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Highlights 

 This review provides an overview of ORAI channels in cancer  
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 The expression of ORAI isoforms is remodelled in many cancer types and 

subtypes 

 ORAI channels have been linked to cancer cell proliferation and invasiveness 

 ORAI channels are important in events that occur in the tumour 

microenvironment 

 

Abstract 

Cancer is a major cause of death. The diversity of cancer types and the propensity of 

cancers to acquire resistance to therapies, including new molecularly targeted and 

immune-based therapies, drives the search for new ways to understand cancer 

progression. The remodelling of calcium (Ca2+) signalling and the role of the Ca2+ 

signal in controlling key events in cancer cells such as proliferation, invasion and the 

acquisition of resistance to cell death pathways is well established. Most of the work 

defining such changes has focused on Ca2+ permeable Transient Receptor Potential 

(TRP) Channels and some voltage gated Ca2+ channels. However, the identification 

of ORAI channels, a little more than a decade ago, has added a new dimension to 

how a Ca2+ influx pathway can be remodelled in some cancers and also how calcium 

signalling could contribute to tumour progression. ORAI Ca2+ channels are now an 

exemplar for how changes in the expression of specific isoforms of a Ca2+ channel 

component can occur in cancer, and how such changes can vary between cancer 

types (e.g. breast cancer versus prostate cancer), and even subtypes (e.g. 

oestrogen receptor positive versus oestrogen receptor negative breast cancers). 

ORAI channels and store operated Ca2+ entry are also highlighting the diverse roles 

of Ca2+ influx pathways in events such as the growth and metastasis of cancers, the 

development of therapeutic resistance and the contribution of tumour 
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microenvironmental factors in cancer progression. In this review we will highlight 

some of the studies that have provided evidence for the need to deepen our 

understanding of ORAI Ca2+ channels in cancer. Many of these studies have also 

suggested new ways on how we can exploit the role of ORAI channels in cancer 

relevant processes to develop or inform new therapeutic strategies.  

 

Keywords: Cancer; Calcium; ORAI; STIM 

 

1.0 Introduction 

 

As noted throughout this special issue, the identification of the molecular 

components of store operated calcium (Ca2+) entry (SOCE), has revolutionized not 

just the field of Ca2+signalling but it has also provided new insights into many 

diseases. Studies of ORAI channels in cancer have mostly focused on ORAI1, the 

canonical channel component for SOCE identified in 2006[1-3]. In this context, 

ORAI1 is activated by the endoplasmic Ca2+sensor stromal interaction molecule 1 

(STIM1) upon Ca2+ store depletion, promoting Ca2+ influx for Ca2+ store refilling 

and/or the activation of key Ca2+dependent processes. ORAI1 is structurally very 

different to other Ca2+ channels except for its related isoforms ORAI2 and ORAI3[1], 

the latter of which is only found in mammals[4].  The contribution of ORAI2 and 

ORAI3 to SOCE  may be context dependent, such as the negative fine-tuning role of 

Orai2 through heteromeric Orai1/Orai2 channels in mouse T-cells[5]. ORAI2 and 

ORAI3 have also been proposed to make contributions directly to Ca2+ influx in 

response to specific factors [4].  ORAI isoforms are found ubiquitously but some cell 

types appear to have higher levels of specific isoforms such as ORAI1 in immune 
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cells and ORAI2 in the brain[7-9]. ORAI isoforms may respond differently to stimuli 

and have distinct roles, their changes in cancer and their contribution to cancer 

relevant processes is likely to be similarly diverse. 

 

The impact of the discovery of Ca2+ channels in oncology is evident from the 

approximately 200 PubMed listed publications related to channels in cancer, 

including specific reviews on the contribution of channels to tumour progression[10-

13]. It is beyond the scope of this review to explore all of these contributions to our 

understanding of ORAI channels in cancer. Here, we have sought to provide a 

general overview of ORAI Ca2+ channels in cancer. We particularly focus on what we 

regard as three key aspects of ORAI channels in cancer; 1) the remodelling of ORAI 

channels in different cancers, 2) ORAI Ca2+ channels in the transformed cell and 3) 

the contribution of ORAI channels in cells relevant to the tumour microenvironment.  

 

2.0 ORAI channel remodelling in cancer cells 

 

Mutations in genes are a defining feature of cancer and many are drivers of the 

oncogenic phenotype and/or are contributors of tumour progression through 

promotion of cancer cell proliferation, metastasis or resistance to death signals[14]. 

Indeed, the diversity of gene mutations can change during cancer progression, or at 

metastatic sites[15]. One could imagine that mutations in some Ca2+ channels that 

increase channel activity could promote metastatic or proliferative pathways, or 

those that would reduce activity could potentially bestow resistance to apoptotic 

signals. ORAI1 mutations have been reported to occur in some cancers from the 

cBioPortal database and some of these mutations have been shown to confer 
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constitutive activity to ORAI1 channels[16]. These activating mutations were found in 

cancers from patients with colorectal, stomach and uterine cancer. Although such 

changes could potentially promote tumour progression through activation of 

proliferative and/or metastatic signalling pathways, so far, such mutations appear to 

be very rare events for ORAI1[16] compared to mutations in other genes, including 

those that have strong links to some cancers such as mutations in p53 or RAS[14].  

However, there may be cases, as recently suggested, where mutations may remodel 

SOCE, e.g. oncogenic KRAS induced changes in STIM1 expression via ERK 

signalling[17].  However, changes in a specific Ca2+ influx pathway via an ORAI 

channel is unlikely to be a driver of transformation and ORAI channels are unlikely to 

ever be classified as oncogenes[10]. Nevertheless, a remodelling of Ca2+ influx 

through ORAI Ca2+ channels may impart features that promote disease progression, 

such as the promotion of growth and invasiveness or reduced sensitivity to apoptotic 

stimuli. Such changes have been proposed to provide opportunities for therapeutic 

exploitation. Indeed, Rhizen Pharmaceuticals have recently reported the 

commencement of a human phase 1/1B clinical trial of an ORAI1 inhibitor for the 

eventual treatment of relapsed or refractory Non-Hodgkin Lymphoma 

(ClinicalTrials.gov (NCT03119467)). In this section, we will discuss examples of the 

types of ORAI Ca2+ channel alterations that have been reported in some cancers. 

We will particularly highlight how such changes can be cancer type or even subtype 

dependent, and (in some cases), even be linked to disease outcomes and survival. 

 

ORAI isoforms and STIM1 and STIM2 expression changes have been extensively 

evaluated in a number of cancer focused studies. Changes in ORAI channel 

expression could contribute to the promotion of proliferative or metastatic pathways 
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or enhance the ability of cancer cells to avoid cell death. Although links between 

expression and tumour progression have not been established in every case, 

changes in expression of ORAI channels, STIM1, and STIM2 are evident in many 

studies of human clinical samples (Table 1).  Indeed, recent analysis of glioblastoma 

RNA-sequencing data in The Cancer Genome Atlas has found higher STIM1 

expression is correlated with poor survival[18].   

 

As will be seen throughout this review, there are often examples where the 

contributions of ORAI Ca2+ channels are dependent on the type or even subtype of 

cancer, as well as the specific ORAI or STIM isoform. This is the case for alterations 

of expression in cancer and is particularly exemplified in studies assessing ORAI 

channel levels in breast cancer cells. Breast cancer is arguably the cancer type 

where diversity in gene expression and drug target expression has been the most 

comprehensively defined and where such differences have the greatest impact on 

treatment. For example, women whose breast cancers express the oestrogen 

receptor will often be treated with anti-oestrogen therapies such as tamoxifen and 

those whose cancers overexpress human epidermal growth factor receptor 2 (HER2) 

may receive agents such as trastuzumab[19]. Breast cancers that do not 

overexpress HER2 or the oestrogen and progesterone receptors are classified as 

triple negative breast cancer (TNBC), these cancers overlap somewhat with the 

molecularly defined basal molecular breast cancer subtype[19]. TNBCs lack current 

molecularly targeted therapies and the assessment and development of such agents 

is an identified priority to improve patient outcomes[19]. In the context of ORAI 

channels, elevated ORAI1 seems to be a feature of basal breast cancers compared 

to non-basal as identified in clinical samples[20]. In contrast, cell line studies strongly 
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suggest that ORAI3 is elevated in oestrogen receptor positive breast cancer cells[6]. 

Indeed, ORAI3 is a regulator of SOCE in MCF-7 oestrogen receptor positive breast 

cancer cells, but not in the basal triple negative MDA-MB-231 breast cancer cell 

line[6]. This is an example where changes in ORAI channel expression appears to 

be directly linked to a major functional change in the nature of Ca2+ influx, i.e. the 

actual ORAI isoforms that contribute to SOCE in a breast cancer cell. The 

association between ORAI3 and oestrogen receptor status of breast cancer cells is 

also reflected by the ability of oestrogen receptor  silencing to reduce ORAI3 but 

not ORAI1 expression levels in MCF-7 breast cancer cells[21]. Elevation of ORAI3 

has also been reported in breast cancer clinical samples[22]. Further work on clinical 

samples is still required to fully define the association between specific breast cancer 

subtypes and ORAI isoform expression levels. Another element of breast cancer 

subtype differences in the potential remodelling of ORAI-mediated Ca2+ influx is seen 

in the canonical ORAI1 activators STIM1 and STIM2. In breast cancer of the basal 

molecular subtype but not other molecular subtypes (HER2, Luminal A, Luminal B) 

samples are more often associated with high STIM1 and low STIM2 levels[20].  

 

As illustrated in Table 1, there has now been a variety of studies that demonstrate 

the overexpression of ORAI channels in clinical samples of other cancer types. For 

example, ORAI1 levels are elevated in cancer of the liver[23], osesophagus [24], 

stomach[25] and in renal cancer[26]. ORAI3 is elevated in lung cancer[27, 28]. In 

vitro studies have also provided clues to potential changes in expression in cancer, 

such as high levels of ORAI2 in an acute myeloid leukaemia cell line[29]. In some 

cases the changes in ORAI channel isoform expression includes a down regulation 

that may, as described below, contribute to resistance to apoptotic pathways. This is 
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exemplified by the down regulation of ORAI1 in some prostate cancers that have 

developed castrate resistance[30]. There are also some cases where the relative 

levels of ORAI isoforms may be a feature of a cancer cell. A specific example is seen 

in the relationship between ORAI1 and ORAI3 levels; it has been reported that there 

is a formation of ORAI1/3 heteromeric channels in some prostate cancers  proposed 

to be driven by an upregulation of ORAI3[31]. However, further studies are still 

required to conclusively demonstrate the direct formation of ORAI heteromeric 

channels and to define their specific roles in prostate cancer and other diseases. The 

expression of ORAI channels may also be dynamic in cancer cells and influenced by 

tumour microenvironmental factors such as growth factors and hypoxia[32-34]. 

STIM1 appears important in the promotion of hepatocarcinogenesis by hypoxia; 

hypoxia-inducible factor-1 alpha (HIF-1α) promotes STIM1 expression in 

hepatocarcinoma cells and there is a positive correlation between STIM1 and HIF-1α 

levels in liver cancer clinical samples [35].  In some cases alterations in the 

expression levels of another protein may be significant in the context of ORAI 

channels as is the case for SigmaR1 (a stress-activated chaperone). SigmaR1 is 

overexpressed in some colorectal cancers and appears to promote Ca2+ influx via 

ORAI1 through promoting the interaction between ORAI1 and the Ca2+ activated 

potassium channel - SK3[36].The consequence of this interaction is altered 

Ca2+signalling and the promotion of Ca2+ dependent processes that regulate cell 

migration. Indeed silencing of SigmaR1 supresses SOCE in HCT-116 colon cancer 

cells[36]. Hence, potential remodelling of ORAI-mediated Ca2+ signalling in cancer 

cells may go beyond changes in expression of SOCE components and their related 

isoforms. 
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Differences in ORAI channel levels per se do not indicate that an ORAI channel 

isoform is important in processes in a cancer cell or even that there is a change in 

Ca2+ influx. For example, changes in mRNA may not be reflected in protein levels or 

trafficking changes may lead to no significant alteration in a Ca2+ influx pathway. 

Indeed, alterations in ORAI channel trafficking could itself contribute to a remodelling 

of Ca2+ signalling in a cancer cell. This is an area which has received little attention 

in cancer studies. Hence, expression levels alone are insufficient to draw 

conclusions regarding ORAI channels as a potential drug target for a specific cancer 

type and/or to even predict a contribution to a tumourigenic pathway. However, there 

are studies that have defined changes in ORAI mediated Ca2+ influx in cancer cells. 

These include the aforementioned differences between oestrogen receptor positive 

and oestrogen receptor negative breast cancer cells in the ability of ORAI3 to 

contribute to SOCE[6], the role of ORAI3 levels in the response of prostate cancer 

cells to arachidonic acid activated Ca2+ influx[31], and the presence of ORAI1 

mediated Ca2+ oscillations in oesophageal cancer cells that are absent in non-

tumourous cells[24]. There are cases where changes in SOCE are likely to be 

subtype dependent, as exemplified in melanoma cells. Melanoma cells with 

enhancement of Wnt5A (a metastatic driver) appear to have reduced SOCE, 

whereas other melanoma cells may have enhanced SOCE[37-39].  Although this 

diversity may be a potential challenge to targeting SOCE in melanoma, a case has 

been made that the “normalizing” of SOCE may be the desired outcome, rather than 

simple inhibition or activation[37]. It is tempting to point to examples where levels of 

ORAI or STIM isoforms are correlated with prognosis as evidence of the significance 

of ORAI channel levels in tumour progression pathways. Examples of the potential 

association between ORAI or STIM isoform levels and prognosis include the 
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association with high levels of ORAI3 with greater metastasis and poorer survival in 

patients with resectable lung adenocarcinoma[27], decreased time to recurrence and 

lower overall survival in gastric cancers with high ORAI1 and STIM1 expression[25], 

and a correlation of high STIM1 levels with tumour size and lymph node metastases 

in cervical cancer[40]. However, such associations between expression and survival 

could simply be correlative; ORAI channel and STIM isoform levels may be a marker 

for a subtype associated with a poorer clinical outcome without itself contributing to 

disease progression. For example,  breast cancers with high STIM1 and low STIM2 

levels are associated with poor survival but this is also a feature of the basal 

molecular subtype that often have poorer prognosis than some other molecular 

subtypes (e.g. luminal A)[20]. Alternatively, the altered expression of an ORAI or 

STIM isoform may be secondary to another pathway that does contribute to disease 

progression.  However, evidence that the significance of ORAI channels in cancer 

goes beyond simple changes in expression is seen in the ability of silencing and/or 

pharmacological modulation of ORAI channel mediated Ca2+ influx to alter many of 

the classic hallmarks of cancer pathways. Such changes include effects on cancer 

cell proliferation and invasiveness and are discussed in the section below. 

 

3.0 ORAI calcium channels in cancer cells and their regulation of events 

important in tumour progression  

 

A variety of studies through gene silencing and in some cases pharmacological 

approaches have provided compelling evidence for the role of ORAI channels in 

events essential for tumour progression, including proliferation, metastasis, invasion, 

resistance to cell death and the development of resistance to therapies (Figure 1). 
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Studies have also shown that overexpression of components of SOCE are sufficient 

to bestow tumorigenic features in non-tumorigenic cells, for example ORAI1 and 

STIM1 overexpression increases the migration and invasiveness of MCF-10A breast 

cells[41].  Below we highlight some examples of how ORAI channel isoforms in 

cancer cells appear to promote tumour processes and, where possible, describe 

example mechanisms. In many cases, contributions and mechanisms may differ 

greatly between cancer types and subtypes. The discussion below should be viewed 

in this context. We also note that there are opportunities to enhance our 

understanding of the roles of ORAI isoforms and STIM1 and STIM2 in cancer 

through the use of in vivo models that go beyond xenografts in immunodeficient 

mice. Such models include syngeneic mouse models[42] (which has only been used 

in a limited number studies in this field to probe immune system involvement[43]), 

patient derived xenografts, and genetically engineered mouse cancer models[42]. An 

example of how the use of more diverse models and approaches could provide new 

insights into the roles of ORAI isoforms and STIM1 and STIM2 in tumour progression 

is reflected in studies of the Ca2+ pump PMCA2 in breast cancer[44].  Mice 

harbouring a null mutation in the Pmca2 gene (Dfw-2J) crossed with a transgenic 

mouse model of HER2 overexpression (MMTV-Neu) show reduced tumour incidence 

and prolonged tumour latency compared to MMTV-Neu mice with normal Pmca2 

expression levels[44].  

 

3.1 ORAI channels and cancer cell proliferation 

 

Studies have identified in a variety of cancer relevant in vitro and in vivo models the 

ability of ORAI channels to contribute to cancer cell growth and proliferation. One of 
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the earliest studies of ORAI1 in cancer proliferation occurred in breast cancer. 

Silencing of ORAI1 in the human breast cell line MCF-7 reduces proliferation and 

anchorage independent growth in vitro and tumour burden in vivo[45]. Similar effects 

have been reported with ORAI3 silencing with reductions in anchorage independent 

growth in vitro and tumour size in vivo[21]. These effects of ORAI3 silencing in MCF-

7 cells are associated with attenuation of the activity of ERK1/2, focal adhesion 

kinase, transcriptional activity of nuclear factor for activated T cells (NFAT)[21] and 

C-MYC[46]. Although ORAI2 mRNA is detected in breast cancer cell lines and may 

even be elevated in some specific breast cancer cell lines[20], there has been no 

comprehensive studies of the role of ORAI2 in breast cancer cell proliferation or 

other tumourigenic pathways in breast cancer cells. However, as ORAI2 silencing in 

HL60 (an acute myeloid leukaemia cell line[29]) reduces their proliferation rates, 

further studies of ORAI2 in proliferative pathways in other cancer cell line models 

and in in vivo models would seem to be a priority.   

 

In addition to being elevated in oesophageal squamous cell carcinoma[24], ORAI1 

appears to be critical in maintaining elevated proliferation rates in these cells[24, 47]. 

ORAI1 also appears to be important in the anti-proliferative effects of Zn2+ on 

oesophageal squamous cell carcinoma cell proliferation[47]. This may have clinical 

significance given the association between zinc deficiency and oesophageal 

squamous cell cancer[47, 48]. Other examples of cancer cell models where ORAI1 

has been implicated in proliferation includes gastric cancer[25], 

rhabdomyosarcoma[49], and clear cell renal carcinoma[26]. In many cases these 

effects may be due to a remodelling of how cancer cells respond to key growth 
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factors. Such is the case in colon cancer cells, where ORAI1 silencing attenuates the 

ability of epidermal growth factor to induce increases in COX-2[50].  

 

In the context of ORAI3, in addition to roles in the proliferation of oestrogen positive 

breast cancer cells lines as discussed above, ORAI3 is also a regulator of the 

proliferation of small cell lung adenocarcinoma cells[28]. In prostate cancer, 

enhanced ORAI3 expression promotes the formation of ORAI1/3 heteromeric 

channels that appears, via NFAT, to promote arachidonic acid activation of cancer 

cell proliferation[31]. It should be noted that ORAI channels are not global regulators 

of cancer cell proliferation as exemplified in a study in human glioblastoma[51], 

where ORAI1 and STIM1 silencing had little to no effect on proliferation, but, as 

discussed below did attenuate invasive pathways[51]. 

 

3.2 ORAI channels and cancer cell migration and invasiveness 

 

ORAI1 has been linked to a variety of processes in cancer cells important in 

metastasis, such as cell motility during cancer cell migration and also events 

important in invasion, such as interactions and modification of the extracellular 

matrix.  One of the first links with ORAI1 and metastasis was observed in MDA-MB-

231 breast cancer cells, where silencing of ORAI1 reduced serum induced cell 

migration, invasion through matrigel and the establishment of metastasis in vivo[41]. 

These effects were mediated in part through changes in focal adhesion molecule 

turn over[41]. In MDA-MB-231 breast cancer cells, ORAI1 is also important in the 

translocation and release of enolase-1 that regulates the invasion process[52]. This 

adds a further dimension to how ORAI1 may influence breast cancer metastasis. 
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ORAI1 is also important in metastatic progression in other cancers. For example, 

oscillations in intracellular Ca2+ levels that are dependent on ORAI1, appear to be 

critical in the migration of WM793 melanoma cells[53]. ORAI1 silencing attenuates 

invadopodium formation via SRC in this model[53]. ORAI1 silencing is able to inhibit 

MT1–matrix metalloproteinase (MMP) recycling to the plasma membrane and hence 

inhibit degradation of the extracellular matrix required for invasion[53]. Another 

example of the role of ORAI1 in cancer invasiveness is seen in glioblastoma. Despite 

having a negligible effect on the proliferation of primary glioblastoma cells, ORAI1 

silencing greatly reduces serum activation of invasion through matrigel[51]. In 

contrast ORAI1 silencing has no significant effect on the invasive properties of 

human primary astrocytes using the same assay[51] implicating that ORAI1 

mediated SOCE might be particularly important in processes required the invasion of 

glioblastoma cells. There has been less extensive direct investigation of ORAI3 and 

ORAI2 in the context of processes important in cancer metastasis.  However, ORAI3 

silencing supresses the in vitro matrigel invasiveness of MCF-7 breast cancer 

cells[21], and it will be interesting for future studies to assess the consequence of 

ORAI3 silencing on metastasis in vivo with a more invasive ORAI3 overexpressing 

breast cancer cell line. ORAI3 silencing also attenuates arachidonic acid promotion 

of migration in an in vitro model of gastro-enteropancreatic neuroendocrine 

tumours[54]. In the context of ORAI2, silencing of this ORAI isoform in an acute 

myeloid leukemia cell line (HL60), reduces transwell migration in a manner that may 

be related to the effects of ORAI2 silencing on the FAK phosphorylation[29]. 

Although this may not be a feature of all models and cancer types[55], there is a 

report of ORAI1 being potentially important in the acquisition of a more invasive 

phenotype, through effects on epithelial to mesenchymal transition. For example, 
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silencing of ORAI1 reduces levels of the mesenchymal markers vimentin and 

fibronectin as well as migration rates in human gastric cancer cells[25]. In lung 

adenocarcinoma cells lines ORAI1 silencing also reduces epithelial to mesenchymal 

transition marker induction induced by fibroblast growth factor 4[56]. Studies 

assessing the remodelling of  Ca2+ influx via ORAI channels and the roles of this 

Ca2+ influx in cancer cells adopting a more invasive state should now continue with 

other ORAI isoforms and in other models. 

 

3.3 ORAI channels and cancer cell death 

 

The Ca2+ signal has been related to a variety of cell death pathways in a variety of 

cell types including neurons. Indeed, the nature of Ca2+ signal changes has been 

related to the type of death. Excessive declines or increases in intracellular Ca2+ 

levels are capable of reducing cell viability. It is therefore not surprising that studies 

of ORAI Ca2+ channels in the death of cancer cells can be diverse and complex. 

 

Like almost all other aspects of the study of ORAI channels, assessment of the role 

of ORAI channels in cancer cell death have mostly focused on ORAI1. The studies 

of ORAI1 in the context of cancer cell death do provide the opportunity to reflect on 

the potential significance of the down regulation of a Ca2+ channel as a way for a 

cancer cell to remodel their Ca2+ signalling to avoid cell death. It has been proposed 

that as prostate cancer progresses towards the more metastatic and therapy 

resistant androgen independence stage, there is a downregulation of ORAI1 and a 

depression of SOCE[30, 57]. This down regulation of SOCE in prostate cancer cells 

may then bestow apoptotic resistance to agents such as tumour necrosis factor α 
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and cisplatin[57]. Indeed, a number of subsequent studies from a diverse set of 

researchers have reported the ability of ORAI1 silencing and/or suppression of 

SOCE (via pharmacology agents or STIM silencing) to reduce induced cell death in a 

variety of cell types [58-60]. However, increasing SOCE should not always be seen 

as a way to induce cell death. In some models, SOCE activation by Ca2+ store 

depletion by thapsigargin is not the cause of cell death induced by this agent, but 

instead is the result of reduced endoplasmic Ca2+ levels and unfolded protein 

responses[61]. There may be cases where ORAI1 silencing and/or SOCE inhibition 

may promote cancer cell death. In this context, ORAI1 silencing has been reported 

to be sufficient to induce apoptosis even in the absence of external stimuli in rat 

glioblastoma cells[62]. Another example of ORAI1 inhibition to potentially promote 

cancer cell death is seen by the role of SOCE in the induction of CD-95-dependent 

apoptosis by Rituximab in Non-Hodgkin B Lymphoma cells, where reduced SOCE 

increases the effectiveness of Rituximab in both in vitro and in vivo models[63]. 

These later examples provide possible avenues to exploit the overexpression of 

ORAI1 in some cancers by inhibiting SOCE to promote the death of cancer cells. 

However, this aspect of the potential targeting of ORAI1 in cancer cells requires 

further study. 

 

ORAI3 has also been linked to cell death pathways in cancer cells. Somewhat 

similar to the reports of ORAI1 silencing increasing apoptosis in the absence of 

external stimuli in rat glioblastoma cells[62], ORAI3 silencing in MCF-7 breast cancer 

cell (a cell line where ORAI3 contributes to SOCE) induces a higher percentage of 

apoptotic cells which is associated with an increase in the BAX/BCL-2 ratio[22]. This 

induction of apoptosis by ORAI3 silencing is not seen in all cancer types associated 
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with ORAI3, as silencing of ORAI3 does not induce death in non-small cell lung 

cancer cell lines[28].   

 

3.4 ORAI channels and resistance to therapy 

A variety of Ca2+ permeable ion channels have been linked to resistance to cancer 

therapies, either through changes in expression as a consequence of drug exposure 

and/or their involvement of events critical to drug resistance. This is epitomized by 

TRPC5. TRPC5 has been shown to be a critical regulator of the upregulation of 

multi-drug resistance ATPase 1 (also known as p-glycoprotein) as MCF-7 breast 

cancer cells acquire resistance to doxorubicin[64].  A series of studies have defined 

the importance of NFATC3 and also extracellular vesicle transfer of TRPC5 from 

resistant to sensitive cells in the acquisition of this resistance cascade[64, 65]. The 

value of understanding the role of ion channels in therapeutic resistance 

mechanisms in cancer is demonstrated by the ability of TRPC5 inhibition to restore 

sensitivity to doxorubicin in in vivo models of MCF-7 breast cancer cells with 

resistance[64] and how elevated levels of TRPC5 appear to be associated with the 

response to therapy in breast cancer patients[65]. By comparison our understanding 

of ORAI channels as players in and markers of therapeutic resistance is still in its 

infancy. However, recent work has established a strong link between ORAI3 and 

resistance in breast cancer. Induced overexpression of ORAI3 in T47D breast 

cancer cells results in resistance to cisplatin, 5- fluorouracil and paclitaxel[66]. The 

mechanism for ORAI3 induced resistance to therapies is dependent on p53, since 

ORAI3 overexpressing breast cancer cells had far less induction of p53 by cell death 

inducers than their matching controls[66]. Moreover, there is evidence that in a way 

that is somewhat analogous to TRPC5, higher levels of ORAI3 are associated with a 
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poorer response to therapy in large scale breast cancer cohorts derived from the 

NCBI Gene Expression Omnibus [66]. When this recent study is paired with the 

association between the down regulation of ORAI1 with resistance to apoptotic 

stimuli in prostate cancer[57] and studies showing that ORAI1 and STIM1 silencing 

promotes apoptosis induced by the chemotherapeutic agents 5-fluorouracil and 

gemcitabine in a pancreatic adenocarcinoma cell line (Panc1)[67], it is clear that the 

assessment of ORAI channels in the context of intrinsic and acquired resistance in 

cancer therapy in different types of cancers is now a priority. The diversity of 

resistance pathways associated with cytotoxic as well as current and emerging 

molecularly targeted therapies provides an array of avenues for investigation. 

 

 

 

4.0 ORAI calcium channels in cells of the tumour microenvironment  

The tumour microenvironment is an essential component in the regulation and 

control of tumour progression[68-70]. Below we consider some of these 

microenvironment pathways and ORAI channels and discuss (as outlined in Figure 

2), which areas require more detailed assessment. 

 

4.1 ORAI channels, immune cells and cancer 

Immune cells in the tumour microenvironment (Figure 2) play diverse roles in 

disease progression. The success of recent new immune based therapies 

demonstrate the powerful potential of the immune system to control tumour 

progression, yet immune cell inflammatory pathways can also be tumour promoting, 

via positive effects on growth and metastatic potential[68]. Of course, as previously 

ACCEPTED M
ANUSCRIP

T



 19 

noted, there is a clear risk that any cancer therapy that targets ORAI1 may supress 

anti-tumour immune system pathways (cytotoxic CD8+ T cells & natural killer (NK) 

cells), since these rely on SOCE[71]. This is supported by the absence of effective 

cytotoxic T lymphocyte‐mediated anti-tumour immunity against the growth of 

melanoma (B16‐Ova) and colon (MC‐38) cancer cells in double knockout mice for 

Stim1 and Stim2[43]. However, recent studies of Zhou et al[72] have led them to 

postulate that there may be an optimal level of Ca2+ influx for inducing the efficient 

cytotoxic effects of cytotoxic T lymphocytes and NK cells. In contrast to the expected 

inhibition of activity with complete silencing of ORAI1, partial silencing of ORAI1 in 

cytotoxic T lymphocytes increased the efficiency of cancer cell killing[72]. Further 

studies in other in vitro systems and also in in vivo models are required to definitively 

determined if there is indeed a “sweet spot” for ORAI1 inhibition; one that can 

supress cancer cell proliferation and/or invasiveness but which would promote (or at 

least not inhibit) the actions of cytotoxic T lymphocytes and NK cells. Further studies 

are particularly important given the observation that BTP2 (a pharmacological 

inhibitor of SOCE) at concentrations that sub-maximally inhibit SOCE, partially 

inhibits rather than promotes the cytotoxicity of tumour‐specific cytotoxic T 

lymphocytes[43]. Studies with Orai1 knockout in vivo and different cancer cell lines 

would also add to the studies reported in double knockout mice for Stim1 and 

Stim2[43]. Further assessment of the recently described Orai2 knockout mouse and 

the Orai3 knockout mouse, when developed, will enhance our understanding of the 

potential adverse effects that global inhibition of these two isoforms may have in any 

future therapies, although the Orai2 knockout animal appears to be devoid of some 

of the major phenotypes associated with the loss of Orai1[5]. 
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4.2 ORAI channels and the tumour vasculature 

 

The development of new blood vessels is a key aspect of the tumour 

microenvironment (Figure 2) and is one that is essential for the growth of the primary 

tumour and in some cases may influence the nature of metastatic progression. 

Indeed angiogenesis inhibitors are a class of anti-cancer agent[73]. A variety of Ca2+ 

permeable ion channels have been assessed in cancer models in the context of 

angiogenesis in cancer. One example is TRPV4, the targeting of which in the context 

of the tumour vasculature is multifaceted. TRPV4 is elevated in endothelial cells 

derived from breast cancers, is important in the migration of these cells and has 

been proposed as a target for novel anti-angiogenic agents[74]. Another way to 

exploit the role of TRPV4 in angiogenesis in tumours is via activation of TRPV4. 

Activation of TRPV4 can improve the quality of the tumour vasculature and thus 

improve the ability of cytotoxic drugs to enter the tumour and act on cancer cells[75]. 

Although ORAI Ca2+ channels have not yet been investigated to the same depth in 

specific cancer models and we therefore do not yet fully know if ORAI channels 

could be targeted like TRPV4 to influence angiogenesis, there are emerging signs 

that ORAI channels may play important, perhaps even critical, roles in tumour 

angiogenesis. Studies using in an vitro model of endothelial cell tube formation and 

conditioned media from triple negative breast cancer cells, suggested that ORAI1 in 

triple negative breast cancer cells plays a role in how hypoxia promotes induction of 

angiogenesis[32]. Similar results have been recently reported by the same group 

using colon cancer cells (HCT-116 and SW80), where silencing of ORAI1 reduced 

hypoxia-induced tube formation of HMEC-1 endothelial cells[34]. Overexpression of 

the SOCE activator STIM1 in cervical cancer cells promotes angiogenesis in vivo 
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and silencing of STIM1 reduces angiogenesis[40].   Collectively these studies of 

ORAI1 and STIM1 in tumour angiogenesis suggest that the other isoforms of ORAI 

should be examined and the assessment of SOCE in the context of the tumour 

vasculature should continue. Such assessment should particularly focus on 

pharmacological regulators of SOCE in more diverse in vivo cancer models. 

 

4.3 ORAI channels and other tumour microenvironment factors  

 

The tumour microenvironment is a complex mix of different cell types, growth factors, 

nutrient and oxygen levels (Figure 2)[68-70]. The recent report that extracellular 

collagen-1 through Discoidin domain receptor 1 appears to promote the interaction of 

the potassium channel Kv10.1 and ORAI1 in breast cancer cells to enhance breast 

cancer survival, is an example of the potentially complex interplay between cancer 

cells, their microenvironment, ORAI1-mediated influx and other ion channels[76]. As 

discussed above, ORAI channels have been linked to a variety of pathways relevant 

to growth factor and hypoxia mediated changes in cancer cells. However, there has 

been limited study of other tumour microenvironment players such as cancer 

associated fibroblasts and adipocytes (Figure 2). The identification of the important 

role of Ca2+ signalling in the interaction with cancer associated fibroblasts and colon 

cancer cells[77], and adipocytes with ovarian cancer cells at the metastatic 

niche[78], highlights the need for the field to define the role ORAI Ca2+ channel in 

these types of tumour microenvironment interactions. 

 

Conclusion 
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This review has highlighted the increasing number of studies related to ORAI Ca2+ 

channels and cancer. Since the first studies of ORAI1 Ca2+ channels in cancer cells, 

work has progressed to the other ORAI isoforms. One of the major achievements in 

the field has been a clear demonstration of how changes in ORAI1 and its related 

isoforms can be very different between different cancer types and even subtypes. 

However, the field should increase its use of publicly available expression databases 

to further define cancer subtype specific changes, it must also move towards a 

clearer and more consistent assessment of expression levels of ORAI and STIM 

proteins in cancerous versus normal tissue. A variety of studies have defined specific 

roles for ORAI channels in cancer cell proliferation, invasiveness and cell death and 

work has started to consider the role of ORAI channels in resistance pathways and 

key events in the tumour microenvironment. This expansion of our understanding of 

the role of ORAI channels in cancer progression will no doubt continue, as will our 

appreciation of new roles for ORAI channels and/or SOCE pathways, such as the 

recent identification of the role of SOCE loss in radiation therapy induced 

suppression of salivary gland function via caspase-3 mediated cleavage of 

STIM1[79]. The next steps will also involve trying to define how this new information 

regarding ORAI channels in cancer progression and treatment can be best applied to 

improve patient outcomes. However, the field must also consider the potential side 

effects of ORAI channel inhibition in particular potential effects on immune pathways 

important in cancer. The future must also include the use of more diverse and 

relevant pre-clinical cancer models and a greater utilization of better pharmacological 

modulators of ORAI1 channels, as well as ORAI2 and ORAI3 selective modulators if 

they become available.  
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Figure 1: Some selected examples of ORAI and STIM contributions to tumour 

cell progression. Invasion A.  Extracellular matrix degradation (ECM) and cell 

invasion is orchestrated by oscillations in intracellular calcium concentrations 

mediated by ORAI1 and STIM1 in the melanoma cell line WM793. Recycling of 

plasma membrane bound MT1-MMP is dependent on non-constituent calcium entry 

for successful exocytosis of endocytic compartments[53]. Proliferation. Store 

operated calcium entry drives proliferation in cancer cells in a context specific 

manner. B. Calcium influx mediated by STIM1 in melanoma cell lines C8161, SK-

Mel-2 and SK-Mel-24 regulates proliferation through activation of the 

CaMKII/MEK/ERK pathway[39]. C. Activation of heterometric ORAI1/3 channels by 

arachadonic acid (AA) in LNCaP prostate cancer cells has been demonstrated to 

drive Ca2+ store independent cell proliferation through enhanced activity of 

transcription factor NFAT[31]. Migration D. Decreased SOCE as a result ORAI2 or 

ORAI1 silencing in the HL60 promyeloblastic cell line reduces phosphorylation of 

focal adhesion kinase (FAK) and cell migration[29]. Focal adhesion turnover in MDA-

MB-231 breast cancer cells is similarly reduced by ORAI1 silencing or 

pharmacological inhibition through impaired activity of GTPases RAC and RHO[41].  

Resistance to apoptotic signalling and chemotherapeutics E. Induced 

overexpression of ORAI3 in T47D breast cancer cells results in reduced levels of 

pro-apoptotic molecule p53 due to increased ubiquitination by Nedd4-2 and Mdm2. 

Loss of p53 signalling results in resistance to apoptotic inducers staurosporine and 

thapsigargin as well as cytotoxic agents cisplatin, 5-fluorouricil and paclitaxel[66].  
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Figure 2. Store operated calcium entry in cells relevant to the tumour 

microenvironment. Angiogenesis has been linked to ORAI1 or STIM1 dependent 

Ca2+ influx pathways[32, 40, 85], as has immune pathways[71, 72]. Environmental 

factors including growth factors, extracellular matrix proteins and hypoxia are likely 

regulators of ORAI and STIM expression and SOCE in a variety of cancer types[32-

34, 50, 76]. Although the presence of cancer associated fibroblasts and adipocytes 

are known to contribute to cancer progression via calcium signalling[77, 78], the role 

of ORAI and STIM isoforms in these microenvironmental components has not yet 

been fully elucidated.  
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Table 1: Examples of altered expression of ORAI channels and STIM isoforms 

determined in human cancer clinical samples with matched non-tumourous controls 

ORAI 

  Change with cancer   

ORAI/STIM 

isoform 

Cancer type mRNA Protein Change with 

increasing 

tumour stage 

Reference 

ORAI1 Liver cancer ↑ ↑  [23] 

Oesophageal cancer ↑ ↑ ↑ [24] 

Renal cancer  ↑  [26] 

Stomach cancer  ↑  [25] 

Lung cancer ↑ ↑ ↑ [80] 

ORAI3 Renal cancer  ↔  [26] 

Breast cancer ↑ ↑  [22, 66] 

Lung cancer ↑ ↑ ↑ [27, 28] 

STIM1 Cervical cancer  ↑  [40] 

Stomach cancer  ↑ ↔ [81] 

Liver cancer ↑ ↑  [35, 82] 

Colorectal cancer ↑ ↑  [83] 

STIM2 Colorectal cancer ↑   [84] 
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