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Abstract

This study aimed at comparing implicit sequence learning in individuals affected by

Duchenne Muscular Dystrophy without intellectual disability and age-matched typically

developing children. A modified version of the Serial Reaction Time task was administered

to 32 Duchenne children and 37 controls of comparable chronological age. The Duchenne

group showed a reduced rate of implicit learning even if in the absence of global intellectual

disability. This finding provides further evidence of the involvement of specific aspects of

cognitive function in Duchenne muscular dystrophy and on its possible neurobiological

substrate.

Introduction

Duchenne muscular dystrophy (DMD) is a genetic disorder determined by a single gene muta-

tion on the X chromosome. The effect of this gene mutation is the lack of dystrophin produc-

tion [1]. Dystrophin is a protein normally expressed in muscles, but different isoforms of this

protein, such as Dp140 and Dp71, have also been found in the central nervous system, includ-

ing the postsynaptic pyramidal cells of cerebral cortex, hippocampus and Purkinje cells in the

cerebellum, as suggested by studies conducted in dystrophin deficient mdx-mice [2–5].

Several recent studies have reported that severe learning difficulties are more often associ-

ated with mutations in the 30 end of the gene, involving Dp140 and Dp71 isoforms [6–11],

confirming the cognitive deficits reported since Duchenne’s first description (1868) [12–13].

A few papers have suggested a specific link between intellectual disorders and a possible

cerebellar dysfunction in DMD with increasing evidence for the involvement of the lateral cer-

ebellum and its connections with cerebral cortex and basal ganglia (cerebro-cerebellar net-

works) [14].
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This is not surprising as in the last thirty years, a number of studies have extended the role

of the cerebellum to cognitive functions, such as language, abstract reasoning, emotions and

the ability to process logically [15–17].

More specifically, it appears that there is a specific impairment in implicit and procedural

learning, as observed in adults with cerebellar lesions, affecting the lateral regions of the cere-

bellum. The role of the cerebellum in the deficits in implicit learning and procedural learning

has also been observed in children with acquired neurological disease [18–20] and develop-

mental dyslexia or intellectual disabilities [21–23]. The cerebellum appears to have an impor-

tant role in detecting and recognising event sequences and in acquiring and automatizing new

cognitive procedures [24–25].

The aim of this study was to examine lateral cerebellar function in children and adolescents

with DMD using the modified version of the Serial Reaction Time Task (SRTT), originally

developed by Nissen and Bullemer (1987) [26] and already used in the dyslexic population

[22]. More specifically, we wished to establish whether the SRTT can detect signs of implicit

learning difficulties in a group of children with DMD without intellectual disability, and

whether these were related to the mutation site.

Materials and methods

This study is part of a multicentric project aimed to describe cognitive and executive functions

in a large sample of Italian children with DMD without intellectual disability. The study group

had previously been evaluated following a Neurocognitive Protocol, which includes a number

of tests assessing different aspects, but focusing in particular on executive functions and work-

ing memory [27]. Four Italian specialized centres for the diagnosis, management and treat-

ment of neuromuscular disorders, and of DMD in particular, were involved in the study:

Bambino Gesù Children’s Hospital in Rome, the Pediatric Neurology Unit and NEMO Centre

of Policlinico A. Gemelli in Rome, Stella Maris Foundation in Pisa, and Carlo Besta Neurologi-

cal Institute in Milan. All the study participants periodically receive clinical assessment in the

respective reference centres.

The study was approved by the Ethic Committee of the coordinator center (Bambino Gesù

Children’s Hospital), and written informed consent was obtained from study participants’

legal representatives.

Subjects

Thirty-one boys with genetically defined DMD (mean age 8.2 ± 1.5, age range 6.0–11.6 years,

mean nonverbal intelligence quotient–IQ- 103) and 37 age-matched male healthy controls

(TD, typical development) (mean age 7.9 ± 1.3, age range 6.1–11.6 years, mean nonverbal IQ

103) were included in the study. These were recruited contacting pupils of a primary school

and their parents.

Inclusion criteria were the following: i) DMD boys with a proven mutation in the dystro-

phin gene; ii); primary school age (6–12 years); iii) no cognitive impairment (IQ<70) nor any

associated neuropsychiatric disorders, namely drug-resistant epilepsy, autism spectrum disor-

der, attention deficit and hyperactivity disorder (ADHD), nor any additional neurosensory

deficits (hearing/vision problems); iv) no steroid treatment and/or other experimental drugs

starting in the previous six months.

The DMD boys were subdivided according to mutation site: proximal gene mutation (exon

1–44), and distal gene mutation (exon 45 onwards), in order to examine whether the involve-

ment of isoforms Dp 140pc and Dp 71 can influence the functions of the lateral cerebellum.

Implicit learning deficit in DMD
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In order to be sure that all patients could perform the task adequately, only patients with

preserved upper limb (minimum score was 3 at manual muscle test, Medical Research Council

—MRC—scale, in elbow and wrist flexors and extensors, and thumb abductors of one arm)

were included.

Experimental procedure

Implicit learning was evaluated by means of the SRTT [21, 28]. In this task, the subject seats in

front of the screen of a portable computer, where a series of single colored circles (green, blue

and red) are displayed centrally. Circles have a diameter of 2.8 cm. The time interval between

two successive appearances of the circle, as well as the duration of each single colored stimulus

on the screen, vary randomly from 0.5 to 2 s. This experimental procedure, induces the learn-

ing of a rhythm, rather than a sequence by avoiding a constant sequence of appearance of the

targets (green circles), with fixed time intervals. Five blocks of 75 stimulus-response pairs are

presented. Color presentation is random only in block V, (R5), whereas in blocks I–IV

(O1-O4) a seven-item sequence (BLUE, GREEN, RED, BLUE, GREEN, BLUE, RED) is

repeated 15 times in each block.

The subject was asked to carefully look at the stimuli presented on the computer screen and

press the space bar as quickly as possible every time the green circle appeared on the screen;

each participant was tested individually. The software automatically recorded the subject’s

reaction time (RT), i.e. the time between the stimulus appearance on the screen and the sub-

ject’s response. Subjects were not aware of the repeated pattern in the first blocks. If the subject

learned the order in which the colors alternated on the screen, then his reaction time in the

repeated blocks would gradually decrease from the first to the fourth and, more importantly, it

would drastically worsen on the last random block. The comparison between RTs on the last

ordered block (O4) and RTs on the random block (R5) is usually taken as a measure of implicit

learning. In order to verify whether subjects had gained declarative knowledge of the blocks

presented, at the end of the five blocks, each subject was asked whether the color presentation

was patterned or not, and was then requested to verbally describe the block sequence. Since

the aim of our study was to evaluate only implicit learning memory, the results obtained by 1

DMD boy and 2 TD controls were excluded from the final statistical analysis because a declar-

ative strategy during SRTT was used. Thus, all analyses were conducted on 31 DMD partici-

pants and 35 TD participants.

Statistical analyses

In this study the logistic regression analysis was used to verify the probability that participant

may belong to a specific group (in the first analysis DMD vs TD, and in the second analysis

DMD1 vs DMD2, respectively) based on the RT’s difference (R5-O4) between the ordered last

block (O4) and the random last block (R5), measure of implicit learning effect. The dependent

variable was the Group (dichotomous), while the independent variable was the measure of

implicit learning (continuous). In addition, the medians of the RTs of the two groups (DMD

vs. TDs) on the SRTT blocks were analyzed by means of a two-way mixed ANOVA with

Group as a between factor, and Blocks (O1, O2, O3, O4 and R5) as a within factor.

The medians of the RTs on the SRTT blocks of the following three groups were compared:

1) DMD with a proximal gene mutation (DMD1, N = 13); 2) DMD with a distal gene mutation

(DMD2, N = 18); 3) TD participants. Namely, a two-way mixed ANOVA was performed, with

Group as a between factor, and Block of task (O1, O2, O3, O4 and R5) as a within factor.

Level of significance was set at p< 0.05. Tukey’s post hoc test was used when required.

Implicit learning deficit in DMD
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Results

The logistic regression analysis showed that the implicit learning effect significantly predicted

(p = 0.03) that a participant belonged to the DMD or TD group (OR = 1.017; 95% CI: 1.006,

1.029). The results of the analysis of RTs by DMD and TD participants on the SRTT blocks did

not show a main effect for Group, F(1,63) = 2.9, p = 0.09, as the RTs of DMD participants

(M = 608 msec.) did not differ from those of TD participants (M = 578 msec.). The Block effect

was instead significant, F(4,252) = 2.7, p = 0.03, indicating longer RTs in R5 than in O4. A cru-

cial result for the aim of this study, is that the Group x Block interaction effect was significant,

F(4,252) = 5.57, p = 0.001, thus demonstrating a different pattern of RT changes in the two

groups across blocks (Fig 1).

Post-hoc analysis indicated longer RTs in block O3 than in block O2 (p = 0.01) and no dif-

ference between O4 and R5 (p = 0.7) in children with DMD, showing the difficulty to learn an

ordered sequence. On the contrary, TD controls showed longer RTs in block R5 compared to

O1 (p = 0.04), O3 (p = 0.02) and O4 (p<0.001), revealing an appropriate sequence learning

effect.

Comparing groups within specific block of the SRTT, the group of DMD and TD did not

differ in all blocks (p always>0.1).

Considering the performance of the two DMD subgroups (DMD1 and DMD 2), the logistic

regression analysis showed that the implicit learning effect did not significantly predict

(p = 0.109) a participant belonged to a specific subgroup (OR = 1.012; 95% CI: 0.997, 1.027).

To confirm this, the analysis focused on the performances of the two DMD subgroups

(DMD1 and DMD2) and the TD group failed to show a main effect of Group, F(2,63) = 1.19,

p = 0.31: RTs of the two DMD subgroups (DMD 1 = 613 msec.; DMD 2 = 591 msec.) did not

differ from each other nor from the TD control group (TD = 578 msec.).

As concerns blocks, a significant Block effect was found F(5,315) = 2.76, p = 0.01, with lon-

ger RTs in R5 than O4 (p = 0.01).

Group x Block interaction was also significant F(10,315) = 2.19, p = 0.01, showing a differ-

ent pattern of RT changes in the three groups across blocks (Fig 2).

Post-hoc analysis indicated that in the two DMD subgroups, RTs in block O4 did not differ

from RTs in block R5 (p always >0.05). On the contrary, in the control group, RT in R5 was

longer (p = 0.01) than RT in O4 (O4 = 559 msec. vs R5 = 603 msec.).

Fig 1. Average reaction times of correct responses of the two groups in all the five blocks of the

SRTT. Vertical bars show standard deviation. *p<0.05 from the blocks.

https://doi.org/10.1371/journal.pone.0191164.g001
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Discussion

In this study, the SRTT was administered to a group of DMD children without intellectual dis-

ability and to TD controls in order to investigate their implicit learning and, consequently,

their cerebro-cerebellar network function. The exclusion of patients with intellectual disability

has enabled us to identify a specific cognitive function, the implicit learning, without the back-

ground noise of a more global deficit. Despite having no global intellectual disability, DMD

boys revealed poor implicit learning of the temporal sequence of events both in the ordered

and in the random blocks of the SRTT while this was not observed in the age matched con-

trols. While in TD controls the reduction of RT across the successive blocks of ordered

sequences was largely due to the learning of the temporal sequence of events, in the DMD

group, the speed of manual responses was limited, with no or little effects of learning sequence.

The comparison between RTs on the last ordered block (O4) and RT on the random block

(R5), usually taken as a measure of implicit learning effect, was also different between TD and

DMD patients. While, as expected, there was an important change of the reaction time in TD

children going from block O4 (ordered) to block R5 (random), this was less obvious in DMD

children. The reduced implicit learning observed in DMD children did not seem to depend on

their difficulty in manual muscle strength. The results of the logistic regression analysis con-

firmed that implicit learning effect (R5-O4) characterized the TD group. The similarity of the

RTs between TD and DMD, suggested an intact basic motor response, reinforcing the hypoth-

esis of an implicit learning deficit in the group of children with DMD. There were no differ-

ences in the overall RTs of the DMD group compared to the TD group, this probably due to

the fact that DMD patients with very weak upper limbs (MRC<3) were not included in this

study.

It is of interest that between the first (O1) and the second (O2) block, and even more

between the second and third blocks (O2 and O3) there were discrepant results between TD

and DMD groups. While in TD there was an initial increase of RTs revealing an initial diffi-

culty in the learning ordered sequence (Fig 1), followed by a decrease as the task had been at

least partially learned, showing the “U shaped” learning curve usually observed in this type of

task [22] (Fig 1); In DMD, in contrast, this was not present. The reduction appeared only after

the second block with significantly higher RTs in the third block (O3) compared to the second

one (O2). The difficulties in implicit learning was also confirmed by the fact that DMD boys

Fig 2. Average reaction times of correct responses of the three groups in all the five blocks of the

SRTT. Vertical bars show standard deviation. *p<0.05 from the blocks.

https://doi.org/10.1371/journal.pone.0191164.g002
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performed similarly in both randomized and ordered blocks, failing to exhibit a learning

curve. The performance of three subjects (one DMD subject and two TD controls) were

excluded from the statistical analyses because they used declarative strategies. This behaviour

could be explained by the length of the ordered sequence of blocks (blocks I-IV; seven

sequence elements) that makes it more easily identifiable, especially for older participants. The

three subjects excluded from the sample had indeed an average age of 10 years and 5 months.

SRTT is capable to analyze the implicit sequence learning and to demonstrate the role of

the cerebellum and its circuits as a key structure for this function. Recent study strongly sup-

ports these data, reporting severe impairment in the implicit motor learning task in patients

with cortical degeneration of the cerebellum and with focal posterior cerebellar lesions [25,

29–34]. Similar findings on the role of cerebellar circuits in implicit learning were reported

also in children and adolescents with Williams syndrome, but not with Down syndrome [35].

In addition, functional MRI studies documented the role of the cerebellum in performing the

SRTT in normal readers and dyslexic adults [23]. Finally, as stated in a recent study by Schara

and colleagues, subjects with DMD would have a specific cerebellar deficit rather than a global

one, with the integrity of the intermediate cerebellum versus a prevalent involvement of the

lateral cerebellum [36].

These authors specifically tested cerebellar-dependent delay eyeblink conditioning (a form

of implicit associative learning obtained when a neutral conditioned stimulus is repeatedly

paired with an unconditioned stimulus to develop a learned conditional response) in eight

children with DMD to assess their cerebellar functions. Their results showed a comparable

delay eyeblink conditioning in both DMD and controls, thus suggesting a preserved associa-

tive learning effect. Because eyeblink conditioning is related to the integrity of the intermediate

cerebellum, the authors concluded that this older part of the cerebellum may be relatively pre-

served in DMD, and suggested, also in line with animal model studies, that the newer, lateral

cerebellum is primarily affected in DMD.

The role of cerebellar circuit dysfunctions in implicit learning is however still under debate.

Cyrulnik (2008) hypothesized that cognitive deficits observed in DMD could be associated

with the absence of dystrophy during the development of the central nervous system, affecting

in particular cerebro-cerebellar pathways [14]. Functional imaging studies have shown that a

more complex interaction between premotor cortical areas, basal ganglia, and cerebellum

underlies to implicit motor sequence learning [37–41]. Moreover, other authors demonstrated

that lesions restricted to only one element of this network were not able to impact implicit

learning; but, if the basal ganglia damage was associated to frontal cortical areas, as frequently

occurred in Parkinson’s disease and Huntington’s disease, the deficit was obvious [42]. This

issue is very interesting in DMD, in relation to the absence of dystrophin in the cerebral cortex,

especially in the deep layers of the frontal cortex besides other areas such as hippocampus, and

cerebellum [3–4].

Investigations of cognitive, language and behavioral problems in DMD individuals and of

genotype/phenotype correlations have been already reported [8, 43]. We speculate that deficits

in implicit learning abilities may have some clinical manifestations in DMD patients. A recent

research conducted by IRCCS Stella Maris group showed the presence of literacy problems in

boys with DMD. These individuals showed a similar profile of that present in children with

developmental dyslexia (DD), characterized by reading and writing difficulty as well as a delay

in automatic naming skills. Also, both children with DD and DMD showed difficulty in repre-

sentation, accumulation, and recovery of speech sounds [44–45]. Given the overlapping of lit-

eracy and phonological deficit in these two groups of children, but also of their reduced

procedural abilities [22], it could be suggested a general lack of implicit learning underlying

this peculiar neuropsychological profile.

Implicit learning deficit in DMD
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As already discussed, implicit learning plays a key role not only in the acquisition of motor

skills but also in the development of cognitive and language abilities such as phonological pro-

cessing and literacy skills, allowing the automation of reading and writing processes. This may

explain the difficulties exhibited by individuals with DMD such as phonological failure [45],

general learning difficulties [44–45] and attentional deficits [46–48].

In our study we are also interested to investigate any genotype-phenotype correlation.

Several previous studies documented cognitive and behavioural problems more frequently

in association with distal deletion (exon 45 onwards) of the DMD gene [46, 49–50]. In our

sample we explored this possible association relatively to implicit learning and in order to min-

imize the effect of the intellectual disability, we subdivided our sample in two subgroups, both

without intellectual disability: first group with a proximal gene mutation (DMD1, N = 13) and

the other group with a distal gene mutation (DMD2, N = 18). Our results failed to show any

differences between the two subgroups, confirming the hypothesis of an implicit learning defi-

cit in all our children with DMD and emphasizing the possible role of dystrophin in the brain.

The results of the logistic regression analysis confirmed that the implicit learning effect

(R5-O4) did not significantly predict that a participant belonged to the DMD1 or DMD2 sub-

group. However, we cannot exclude the possibility that these results could be attributed to the

choice of inclusion criteria of our study, which excluded all participants with intellectual dis-

ability, often associated with distal mutations. For these reasons, further work in the future

should compare the performance of implicit learning between participants with proximal and

distal mutation presenting or not intellectual disability, but matched for their mental age.

In conclusion, our study documented a deficit in implicit learning in a sample of boys with

DMD without intellectual disability. On the basis of our knowledge, this deficit may be inter-

preted as the expression of a dysfunction of the cerebellum and, more specifically, of the lateral

regions of the cerebellum and its networks connections.
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