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Abstract

Metasurfaces are paving the way to improve traditional optical components by inte-

grating multiple functionalities into one optically flat metasurface design. We demon-

strate the implementation of a multifunctional gap surface plasmon-based metasur-

face which, in reflection mode, splits orthogonal linear light polarizations and focuses

into different focal spots. The fabricated configuration consists of 50 nm thick gold

nanobricks with different lateral dimensions, organized in an array of 240 nm×240 nm

unit cells on the top of a 50 nm thick silicon dioxide layer, which is deposited on an opti-

cally thick reflecting gold substrate. Our device features high efficiency (up to ∼ 65%)

and polarization extinction ratio (up to ∼ 30 dB), exhibiting broadband response in

the near-infrared band (750–950 nm wavelength) with the focal length dependent on

the wavelength of incident light. The proposed optical component can be forthrightly

integrated into photonic circuits or fiber optic devices.
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Optical metasurfaces1–4 – planar (quasi-two-dimensional) sub-wavelength artificial metal-

lic and dielectric structures – have developed tremendously in recent years.5–11 With the

progress in nano-fabrication methods, different applications of metasurfaces were demon-

strated experimentally, ranging from artificial plasmonic coloring12 to flat optical compo-

nents.13–17 In fact, many of demonstrated functionalities cannot be realized with conventional

(bulk) optical components (see recent reviews18–20). An important aspect of the development

of flat optics is efficient integration of diverse functionalities into a single component of a

sub-wavelength thickness, which is also not attainable with conventional diffraction limited

optical components.5 Thus, the scope of current research was recently drawn to exploration

of multifunctional metasurfaces,21–24 including reconfigurable designs.25

For polarization-controlled optical systems, for example polarization multiplexed fiber-

optic communications26 or polarization-assisted sensing,27 single-chip multi-functionality is

highly advantageous. Here, we demonstrate design of a multifunctional metasurface, which

can be straightforwardly used in such systems. It functions as a polarization-sensitive

parabolic reflector (hereinafter referred to as PSFMM – Polarization Splitting and Focusing

Meta-Mirror), simultaneously splitting orthogonal light polarizations and focusing into dif-

ferent focal spots at the design wavelength λ = 800nm (illustration of the working principle

is shown in Figure 1). Previous designs targeted splitting of orthogonal polarizations in

reflection and transmission and were implemented using dielectric or semiconductor meta-

surfaces,7,28,29 or alternatively in radio-frequency band.30–32

Our device utilizes gap surface plasmon (GSP) resonators33–36 as constitutive elements,

which support highly localized plasmonic resonances that form flexible meta-atom building

blocks of metasurfaces,1,2,18–20,37 with the possibility to engineer the local phase and reflection

amplitude in gradient metasurfaces.18,38 GSP-based metasurfaces operate in the reflection

mode, which enables high efficiency,15 reaching ∼ 80% for various applications.39–41
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Figure 1: Illustration of the working principle (artistic rendering) of a multifunctional meta-
surface device. When illuminated by linearly polarized light, the device focuses and splits
orthogonal linear light polarizations into different focal spots with high efficiency and a high
polarization extinction ratio.

The basic element of the metasurface, also referred to as the unit cell, has a period of

Λ = 240nm and is comprised of lithographically patterned gold nanobricks of height t =

50 nm and lateral dimensions Lx and Ly. The nanobricks are supported by a silicon dioxide

layer (ts = 50nm) deposited on optically thick gold substrate, schematically depicted in the

inset of Figure 2. Such a metal-insulator-metal (MIM) configuration is, in its nature, a GSP

resonator which is known to exhibit strong field confinement in the dielectric layer under the

metal nanobrick. Due to this property, a negligible coupling between neighboring unit cells is

permissibly assumed,15 which facilitates the construction of phase gradient metasurfaces.18

The electrodynamics of the considered MIM configuration is modeled using a finite-

element method (Comsol Multiphysics), assuming that perpendicularly incident light (of
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wavelength λ = 800 nm), is polarized along the x-axis. Parametric sweeps are run through

all possible combinations of nanobrick lateral dimensions Lx and Ly from 5 to 235 nm, in

steps of 5 nm, calculating complex reflection coefficient r = |r| exp(iφ). The length of the step

was chosen to comply with the resolution capability of the electron-beam lithography (EBL)

used in our later fabrication of samples. Two degrees of freedom in the design geometry, i.e.

the lateral dimensions of the gold nanobrick, give control over reflection phase, φ, in almost

full 2π phase space near the GSP resonance, as shown in colourmap in Figure 2. Naturally, it

is possible to control phase response of the unit cell independently for two orthogonal linear

light polarizations – transverse magnetic (TM) or x-polarization, shown explicitly in the

Figure 2, and transverse electric (TE) or y-polarization, being equivalent to the transpose of

the map shown in Figure 2. Except for a narrow region of dimensions close to the resonance,

our generic GSP resonator facilitates a high reflection amplitude, |r|, (see contour map in

Figure 2), which is a crucial property for the overall meta-mirror efficiency.

Design considerations

In general, metasurfaces can be designed to mimic compact Fresnel reflectors by imposing

a hyperboloidal phase profile on them.42 The underpinning of this idea can be shown by

investigating the optical path difference of rays reflected from the metasurface: as incident

light is assumed to be a plane wave with a harmonic time dependence, E (x, t) = E0 exp[i(k ·

x−ωt)], the reflected rays differ from it only by a factor exp[iφ(α)], which is the reflection phase

(α indicates the polarization, i.e. either TM or TE). Phase accumulated in the redundant

optical path can be compensated by letting the reflection phase on the metasurface follow a

hyperboloidal profile, proportional to the incident wave number.

In our case, for simultaneous polarization splitting and focusing, two phase profiles are

needed, one for each polarization, with centres of hyperboloids shifted one from another

to achieve off-axis focusing. Thus, the reflection phase φ = arg(r) in every cell of the
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Figure 2: Simulated reflection coefficient r = |r| exp(iφ), with the phase φ = arg(r) shown
in colour map as a function of nanobrick lateral dimensions Lx and Ly for Λ = 240nm,
t = ts = 50nm for TM polarized incident light at λ = 800nm wavelength. Contour lines in-
dicate the corresponding reflection coefficient amplitude |r|. Reflection phase and amplitude
corresponding to TE polarization are obtained by transposing this map. (inset) Sketch of
the metasurface unit cell with indicated dimensions.

metasurface must simultaneously satisfy two conditions:

φ(α)(x, y) =
2π

λ

(
d

(α)

z −
√(

x− d(α)

x

)2
+
(
y − d(α)

y

)2
+
(
d(α)

z

)2) (1)
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where d(TM)

z and d
(TE)

z , d(TM)

x and d
(TE)

x , d(TM)

y and d
(TE)

y are coordinates of the focal points

for TM and TE polarizations along z, x and y-axis respectively, as depicted in Figure 3a.

Similar approach for achieving off-axis focusing was also used in different contexts.43,44

In contrast to previous works,13,15,42 we do not limit the choice of metasurface constitutive

elements to some relatively small discrete design space. Instead, appropriate Lx and Ly

parameters for each unit cell are chosen from the entire space of simulated values (Figure 2),

namely from the array of size 47 × 47 elements. Even though it makes the optimization

of our lithographic fabrication more complicated, the phase gradient obtained with this

approach is closer to ideal, i.e. deviations from the imposed hyperboloidal phase profile

introduced by fabrication imperfections are less pronounced compared to the case when the

deviation is introduced also by a relatively significant phase steps due to limited number

of constitutive elements, although elements themselves are perhaps fabricated with better

tolerances. One could also increase the variety of Lx and Ly parameters (e.g. by interpolation

within simulated values of Lx and Ly), to make mapping to the ideal phase profile even more

accurate. However, this would be an unnecessary complication, since the discretization of

the possible element dimensions is practically limited by the resolution of EBL equipment

(∼ 5 nm). Also, we do not impose any limitation on minimal reflection amplitude of the

constitutive elements, as elements with low |r| for TM polarization have high value of the

same parameter for TE (and vice versa), which on average results in reasonably good overall

reflectivity and better correspondence to the imposed phase gradient.

The geometry of the PSFMM design selected for experimental investigation, with fo-

cusing parameters set to d
(TM)

z = d
(TE)

z = 15µm, d(TM)

x = −d(TE)

x = 5µm, and d
(TM)

y =

d
(TE)

y = 0, is shown in Figure 3b. This design diverges orthogonal polarizations by an angle

of ∼ 37◦ and focuses them at a distance of 15µm from the metasurface. The metasur-

face design region is circular with diameter D = 40µm. The diameter defines the focus-

ing ability of the meta-mirror, quantitatively measured in terms of the numerical aperture

NA ≈ sin
[
tan−1(D/2d

(α)

z )
]
(evaluated to be 0.8 for this design at the design wavelength
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λ = 800nm).
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Figure 3: Design of the polarization splitting and focusing meta-mirror: (a) Locations of
focal points F (TM)

= (d
(TM)

x , d
(TM)

y , d
(TM)

z ) and F (TE)
= (d

(TE)

x , d
(TE)

y , d
(TE)

z ) for orthogonal linear
light polarizations; (b) geometry of the PSFMM design; (c)-(e) SEM images of the fabricated
PSFMM sample at different magnifications with a zoom-in on the single meta-atom building
blocks of the metasurface.

Experiment

The multifunctional meta-mirror sample is fabricated using standard EBL and lift-off tech-

niques. First, the substrate is prepared: a 150 nm-thick layer of Au and 50 nm of SiO2, with

3 nm-thin titanium layers in between for adhesion purpose, is deposited on a Si wafer, using

thermal evaporation (Cryofox TORNADO 405 evaporation system by Polyteknik) for gold

and titanium layers, while RF-sputtering is employed for SiO2. Furthermore, a 200 nm layer
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of PMMA 950 A2 resist (MicroChem) is spin-coated, which is used as a stencil material

for creating nanobrick structures. The PSFMM design pattern is then created using EBL

(JEOL-640LV SEM with an ELPHY Quantum lithography attachment). Gold nanobricks

are formed by thermal evaporation of 3 nm of Ti and 50 nm of Au followed by lift-off process

(etching away stencil material and development). As can be seen from scanning electron mi-

croscope (SEM) images in Figure 3c-e, apart from the smallest features, fabrication quality

of the resulting sample is in overall accordance with our initial design requirements also at

the level of the meta-atom building blocks of the metasurface.

Optical characterization of the sample is performed using a tunable Ti-Sapphire laser

(3900S CW by Spectra-Physics), whose light is directed through a neutral density (ND)

filter, a combination of a Glan–Thompson and a half-wave plate and two beam splitters

to an ×60 objective (Edmund Optics, NA=0.85, Achromatic, 0.15mm working distance,

chosen to have higher NA than the designed metasurface), which is used to focus light onto

the sample. The reflected light is collected using the same objective and directed via a beam

splitter to an imaging lens, which focuses light onto a CCD camera (Mightex CCEB013-

U, monochrome), as schematically depicted in Figure 4a. Besides, additional white-light

illumination is used for convenience of visually locating the meta-mirror on the surface of

the sample. Since the fabricated multifunctional meta-mirror is designed to exhibit a very

short focal distance (∼ 15µm), it is not practical to introduce a beam splitter between the

sample surface and the objective to measure focusing characteristics with an unfocused laser

beam.

However, in this setup, the focusing effect can be verified by investigating how the fabri-

cated meta-mirror and flat unstructured gold surface would reflect light when being placed

at different distances from the objective. From geometrical optics, it can be shown that the

plane (referred to as plane A in Figure 4) at which the flat gold surface produces a focused

spot on the CCD camera screen, is located at a distance d = 2d
(α)

z away from the plane B,

at which the PSFMM results in a focused (deflected) spots on the screen.
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Figure 4: (a) Schematic diagram of the experimental setup for optical characterization of the
fabricated sample; (b) images of spots (brightness adjusted for better visibility) produced
by flat gold surface and PSFMM correspondingly in the planes A and B, when illuminated
by laser beam at λ = 800nm wavelength with different polarizations.

Optical images of the spots created by the flat gold surface and multifunctional meta-

mirror, when illuminating the sample with λ = 800nm light at different polarization states

are shown in Figure 4b. As can be seen, PSFMM deflects TM polarization to the right

hand-side and TE polarization to the left hand-side from the origin. Besides, raw images

of the focal spots captured at different wavelengths were used to estimate the efficiency of

the fabricated meta-mirror: the reflected power was determined by integrating intensity of

pixels in the captured images.
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Results and Discussion

The fabricated polarization-splitting and focusing meta-mirror sample was characterized,

demonstrating comparatively good focusing characteristics at different wavelengths in the

range of 750–950 nm, despite the inherent, but minor imperfections in fabrication (Figure 3c-

e). Measured focal length f (Figure 5a) is slightly smaller than its initially designed value

(∼ 13µm instead of 15µm at λ = 800nm), however, this deviation can be explained by the

spherical aberration of the objective and imaging lens (we made no special effort to account

for this). As was expected from the previous theoretical work,13 the focal length of the meta-

mirror decreases when increasing the wavelength. It is worth noting that such chromatic

aberration effect also decreases the NA value of a meta-mirror for longer wavelength, as

was also shown in a recent work on achromatic metasurfaces.45 In turn, its fλ product (a

parameter which determines the dimensions of Fresnel zones for conventional Fresnel lenses

and mirrors) is practically constant (∼ 10µm). This can be anticipated, since there is no

strong dispersion of the constitutive materials in the considered near-infrared wavelength

range.

The efficiency, defined as the ratio of powers of the light reflected by the meta-mirror

located in plane B and by a flat unstructured gold surface in plane A, reaches ∼ 65% in

the best case, which is significantly larger than in the previous demonstrations.13,42 Previous

numerical study of 1D GSP-based focusing meta-mirrors13 predicts the ultimate efficiency

to be on the level of ∼ 80%, promising also the broadband operation that we observe ex-

perimentally, with modest variations of properties across our wavelength regime of interest.

Numerical simulations13 do not suggest any clear trends in wavelength dependences of key

observables for relatively small wavelength variations. We thus attribute the observed spec-

tral variations in our experiments mainly to unintended fabrication variations. In fact, taking

the error bars into account, most of our observables are to a first approximation wavelength

independent, demonstrating high efficiency (> 45%) over the entire measurement range.

Finally, the polarization-extinction ratio (PER) was studied (Figure 5c). Here, PER
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Figure 5: Performance of the fabricated PSFMM sample evaluated at five wavelengths in the
750–950 nm range: (a) focal length f and fλ product, dotted lines emphasize correspondence
with idealized trends; (b) efficiencies measured for orthogonal polarizations, idealized theo-
retical maximum13 indicated in grey dashed line; (c) polarization extinction ratio, defined
as ratio of intensities of observed spots.
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is defined as the ratio of intensities in correct and incorrect spots when illuminated with

a light of indicated polarization (shown on a dB scale). As can be seen, PER is very

high, reaching 30 dB value, which implies that only ∼ 1/1000 (conservative estimate) of

incident power is deflected into the incorrect focal spot. Error bars in the Figure 5 indicate

measurement uncertainty due to inaccuracy in the axial positioning of the meta-mirror during

the focal length measurement (±1µm) and unknown sensitivity of CCD camera at different

wavelengths (taken to be ±10 %, as a conservative estimate).

To summarize, we have demonstrated a broadband and efficient multifunctional meta-

surface, which is capable of simultaneous focusing and polarization splitting. Functionalities

capitalize from highly in-plane localized GSP modes hosted in an MIM configuration, which

facilitate nearly independent reflection phase gradients for two orthogonal polarizations. Our

class of devices can be directly integrated into various systems employing polarization mul-

tiplexing. While we have emphasized the near-infrared regime, the design can be readjusted

to operate equally efficiently also in the telecommunication wavelength window. Finally,

our EBL-based demonstration can be extended for large-scale fabrication, for example using

roll-to-roll printing approaches now reaching out for metasurface mass-production.46,47
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