174) to (177) should be 
zero. This means 

T T T T 
cos.Q4— sinfl^-r -cosf i ~ -s in f l + - -

* 2 2 2 2 
k£2+sinfl+-^ ~i2+sini2+— fl.sinfl — -i2+sini2+-^j = 0 

±1 0 -cosi2_T -sini2_7 (178) 

0 ±Q± £2 sin*2_ — -X2+cos,G_7l 
2 

Expanding which one gets 

< 

T T} (Q Q ) T T 
±1 - cosQ> —cos. - + M - + r r sini2+ —sinX2_ — = 0. 

2) {£2_ Q+j *2 
(179) 

Thus, if Q = 2n 17" then in the limit e -> 0 , periodic response are available for a)0 / Q = nn 

and anti-periodic responses are available for o)01Q = (n +1 /2);r (where, n e {0,1,2,...}). 

10. Rapidly oscillating external force 

We consider a particle subjected to a potential V(x) and an osicillating force f(x,t) that can 
be expressed as 

f(x,t) = f,(x,t)coscot + 4(x,f)sinorf. (180) 

Equation of motion is 

dV 
m* = — + f(* f ) . (181) 

The frequency co is high compared to the frequency associated with the motion under V. 
The magnitude of f is not small but because of its high frequency, we assume that the 
oscillations produced by f have a small amplitude. 

The motion is assumed to be a regular motion with small oscillations about this smooth 
part. Accordingly we split 

x(t) = X(t) + Z{t) (182) 

where £(t) is the effect of the oscillations. Over a period 2nl(o^{t) averages to zero and 

x(f) = X(f). (183) 

Trying out the solution of equation (182) in equation (181) 

«(***)"£-<SH*0*«£ (184, 
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This equation has both "oscillatory and "smooth" terms, which must separately be equated 
For the oscillatory part, 

mt = f(X,t) + S%.. ( 1 8 5 ) 

We drop the second term since it involves the small terms £ . It should be noted that \ can 

not be dropped because of the high frequency. Thus, 

f 
mm' (186) 

Taking the time average of equation (184), we find 

o dV tdf 

dV__J_ 
dX dX 

'JL 
2mt 

dX Am^d, I'1 + r ^ 

= -%V<* <187> 

where 

V'" = V + 4 ^ ^ + f^- ( 1 8 8 ) 

The regular motion occurs in an effective potential field which is the regular potential 
augmented by the mean kinetic energy of the oscillation. 

11. Unforced damped linear oscillator 

A Unforced Damped Linear Oscillator 

We commence our study on damped systems by considering linear oscillators : 

x + / c * + <y2x = 0, fr>0. (189) 

The oscillator has been assumed to have unit mas, o)2
x
212is t h e potential corresponding 

to the restoring fore and multiplying both the sides of equation (189) by xand rearranging, 
we get 

dt 

( Y2 m2 Y2 

( T ^ 1 - * * (190) 

=* — --kx*<0 (191) 
dt 
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where Eis energy (the sum the kinetic energy and the potential energy at every instant) of 
the particle. It is seen to decrease with time; hence kx in equation (189) is acting as a 
damping term. 

Trying solutions of the form x = Aemt, where A and m are constants, we get from equation 
(189) the characteristic equation : 

m2 + frm + <o2=0 (192) 

which has two roots viz.: 

m = mw«-J(-*±VD) (193) 

when the discriminant D is k2 - 4o>2. According as the discriminant D is equal to zero or 
not, we have respectively the following solutions to equation (189): 

JLt 
x(f) = (4+>y)e~2 (194a) 

x(f) = 4emi'+>Vm2' (195) 

we focus on the trajectories of the system (196) in the 2-D phase space (x,y). Equation 
(196) has only one fixed point at the origin (0,0). To get an idea of stability of the point, we 
formally note that the matrix 

(dx_ dx) 

M, dx dy 0 1 
dy dy -a2 - * (196) 

{dx dy) 

has the eigenvalue equation (m being the eigenvalue) 

= 0 

which yields nothing but the relation (192). So, (i) for the case of critical damping 

(D = 0,m1 =m2=-/c/2<0) origin is degenerate stable node, (ii) for weak damping 

[ D<0,m = m12 = - ( - f r ± / ^ ) | the fixed point is stable spiral, and (iii) for the strong 

damping I D > °»m - mw = ^ ( - * ± vl°l) ]» one has stable node at the point (0,0). 

12. Unforced damped non-linear oscillator 

Having recalled linear oscillator, let us ponder over the non-linear damping. Let the 2-D 
autonomous system be 

\3x 
dx 
\dy 
\dx 

dx 
dy] 
dy\ 
dy 
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x = y 

y«-M*.y)-f l (*)- <1") 

Unifying them, one may write 

x+s(x) = -ft(x,x). ( 2 0 0 ) 

If it is assumed that there's only one isolated fixed point and that too at the origin implying 
h(0] 0) + g(0) = 0. The condition h(x, 0)+g(x) = 0 => x = 0, so that we have /T(0, 0) = 0. These 
simplifying assumption lead us to interpret (200) as a model for a particle on a spring where 
free motion is a conservative system x + g(x) = 0 and is acted upon by an external force 
-ft(x,x which can inject or take out energy of the system. 

However one must resist from wrongly thinking that the mere presence of x -dependent 
terms in an equation means the existence of damping. Taking for example the following 
equation : 

x2x + xx2+ax-1 = 0, a=constant (201) 

where the second term in the LH.S. depends on x, we simply rewrite equation (201) in 

terms of 3 fsx 2 /2 , 

~ aV£j? n 

which is conservative. Hence, the presence of x in a system is not enough for the system to 
be dissipative. 
Historically, the research on non-linear oscillators in large scale was initiated with the devel­
opment of vacuum tube technology wherein it was observed that many oscillating circuits 
follow Lienard's equation which basically is a second order differential equation of the type: 

x+h(x)x+g(x) = 0 (203) 

where we have written equation (200) with a special form of h{x,x). In other words, 

x = y 

y = -g{x)-h(x)y. (204) 

Lienard's theorem : Without proof, we state an extremely interesting and useful result 

concerning Lienard's system. If in equation (203) g(x) and h(x) are such that: 

1. g{x) and /T(X) are continuously differentiate. 

2- 3(-x) = -0(x) Vx. 

3. g(x)>0Vx>0 
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4. The integral l(x) «• J h(x')dx' has the following properties : 

(a)/(-x) = -/(x) Vx 

(b) It has exactly one positive zero at x = x 0 . 

(c) /(x)<0 Vxe(0,x0) 

(d) /(x)>0 Vx>x0 

(e)-^->0 Vx>x0 
dx 

(f) /(x)->oo as x-^oo. 

then equation (203) has a unique, stable limit cycle surrounding the origin in the 2-D phase 

space. 
By the way, limit cycle is essentially a non-linear phenomenon, for, linear systems cannot 

have an isolated closed orbit, thanks to the fact that if x is a solution to x = Ax then ex will 
also invariably be a solution for any constant c. (Here, x is a n-dimensional vector and 
A = nxn matrix Limitcydes basically model systems that exhibit self-sustained oscillations 
i.e., the system which oscillates even in absence of external forcing. Obviously, conditions 
needed to satisfy Li6nard theorem indicate that g(x), being odd, behaves like a restoring 
force to reduce any displacement and f{x) is such that large oscillations are damped down 
whereas smaller ones are energised, thereby helping the system to settle into a limit cycle 
for some intermediate amplitude. 

13. Van-der-Pol oscillator: weak non-linear limit 

x+e(x2
 - /X)X+G)2X = 0, £,//,G) = constant (205) 

is a Ltenard equation which satisfies the condition written earlier while stating the Ltenard 
theorem. For the sake of convenience, we use r^at and let prime denote differentiation 
w.r.t. r to rewrote (205) as : 

x , , + £(x2-/x)x / + x = 0 (206) 

where e has been redefined accordingly. In what follows in this section, we shall always 

assume that \i > 0 and the non-linearity is small i.e., | e | « 1 . 

As we have already mentioned that equation (206) has a limit cycle in accordance with 
the Ltenard theorem. What we wish to illustrate in this section are the various techniques 
useful in determining the properties of that eriodic solution without making the difficult at­
tempt of solving the equation altogether. Let us begin with the use of power of polar coordi­
nates to investigate equation (206) that can be split as: 
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x = y 

y = -e(x*-p)y-X. ( 2 0 ? ) 

We remind ourselves that any point {x{t),y{tj) on a trajectory in 2-D Cartesian coordinate 

when expressed using the polar coordinates (/<f>0(f)) follows the transformation rules ac­

cording to the relations : 

r2 = x2 + y2 (208a) 

tan0 = y 
x (208b) 

Relations (208a) and (208b) imply, upon differentiation w.r.t. time : 

xx + yy 
r== (209a) 

0 = 

r 

xy-yx 
—2— - (209b) 

Using equations (207) in the (209a) and (209b), we get the polar form for the Van-der-Pol 
equation : 

r = -ersin2 0(r2 cos2 0 - //) 

0 = -£Sin0cos0(r2 cos2 0 - //) - 1 (210) 

which on mutual division yields : 

dr frsin2 0(r2 cos2 0 - //) 

d0~esin0cos0(r2cos20-/ / ) + 1 ( 2 1 1 ) 

which is the equation for the trajectories. Now that we are for the features of the limit cycle 

i.e., a periodic solution with a period 7(say) — f(f + 7) = r(f) Vf— we shall denote its 

amplitude by a(Q. We choosea = a0, 0 = 2n at f = 0 we have a = a0, 0 = 0 at t = T so 
that as f increases, 0 decreases just to be consistent with the clockwise evolution of the 
orbits in accordance with the first of equations (207). Equation (211) was quite general in 
the sense that there was no restriction on the values on e which we now put as | e | « 1 . 
Therefore from expression (211), we have 

^ = easin2 d(a2 cos2 0 - /i) + 0(e2) (212) 
eld 

H I <fe = £easin2e(a2cos20-/i)d0 + O(e2) (213) 

a(9) = ao + £«»sin 2 0(a2 cos2 d - n)dd + 0(e2) (214) 
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=> a(0) = a0 + ef^ sin2 o(a2 cos2 0 -n)dO + 0(e2) (215) 

where in the 1st step, due to very mild non-linearity, we have put a = a0 + 0(e2) in the sec­
ond term on the R.H.S. for 0 = 0, the preceding equation (215) yield on equating the coeffi­
cient of e on both the sides : 

j° aQ sin2 0(ao cos2 0 - //)c/0 = 0 (216) 

=> a 0 = 2 ^ (217) 

which is the approximate estimate of the amplitude of the limit cycle. The polar coordinates 
may even be used to find the estimate for the time-period T in the following manner: 

Jo Ja* $ Jo i + £sin0cos0(a2cos20-/*) 

where we have used second of equations (210). Again substituting a = ^ + 0(e) and keep­

ing terms upto 0(e) after expansion, we arrive at : 

T=\ *h + £sin0cose(e%cos20-//)]d0 + 0 ( E ) (219) 

=> 7=2ff + o(e2). (220) 

Hence, the angular frequency of the limit cycle is 2nlT /-©.. 1 + 0(e2) 

For this Van-der-Pol oscillator, alongwith the limit cycle being talked about, origin is a fixed 
point and the phase diagram for the system in a bounded region wherein the origin lies 
consists of trajectories which can be determined approximately. By looking at the structure 
of Eq. (212). One can use a Fourier series valid for all 0 to expand the R.H.S. as: 

^ = eAo(a) + e J A,(a)cosn0 + e £ B n ( a ) s i n ne + + °(*2) (221) 

For 0<0<2n this represents of one loop of the spiral. Therefore, using a(6) = a(0) on 

the loop to the lowest order of accuracy 

^-eAtfaoy + s f , ^ (222) 

When averaged over the range o < 0 < 2n. there can be no contribution from the higher 

harmonic terms in the order 0(e) and using the relations (212) and (222) A>(a(°))may be 

obtained a s : 
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* W°» - £ f H*)*1" ̂ f cos2 •-„)]*« f[l* _ „) (223) 

that basically is the average value of ea(0)sin2 e(a(0)2 cos2 e - //) overa loop passing through 

the point having (a(0),0) as the polar representation. So the separation between successive 
loops of the trajectory is generated by 

da ea(A 2 

(224) 

is correct upto 0(e) as no contribution come from the higher harmonics. 

This procedure inherently assumes \e\ « 1 so that the curves generated by equation 

(224) are nearly circular. Using second of the relations (210) and chain rule, we get: 

da^^da^da , 2 ) 

dt dO dd l '' 

From equations (224) and (225) one has : 

daeafl 2 

dt ~T l4 a "' 

(225) 

(226) 

The value for a = 0 '•£-. a = 2 ^ corresponds to the limit cycle as discussed earlier. 

Solution of equation (226) is obtained as : 

r*(<) da = f' 1 dt 
Ja(o) J~ o r r \ / - . o rr\" Jo A a ( a - 2 ^ ) ( a + 2 ^ ) J° 8 

~ CM + 7=r + j=r = — \dt 
B ^ O ) I P o _ 0 / , , a±0 In \ 8 JO 

/n 
a'-4/z |a2(0)l 

• •w-

a2(0)-4^| a2 J 

2& 

= -efit 

¥ 1 - 4^ 
e 

As / -» oQ,a(/) -» 2^/7 / .a, towards the limit cycle. 

(227) 

(228) 

(229) 

(230) 
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To find x(t) we need to know 0 (f). One could start ab initio to perform similar averaging 
procedure to get a relevant expression for 0 (1). But one can guess the result having under­
stood the essence of the calculation done to arrive at (226). Basically, all hat has been done 
is that one has replaced the R.H.S. of the first of the relations (210) with the average value 

of it over the loop containing the point (a(0,0)) in the limit |s| «*\ so that inaccuracies of only 

order higher than 0(e) creeps in; which, thus, are negligible. In the same manner, one 
hopes to replace the R.H.S. 6f the second of the relations (210) by the similar value aver­
aged over looped trajectory. So, it yields : 

— - - 1 - — J** sin0cos0[a2(0)cos2 0 - l]cfy + 0(e2) = - 1 + +0(e2 ) (231) 

=> 0(t) = - f + (e2) (232) 

where we have put 0(0) = 0 . Using equations (230) and (232), we note that upto the, 0(e) the 
approximate time solutions to the Van-der-Pol equation are given by : 

, v , N , , 2Jucost 
x(t) = e(t)co$0(t) = . VA^ . 

(233) 

The approximate amplitude and frequency, and the approximate solution to the Van-der-
Pol equation can be found in yet another fashion, viz., harmonic balance which is a rather 
more formal way of arriving at the results already obtained. Let us illustrate the procedure: 
We first of all rewrite the Van-der-Pol equation as: 

x + x = - e ( x 2 - / i ) x (234) 

Assume, 
x = acosarf (235) 

and put it in the relation (234), to get: 

(-aco2 + a) cos cot = e(a2 cos2 cot - n)aco sin cot (236) 

=> (1 -co2)acoscot = eco(a2 - fi)as\ncot - ea3a>sin3 cot (237) 

=> (1 -co2)acoscot = eco\ n sinorf + sin3arf (238) 

Ignoring the higher harmonic -sin 3arfand matching the terms cos cot and sin cot on both the 
sides of the expression (238), we arrive a t : 

1-f i )2=0=>6> = 1 (239a) 
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ti = 0 => a = 2^x (239b) 

respectively. The results (239a) and (239b) matches what was earlier in the results (220) 
and (217). v ; 

To obtain approximate solutions to the Van-der-Pol equation, harmonic balance may be 
used to pseudo-linearise the non-linear equation. By this we actually mean that a linear 
substitute would be found out as follows. As discussed in he equations (234) to (238), we 
have 

-e(x2 - J I )X = earn 
'a 2 

n sinarf + 
ea3co 

$\r\3(ot 

Again, using the assumption (235), have 

x = -a(Q$\riQ)t 

(240) 

(241) 

Substituting the relation (241) in the expression (240) and ignoring the higher harmon­
ics, we get : 

- s ( x 2 - fijx = -ecol fi\k 

which can be used to rewrite equation (234) as : 

(242) 

X + £Q)\ / i X + X = 0 . (243) 

It may be noted that a = 2 corresponds to limit cycle in which case the damping term 

vanishes. As far as the non-periodic solution are concerned, we use the initial conditions 

x(0) = a and x(0) = 0 that is equivalent to the initial conditions used to arrive at the result 

(233) which is what we wish to verify. Obviously, the solution of equation (243), in consis­

tence with the initial conditions, is 

x(t) = a exp' 
Hf H' 

cos 
f I 
J V 

~2 
., € 
1 

4 

( ~2 
a 

T 
n"xt (244) 

To verify that the solutions (233) and (244) are same, one may expand them to see that 

in the limit et«1 both are same. 
An even more important fact that may be extracted from here is that the spiral inside a = 

2 grows and the spiral outside a = 2 gets damped onto the limit cycle described by the loop 
a = 2; thereby, hinting at the fact that the limit cycle is stable. This stability test is better 
checked using energy balance method discussed below; which by the way, as we shall see, 
prove to be another way of getting a hint of amplitude of the limit cycle. 

We focus on the form (234) of the Van-der-Pol oscillator. If we set e = 0, solution to it 

would be 
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x(t) = acos(f + 0) a,0 = integration constants (245a) 

Obviously, 

y(t) = x(t) = -asin (t + <t>). (245b) 

For convenience we settle at 0 = 0 and A > 0. The relations (245a) and (245b) describe a 

circular orbit in the phase plane; the circle has a period 7 = 2/r. Now as e # 0 but e -» o, 
one may still assume to approximate: 

x(t) « acos f, y(t) = - a sin f, and T « 2n. (246) 

As the term in the R.H.S. of equation (234) gives estimate for the change in the energy E 

over the period o < t < T (treating -^(x2 - /*)x as an external force) is : 

AE = E(T)-E(0) = fo[-e(x2 -n)k)kdt (247) 

One may think of the integrand of the expression (247) as the input power. For a limit cycle 
AE should be zero; hence using the expressions (246) in the relation (247) we arrive at, for 
the limit cycle: 

AE = -ea2 J n (a2 cos21 - /J) sin2 tdt = 0 (248) 

=> -ea2,rl^-/2J = 0 (249) 

=» a=2jji . (250) 

Thus, we again arrive at the approximation to the limit cycle for mild non-linearity. Again, if 
A E< 0 for any spiral trajectory in the region outside a = 2 and A E< 0 for any spiral trajectory 
in the region inside a = 2, both the trajectories respectively, loose and gain energies over a 
loop to fall onto the limit cycle which hence could be termed stable. More formally, stability 
would mean 

N < 0 - (251) 
JUn* Cycle 

For the Van-der-Pol oscillator this cirterion would mean : 

da --.^i-MJ < 0 (252) 

[-6aff(a2-2/i)]aV_<0 (253) 



An introduction to nonlinear oscillators: a pedagogical review 1155 

-2eii7ta<0 (254) 

which is true and hence the limit cycle is stable. 

The stability of the limit cycle may be analysed in yet another fashion by invoking the 
"method of slowly varying amplitude and phase", also known as KBM (Krylov-Mitropusky) 
method. Once more we rearrange the Van-der-Pon oscillator's equation to look like. 

x + x = - e ( x 2 - / / ) x (255) 

Had the R.H.S. of equation (255) been zero, the solution would have been sinusoidal in 
time, hence, inspiring one to write 

x(f) = a(f)cos(f + 0(f)) (256b) 

There is no approximation involved. Differentiating the expression (256) with respect to 
'f one gets: 

x = acos(f + 0) - a(l + ij>) sin(/ + 0) . (257) 

Again differentiating with respect to T 

acos(f + 0) - 2a(l + 0)sin(f + 0) - a0 sin(f + 0) - a(l + 0) cos(f + 0) . (258) 

Inserting the relations (256), (257) and (258) in equation (255), we arrive at: 

a cos(f + 0) - 2a(l + 0) sin(f + 0) - a0 sin(f + 0) - a(20 + 02) cos(f + 0) 

+ G [a cos(f + 0) - a(l + 0) sin(f -f 0)][a2 cos2 (t + 0) - ju] = 0 (259) 

At this point we introduce the idea of KBM method. We assume, in the light of the small 

non-linearity i.e., \^ «1, the amplitude and the phase vary slowly over the time scale of the 

oscillation period for the trajectory near the limit cycle. In other words, for such trajectories 

we may treat Q and 0 as constants over one full period of oscillation. Further a I a and 

0 / 0 « 1 , so that Eq. (259) reduces to 

-2asin(f + 0) - 2a0cos(f + 0)+ e [acos(f + 0) - a(l + 0)sin(f + 0)] 

[a2cos2(f + 0 ) - / / ] = (>. (260) 

Using the principle of harmonic balance at this point, we see that to 0(e) 

^fvT (261) 

0 = o(e2) (262) 

which brings us back to eq. (226). 
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Now, for doing the limit cycle's stability analysis we note that a = o 9iv©s the limit cycle's 

amplitude a = 2^ = a (say). Let d be the infinitesimal perturbation on the limit cycle i.e., 

d = a-a (263) 

So, putting the expression (263) in equation (262a), we get 

ea 
fa* 

d = f(cf+a*), f(a) = " d -j-» (264) 

=>d=f(a*) + dda^+0(d>) ( 2 6 5 ) 

=>d = -£:/id (266) 

=> d~e-"". (267) 

Thus, as the perturbation decreases with time, the limit cycle is stable in conformity with 
what has been arrived at earlier. 

14. Van-der-Pol oscillator: strong non-linear limit 

As has been already mentioned, the Ltenard equation x+ /?(x)x + g(x) = 0, when it satis­
fies certain conditions, does possess a closed path i.e., a periodic solution. There is a 
particular choice of variable (x; y) say, in terms of which a particular phase plane — Li6nard 
plane — may be defined; in this plane the Ltenard equation is given by: 

x = y- / (x) 

t-*A <268) 

where l(x) = j*h(x')dx'. if one defines f(x) = y212 + J " g{x')dx', then by calculating f on 

closed path "C in the plane one can arrive at the Lienard criterion : 

jl{x)dy=0. (269) 

To be specific, the variables for the Lienard plane in the case of Van-der-Pol equation 

x+e(x* - /x)x+ x = 0 may be constructed as follows : 

x+e (x 2 - ^ ) x+x = 0 (270) 

=*dff + l T ~ / i X , , = "X < 2 7 1 ) 

=»y = - x (272) 
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where Y = * + el " J " " M* J; thus by setting Kx) = eI -g- - M* J , we arrive at 

x = y - / ( x ) 

y = - x . (273) 

It can be used to find the approximate time period of the limit cycle of the Van-der-Pol 

oscillator in the strongly non-linear limit viz., \e\ » 1 without going into the mathematical 

rigour which could be seen to be too involved as would be discussed sketchily later. To do 

that let us further change/define the variables 

vsJLtUsXi F ( a ) s - L Z . ( 2 7 4 ) 

So that we have 

u = e[v- F(u)] 

v = - £ . <275) 
e 

Now consider the nullcline v= F(u) in theU6nard plane (ir,v) (see Figure 3). The nullcline is 

a cubic and has maximum at u = -Ji* and minimum at u = Jji which let be denoted by the 

points A and C respectively. If we have an initial condition above the nullcline, 

v - F(u) > 0 => u > 0 , then the trajectory moves sideways toward the nullcline and that too 

with the horizontal velocity much greater than the vertical velocity. This is so because if 

v - F(u) - 0(1), then \u\ I |v| ~ 0(e) 10(e"1) - 0(e2)»1. As soon as the trajectory comes so 

close to v = F(u) such that v = F(u) ~ 0(e~2), then | ( ) | / |v^0(e'1 ) /0(£-1 )^1, the nullcline 

is crossed vertically by the trajectory which then in effect crawls slowly along the segment. 
B -> C. Again as the point C is reached, the picture discussed repeats for the path 
C -» D -» A symmetrically w.r.t. the path A -> B -> C - Thus, we claim that all the trajecto­
ries, including the limit cycle behaves the way discussed in the Li6nard plane. Obviously, 
justification of this claim can come only from the rigourous calculations which we are not 
quite going into. 

Now, what we discussed above implies that total time period T of the limit cycle is the 
total time spent on the slower branches viz., B -»C and D -> A. As on the slower branches 

v * F[u), so 
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Figure 3. Typical trajectory of strongly non-linear van-der-Pol Oscillator in Ltenard plane. 

Using the second of equations (275), we get 

e(u2-ii) 

u 
Therefore, 

T=|cff+|cfr = 2| tf=P - J ^du 
JB JD JB hfi u 

T=£/x(3-2ln2) . 

(277) 

(278) 

(279) 

By the way, if one carefully considers the time needed to traverse the knees as A and C, 

one gets correction terms of 0(e"1/3). But this requires quite a lot of mathematical calcula­

tions. Actually just because the regular perturbation theory fails in the case of strongly non­

linear Van-der-Pol oscillator, it becomes tough to analyse it; by the regular perturbation we 

simply mean the procedure we have been carrying out extensively by using the perturbative 

series solution of the form x(f,e) = xQ(t) + ex^(t) + e2x2(f)+... and expecting it to converge. 

Let us illustrate with a simple example how in general the regular perturbation theory fails. 
Consider the differential equation with initial conditions: 

x + £ x + x = 0, | c | « 1 ; K 0 ) - 1 

It can be easily be solved to get: 

(280) 
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^£ ) =^e x r("*f)H V^7 
(281) 

And, the regular perturbation method would yield : 

Ft 
x(f,e) = sinf- —sinf + 0(E2). (282) 

If the expression (281) is expanded in the power series in e, the first two terms are given by 
the expression (282). For fixed f, the relation (282) is a good approximation as long as e is 
small enough so that et« 1. But since in practice, e is kept fixed and t grows, we can expect 
the relation (282) to hold good only for t« 0{Me) because only then the error 0(&t2)) are 
small enough to be neglected (otherwise error dominates). Thus, regular perturbation may 
be said to have failed for larger t and we may say that the expression (282) does not provide 
an approximation that is valid uniformly in the range [0, °° 1) of I 

In fact it is of very common occurrence that regular perturbation theory fails to provide a 
uniform approximation to the solution of the corresponding differential equation; such cases 
of failure are generally termed as singular perturbation problems, already introduced earlier 
in the section on coordinate perturbation method. Such problems are also showcased by 
certain boundary value problems in which a small parameter multiples the highest deriva­
tive terms. These cases may be treated by so-called boundary-layer method in which differ­
ent parts of the solution curve are approximated differently and then matched appropriately. 
It is this very technique that we shall now briefly introduce and in the process learn the 
concepts of the stretched coordinates and the method of dominant balance to apply them to 
the Van-der-Pol oscillator in the large non-linearity limit. 

For this we resort to some illustrative examples as follows. Let us use the perturbative 
expansion : 

x = x0 + ex, + e2x2+... (283) 

to solve the following algebric equations : 

x 2 + * x = 1 (284a> 

*x2 + x = 1. (284b) 

Substituting the expression (283) in equation (284a) and equating the coefficient of the 
like powers of e step by step we recover the following two series : 

x »!_£ + £!+... (285a) 
2 8 

e e 
x = _1_£ + £l+... (285b) 
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which corresponds to the expansion of the exact roots [~el2± V1 + £2 / 4 j of equation 

(284a). The solutions (285a) and (285b) are the examples of regular perturbation series. 

One may note that since \e\«1, solutions (285a) and (285b) to equation (284a) differ very 

slightly from the result when e = 0 ( * = ±1> w h e n e = 0). Again, putting the trial series (283) 

in equation (284b), on similar considerations we manage to get only one solution, viz, 

x = i - £ + 2f2+... . (286) 

The exact solution of equation (284b) is 

x ~ ( - 1 ± V l + 4e) (287) 

the solution (286) corresponds to the expression (287) with positive sign chosen from ± 
-sign; the solution that could not be recovered is the one with the negative sign i.e., 

x = ̂ ( - 1 - V l + 4e) = ~ - 1 + e+... . (288) 

This is an example of singular perturbation expansion Le., result for small e differs greatly 
from the result for e = 0. The root (288) no way could have been obtained using the series 
(283) due to the presence of the Me term in the solution (288) and absence of such a term 
in the series (283). So the perturbation expansion fails when a small perturbation multiplies 
the highest power of x in the algebric equation (284b). It is in such scenario that the method 
of dominant balance comes in as a handy tool in which one assumes a trial expansion of 
the form : 

x = x0£
A° + x,eAl + x2e

k2 +..., A0 < A, < A2 < ». (289) 

and investigates all the possible leading order balances, checking each for self-consis­
tency. So, substituting (289) in equation (284) we get: 

x 0 V A ° + 1 +x 0 £ A °=1 (290) 

where we have kept only the largest contributions to each term. Now, the possible leading 
order balances in equation (290) are : 
where we have kept only the largest contributions to each terms. Now, the possible leading 
order balances in equation (290) are : 

1. Xo£2Ao+1 balances x0£A°: This implies A0 = -1 and x0 = 0 , -1 . Thus, the non-trival 

solution is x = -1 / e (upto the given order) which obviously corresponds to the root 
(288). 

2. x0e
A° balances 1 : This implies A0 = 0 and x0 = 1 which obviously indicates the 

root (286). 
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3. xfc2*0+1 balances 1 : This implies A0 = -1 / 2 and x0 = 1. But this is a contradiction 

of the of the philosophy of balancing, for, then x0e
x° becomes the most dominating 

term contrary to what has been assumed in this case. 
Having illustrated the method of dominant balance to treat the singular expansions, let 

us see how it applies in the similar vein to the boundary value problem for ordinary differen­
tial equations. Consider a rather simple example: 

€x + x = 1 *(0) = 0,x(1) = a; | £ « 1 | (291) 

where, a is a positive numerical constant. One can readily check that the trial solution : 

x(e,t) = xQ(t) + ex,{t) + e2x2(t)+... (292) 

fails to yield solution for equation (291) because substituting the expression (292), we get 
following infinite set of differential equations : 

x0 = 1; x0(0) = 0,x0(1) = a (293a) 

x0 + x, = 0 ; ^(0) = 0,^(1) = 0 (293b) 

eta etc., 

and the solution to equation (293a) is x0(/) = t + A, where unfortunately, A — the integration 
constant — cannot be uniquely determined so as to let the solution satisfy both the bound­
ary conditions simultaneously. This anomaly arises from the possibility that on 0 < t < 1, x(/) 
can change rapidly enough so as to make ex too large to be ignored even for e -* o. This 
situation is tackled by considering the existence of a boundary layer(s) near t = 0 or(and) t 
= 1 where x changes quite rapidly with t Let's assume that a boundary layer exists near 
t = 0. Guessing the position of the boundary layer is an art which comes to one with expe­
rience. One may check that in this problem, there exists no boundary layer near t = 1. Now, 
we introduce the very important idea of stretched coordinates. To get an approximation 
near t = 0, it is of no use to work with t = fixed which is covered (as we shall see) by an 
approximation (292). Hence, we consider t -»0 with e as follows: 

f(e) = £Ar (294) 

in which T can take any value. This % is called stretched coordinate; it has helped us to 

zoom the boundary layer to the width 0(1). Now, in the boundary layer, we assume : 

x(t) = XQ(T) + eXi(T)+... (295) 

Using the relations (294) and (295) to rewrite (291), we get upto the leading order: 
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e , - ^ + £ - ^ = 1 . ( 2 9 6 ) 

Invoking the method of dominating balance, the three possible candidates for balancing in 
the expression (296a) are : 

1 £i-2A _ ^ _ b l a n c e s B'* _ i : T h i s implies A = 1 and xlt) = B+Ce"f/e. S and C are 
or ar 

constants. 

2. £1~2A ~ 7 T " balances 1 : This suggests A = 0 and x(f) = t + >4 which is nothing but 
CrT 

the solution to equation (293a). 

£*« 
dr2 

3. £~ —rj~ balances 1 : This means A = 1 / 2 which obviously is a contradiction as 

the term s~A -— in equation (296) turns out to be the most dominating. 
OX 

Thus, to the leading order we have the solution to equation (292) as : 

x(t) = t + A = x ^ (say) 0 < f < 1 

x(f) = 0 + Ce""f = x„(Sfl /) near f = 0 . (297) 

Obviously, in accordance with the boundary condition: A = a -1 and S = -C. Again, matching 
the solutions at the edge of the boundary layer i.e., imposing 

lim lim 

we get, A = 8, /.e., B = a - 1 . Hence, we have ultimately found an approximate solution to 

(291) which has uniform validity in the range of f e[0, l ] ; the solution is formally written as : 

x ( 0 = xout + xbi - common terms (299) 

=* x(f) = (f + a -1) + (a -1)(1 - e-'/f) - (a -1) (300) 

=>x(f) = a -1 + f-(a-1)e- ' / f . (301) 

Now let us see how the concept of stretched coordinates may be used to get the limit cycle 
in the usual phase plane (x, y) (and not in the Lidnard plane has we have done earlier) for 

the van-der-Pol oscillator for strong non-linearity (|e|»1). 

Putting e = <S*1 that | <5 |«1 , we rewrite the Van-der-Pol equation as: 
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Si+{x2-/xjx+Sx = 0 /302) 

which may be broken into following two differential equations of first order: 
x = y 

y = ~- 7-1 * (303) 

Dividing these two equations (303), we get the differential equation of the trajectories in the 
phase space (x,y) as : 

dy x2 -fi x 
dx~ 8 y <304> 

The thing to note in equation (304) is that as x-»-x and y-»-y, equation remains 
invariant. Thus, if the part of limit cycle is found for y>0, then the lower part may be con­
structed using this symmetry. As in the boundary layer problems, we go on to solve equa­
tion (302) by putting 

f = 5 V (305) 

Therefore, we get (using prime to denote the differentiation w.r.t. r) : 

Suzxx" + <TA(x2 - n)x' + Sx = 0. (306) 

The first term in the L.H.S. of equation (306) cannot balance the last term as it would led 
to a contradiction. However, the first term can balance the second term to lead to A = 1 '©•. 

t = Sr (307) 

and, 

x" + (x2- / / )x' = 0 (308) 

If at y = 0, x = a then the solution to equation (308) may be written as: 

x' = - ( x - a ) ( 3 / i - a 2 - a x - x 2 ) (309) 

^ = _ l ( x _ a ) | x - f_£ V12^-3f l2 [ a Vl2^-3a2 

2 + 2 X " l 2 2 (310) 

This means that in case a > +V^. then x' > 0 ('•*• y > 0) in the range 

| ( - a + > / l 2 / i - 3 a 2 ) < x < a . (311) 

Again the second and the third terms in the L.H.S. of the relation (306) can balance each 
other to yield: 
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A = -1=»f = - (312) 

and (x*-n)x' + x = 0 (313) 

x*-V <3 1 4> = > X = • 

This equation (314), owing to the singularity present at - ^ is valid in the region y> Oonly 

for - a < x < - < ^ . The region in the neighborhood of x « ~Jji is problematic; the solutions 
(310) and (314) may be joined together therein by another equation. Before we seek that 
equation, just note that, to the required order, the trajectory given by the expression (310) 
should touch the x-axis at x = - ^ ; which means that by stretching the solution to x = - ^ 

and using the relation (311) we get a = 2jjlon equating (^a + v 1 2 / i - 3 a 2 J / 2 = - 7 / * ' . 
Now, to get the approximation about x = p, we zoom the region in the phase plane by 
substituting 

x-(-<JJi) = x + Jjl = 6xg (315) 

where £ is the stretched coordinate. Substituting the expressions (305) and (315) in equa­
tion (302) we reach at 

51-2A*A£„ + 5-A+3A£2£, _ 2^S~X^^ + 8UU£ - Sjji = 0 (31 6) 

where first, third and fifth terms in the L.H.S. can balance each other with values for X and J 
and 2/3 respectively, i.e., 

t"-2jZ&-4Z = Q (317) 

is the approximate differential equation giving solution in the region about x = -fit. Simi­

larly, we zoom the neighbourhood around x = -2-^/7 by defining a stretched coordinate 77 

such that 

x + 2 ^ - < 5 V (318) 

Inserting the expressions (305) and (318) in equation (302) we arrive at: 

î-aA+y, + a-Atal^, _ 4^S"^2jW + 3/A*-A+y + SuJrj - ZSJJL = 0. (319) 

A possible balance is obtained n equation (319) among the first, the fourth and the sixth 
terms, i.e., with A = 1 and 1 = 2 . which gives : 

r)" + Snr\' - 2 - ^ = 0. (320) 
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Therefore, without solving every differential equation (in fact, equation (317) does not 

have an elementary solution) we merely state that the upper half of the limit cycle is given 

by the solutions of the differential equations (308), (318), (314) and (320) valid in the range 

2fi>X>-fi + 0{52"), -fi + 0(52«)>x>Ji-0(82'*), -& + 0(8™)>x>-2jj; + 0(8>) 

and -2y[Ji + 0(62)>x>--2jIi respectively and the lower half is obtained by invoking the 

symmetry earlier just after writing equation (304). 

15. Forced damped oscillators 

A. Linear forced clamped oscillator 

To start with, we sketchily consider a damped oscillator (the damping force being propor­
tional to the instantaneous velocity) with unit mass and being acted upon by an external 
sinusoidal force. Mathematically, we thus have a non-autonomous system: 

x + kx + co2x = Fcos£2t; co,G,Ftk are constants and cotf2> 0,/ce (02co). (321) 

The solution is given by 

x(t) = AexA—t cos 

Fcos 
2 k 

M 

-e 

fir-tan-1 ka 

(c02-tf) 

P'-a'f 
(322) 

+ /TX2 
2 ^ 2 

which is, respectively, combination of free oscillation and forced oscillation. A and 6 are the 
arbitrary constants of the complementary function that basically is a transient term vanish­
ing at t ->oo. Initial conditions decide the values for A and 9 . In the steady state, thus, 
x(0(= x«(0 say) settles into the particular solution 

Fcos 

* . « -

.Gf-tan"1 ka 

(o)2-i22) 
(323) 

(<o2-Q2) +k*tf 

whose amplitude is 

a=- II 
']{*-&)' + *£* ' (324) 

Treating F, k, m as fixed, one may verify that dafdQ2 = 0 = > Q2 = <o2 - k212 at which 

d2a/d(Q2)2 < 0 . Hence the maximum value of a is a ^ given by 
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-u-^4 
*F5 (325) 

As Q - * to (damping is very samll), a ^ >. This state of the system is well-known as the 
state of resonance. 

16. Duffing's equation 

A non-autonomous equation of form : 

x + ax + bx + ex3 = F(t), a,b,c » constants (326) 

is known as Duffing's equation with a forcing term. Actually such an equation emanates 
from the standard form of equation of a forced pendulum : 

d + k6 + Q)2 sine = F(t) (327) 

0 is the angular displacement from the vertical. For small, 0, sin 0 = 0 to give us back the 

linear damped oscillator which we had discussed earlier. However, approximating 

s in0«0-03 /6» o n e 9 e t s a Duffing's equation. Now, let us take periodic forcing F(f) = 

F(f) = Fcosi2f f put 0 = x and define T = Qt,o>2 = (a>/£)2 , er=co2
r/6, /c r=/c/42and 

f = FIQ to get 

dPx . dx 
ck2 (ft 

2 +fcr— + co*x-£ rx
3 = fcosr . (328) 

Note that e, is a constant, a are kn<or and A. In order to treat er as a parameter we replace 

it by £ which is a continuous variable occupying an interval that has £= 0 and also e= er as 
elements. So, letting prime to denote differentiation w.r.t. t, we shall consider the following 
equation: 

x" + k,)C + a)Jx- £*3 = f COST . (329) 

We again assume | e | « 1 in what follows. 

1. Resonances 

This phenomenon, as we have seen earlier, is most vivid when the damping is small; so let 

kr=0 for the time being and represent the solution of the resulting equation as: 

x(e,r) = x0(r)+£X1(r)+e2x2(T)+... . (330) 
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Inserting which in the relation (329) (remembering k=0) and equating the coefficients of the 
like powers of e, we arrive at following set of infinite differential equations 

X'Q+CQ2,X0 = fcosr 

xf+t f f r -x j (331) 

etc. etc. 

The dominating equation of this set, / .a , the first of equations (331), has the same periodic 
solution as the linearised undamped version of equation (329) has. Hence, the perturbation 
series helps us in finding only those solutions that bifurcate (due to the presence of mild 
non-linearity) from the solution of the linearised equation. And, thus by invoking this procedure 
we are basically restricting ourselves into the investigation of the periodic solutions having 
period 2rc of the forcing term, i.e., 

x(e9T + 2/r) = x(e,r) V£,r (332) 

=> x,(r + 2tf) = x,(r) / = 0,1,2,3, (333) 

which follows from the expression (330). Now, the solution to the first of equations (331) 

subject to the condition (333) is : 

/ A fcosr 
X o ( T ) = " ^ p r <334> 

putting which in the second of equations (331) and subsequently solving the resulting 
equation subject to the condition (333), we have 

i \ 3 f3cosr 1 f3cos3r 
XlW = 4(a,?- l ) 4 +4K-l) 3K-3 2) ' <3 3 5> 

Note that implicitly we have assumed in what has been calculated above cor * 1,3,5,... so 

that the series (330) converges. These values of cor correspond to near-resonance condition. 

Evidently, cor « 1 corresponds to linear resonance while the other values can be associated 

with non-linear resonances as they can be attributed to the higher harmonics being fed 

back by the non-linear term x3. Using the solutions (334) and (335), the solution 

, x fcosr 3 /3COST 1 f3cos3r nl 2\ 

thus, corresponds to the forced osicllations far from resonance. 
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2. Periodic solutions near resonance with weak excitation 

"Near resonance" would obviously mean that 

a2
r=Uer(o (337) 

and that the excitation is weak would allow us to write 

f = er0 (338) 

Again, consider the damping to be weak for simplicity, i.e., 

kr=erX (339) 

Thus, putting the relations (337), (337) and (339) in equation (329), we get on 
rearranging : 

x'' + x = e(#cosr-;r;x'-ft)x + x 3 ) , 0 , # > O ; 0 ,£ ,G) = constant (340) 

where we use a for £rthe sake of generality. Again using the series (330) as solution of 
equation (340), we get following set of infinite number of differential equations 

*o + x 0 = 0 

X('+ X, = 0COST- Wo ~0)X0 + XQ (341) 

etc. etc. 

We, being in search of periodic solution of period 2/r of the forcing term, still assume condi­
tion (333) to hold; therefore, solution to the first equation of the set (341) is 

x0(r) = A0cosr + BQ sinr (342) 

A0 and S0 being the integration constants that can be determined from the initial conditions. 
Using the solution (342) in the second equation of the set (341), we get: 

* r + * i = t-XBo+Ao i-*i< COST + XAo+Bo \-(D + -al sin t+ higher harmonics 

(343) 

where a^ = J/§ + fig = amplitude f the "generating" periodic solution (342). Condition (333) 

implies that the coefficient of cos rand sin rmust be zero i.e., 

^-f i t^+|aSJ = 0. 

(344a) 

(344b) 
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Squaring and adding the relations (344a) and (344b), we get 

4 x2 + (345) 

=* ^ K ) 3 - | ^ ) 2 + U 2 - ^ ) W ) ^ 2 = 0. (346) 

Invoking Descartes rule of sign, we notice that this equation for a* can have at most three 

positive roots and hence a^ being positive, also can have three values. Of course, this will 

depend on the value of o>,x and 0. Whatever it may be, the point is that there can very well 

be three distinct solutions of the periodically weakly forced During equation (329) near 

resonance. Each of the solutions basically bifurcate from a distinct generating solution given 

by the expression (342). 

Amplitude-phase perturbation technique 

There is yet another technique of getting the relation (345) starting from equation (340). It is 
worthwhile to ponder over that technique known as amplitude-phase perturbation tech­
nique because it gives a way of obtaining higher approximations to the amplitude obtained 
earlier. The trick is to assume following form of solution for equation (340): 

x(e,r) = acos(r + a) + higher harmonics (347) 

where, a = a0+£a,+£*%+... 

and, a = a0+£or1+£2a2+... 

As might be guessed that since both the amplitude and the phase are perturbed 

simultaneously we call the technique amplitude-phase perturbation technique. The state of 

art suggests to make following relabellings: 

r s T + a, y(e,r)sx(£,T), X s - j r 

which helps us to rewrite equation (340) as : 

? + y - e [0 cos(? -a)-xy~<oy + y3] (348) 

One may carefully note that all we have managed to achieve by the innocent looking changes 

is that a has crept into equation (348) explicitly; this is the key step and what follows is just 

the repetition of what we have been doing all the time in the earlier sections. We put two 

conditions: 
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y(£,0) = 0 (349a) 

y(e,r + 2;r) = y(£lT) (349b) 

which respectively are to adjust the origin of time (and hence the phase) and to probe for 

only the periodic solution of period 2n of the forcing term. The conditions, in view of the 

following assumed solution of equation (348) 

y(^:f) = y0(T) + £y1(T)+... (350) 

reassert themselves as (for /= 1,2,3,...) 

F,(ft0) = 0 (351a) 

y,(e,T + 2ff) = y,(ftT). (351b) 

Putting the series (350) in equation (348) and collecting the coefficients of the like powers of 

£, we obtain following set of differential equations: 

yo+y<>=o 

K + y,= 0cos(r -a 0 ) - m - Wo + yl (352) 

etc. etc. 

The term cos(r -a 0 ) in the R.H.S. of the second equation of the set (352) comes due to 

the use of Taylor series COS(T - a0 ) = cos(r - a0 ) + ea^ sin(f - a0 ) . Solutions of the first 

equation of the set (352) obeying the conditions (351a) and (351b) invariably are 

yo(^) = 3 > c o s ^ a o > ° . (353) 

Substituting which in the second equation of the set (352) we are left with 

yt + yi s U c o s a 0 -coaQ + - a ^ Jcosr + ( ^ + 0sinao)sinr + higher harmonics . (354) 

As argued earlier, imposing the condition (351b) we have from preceding equation (354) 

the vanishing of the coefficient of cos? and sinf 

3 a ^ cos <x0 = (oa0 - T a j (355a) 
4 

0sinao=-;tao. (355b) 

Dividing the expression (355b) by the expression (355a), we get: 
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a f t=tan , - i 

r \ 
-x 
3«? (356) 

where a0 is the solution of 

ag x2 + (-M (357) 

This relation has been obtained by squaring and adding the relations (355a) and (355b). 
One can note that the relation (345) has been rediscovered. By the way, if one wishes to 
find the improvement ea, over a0, then one merely has to solve equation (354) with higher 
harmonics on the R.H.S. and use the found solution that obeys the conditions (351a) and 
(351 b) alongwith the solution of the first equation of the set (352) in the differential equation 
for y2; impose the condition (333) to set the coe ficients of cos rand sin rto zero and hence 
proceed to find a, and a r Further improvement are possible to find in a similar manner. 

Stability of solutions and jump phenomenon 

We now ask the question that out of the three possible amplitudes (see equation (357)) 
which one is settled on by the oscillator. Actually, it is the set of initial conditions which 
decides which state of oscillation the system is ultimately going to adopt. Here in this sec­
tion we shall sketchily deal with this issue and also on the stability of the solutions. For 
convenience, lets deal with the following form of the forced Duffing's equation : 

x + kx + x + Ax3 = FcosGt • (358) 

Assuming the truncated Fourier series 

x(t) = AQ cosQt + fit s\r\£2t (359) 

as an approximate solution to equation (358). Here, AQ and B0 are constants. One may 

compare it with relation (342). Substituting (359) in (358) and matching the coefficients of 

cos„Qf and Sin Qt. we get 

+ fc£24,=0 Bb(fl2-1-fAa2} 

> \ / f l 2 - 1 - - A a 2 l -/cflflk = - F 

(360a) 

(360b) 

where a = 7^o +Bo =amplitude. We have neglected the higher harmonics. One can com­

bine equations (360a) and (360b) to yield: 
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a ( f l f - i -J^ ) H*2a2+U22-i-4^2 =,r2- (361) 

So, we have at most three possible values for a. If one wishes to study the stability of these 
oscillations, one should better look at the transient states by letting \ and B0 depend very 
slowly on time and investigate if the transient states converge towards or diverges away 
from the corresponding periodic state. Mathematically, we start by assuming: 

x{t) = 4( f )006f l f + EMOsinflf; A0«A0,B0«B0. (362) 

Putting this in equation (358) and neglecting the higher harmonics as before, we arrive at 
the following autonomous system of equations on matching the coefficients of cost and sint. 

^ 2Q[ A ) 2 

2JQV 4 2 2 f l (363) 

Note that equation (361) correspond to the equilibrium point of this system of equations. 
Hence the possible states of oscillations are the fixed points in the van-der-Pol plane (/.a, 
the phase plane of A0\B0). Now, the usual linear stable analysis about these fixed points can 
be carried out to find (a) if there exists only one response then that response is stable and 
(b) if all the three responses are present then only the responses with minimum and maxi­
mum amplitude are stable. 

Again if one carefully notes that initial conditions for equations (363) can be given in 
terms of the initial conditions of equation (358) as follows 

\{o) -*(o) 

m-™ (364) 

(where we have taken A)(0)» 4 ( 0 ) to be negligible) then it should be immediately evident 

that it is the initial condition of the original forced Duffing equation that decides which state 
of oscillation the system is going to adopt. More clearly speaking, for the initial conditions 
residing in the basin of attraction of a particular amplitude (that is the stable fixed point) in 
van-der-Pol plane, the system would eventually oscillate with that particular amplitude. 

The stability of the forced oscillation of the Duffing equation can be studied by the gen­
eral method of so-called solution perturbation technique set up below. Let the solution (359) 

of equation (358) be denoted by x* and let x* = y * Then, the solution (x* = y *) for equa­

tion (358) rewritten in the following form 
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x = y 
y = -ky - x - Ax3 - FcosQt (365) 

may be checked for stability (linear stability) by considering a perturbation (§(f),rj(f)). So 
putting 

f = x - x * 
rj = y-y* (366) 

in equations (365) and churning out linearised equations : 

Jj = - * r7 - f -3A(x* ) 2 £ . (367> 

Using expression (359) and the two equations (367) together, we arrive at: 

f" + K? + (v + e cosr)f = 0 (368) 

where we have put : 4> c o s f l f + flksinflf = -acos(J2f + 0), r = 2i2f + 20, K = k/2Q, 

v = (2+3Aa2)/8.G2 and f = 3Aa 2 /8f l 2 and defined Z' = d£/dT. Further substituting 

£(r) = exp(-KT/2)p(T) yields: 

/ 
P" + 

K2 

v- — + ecosT\p = 0 ( 3 6 9 ) 

which is nothing but the Matheiu's equation already discussed extensively in the section on 
parametric resonance. One can, thus, now extend the arguments developed therein to get 
at the stability of the solutions here. By the way, whenever v - K21A and e take values 
such that equation (369) has only bounded solutions, equation (368) must have only bounded 
solutions owing to the relationship deffined between P and £. 
We close this section with a brief discussion of the so-called jump phenomenon. We rewrite 
equation (361) as: 

cc /c
zJ2z + (tf- l + f*)" = f2 (370) 

where we have assumed k, ktQ,F> 0 and A < 0 and defined a * -Aa2 and / = F^Fk 
In experimental situation if one keeps k and f fixed at a favourable value and increases CI 
from zero then the amplitude of the oscillation suddenly jumps at a critical frequency. This is 
called jump phenomenon. 
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Let us see how one explains it within the domain of the theory developed here. It may be 

noted that equation (370) is a cubic polynomial (#(<*) = 0, say) in a and has at least one 

positive root; we, by the way, are interested only in <x-Q. For certain parameter values 

dd 
(a > 0 {cc,k,£2,f), 0(a) = 0 will have three real roots if — = 0 has two distinct real roots; on 

exploiting the positivity of a, this condition yields: 

a < ~fV3*2+4 - kSj. (371) 

Thus keeping k,Q fix in accordance with inequality (7), one has the generic curve in f - a 

plane as in Figure 4. This figure shows the existence of two stable oscillations as discussed 
earlier in this section. The jump phenomenon is best illustrated in the a-Q plane. The 
generic figure for the phenomenon is given in the Figure 4. Obviously, the dotted path will 
not be followed and the amplitude will jump from or, to az at = c as the frequency in 
increased from zero. 
Reconsider equation (329), rewritten here for the sake of convenience 

x" + ktx' + (o2
rx - ex3 = f COST . (372) 

In the preceding few pages we have confirmed ourselves in investigating the periodic solu­
tion of period 2rc of the forcing term. Can we have other kinds of periodic solutions? The 
answer to this question, as we shall see in what follows, is in affirmative. Suppose x(r) is a 
periodic solution with period T. Then the Fourier series corresponding to it is : 

^ ) = ̂ + E ^ O T S ^ + E S n S ' n - ^ r . (373) 

Substituting this series in equation (372), we obtain a relation of the form 

^ + 2 4 c o s - - ^ + 5;eftsin^T==/cosr (374) 
n-1 ' n*1 ' 

where each An and each Bn are functions of AJs ans Bn
fs. Now ponder over the case 

when 7= 2m which when applied in the relation (374) yields 

A„=/, ^ = 0 Vro*n, Sm=0 VmeN. 

Thus, if such periodic solutions exist then we have the oscillator responding with the angular 
frequencies Qln that are aptly known as subharmonics of order Mn (n=2; 3; 4;...). Obviously 
all of subharmonics will, in general, not exist; stability check must be done on a subharmonic 
solution to see if at all the response is possible. In fact, for the forced Duffing oscillator with 
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small damping and non-linearity, only the subharmonic of order 1/3 is stable and hence 

existent. The possible existence of subharmonics indicates that the discussion in the 

preceding section is not complete because the van-der-Pol plane there does not identifies 

any region of initial conditions which would lead to the subharmonic responses. Detailed 

analysis would show that the subharmonics show up for a relatively narrower ranges of 

initial conditions. The mode of such an analysis, by the way, would involve only the techniques 

discussed already in the context of periodic solutions taken up earlier; hence re-discussion 

of the techniques is dispensed with herein. 
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