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Abstract 

This thesis employs atomistic level modelling to investigate behaviour of surfaces 

protected through functionalisation with short organic ligands, and their interaction with 

protein contaminants. A detailed description of the motivation for this project, a detailed 

literature review on the biofouling process, strategies to prevent biofouling and anti-fouling 

theory are presented in Chapter 1. 

Classical Molecular Dynamics (MD) techniques are employed to describe the 

behaviour of our functionalised surfaces in aqueous environments, and the physical 

interactions with our protein contaminant, EAS hydrophobin. A detailed description of these 

computational techniques is included in Chapter 2. 

In Chapter 3, we outline the challenges and limitations of molecular modelling 

techniques, followed by a detailed background in the development and validation of silica 

and polyester substrates that have been used in this study. We have also included a detailed 

description of the computational surface models and surface functionalisation process. 

In order to tailor surfaces for specific applications, the underlying molecular 

mechanism that enables a functionalised surface to change properties in response to an 

external trigger must be understood. In Chapter 4 we investigate de-swelling and swelling of 

some of the most commonly used responsive materials, poly(ethylene glycol) (PEG) 

functionalised silica and polymer surfaces, as a function of hydration and temperature. We 

also investigate the difference between the hard (silica) and soft (polyester) substrates, and 

PEG grafting density on responsive behaviour. We show that enhancement of the surface 

hardness must be considered when designing responsive surfaces for solution based 

applications, such as antimicrobial coatings for interchangeable wet/dry environments and 

biomedicine. 
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In Chapter 5, we compare the hydration and chain dynamics of PEG and poly(2-

oxazoline) (POX) modified silica surfaces as a function of heterogeneity. We assess how 

chemistry and surface density of commonly used anti-fouling surface ligands affect the 

interfacial properties relevant to biofouling. We show how existing theories that attempt to 

explain underlying molecular mechanisms of biofilm formation and its attenuation are not 

consistent with experiments, and detail findings that can be exploited in the rational design of 

biofouling resistant surfaces for industrial and biomedical applications. 

To better understand our protein contaminant, EAS hydrophobin, we study the initial 

stages of monomeric EAS hydrophobin’s spontaneous adsorption on fully hydroxylated 

silica. Presented in Chapter 6, a series of MD simulations are undertaken with EAS in solvent 

only, and also positioned above the silica surface, enabling us to gain a better understanding of 

EAS’ behaviour in solvent phase, and at interfaces. This allows us to explore the anti-fouling 

efficacy of PEG and POX surface coatings. 

Combining the detailed knowledge of our surfaces, and the protein, in Chapter 7 we 

look to elucidate whether entropic barriers associated with surface mobility or those from 

interfacial water have greater contributions to anti-fouling efficacy. To do this, we simulate 

the initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on PEG and 

POX functionalised silica surfaces. From the knowledge gained, we have developed several 

updated design principles and an updated understanding of anti-fouling surfaces, which we 

summarise in Chapter 8. Several ideas for continuation of research in anti-fouling surfaces is 

then presented in the Future Work section. 
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 Chapter 1 

1. Introduction/Literature Review: 

1.1. Overview 

In this Chapter, we present a detailed overview of the current understanding of 

biofouling, and highlight the need for further research in the field of self-cleaning coatings. 

First we outline the background and motivation for the work included in this thesis, followed 

by a detailed literature review on the biofouling process, focusing on the initial and 

irreversible protein attachment stages. We then detail the importance and current 

understanding of EAS Hydrophobin, the protein contaminant studied in this thesis. 

In section 1.6 we discuss the theories pertaining to the repellence of foulants, 

including the effects of surface morphology, chemistry and heterogeneity, and how they can 

be tailored to prevent microbial fouling. Following this, the current theories of what makes 

effective anti-fouling coatings are described, followed by a detailed review in the 

experimental and computational studies on currently used anti-fouling coatings. 
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1.2. Background and Motivation 

Nonspecific adsorption of proteins and other foulants is a very problematic and 

expensive issue, with governments and industry spending billions of dollars annually 

combating the effects of biofouling. Surfaces that have the potential to maintain their clean 

state by resisting the non-specific binding of proteins and other foulants are sought after in 

many applications, ranging from biomedical and bionic devices [1-3] to large-scale industrial 

coatings [4, 5] where significant efforts have been targeted towards solving issues of surface 

discolouration and degradation; some of the major complications affecting the life-span of the 

coatings. Despite experimental studies dating back to the 1960s [6] there is not yet a detailed 

understanding of the mechanisms through which proteins adsorb or are repelled at a various 

solid/liquid interface [7, 8]. 

For the past few decades, silicates and other oxides have been used as mineral binding 

agents for industrial paint coatings. Combined with the prominence of significant advances in 

prosthetics and biomedical technologies, understanding and improving the potentially toxic 

or anti-fouling behaviour of these materials and their environment is crucial. It is important to 

note that there are significant studies on aluminium oxide [9-14], titanium oxide [15-20] and 

clay surfaces [21-29], however, this study will focus on the more industrially relevant silica. 

In this section, we will give a brief outline of the silica surface model development and 

applications for anti-fouling studies. For more detail on silica, an excellent review was 

published by Rimola et al. [30].  

Mineral paints containing colloidal silica came into existence in the 19th century, as 

the paints are able to permanently bond to the substrate material, resulting in a highly durable 

connection between paint and substrate. These coatings are naturally porous, promoting 

significant water adsorption, aiding the functionality and durability in cool climates. 
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However, in tropical environments these coatings have been seen to undergo significant 

discolouration and degradation due to fouling. To understand this phenomenon at the 

molecular level, many studies have implemented MD and other computational techniques to 

understand what is happening with these surfaces at the atomistic scale. 

Whilst several techniques like X-ray diffraction and nuclear magnetic resonance can 

be used to study proteins in solution, the resolution of these techniques is insufficient to detail 

the structure and dynamics of proteins at interfaces [31]. In addition, there is significant 

neglect in current publications on the surface density of grafted chains [32], a critical 

property in prominent anti-fouling theories [33-35]. This lack of understanding limits the 

capacity to design and produce sophisticated coatings which can control protein adsorption 

[4]. Although the list of experimental techniques is ever growing, there is still a significant 

deficiency in the resolution that cannot be addressed through experimental techniques. With 

significant advances in the performance of computational hardware, computational methods 

are becoming significantly more popular and viable as an insight into the atomistic scale 

processes [36]. 
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1.3. Biofouling Process 

Fouling of surfaces through both organic and inorganic contaminants has been a 

major issue for millennia. Throughout history, as our understanding of the fouling process 

grew, so too did the complexity of coatings, as we progress from waxes and tars to metals, 

paints and a combination of materials [37]. However, even today, fouling of surfaces presents 

a significant challenge to a variety of industries from biomedical [38-40] to industrial [41, 42] 

and marine [43, 44] applications. Long-term exposure of surfaces to extreme climatic and 

polluting conditions allows not only discolouring and degradation of the top-most surface 

layer, but also subjects the surface to bacteria and fungi suspended in the atmosphere that are 

deposited on the surface by wind and rain. These microbes attach, grow and reproduce in a 

self-reproducing process known as biofouling. Herein we detail the interactions and stages of 

biofouling, as outlined in Figure 1.1. 

 

Figure 1.1 Overview of the anti-fouling process. Only the initial attachment stage of biofouling is a 

reversible procedure [45]. 

1.3.1.  Initial and Irreversible Attachment 

Surfaces exposed to the atmosphere will generally undergo direct interactions with 

nearby water, resulting in a layer of structured water orientated a particular way depending on 

the surface chemistry and charge [46]. This sub-nanosecond orientation process results in 
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structured water layers above the surface [47], called the interfacial water layer. The 

interfacial layer is known to have significant effects on a contaminant, which is detailed later 

in this thesis (Section 1.6). 

In the atmosphere, bacteria and fungi exist in highly resistant, dormant structures with 

little metabolic activity called spores. Whilst most spores are non-toxic, they can survive in 

low-nutrient environments, and are resistant to most anti-biotics and disinfectants [48] 

rendering them hard to eliminate, and able to survive in extreme climatic conditions. When 

spores are deposited on a nutrient rich surface, a transformation occurs, beginning the 

biofouling process [49]. These spores release small organic molecules like proteins with the 

purpose of conditioning the outer layer such that it supports further microbial growth. 

These proteins are usually secreted as monomers (particularly fungal species), and 

adsorb in a conformation strongly influenced by both the physical and chemical properties of 

the surface [50], and the interfacial water structure [51]. As more proteins adsorb to the 

surface, they begin to cluster and consequently undergo some type of unfolding or changes in 

protein secondary structure which allows the interaction and formation of a layer of proteins 

[52, 53], significantly altering the surface chemistry and reducing surface tension [54]. 

1.3.2. Initial Growth 

This conditioned layer now presents a surface ideal for larger microbes, including 

bacteria or fungal spores, which adsorb on the surface in a matter of hours. The adsorbed 

microbes then undergo a series of phenotypic changes, one of which results in the excretion 

of an extracellular polysaccharide (EPS) coating [55]. This coating connects the various types 

of bacteria or spores to the surface in a layer called a biofilm. Once formed, this layer is not 

easily removed, needing significant toxic chemicals/acids or mechanical treatment to remove. 

This creates a significant problem for many industries, as the biofilms are often only in the 
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order of tens to hundreds of micrometres thick, and therefore not easily visible to the naked 

eye. This is a significant issue to marine industries in particular, as the penalty of these 

coatings result in as much as a 15% increased fuel consumption [56], due to hydrodynamic 

drag, not to mention the difficulties and costs involved in removing a vessel from the water to 

clean. 

1.3.3. Final Growth and Dispersion 

If the biofilm layer is left untreated, this will allow for even further fouling, in which a 

macroscopic layer can be formed where algae, barnacles, and other large organisms attach. 

Although many of these are more of an aesthetic and economic nuisance, there are added 

environmental and health implications particularly associated with algae. As large densities 

of algae around marine structures and vessels begin to decompose, they consume significant 

amounts of dissolved oxygen, can produce potent toxins or can contain physical attributes 

which can damage fish gills [57]. Furthermore, for industrial paint coatings, this fouling 

process significantly reduces the life-span of coatings. Macroscopic colonies are then able to 

release new spores and other microbes in the atmosphere, which then colonize new sites and 

present as health risks when inhaled, as they often go unnoticed by the immune system until 

they change from a dormant to active state [49]. 

1.4. EAS Hydrophobin 

In this thesis, we have studied the protein EAS hydrophobin, which is known to be 

involved in the fungal biofouling process. Unique to filamentous fungi, hydrophobins are a 

family of small proteins that fulfil a broad spectrum of functions in fungal growth and 

development. As summarised in Figure 1.2, some of these include: (i) Protective roles, 

forming monolayers on the outside of spores and hyphae, protecting them and allowing them 

to grow in otherwise unsuitable conditions [58-61]; (ii) Immunogenic stealth properties, 
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where a hydrophobin rodlet monolayer covers the spore surface, imparts immunological 

inertness to the spores, thus preventing the activation of host immune system, inflammation, 

and tissue damage [62-65]; and most relevant to this thesis, (iii) dual functionality in both 

protecting, and facilitating the adhesion of fungi to surfaces [66]. Hydrophobins are secreted 

by fungi in monomeric form, and possess the ability to spontaneously adsorb into stable 

amphipathic monolayers upon reaching an interface. These monolayers significantly alter the 

surface environment, reducing surface tension [67] and altering the wettability [68] of both 

hydrophobic and hydrophilic surfaces, conditioning them for further fungal adhesion 

including the production of hyphae [69-71]. 

 

 

 Figure 1.2 An overview of the structure, function and applications of hydrophobins [72]. 

There are two classes of hydrophobins based on the aggregates they form. Class I 

hydrophobins assemble into ordered rodlets with an amyloid-like structure that is incredibly 
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robust, requiring strong acids to dissolve [51]. Class II hydrophobins are significantly less 

robust, dissolving in detergent and alcohol solutions, and lack well-defined rodlet 

morphology [54, 73, 74].  

Although the self-assembly of hydrophobins is still being studied for greater clarity, it 

is well established that adsorption at interfaces is accompanied by conformational changes in 

the protein secondary structure. At the water-air interface, class I hydrophobins attain more β-

sheet structure (called the β-sheet state), while at the interface between water and a 

hydrophobic solid, a form with increased α-helix is observed (the α-helical state) [75]. The α-

helical state seems to be an intermediate of self-assembly, whereas the β-sheet state is the 

stable end-form. 

Because of their greater difficulty in removal, current focus in literature, and 

relevance to fungal biofouling, the focus of this thesis is the Class I hydrophobin EAS, found 

in the fungus Neurospora Crassa [76]. Like all class I hydrophobins, EAS has a β-core 

region, comprising three sets of anti-parallel β-sheets, with the overall structure maintained 

through four disulfide bonds [76] and four flexible and unstructured loops that make up the 

protein surface. The largest of the loops, Cys3-Cys4, while largely hydrophobic, shows 

highly amphipathic regions with alternating hydrophobic and hydrophilic residues. The Cys7-

Cys8 loop contains a large number of polar residues, with a large hydrophobic section 

between F72-N79. Recent studies have identified several key regions for EAS. The flexible, 

intrinsically disordered Cys3-Cys4 loop is believed to prevent the protein aggregation in bulk 

solution [77, 78]. Although not required for monolayer formation [79], at the air-water 

interface the Cys3-Cys4 loop was theoretically shown to stabilize into surfactant-like 

conformations. Also of interest is the Cys7-Cys8 loop, specifically residues F72-I75, believed 

to be the amyloidogenic region responsible for rodlet formation [80]. 
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1.5. Combating Biofilm formation 

Methods to combat biofouling through the design of protective surface coatings can 

be found as early as 700BC [11] when Phoenicians and Carthaginians used waxes, tars and 

other materials to extend the life of vessels. Millennia later, thanks to a greater understanding 

of the biofouling process, the efficacy and versatility of coatings has increased significantly 

[37, 81]. These coatings largely fall into two categories: bio-active coatings, which aim to kill 

contaminants either on contact or through biocide release; and bio-passive coatings, which 

look to prevent protein attachment, rather than having toxic effects on contaminants. Details 

on these coatings can be found in a recent review [5]. 

In recent years there has been a large push towards biopassive coatings, mostly due to 

the environmental impact of some bioactive coatings. Perhaps the most significant example 

of this is the marine industry, where it was shown that low concentrations of tributyltin 

(TBT), used in anti-fouling coatings estimated to cover about 70% of the present world’s 

fleets [82], caused defective shell growth in the oyster Crassostrea gigas and imposex in the 

dog-whelk Nucella sp. at concentrations as low as 1-20ng/l [83, 84]. Following an 

International Convention held on 5 October 2001, a significant ban was made to the 

application of tributyltin (TBT) [82].  

Although current biopassive coatings are still not 100% effective, significant research 

has been undertaken to understand the interaction of microbes with surfaces, and how best to 

combat the initial attachment of proteins so that biofilm formation can be avoided. There now 

exist several design strategies for anti-fouling coatings, detailed below. 
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1.6. Strategies for anti-fouling coating design 

To date, several strategies have been employed to combat surface fouling. Like many 

technologies, the inspiration for these modifications comes from natural sources. To prevent 

the undesired protein adsorption in both biomedical and industrial contexts, there is a large 

focus on the various avenues of achieving surface heterogeneity. These surfaces can be 

separated into 3 themes: surfaces with altered chemistry which possess both hydrophobic and 

hydrophilic domains; surface topography, where surfaces feature random geometries of 

different length and size scales; and heterogeneous surfaces, that combine the effects of both 

surfaces. 

1.6.1. Surface Chemistry effects 

It is well known that both morphology and chemistry [85, 86] have significant 

influences on the adsorption of proteins on surfaces, both of which can be manipulated 

through functionalisation of either extended surfaces or nanoparticles. As highlighted earlier, 

due to the vast differences in environments and industries in which biofouling is present; 

there are several examples of technologically relevant substrates that have been used for such 

applications, including metals, [87, 88] polymers [89, 90] and oxides like silica [91, 92]. 

Proteins are generally believed to interact stronger with hydrophobic surfaces [7, 93], 

however this should not necessarily be used as a metric to adsorbed proteins, as it has been 

shown that hydrophilic surfaces only allow limited surface-induced conformational changes, 

typically resulting in weaker adherence [94], and hence generally have a lower interaction 

energy. 

Significant limitations in these coating technologies arise due to our limited 

understanding of the interactions and behaviour of microbes at interfaces. Experimental 

research has shown that the hydrophobicity of surfaces has significant effects on adhesion, 
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with hydrophobic substrates generally incurring increased amounts of microbial adhesion in 

terms of increased numbers of attached cells, rates of attachment and binding strengths [89, 

95, 96]. Conversely, hydrophilic surfaces that are highly hydrated have been shown to be 

more resistant to adhesion [95, 97]. This has been attributed to their ability to adsorb more 

water, which must be displaced before adhesion can occur [86, 98], as well as limiting the 

amount of conformational rearrangement a protein will undergo [94]. 

1.6.2. Topographical/Surface Roughness effects 

The influence of engineered topographies and surface roughness has been summarised 

experimentally in several review articles [42, 98-101]. In these works, several methods of 

creating textured surfaces are noted, with prominent methods being etching, electron-beam 

lithography, and self-assembly/grafting of tethered ligands (Section 1.9.1). Regardless of the 

method, these techniques aim to design highly reproducible nanoscale features, with unique 

and coherent structures over large areas, called nanopatterning. Such an example exists in a 

study by Schumacher et al. [102] where PDMS surfaces were patterned using 

photolithographic techniques into a variety of shapes and domain sizes (Figure 1.3). 
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Figure 1.3 SEM images of engineered topographies on a PDMSe surface. (A) 2 mm ribs of lengths 4, 8, 12, 

and 16 mm combined to create the Sharklet AFTM; (B) 10 mm equilateral triangles combined with 2 mm diameter 

circular pillars; (C) hexagonally packed 2 mm diameter circular pillars; (D) 2 mm wide ridges separated by 2 mm 

wide channels. From reference [102]. 

With constant surface chemistry across all surfaces, this paper examined the effect of 

various nanopatterns, and developed a quantifier for comparing surfaces with engineered 

topography; termed the engineered roughness index (ERI). By factoring in the tortuosity of 

surfaces, it is believed this ERI factor gives a better description of a surface’s ability to resist 

contaminant settlement, with a larger ERI corresponding to more effective/resistant surfaces. 

It should be noted that in this study, and others [41, 101, 103], the effect of feature 

size and spacing are noted to have significant effect on particle spacing. Generally speaking, 

these works follow the principle that: feature spacing should suffice to prevent contaminants 

from settling between features; feature size should not be larger than the contaminant, to 

prevent stabilisation on a single feature; finally, the number of attachment points should be 

minimised, by preventing contact with the channel between features. 
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1.6.3. Surface Heterogeneity 

Nanostructured surfaces with alternating hydrophobic/hydrophilic characteristics has 

recently been shown to be able either to promote or to inhibit protein adsorption [104]. The 

phenomenon can potentially be exploited to design surfaces resistant to biofouling. In recent 

years with emergence of nanotechnology, an alternative approach to altering surface 

resistance to protein adsorption was proposed, including the manipulation of the nanoscale 

morphology of chemically identical materials [105, 106]. Nanopatterned surfaces of 

increasing morphological sophistication have been employed to study and exploit the 

interactions between nanostructured materials and biological systems [107]. More recently, 

research in controlling surface chemistry and topography has been achieved through the 

tethering of various polymers to surfaces. To date, several types of methods have been used, 

starting from grafting polymers with known anti-fouling properties like poly(ethylene glycol) 

(PEG), through to self-assembled monolayers (SAM’s), lipid bi-layers, and more recently, 

poly-zwitterionic surfaces. These coatings will be discussed in detail in Chapter 3, detailed 

strategies for these techniques can be found in several reviews [5, 108-110]. 

An example of such protein resistant materials are monolayer protected 

nanostructured surfaces [106]. Two component ligand mixtures form monolayers of striped 

domains on the surface of nanoparticles through entropy driven self-assembly [111, 112] with 

the length scales of the domains being 1-2 nm. These nanoparticle surfaces exhibit low 

protein binding despite having a substantial hydrophobic component [106, 113] and, counter 

intuitively, show increased protein adsorption with increased fraction of the hydrophilic 

functional chains [104]. While the mechanism of this uncorrelated binding affinity remains 

unclear the adsorption behaviour of proteins has been shown to be significantly influenced by 

the nano-scale patterning [104, 114]. Amphipathic amino acid residues on the protein surface 

have been shown to drive the adsorption on domain separated nanoparticles due to their 
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inherent ability to interact with both the hydrophobic and hydrophilic domains but most 

importantly, with the domain boundaries [104]. It has been proposed that surfaces can be 

functionalised to create a functional and morphological heterogeneity (nano-pattern) that will 

either facilitate or prevent protein adsorption by matching or mismatching the protein surface 

functionality [114]. 

1.7. Interactions and involvement of water 

In recent years, there has been significant research into the behaviour of interfacial 

water, and the critical role it plays in protein adhesion [95, 115]. At the surface-water 

interface, water has been seen to form two distinct "shells" which have significantly different 

properties to that of bulk water. The first shell is highly ordered and tightly bound, as water 

molecules form hydrogen bonds with the surface. A second layer is subsequently formed 

through hydrogen bonding with neighbouring water molecules, resulting in a weakly-ordered 

region. However, in areas with significant spacing between hydroxyl groups or high surface 

roughness, this interfacial layer often creates areas void of water, encouraging the adsorption 

of hydrophobic molecules [116, 117]. It has been observed that the specific ordering of these 

shells plays a pivotal role in the promotion or retardation for the adsorption of proteins and 

other contaminants. Specifically, as a protein approaches the surface, interfacial water layer 

undergoes structural changes which will help repel or promote adsorption of the protein [9, 

118]. These hydration forces have mainly been attributed to the surface heterogeneity, 

orientation and local density of interfacial water [119]. This has inspired significant research 

into the behaviour of interfacial water as a protein comes toward a surface, and strategies that 

can be adopted to prevent protein adsorption [114, 120-122]. 

Some of the prominent work in this field is based on work by Argyris on the 

characterisation of interfacial water around oxide and graphite surfaces [10, 123-126]. These 
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studies noted the effect of surface hydroxylation, and how tailoring the surface orientation, or 

density of hydroxyls could be used to dictate amount of water molecules in the first 

interfacial layer, as well as the distance between the first adsorbed layer and the substrate 

[126]. Furthermore, when considering more realistic solvents with ions in solution, it was 

noted that negatively charged chloride ions adsorb to the surface, whilst positively charged 

sodium ions would adsorb to 2nd water layer and heavy metal ions like caesium remain in 

bulk solution [125, 127]. The repulsive force attributed to these interfacial water layers was 

then measured using MD simulations. In this proof-of-concept study, a carbon nanotube 

model was used to probe interfacial water, with the repulsive force as a function of distance 

from the surface being measured [9]. It was noted that the nature of this repulsion is due to 

the structure and orientation of the water, and changes in surface termination had significant 

effects on this force. However, perhaps more importantly, the paper explains the need for 

combined experimental works, showing how AFM studies could be used to facilitate 

modellers in understanding the effect of surface heterogeneity and functionalisation. 

Water behaviour at the hydrophobic/hydrophilic interface proposed by Granick et al. 

[128-131] suggests that the interplay of water at a hydrophobic/hydrophilic interface will 

result in the formation of a flickering vapour phase where water molecules are unable to 

structure in accordance to either surface. These water molecules are believed to diffuse 

through several favourable metastable energy states, with varied stability time and frequency 

of contact with the surface. Due to the size and instability of these water layers, there is little 

to no ability for water molecules to form ordered hydration shells around a homogeneous 

surface. 



16 

 

1.8. Current theories on Anti-fouling coatings 

Over the last decade, significant research efforts have focused on finding anti-fouling 

surface coatings with good efficacy, novelty, and design simplicity. However, the ability to 

design more effective anti-fouling coatings is limited by the paucity of fundamental 

knowledge on how these surfaces behave at a molecular level. Existing theories that attempt 

to explain anti-fouling coating efficacy are dated (late 90s and early 2000s) and are often 

conflicting. This has arisen because of the difficulty of studying these three phase systems at 

the molecular level using experimental techniques [31], hampering rational design and 

development of more effective coatings [4], and vital experimental validation of molecular 

level theories and simulations. 

The “gold standard” archetypal material for preventing surface fouling is grafted poly 

(ethylene glycol) (PEG) chains. PEG displays a valuable ability to change conformation in 

response to various stimuli [132] assisting in excluding foreign materials such as proteins 

from a surface [133, 134]. The efficacy of PEG coatings has been linked to its relative 

biological inertness and compatibility with water. To date, no theory adequately explains how 

PEG coatings resist protein attachment in terms of the chain length and grafting densities that 

have been employed in recent experimental studies [135]. The existing theories suggest two 

types of molecular interactions being responsible for anti-fouling properties of polymer 

coatings, namely steric repulsion and hydration theories, described below. 

1.8.1. Steric repulsion theories 

Some of the earliest and enduring theories on PEG’s anti-fouling properties were 

reported by Andrade’s group [136-139]. They suggested that the anti-fouling ability of PEG 

was due to steric repulsion of the chains, while that of polyethylene oxide (PEO) was due to a 

combination of mobility and excluded volume effects that also generated steric repulsion. 
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This theory treated solvated PEO chains as random coils having a high mobility and excluded 

volume, while proteins were described by hard spheres. As a protein or other contaminant 

adsorbs to a surface, the polymer chains are compressed to a thermodynamically 

unfavourable state, resulting in the exclusion of water molecules hydrogen-bonded to the 

layer, and a strong van der Waals repulsive force. This theory suggests that the anti-fouling 

efficacy of surfaces should increase with the chain length and grafting density of the PEG 

chains. While several experimental studies have supported the theory [140-143], a number of 

other studies have shown anti-fouling efficacy in low molecular weight PEG coatings [144-

147] in conflict with the theoretical predictions. Szleifer et al. utilized single-chain mean-

field (SCMF) theory [33-35] to reconcile the anti-fouling behaviour of short PEG chains and 

self-assembled monolayers (SAMs). The polymer-protein-solvent system is taken to be 

inhomogeneous perpendicular to the grafting surface, and potentials of mean force of the 

protein with the surface can be calculated relative to grafting density and degree of protein 

adsorption. The protein is modelled as spherical, and the protein-polymer, protein-solvent, 

and polymer-solvent attractive interactions are all assumed to be equal. Interactions 

determining the structure of the system are purely repulsive. This theory rationalizes the anti-

fouling ability of hydroxy terminated SAMs, and suggests that grafting density rather than 

chain length is more important for anti-fouling efficacy. 

Grunze et al. described the conformational behaviour of PEG systems and its contribution 

to anti-fouling efficacy [148-150]. In particular, they investigated the conformational 

behaviour of  PEO/PEG SAMs on gold and silver surfaces [148]. On silver, the polymer layer 

adopted a densely packed all-trans conformation, resulting in enhanced protein adsorption. In 

contrast, on gold surfaces, PEG adopted helical conformations with reduced protein 

adsorption. Subsequent Monte-Carlo studies [151, 152] suggested that lower protein 

attachment was due to the helical chain interacting with larger amounts of water. 
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Similar conclusions were reported more recently by Unsworth et al. [153-155], who 

focused on the effect of grafting density, chain length, and end-group hydrophobicity on 

fouling. They concluded that, regardless of chain length, maximum anti-fouling effectiveness 

occurred at a grafting density of 0.5 chains/nm2, corresponding to chains in a brush-like 

regime [153]. At higher grafting densities protein resistance begins to decrease, which 

Unsworth et al. attributed to a combination of loss of layer mobility and the formation of 

hydrophobic patches on the surface [155]. By studying methyl and hydroxy terminated PEO 

polymers they identified a third important factor, rearrangement of water molecules around 

the terminal groups, particularly at high grafting densities. 

1.8.2. Hydration theories 

Other hydration theories also incorporated the effect of interfacial water on protein 

resistance. Besseling [156] suggested that the interaction between two surfaces causes 

changes in the orientation of water molecules relative to disordered bulk water, with 

repulsion occurring when a hydrogen bond donor-acceptor mismatch occurs. Whitesides et 

al. [157, 158] elaborated this idea by investigating SAM surfaces with approximately 50 

different functional groups. This study identified four important properties for nonfouling 

surface coatings: (i) not hydrophobic, (ii) contain hydrogen bond acceptors (iii) do not 

contain hydrogen bond donors and (iv) electrically neutral. It should be noted that several 

studies contradict the claim for universality of these criteria. For example, hydroxyl 

terminated oligo ethylene glycol (OEG) SAM surfaces [122, 159] and polysaccharides [160, 

161] such as dextran [162, 163] have been shown to prevent protein adsorption despite 

containing hydrogen bond donors. More recently, Kitano et al. [164-167] investigated the 

structuring of water around poly-zwitterionic (PZI) surfaces. They argued that the well-

documented anti-fouling properties of PZI are not due to the material itself, but result from 

PZI’s effect on water structuring. Specifically, they proposed that surfaces which are able to 
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form strong interactions with interfacial water, whilst maintaining a disordered, bulk-like 

water layer, would provide limited entropic benefits for an approaching protein. 

1.9. Surface Functionality and Roughness Topography 

The effects of surface roughness and cavities have recently become major focus 

points in literature [99, 100, 104, 114, 117, 168]. In a recent experimental study by Scopelliti 

[169] it was noted that up to 90% reduction in protein binding affinity could be achieved by 

increasing nanoscale roughness from 15 to 30nm. In some cases, like those of the cicada 

wings, nanoscale roughness can in fact cause biocidal behaviour [170-173] to incoming 

bacterial contaminants. It has been observed that nanoscale surface roughness, combined with 

the significant spacing between hydroxyl groups on amorphous silica, form areas void of 

water form in the interfacial layer, encouraging the adsorption of hydrophobic molecules 

[116, 117]. This has significant implications on the local density of interfacial water [119], 

and combined with hydration forces attributed to the surface heterogeneity and orientation, 

has a pivotal role in the adsorption of a protein as it approaches the surface. Studies have 

shown that the interfacial water layer undergoes structural changes which will help repel or 

promote adsorption of the protein [9, 118]. This has inspired significant research into the 

behaviour of interfacial water as a protein comes toward a surface, and strategies that can be 

adopted to prevent protein adsorption by tuning the surface roughness [98, 101, 104, 114, 

174] or adding improved hydration properties through tethered moieties [95]. 

In sections 1.6 and 1.8 we outlined the strategies for anti-fouling designs, and how 

modern coatings have controlled surface chemistry and topography through the tethering of 

various polymers to surfaces. To date, several types of methods have been used, starting from 

grafting polymers with known anti-fouling properties like poly(ethylene glycol) (PEG), 

through to self-assembled monolayers (SAM’s), lipid bi-layers, branched polymers like 
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poly(2-oxazoline) (POX) and more recently, poly-zwitterionic surfaces. These coatings will 

be discussed below, more information including other commonly used anti-fouling polymers 

and the formulation of these coatings can be found in some recent reviews [5, 108-110]. 

1.9.1. Linear systems 

1.9.1.1. Grafted Systems 

 

Figure 1.4 Example of a grafted polymer system, showing formation via both “grafting-to” to and “grafting-

from” methods [175]. 

Two strategies, the “graft-from” and “graft-to” methods (Figure 1.4), are generally 

used to covalently immobilize protein-resistant polymers. The “graft-from” approach, in 

which the polymer is synthesized in situ by polymerizing monomers from the surfaces, can 

be used to prepare high-density polymer brushes that often give better anti-fouling properties 

[176]. In the “graft-to” approach, the polymer is directly immobilized on the substrate by a 

surface coupling reaction. Typically, the polymer is derivatized with a functional group that 

can subsequently react with the substrate. Several antimicrobial polymers have been 

investigated for anti-fouling influence, as highlighted by several reviews [46, 177-180]. Due 

to the prevalence of PEG and poly(ethylene oxide) (PEO) in modelling work, a summary of 

relevant experimental studies on these polymers is detailed below. 

For many years the gold standard of preventing surface biocontamination or other 

undesirable adhesion has been achieved through grafting of PEG chains. PEG displays a 
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unique ability to change conformation in response to various triggers [132] which in turn can 

assist in excluding foreign materials such as organic contaminants including proteins, from its 

proximity [133, 134]. Experimental work by Sheparovych et al. examined composite PEO - 

polydimethylsiloxane (PDMS) surfaces using AFM in both air and water environments to 

calculate adhesion between samples surface and AFM tip [181, 182]. The authors developed 

responsive mixed brush films with low adhesive properties in different media, where the 

mixed brushes display layer segregation in air and water. Major findings showed that in water 

PEO dominates the outer layer while in air PDMS dominates. Furthermore, the low 

interfacial energies of PEO in water and PDMS in air combine to generate a low adhesive 

property of the mixed PEO-PDMS brush in both media by the spontaneous rearrangement of 

polymer chains. Studies have shown that PEG molecules grafted onto metal substrates using 

surface-initiated polymerization reduce cell adhesion [183, 184]. This surface-initiated 

polymerization technique has the advantage of attaining a high grafting density and film 

thickness, factors which are considered important in controlling undesirable adhesion. 

Silanated PEG molecules have also been grafted onto glass substrates using solution-based 

techniques, again resulting in reduced cell adhesion [185]. These examples illustrate that 

PEG’s unique ability to reject proteins and other contaminants combined with its non-toxic 

and anti-genetic properties is a justification of its extensive use as a surface protector for 

biomedical and industrial applications. Despite this, an understanding of its fundamental 

behaviour at the atomic level is still lacking. 
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Figure 1.5 Illustration showing PEG chains in mushroom and brush configurations [186] where D = 

distance, RF = Flory radius (radius of gyration).  

It has been well documented that one of the key characteristics associated with PEG’s 

ability to reduce protein adhesion is its ability to adopt specific conformations in water 

(Figure 1.5). Importantly, it was identified that a flat or ‘pancake’ orientation of the PEG 

chains would likely result in an attractive PEG-Protein interaction, whereas mushroom-brush 

conformations were likely to provide repelling interactions [187, 188]. This was strongly 

related to the fact that compression of PEG chains was likely to increase the accessible 

surface area of the non-polar PEG segments, which encouraged hydrophobic interactions 

promoting protein adsorption [189]. This finding is strongly supported by other works which 

looked at the ability of PEGylated films to prevent microbial adsorption, where hydrophobic 

microbes had been shown to exhibit higher adherence than their hydrophilic counterparts 

[190]. 

At low grafting density, the end-to-end distances of PEGs are even smaller than the 

distances between the grafting points, thus the thickness of the PEG layer matches the size of 

mushroom. However, when the end-to-end distances of PEGs become larger than the 
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distances between the grafting points, PEG chains are crowded and thus extend like a brush, 

yielding the increased thickness of the PEG layer beyond the mushroom regime, which 

agrees with the Alexander−de Gennes theory [191]. However, it should be noted that the 

chain lengths and spacing between grafting points are such that the length of chains is larger 

than the chain separation distance. The relationship between the inter-chain separation 

distance and chain conformation has been reported previously, notably in work by Benková 

[192-194]  where they noted a critical grafting density exists at 2.185 chains per nm2, at chain 

lengths of 18-30 monomers, below which chains displayed strong interactions with the silica 

surface. In more recent work, described in this thesis, Ley et al. [195] investigated a range of 

grafting densities and chain lengths on both polyester and silica substrates to further describe 

this process. In this work, it was noted that at chain lengths sufficiently lower than the 

separation distance, chain-surface interactions were too strong to allow mushroom/brush 

conformations. These studies deduce two design concepts to allow mushroom/brush surfaces, 

increasing the coverage density of short chains or increasing the chain length, such that the 

length of the chains is longer than the separation distance of the chains. Unfortunately, with 

both approaches there are significant limitations for surfaces to be considered for anti-fouling 

applications. 

Oelmeier et al. [196]  applied MD simulations to investigate the hydration of single 

PEG molecules of variable length in explicitly simulated water. They note that as the chain 

length increases, the chain is more likely to adopt an increased helical structure, thereby 

reducing the solvent accessible surface area (SASA) of the chains. Unfortunately, the loss in 

hydrophilic SASA is much higher than the hydrophobic counterpart, correlating to a 

reduction in the amount of H-bonds per sub-unit and hence increased surface hydrophobicity 

of the chain. This becomes problematic for anti-fouling surfaces, as hydrophobic exposure of 

PEG has been shown to promote protein adsorption [189]. 
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1.9.1.2. Self-Assembled Monolayers 

 

Figure 1.6 Example of a self-assembled monolayer coating. Reprinted with permission from [197]. 

Similar to grafted surfaces, many of the self-assembled monolayers (SAM’s) have 

typically used polymers with known anti-fouling properties like PEG [147, 159, 198-201], 

however they are typically used at coverage densities significantly higher than grafted 

approaches (>5 chains/nm2), as shown in Figure 1.6. Due to the high density of molecules, 

the degree of the freedom for PEG SAM’s is low. Therefore, the protein resistance cannot be 

explained by the idea of steric repulsion alone. This has led to strong research in the 

contributions of wettability and the effect of head-group chemistry on resistance to 

contaminants [147, 159, 202, 203]. 

Although the added functionality usually improves resistance to protein attachment, 

considerations of the underlying substrate are still important. One such example exists where 

gold and silver surfaces were modified with short oligo (ethylene glycol) SAM’s [148, 204, 

205]. In these works, it was noticed that both surfaces had similar wettability (water contact 

angle ~65o), however surfaces with gold substrates were noticed to reduce interaction with 

the protein, whilst silver substrates enhanced interactions. The main difference between these 
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coatings was noted to be the packing density of chains on the surface. Using Fourier 

Transform Infrared Reflection-absorption (FTIR) spectroscopy, Harder et al. [148] noted a 

dominant helical structure of the chains on gold surfaces, while on silver chains were in an 

all-trans conformation. Pertsin et al. then performed Monte-Carlo simulations to explore the 

behaviour of water on these SAM’s, and showed that water molecules were able to penetrate 

the polymer layer and hydrate the chains, whereas on the silver surface this was not possible 

[151, 152]. Further to this, these computational studies also noted that both hydrophobic end-

terminal groups, and chains with a more hydrophobic interior structure (oligo(propylene 

glycol)), resulted in reduced ability to resist proteins. This suggests that the ability for water 

to penetrate into the polymer layer is a prerequisite for protein resistance. 

There have been several studies involving “mixed” SAM’s, which either incorporate 

mixed/alternating head-group chemistry [206], or alternating chains with different charge, 

hydrophobicity or length [106, 112, 113, 207, 208] to create heterogeneous surfaces. Similar 

to SAM’s, biological membranes and lipid bi-layers have also been applied in marine and 

medical applications, with well-documented hydration behaviour [209, 210]. In particular, 

Frequency Modulation Atomic Force Microscopy (FM-AFM) studies confirm the presence of 

2 hydration layers on the lipid bilayer surface [209, 210].  
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1.9.2. Branched/Comb-like chains 

 

 Figure 1.7 Example of a branched polymer coating [211]. 

Branch/comb-like polymers (Figure 1.7) have recently gained significant attention for 

anti-fouling applications. These polymers, like POX, contain a linear backbone with side-

chains that can be easily tuned to suit desired properties. POX recently attracted significant 

attention for applications to biomaterials, specifically as a contender to PEG polymers [212-

214]. Recent work revealing low biofouling properties [214, 215] and good biocompatibility 

[216-218] has gained interest in POX, especially for biomaterials [219], coatings [109, 219, 

220], and biomedical applications of POX [221, 222]. However, despite the exponential 

growth in applications and patents, particularly in the biomedical field [221], POX polymers 

are not approved by the FDA for medical purposes, limiting the development of POX based 

biomaterials. It should be noted that, to the best of our knowledge, there have been no 

MD/computational studies on brush like polymers or POX systems, particularly in a 

grafted/non-fouling coating context. 

Until recently, many POX studies focused on suspensions in solution. Now, with 

increasing demand for use as PEG alternatives, several methods of surface attachment are 

being investigated. Methods comprising spin coating [223] grafting from/to [212, 224], 

photo-polymerization [176] and electrostatic interactions [225] and plasma deposition [226, 

227] have been utilised. However, it should be noted that all the above studies use chain 
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lengths significantly longer than those implemented in this study. Furthermore, plasma 

deposition can be used to allow partial retention of the oxazoline ring, which would allow 

biomolecules to retain bioactivity, which allows application for bio-sensing and diagnostic 

purposes [226]. 

Generally speaking, the nature of the monomer, and in turn the wettability of the 

coatings, tends to control the anti-fouling efficacy of POX. Both PMeOx and PEtOx have 

been shown to suppress protein adsorption [176, 212, 219, 220, 225, 228] while PPrOx 

promote cell adhesion and growth [226, 228]. This is largely believed to be due to the 

increased length and hydrophobic content in the side-chain of PPrOx coating allowing 

significant hydrophobic contact. Perhaps more relevant to the application for industrial paint 

surfaces, PMeOx coatings have been used for marine and bacterial fouling prevention on 

surfaces [220]. Remarkably, these coatings were stable in sea water for 1 month without 

significant loss in film thickness. Furthermore, the authors note that settlement of Barnacles 

and Amphora on PMeOx coated surfaces was significantly reduced, and the surfaces were 

also able to prevent S. aureus and E. coli adhesion. 

However, it should be noted there are several inconsistencies across studies using the 

same monomers. For example in a study by Chang et al. [223]  380,000 molecular weight 

(MW) PEtOx is seen to stabilise cell adsorption [223], however a study by Wang et al. [176] 

examines PEtOx surfaces from 5,000-500,000 MW showed significantly reduced adsorption 

of BSA on all surfaces, with increased efficacy as MW increased. It should be noted that 

there are high separation distances between PEtOx chains in this study. This allows exposure 

of the underlying substrate, the effects of which can be seen where there is increased BSA 

adsorption on gold surfaces compared to silica. Furthermore, the effect of large spacing of 

grafted chains has been well reported to have a significant effect on anti-fouling ability [140, 

195] so it is little surprise that longer chains perform better at the large separation distances 
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between grafted chains in this study. Furthermore, Cavallaro et al. compared plasma 

deposited PEtOx and PMeOx films at varying deposition conditions, noting that PEtOx films 

were sufficiently more effective at resisting adsorption of S. epidermidis. 

Currently, there are several experimental studies comparing the anti-fouling efficacy 

of PEG and POX coatings [212, 213, 229, 230]. Whilst it is clear that both polymers show 

remarkable properties including stealth ability for drug-delivery and protein resistance for 

anti-fouling surfaces, the general trends show POX coatings outperforming PEG for a 

number of reasons. Firstly, in oxidative environments, POX coatings are shown to be much 

more stable than PEG [212]. If both coatings break down either through cleavage or 

oxidation, PEG chains decompose into toxic components like peroxides [213], whilst POX is 

both more stable in oxidative conditions [212] and remains non-toxic [212, 213]. 

Furthermore, whilst some studies have shown that PEG can retain anti-fouling efficacy whilst 

the coating degrades [231], generally this decomposition leads to a rapid decline in protein 

resistance [212, 232, 233]. 
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1.9.3. Poly-Zwitterionic chains 

 

Figure 1.8 Example of poly-zwitterionic Coating for anti-fouling. Adapted with permission from [234]. 

Copyright (2012) American Chemical Society. 

Poly-zwitterionic (PZI) molecules are the most recent focus-group for anti-fouling 

surfaces, as they combine strong interactions with water, as well as a heterogeneous 

distribution of charges whilst still maintaining an overall neutral charge. An example of a PZI 

coating is shown in Figure 1.8, and a detailed explanation of the anti-fouling performance of 

PZI’s can be found in a recent review by Schlenoff [235]. To date, the major theory of PZI 

surface anti-fouling ability has been attributed to water structuring and solvation effects. 

Several studies have been conducted to investigate the effects of the charged groups in PZI 

ligands on the water hydrogen-bonding network, specifically the association of water 

hydrating zwitterion charges, and how they then interact with the water molecules around 

them. Where PEG coatings are believed to have approximately a 1:1 ratio of tightly bound 

water per EG monomer, some PZI coatings like poly(sulfobetaine methacrylate) have been 

noticed to have up to 8 tightly bound water molecules per monomer unit [236]. It should be 
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noted this is not an isolated case, as several other PZI coatings have been reported to have 

similar hydration levels [237, 238]. 

This behaviour has also been studied computationally by Shao et al. [239] where a 

combination of DFT, molecular dynamics and free-energy perturbation was used to 

investigate the hydration behaviour around carboxybetaine and sulfobetaine charged groups. 

In this study, results showed that positively charged groups are surrounded by more water 

molecules than negatively charged groups, however the water molecules around the 

negatively charged groups are more ordered. Furthermore, the hydration free energy of both 

chains was 2-3 times lower than studied OEG4 segments, suggesting they would have a 

greater potential to resist protein adsorption. Further to this, experiments using Raman [164, 

166] and FTIR [165] spectroscopy by Kitano et al. analysed the effect of PZI’s on the water 

H-bonding network. Specifically, they noted no disruption to the water network, including 

associated water, by zwitterionic polyelectrolytes. In contrast, regular polyelectrolytes 

induced a net loss of hydrogen bonds. More recently, Kitano has also investigated the effect 

of charge-balance on zwitterionic surfaces, where it was noted that zwitterionic distributions 

enabled water to behave in a bulk-like manner, whilst lop-sided distributions of charges led to 

structuring according to the charge distribution on surfaces, a behaviour that could lead to 

enhanced protein adsorption [167]. 

Current modelling work on PZI is quite limited, particularly for anti-fouling 

applications. There have been studies using MD [240] and coarse-grained modelling [241] 

which have been used to reproduce experimental/material properties of coatings, however, to 

get an accurate description of these surfaces studies quantum simulations like QM/MM or 

DFT are needed to treat atomic charges and charge effects. Due to the computational power 

required to simulate the quantum region, simulations would be severely limited in the overall 

system size. Although QM/MM should allow a small surface to be modelled, we believe the 
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current computational power is not sufficient to accommodate simulations including the 

surface, protein and explicit water. 

1.10. Project Aims 

The aim of this project is to apply atomistic modelling techniques to examine the 

mechanism by which soft protein contaminants like EAS hydrophobin adsorb to surfaces and 

develop strategies to reduce the surface contamination. Specifically, this project aims to: 

• Investigate the influence of substrate chemistry and hardness on the responsive 

behaviour of tethered surfaces. 

• Investigate and understand the interaction of EAS with unmodified surfaces. 

• Examine adsorption method and determine if there are any specific 

interactions critical to EAS adsorption. 

• Investigate the difference in responsive behaviour between PEG and POX. 

• Investigate and understand the interaction of EAS with PEG/POX modified 

surfaces. 

• Examine key interactions and potential anti-fouling properties of PEG/POX 

surfaces. 

• Determine if there is a relationship between PEG/POX responsive behaviour 

and anti-fouling efficacy. 

• Provide molecular level insight into anti-fouling theories (steric repulsion and 

hydration theory). 
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Chapter 2 

2. Computational Techniques for Modelling Anti-Fouling 

Systems 

2.1. Overview 

In the previous chapter we determined the need for advanced computational 

techniques in order to better understand the atomic scale events of fouling, and design more 

advanced and effective anti-fouling coatings. Therefore, for this project, we have 

implemented molecular modelling and force-field mechanics in order to gain an atomic level 

understanding. This chapter presents an overview of some of the more frequently used 

procedures for investigating protein function and dynamics under various conditions. 

Firstly, we introduce the field of molecular modelling and types of atomistic 

modelling. We then explore the potential energy expression, and how force-fields are used to 

describe atom types. Following this, we discuss the importance and process of relaxing a 

system using energy minimisation, before detailing how molecular dynamics can be used to 

simulate the time-based evolution of a system. The procedures and techniques utilised to 

maintain temperature and pressure are discussed. Finally, we briefly discuss the advanced 

sampling techniques that can be used to explore the free-energy landscape of molecular 

systems under investigation.   
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2.2. Introduction to Molecular Modelling 

Molecular modelling is a general term that describes the theoretical and 

computational techniques applied to model and simulate the atomistic behaviour of 

molecules. These models apply the fundamental laws of physics and chemistry to 

atomistically determine the structure, energy and dynamics of a system. Whilst often used to 

complement experimental data, there is a significant advantage with computational 

simulations in addressing the systematic changes at an atomic level, an impossible task to 

achieve with experimental resolution. One such example is presented in studying the anti-

fouling surfaces, where it is possible to simulate the conformational changes during the single 

protein adsorption to surfaces. By keeping other conditions constant, it is then possible to 

investigate the effect of surface modification on protein adsorption, and the specific 

interactions that may prove critical in this process. 

As shown in Figure 2.1 [243], molecular modelling can be separated into several 

categories, based on the system size and timescale ranges. The most accurate of these 

simulations are based on Quantum Mechanics (QM), and can be separated into wave function 

(ab-initio) and Density Functional Theory (DFT) methods. These methods provide detailed 

information about the electronic structure of material and are typically used to investigate 

bond breaking and forming processes, and electronic effects such as polarisation and force-

field parameterisation. At present the QM methods are limited to several picoseconds and 

Ångstroms in time and length scales respectively. Due to the large size scales required to 

study anti-fouling systems, these techniques are not suitable for this project, however, it is 

worth noting that these techniques have been used extensively to develop accurate silica 

surface models and force-field parameters for atomistic models of organic-inorganic 

interfaces [242], which are relevant to this project. 
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Figure 2.1 The approximate time and length scales involved in different classes of molecular simulations: 

Quantum Mechanical (QM), Atomistic, Coarse-Grained (CG), and Continuum models. [243] 

All-atom simulations allow the investigation of longer time and length scales, 

enabling simulations in the order of nano to microseconds and nanometres respectively. To 

do this, a number of approximations are made based on the Born-Oppenheimer 

approximation, which allows the separation of electronic movement from the Hamiltonian of 

the system, leaving only variables pertaining to the nucleus of an atom. In this classical 

approach, the energy of the system is evaluated using a combination of potentials describing 

the bonded and non-bonded interactions that occur between atoms and molecules in the 

system, which will be explained in detail in Section 2.4. This approach is significantly less 

computationally expensive than QM approaches, as it ignores electronic characteristics, 

therefore not allowing bond breaking or forming during the simulation, however it is able to 
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describe physical interactions within the system, and reproduces structural, conformational, 

thermodynamic and vibrational properties with reasonable accuracy.  

To investigate even larger system sizes, Coarse-grained (CG) methods may be used. 

These methods further simplify the atomic model by grouping atoms together into a single 

“bead” based on a range of conditions, called mapping. An example for mapping using the 

CG force-field (Martini) [244] is shown in Figure 2.2. This simplification significantly 

reduces the number of interacting particles, allowing much larger and longer simulations. 

There are however several limitations presented through this simplification, including the 

protein secondary structure being fixed, and the inability to properly describe interfacial 

water. 

 

Figure 2.2 An example of Martini mapping (large blue circles represent martini bead) for selected 

molecules: (A) Standard water particle representing four water molecules. (B) Polarizable water molecule with 

embedded charges. (C) DMPC lipid. (D) Polysaccharide fragment. (E) Peptide. (F) DNA fragment. (G) Polystyrene 

fragment. (H) Fullerene molecule. In all cases Martini CG beads are shown as cyan transparent beads overlaying the 

atomistic structure [244]. 

All the calculations in this thesis have utilised atomistic simulations, allowing the 

exploration of protein dynamics and structure, as well as a detailed structure of the surface 
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and dynamic behaviour of tethered ligands, without the significant loss in functionality and 

degrees of freedom presented through CG methods. 

2.3. Molecular Mechanics and Force-Fields 

Within atomistic simulation framework, there exist several force-fields that have been 

parameterised to reproduce experimental behaviour observed for a particular system. These 

can be separated into two classes, Class 1, which have been primarily parameterised to study 

biomolecular systems, and Class 2 force-fields, which provide additional cross-term energy 

functions and parameters, making them more rigorous but computationally expensive. In this 

project both classes have been used, however as it is imperative to understand and observe 

protein physico-chemical behaviour, class 1 force-fields were mostly used. Therefore, the 

majority of this section will be highlighting the Class 1 FF methods, however in Section 2.5 

we will give a brief overview of the Class 2 methods and theory. 

2.4.  Potential Energy Expression – Class 1 FF 

The force-field potential is used to evaluate the potential energy (U) of a system, and 

is expressed as a function of the nuclear coordinates using mechanical equations. These 

potentials contain energy terms pertaining to forces that govern the atomic motions, derived 

from pairwise atom-atom interactions. These terms describe the bonded (Ebonded) and non-

bonded (Enon-bonded) interactions between the atoms of a system; these are then split in 

accordance with Figure 2.3. The Enon-bonded terms describe interactions between non-bonded 

parts of the system, or bonded segments separated by two or more intervening atoms. These 

include van der Waals (A) and electrostatic interactions (B). Ebonded terms refer to valence 

terms and account for changes to the internal coordinates of the system, such as bond length 

(C), bond angle (D), torsion angle (E) and improper torsion angle (F).  
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Figure 2.3 Potential energy expressions, showing both bonded and non-bonded interactions and equations. 

Reprinted from Advanced Drug Delivery Reviews, 65(2), Rebecca Notman, Jamshed Anwar, “Insights from 

molecular simulation of model membranes”, 237-250, Copyright (2013), with permission from Elsevier. 

 Non-bonded terms, as mentioned above, represent the intermolecular forces acting on 

two atoms separated by at least two atoms. The van der Waals (vdW) force (A) takes the 

form of a Lennard-Jones equation, and describes dispersion and repulsive forces, according to 

the separation distance (r) as shown.  At very large separation distances, the vdW potential 

can be seen to approach 0. As the atoms come closer together, the energy decreases, passing 

through a minimum (ε). With further reduction in the separation distance, the attractive 

dispersion force rapidly decreases, and a minimum separation distance (σ) is reached. At 

separation distances below this point a repulsive force is applied to the atoms. It should be 

noted that (
σ𝑖𝑗

r𝑖𝑗
)6 is the attractive part and (

σ𝑖𝑗

r𝑖𝑗
)12 is the repulsive part of term A. 

The electrostatic interactions (B) are modelled using Coulomb’s law. In this equation, 

the partial charge (qi and qj) between particles i and j, at a separation distance (rij) is seen to 

have a large attractive force the closer together these atoms are. The charge is restricted to the 
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centre of each atom and reproduces the electrostatic properties of the molecule/atomic 

environment, where the sum of a charge within a molecule must equal the molecule’s formal 

charge. The sum of all energy terms then allows the total potential energy for the system to be 

calculated, in accordance with Equation 2.1. 

 𝑼 =  𝑬𝒃𝒐𝒏𝒅𝒆𝒅 + 𝑬𝒏𝒐𝒏−𝒃𝒐𝒏𝒅𝒆𝒅 + 𝑬𝒐𝒕𝒉𝒆𝒓   (2.1) 

 

Lastly, energy changes due to bond stretching (C), are calculated in a quadratic form, 

equivalent to Hooke’s Law where kb is the spring constant, account for deviations in bond 

length (r) from the experimental reference value (r0). The angle-bending term (D) describes 

the bending of the angle between three atoms (θ). ka and θ0 are experimental reference values 

for stiffness and the equilibrium angle respectively. These two terms are often described as 

‘hard’ degrees of freedom, as substantial energy is required to cause changes in bond length 

or valence angles. A far greater contribution to the relative energy of the system is achieved 

through deviation of the torsion angle (E). In a chain of atoms 1-2-3-4, the torsion angle (φ) is 

the angle between the plane containing atoms 123 and the plane containing 234. Here kφ 

corresponds to the height of the torsional barrier and gives an indication of the energy 

required for the rotation around the corresponding bond, compared to the experimental 

reference angle (δ). The final bonded term, the improper or out-of-plane torsion angle (ω) 

describes the energy required to achieve correct geometrical alignment of atoms. This ensures 

that during equilibrium the correct alignment is achieved for the angle between the plane of 

the molecule and the out-of-plane bond (ω). A value of 0° corresponds to the atom being in 

plane.  
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It should be noted that some force-fields, especially Class 2 force-fields, may have 

additional energy components calculated that attribute to the final term, (Eother). Some Class 2 

examples of this will be mentioned in Section 2.5. 

2.5. Force-Field Parameterisation 

The energy functions above are subjected to a set of parameters that describe the 

energetic and geometric properties of the interacting particles, depending on the chemistry of 

an atom/molecule, defined by various atom types. The optimisation of force field parameters 

involves adjusting values to reproduce experimental data or data computed using QM 

methods. Typical examples of experimental data used for parameterisation of a force field or 

the consequent refinement are: vibrational spectra, densities, solvation free-energies, electron, 

or X-ray diffraction structures, and relative conformational energies and barrier heights. 

Generally, each force-field is based on a different type of experimental data, although there is 

some overlap, parameters are not transferable between force fields. As mentioned earlier, 

there are two classes of force-fields, their examples are given below. 

Examples of Class 1 Force-Fields: 

There are four most commonly used empirical force-fields, AMBER [245], 

CHARMM [246], OPLS-AA [247] and GROMOS [248]. The parameters for these force 

fields were extensively optimised with particular emphasis on the treatment of proteins. For 

the CHARMM force-field, primarily employed in this study, partial atomic charges were 

based on QM calculations (Hartree-Fock/6-31G* supramolecular data [246]). Due to the 

differences between parameterisation of force-fields, a slight bias towards a particular type of 

protein secondary structure often exists, for example, as discovered by Mu et al. [249] and 

Hu et al. [250], the CHARMM22 force field has a strong preference for α-helical 

conformations for di- and tri-peptides [249-251], whereas 2D-IR and NMR measurements 



40 

 

consecutively show that these peptides adopt primarily polyproline II (PPII) conformations 

[249]. To fix this, a CMAP correction was added to the potential energy function 

(implemented in CHARMM29 and CHARMM36 forcefields), which assigns Φ and Ψ cross-

terms, realised from grid based energy correction maps. Unfortunately, until recently a 

CMAP implementation was not possible in LAMMPS [252], the simulation package used in 

this project. However, as shown in Chapter 5, lack of CMAP correction had negligible effects 

on protein dynamics as the protein under investigation is globular, and experimentally is 

shown to display high levels of disorder in solution. 

Examples of Class 2 Force-Fields: 

For Class 2 force-fields there are two prominent force-fields, the COMPASS force-

field [253], used in this thesis, and the polymer consistent force-field (PCFF), which was a 

precursor to COMPASS. Parameterisation of the COMPASS force-field, was undertaken by 

Sun [253]  and involved a two stage hybrid procedure. In the first stage, atomic partial 

charges were derived based on ab initio calculation of electrostatic potential energy, the 

potential arising from the force acting on a unit of positive charge. Valence parameters (e.g. 

bond length, spring constants) were determined from ab initio energies including first and 

second derivative of the total energies. The vdW parameters were initially fixed to a set of 

initial values taken from PCFF. In the second stage, parameters were refined to yield good 

agreement with experimental data using empirical optimisation. In this optimisation, valence 

parameters were adjusted using molecular structures, dipole moments, vibrational frequencies 

and conformational energies taken from isolated molecules in gas phase systems. The vdW 

parameters were also adjusted based on density and cohesive energy of liquid molecules in 

their condensed phase. 

These force-fields have been developed to accurately model complex organic-

inorganic interfacial systems and contain additional cross-term parameters; bond-bond, bond-
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angle, middle-bond-torsion end-bond-torsion, angle-torsion, angle-angle-torsion, bond-bond-

13-torsion and angle-angle parameters. Whilst this does allow the accurate modelling of more 

detailed and cross-linked polymer surfaces, the additional calculations involved for cross-

terms significantly increase the computational cost. Furthermore, these force-fields were not 

Parameterised to accurately describe large protein dynamics, including folding and secondary 

structure and thus cannot be reliably applied to protein/surface systems. 

Due to these restrictions,  the Class 1 CHARMM22 [246] force-field has been used 

for the majority of this thesis as it contains parameters that allow accurate description of the 

protein behaviour, as well as having parameters for silica [254], PEG, and POX [255]. The 

Class 2 COMPASS force-field was required for studies comparing the effect of polyester and 

silica substrates on responsive behaviour of PEG (Chapter 5), as Class 1 force-fields do not 

contain parameters required to provide an accurate description of crosslinked polyester 

surfaces. 

2.6. Energy Minimisation 

Before a Molecular Dynamics simulation can be initiated, the molecular model must 

be optimised in order to remove overlapping atoms, and reset the position of atoms as close 

to equilibrium positions as possible. For a large system of N number of atoms, the energy 

surface can be rather complex, as the potential will be a function of 3N cartesian coordinates. 

One of the most interesting aspects of the energy surface is the minimum energy points, as 

these correspond to stable and meta-stable states of the system. There may be a very large 

number of minima on the energy surface, with the purpose of energy minimisation being to 

attain a configuration that corresponds as close to the global energy minimum as possible. 

Energy minimisation algorithms [256, 257] use numerical methods to gradually change the 

coordinates of an atom, lowering the energy until a minimum is reached. Derivative 
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algorithm methods are able to provide information about the shape and size of the energy 

surface, and enhance the efficiency at which the minimum can be found. 

The derivative of the energy function with respect to the atomic coordinates, termed 

the energy gradient, provides important information useful in the energy minimisation 

process. The direction of the gradient indicates where a minimum is located, whilst the 

magnitude indicates how far away from the minimum the current coordinates are. The energy 

of the system is then reduced by stepping in the direction of the net force until the energy 

converges to a minimum when the first derivative is zero and the second derivative is 

positive. 

In this study, the Polak-Ribiere version of the conjugate method [258] has been used. 

In these methods, steps are taken in the negative direction of the energy gradient, to locate an 

energy point that is lower in potential than the previous point. Once the point of energy is 

located, the next direction in the algorithm is determined by taking the conjugate gradient of 

the previous direction. The local energy minimum is eventually attained when the user-

defined convergence criterion is met.  

2.7. Molecular Dynamics 

To simulate the motion of atoms in a system and investigate its structural evolution, 

the molecular dynamics approach is employed. In molecular dynamics (MD), the system is 

allowed to evolve at a finite temperature according to the Newton’s second law of motion: 

 𝑭 =  −
𝐝𝐔

𝐝𝐑
= 𝐦

𝐝𝟐𝐑

𝐝𝐭𝟐
= 𝐦𝐚    (2.2) 

 

Here U is the potential energy determined by the force-field energy expression, 

example given by Equation 2.1, R is the vector that contains x, y and z coordinates of the 
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particles, and F and a are the force and acceleration vectors respectively. To begin a 

dynamics simulation, we require a set of initial atomic coordinates, velocities and the 

interaction potential. For a short period of time, known as a time-step, the interaction within 

the system may be considered constant. During each time-step, the interactions between 

atoms are computed and combined with the current positions and velocities to generate new 

atomic positions and velocities. The atoms are then moved to their new position, and a set of 

updated positions and velocities are determined. By undertaking a large number of time-

steps, a molecular dynamic trajectory is generated, and the time behaviour of a system is 

obtained. 

MD allows for a larger portion of the energy surface to be explored and also allows 

for time dependent properties to be determined, since atomic movement is generated 

according to Newton’s second law of motion, using numerical integration. In this study, the 

velocity-Verlet al.gorithm [259] (a variant of the Verlet method [260]) is used to determine 

new positions and velocities. In the velocity-Verlet al.gorithm the position (R) and velocity 

(V) vectors after time step ∆t are defined as follows: 

 𝑹(𝒕+∆𝒕) =  𝑹(𝒕) + 𝑽(𝒕)(∆𝒕) +
𝟏

𝟐
𝒂(𝒕)(∆𝒕)𝟐

   (2.3) 

𝑽(𝒕+∆𝒕) =  𝑽(𝒕) +
𝟏

𝟐
∆𝒕(𝒂(𝒕) + 𝒂(𝒕+∆𝒕))    (2.4) 

The velocity-Verlet method is implemented as a three-stage process. First, the new 

position vector (R(t+∆t)) is calculated (Equation 2.3) where initial velocities (V(t)) are randomly 

assigned using a uniform Maxwell-Boltzmann distribution for a given temperature, and 

acceleration (a(t)) is calculated from the derivative of the interaction potential (Equation 2.2). 

Next, the atomic coordinates are updated, and the new values of the acceleration are 

determined (a(t+∆t)) using the interaction potential (Equation 2.2). In the third step, values of 

a(t) and a(t+∆t) are used to determine the new velocity vector V(t+∆t) (Equation 2.4). It should be 
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noted that the velocity-Verlet al.gorithm assumes that acceleration is dependent on the 

position of the particles and not on their velocities. 

2.8. Periodic Boundary Conditions 

A system’s size is required to be large enough so that the macroscopic properties 

calculated from simulation match those of experiment. Periodic boundary conditions [256, 

257] in theory allow for a system of “infinite” size to be modelled. Firstly, particles are 

enclosed in a box known as a unit cell. This unit cell therefore contains all “unique” atoms of 

the system. This cell is then replicated by rigid translation in all three Cartesian directions (x 

y, and z) forming an infinite sized system. For example, consider Figure 2.4 which shows a 

two-dimensional illustration of periodic boundary conditions. In the centre of the image we 

see our origin cell, containing our “unique” atoms, surrounded by 8 unit cells containing our 

image atoms. As can be seen, a blue atom has just exited the right of our origin cell, and has 

moved into the image cell. In our origin cell, the atom from our image cell has entered the 

origin cell, thus maintaining a constant number of atoms in the origin cell. 
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Figure 2.4 A two-dimensional illustration of periodic boundary conditions. Sourced from 

<http://isaacs.sourceforge.net/phys/pbc.html> on 11/01/2018 

The use of such periodic boundary conditions also eliminates surface effects near boundaries 

which can lead to erroneous results. Depending on the system to be examined, there are 

several space-filling type boxes that may be more computationally efficient for running 

molecular dynamics calculations. In this project, we have implemented the most commonly 

used triclinic unit cell. 

It should also be noted that periodic boundary conditions have been implemented in this 

thesis to create an “infinite surface” for simulations. To allow this, a unit-cell is created 

whereby opposite surface edges are bonded together, eliminating the possibility of edge and 

other erroneous surface effects. This also allows scaling up of a surface to suit the size of 

contaminant models, where the surface model can be extended as a factor of the lateral 

dimensions. 
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2.9. Non-Bonded interactions 

The most time-consuming part of a molecular dynamics simulation is the calculation 

of the non-bonded energies and forces, namely long-range electrostatic and Lennard-Jones 

interactions. In this thesis, a potential truncation method has been implemented to deal with 

non-bonded interactions. The potential truncation method introduces a small perturbation to 

the potential and force calculations, rendering it not accurate enough for calculations of long-

range electrostatic interactions, and becomes computationally expensive as the system size 

increases. To lessen the computational burden, various truncation schemes have been 

developed whereby non-bonded interactions beyond a cut-off distance are ignored, and a 

smoothing function like the Ewald summation technique [261] is typically applied. This 

alleviates such effects by dampening interactions between atoms separated by a distance 

larger than the cut-off criteria, attempting to correctly connect the vdW and electrostatic 

interaction energy to zero.  

In this thesis, the more computationally efficient Particle-Particle Particle-Mesh 

(PPPM) [262] method has been used. This style invokes a particle-particle particle-mesh 

solver which maps atom charges to a 3D mesh, uses 3d Fourier transforms to solve Poisson’s 

equation on the mesh and then interpolates electric fields on the mesh which point back to the 

atoms. This allows for rigorous treatment of long-range electrostatics in a computationally 

efficient manner [263]. 

2.10. Thermodynamics Ensembles 

In this thesis, a canonical ensemble is applied whereby the thermodynamic state of the 

system of interest is described by a fixed volume V, fixed number of molecules N, and fixed 

temperature T. Therefore, during molecular dynamics in the canonical ensemble (NVT), the 

system under periodic boundary conditions is evolved at constant volume and temperature. 
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Other simulations are often done in the isothermal-isobaric (NPT) ensemble, as many 

experimental measurements are made in environments of constant temperature and pressure. 

However, in this study we employ a fixed and “infinite” surface benchmarked to 

experimental results, meaning an NPT ensemble would be unsuitable as a change in volume 

will result in the surface being stretched/shrunk to fit the periodic cell, and as such the density 

and other properties of the surface will be affected. 

2.11. Temperature Coupling 

Temperature (T) is an important parameter in MD simulations. It specifies the 

thermodynamic state of the system, but perhaps more importantly, the control of it helps 

mitigate several sources of error including solute drift during equilibration, drift as a result of 

force truncation and integration errors or heating due to external and frictional forces. In a 

molecular dynamics simulation, the initial velocities are generated to produce a Maxwell-

Boltzmann distribution at a user-defined temperature. However, as the simulation progresses 

the temperature does not remain constant as kinetic and potential energy are exchanged. To 

maintain a constant temperature, the velocities need to be adjusted accordingly, using a 

temperature coupling scheme. 

A method which gives the correct description for canonical ensemble simulations is 

the extended-ensemble approach first proposed by Nosé [264] and later modified by Hoover 

[265], now known as the Nosé-Hoover temperature coupling algorithm. In this method, the 

system Hamiltonian is extended by introducing a thermal reservoir and a friction term in the 

equations of motion. The friction force is proportional to the product of each particle’s 

velocity and friction parameter ξ. This friction parameter, or ‘heat-bath’ variable, is an 

independent dynamics quantity with its own equation of motion, where the time derivative 

(Equation 2.2) is calculated from the difference between the current kinetic energy and the 
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reference temperature. In Hoover’s formulation, the particles’ equations of motion (Equation 

2.2) are replaced by: 

𝒅𝟐𝑹𝒊

𝒅𝒕𝟐
=

𝑭𝒊

𝒎𝒊
− ξ

𝒅𝑹𝒊

𝒅𝒕
    (2.5) 

𝒅ξ

𝒅𝒕
=

𝟏

𝑸
(𝑻 − 𝑻𝟎)    (2.6) 

Where the equation of motion for the heat bath parameter ξ is given by Equation 2.6, 

where T0 denotes the reference temperature, T is the current instantaneous temperature of the 

system, Q determines the strength of the coupling, R is the vector that contains x, y and z 

coordinates of the particle, F is the force vector, mi is the mass of the particle and t is the 

timestep.  

 We have also used the Andersen [266] temperature control method for simulations 

with the polyester surface; an alternative method to velocity scaling that generates rigorous 

canonical ensembles. This method is based on stochastic collisions between particles, 

whereby particle’s velocities are adjusted to produce a predefined collision frequency. 

Effectively, a series of constant energy states are generated whose distribution of energies 

match a Gaussian function.  

2.12. Bond Constraint Algorithms 

As previously discussed, one of the most demanding aspects of simulation is the 

computation of non-bonded interactions, as large systems require millions of pairs to be 

evaluated at each time-step. One way to enhance computational efficiency is by extending the 

time step used for each calculation. However, this will introduce systematic errors, as the 

shortest timescale in biological simulations are the hydrogen bond vibrations at 1 fs. 

Fortunately, in most simulations the hydrogen bond vibrations are not of significant interest, 
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and can be removed entirely by introducing bond constraint algorithms such as SHAKE [267] 

to make it possible to extend time-steps to 2 fs. 

In the SHAKE algorithm, bonds and angles are set to prescribed values by moving the 

bonded particles parallel to the previous bond directions. This is an iterative method, where 

all the bonds are reset sequentially to the correct length. Because the bonds are coupled, this 

procedure has to be repeated until the desired accuracy is reached. SHAKE is simple and 

numerically stable since it resets all constraints within a prescribed tolerance; however, this 

method has the drawback that no solutions may be found when displacements are large. This 

is due to the coupled bonds being handled one by one, thus correcting one bond may tilt a 

coupled bond so far that the method does not converge. 

2.13. Enhanced Sampling Techniques 

Whilst molecular dynamics simulations present as a very useful and accurate method 

for simulating the time evolution of a system, one of the largest limitations is the ability to 

adequately sample the free energy landscape of a system. For large systems, the complexity 

and ruggedness of the free energy surface presents significant limitations in exploring 

conformational states, particularly for processes such as protein folding and in some cases 

protein aggregation. As shown in Figure 2.5, these complex processes present a series of 

favourable conformational states and local energy minima. The system can easily be trapped 

in one of the local minima and fail to sample the entire conformational space. To solve this 

problem, enhanced sampling algorithms have been developed that can accelerate 

configurational changes that involve the crossing of large free energy barriers. 
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Figure 2.5 Example of a free-energy landscape for a system. There are several local minima states (1-6), 

before the system is finally in the global energy minimum (7). 

 

There are several types of enhanced sampling techniques, such as Replica Exchange 

Solute Tempering (REST) [268], Replica Exchange Molecular Dynamics (REMD) [269] and 

Umbrella Sampling [270]. Detailed information on sampling techniques and their benefits 

can be found in a recent review by Bernardi et al. [271]. Unfortunately, for this study there 

are significant difficulties adopting these methodologies due to the system sizes studied in 

anti-fouling systems, particularly systems containing both proteins and surfaces with 

functional modifiers. 
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Chapter 3 

3. Protein and Surface Models 

3.1. Overview 

There are several major challenges in using atomistic modelling to study anti-fouling 

systems. We begin this section by outlining the challenges and limitations of molecular 

modelling techniques. We then present a detailed background in the development and 

validation of silica and polyester substrates that have been used in this study, and how 

molecular modelling methods have previously been used to model protein-surface 

interactions. We then present the surface models used in this study, including 

functionalisation methods. 
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3.2. Modelling Anti-fouling: 

In Chapter 1 we outlined how experimentalists have elucidated several molecular 

level phenomena contributing significantly to the adsorption of proteins and other foulants. 

The resolution of these experimental techniques alone is insufficient to detail the structure 

and dynamics of proteins at interfaces. Molecular modelling studies are a powerful tool to 

address this shortcoming in resolution, with many theoretical studies now being conducted in 

conjunction with, or compared against experimental studies. There are several recent reviews 

published on the molecular modelling of protein-surface interactions [8, 243, 272-279] all 

detailing approaches, methodologies and limitations in molecular dynamics simulations. 

Although these are significantly important considerations, these current reviews do not 

address how simulations can and have been used to further the understanding of anti-fouling 

systems. 

 

Figure 3.1 Schematic representation of the interfacial force field (IFF) method applied to a peptide 

adsorption simulation. The solution and solid surface phases are modelled by force fields that accurately represent 

their respective intra-phase interactions while interactions between atoms of the solution phase with the solid phase 
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are represented by an interfacial force field parameter set that is tuned to accurately represent peptide adsorption 

free energy [273]. 

As described in many of these reviews, modelling protein-surface interactions are 

widely done in a 3-phase process, summarised in Figure 3.1. Essentially, analysis of both the 

protein in solution (solution phase) and surface (solid phase) must be independently detailed 

to accurately describe conformational changes in the protein at the surface-water interface 

(interfacial region). With significant improvements in computational power, highly complex 

models with advanced functionality as mentioned above can now be accurately studied within 

a reasonable timeframe. The biggest hurdle facing anti-fouling modelling is brought about 

through complexities in modelling the interfacial region. Herein lies several complications, 

one being the limitations on system sizes and time-scales associated with current modelling 

techniques, as summarised in Figure 2.1. Another issue is the adequate sampling of the 

protein during adsorption. Although this has often been solved through enhanced sampling 

techniques (Section 2.13), there are difficulties adopting these methodologies due to the 

system sizes studied in anti-fouling systems. Finally, one of the largest hurdles is the 

deficiencies in parameters to accurately describe interactions between the highly complex 

surfaces currently being experimentally developed, and the protein contaminant model [273]. 

3.3. Substrates 

The following sections focus on understanding anti-fouling materials and the 

development of computational models able to reproduce experimental results. We start with 

the history, development and challenges associated with substrate models of both polyester 

and silica, two of the prominent surfaces used for industrial and biomedical applications.  

3.3.1. Polyester 

Organic coatings including epoxy resins, polyester and similar paints have been used 

for decades in architectural coatings, however modelling work on their anti-fouling properties 
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only began in the mid-1990s, due to their failing caused by atmospheric contamination. 

Investigations in the interfacial structure and properties of organic coatings on aluminium and 

other metal oxide coatings [280] were used to identify methods of the coating’s adhesion at 

the interface, degree of curing in polymers and permeability to water and oxygen. As research 

progressed, a computational method was developed to accurately predict the cross-linking of 

epoxy resins [281]. Similar methods have since been used, with results showing density and 

elastic constants very close to experimental values [282, 283], predictions of glass transition 

temperatures, linear thermal expansion coefficients and Young’s modulus [284]. 

Furthermore, these detailed atomistic calculations come with the added benefit of knowing 

the molecular detail and structuring of the polymers. Coarse-grained simulations have also 

been implemented, allowing simulation of commercial grade polymers (i.e. polymers in the 

2000+ monomer range), as well as meso-scale properties like hydrodynamic radius, radius of 

gyration [285] and glass-transition temperature [286] which have all been shown to be in 

good agreement with experimental results. 

With detailed models now available for these materials, there have been significant 

studies on the anti-fouling behaviour of these surfaces. Due to business needs (atmospheric 

contamination with carbon), complex polymer surfaces have only investigated adhesion with 

soot like contaminants such as graphite, amorphous carbon and C60 [96, 287-292]. From 

these results, several insights on designing surfaces resisting adhesion were identified through 

surface modification, as hydroxylation, carboxylation and fluorination were all shown to 

reduce adhesion of graphite [96, 288, 289] and C60 [287, 291, 292]. Furthermore, it was 

identified that increasing atomic scale roughness also reduced adhesion [96, 291], however it 

is important to note that roughness should not be commensurate with the size of the 

contaminant, as “cavitation” or large surface roughness has been shown to significantly 

increase adsorption [293]. 
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It has been shown that a significant limitation of relatively soft polyester surfaces 

arises due to “hydrophobic recovery” [292]. In this study, it was noted that in systems with 

high surface mobility and non-crosslinked polymer fragments (the introduced functional 

groups) were able to protrude into the surface, resulting in loss of functionality and strong 

adhesion with a fullerene molecule. Conversely, in stiffer, more rigid systems, this 

hydrophobic recovery was not possible, resulting in a less favourable adsorption, whilst still 

maintaining the core flexibility of the polymer bulk. This phenomenon has also been seen 

occurring in experimental studies [294].  

Unfortunately, due to the complexity of these models outlined above, the ability to 

accurately model protein interactions with these organic coatings is very limited. There have 

been some studies which have used simplistic models of a basic polyethylene surface 

interacting with a protein [295, 296], but force-field parameters and other limitations [297] 

are still issues that need to be addressed. 

3.3.2. Silica/oxide 

As with polyester based surfaces, there were significant hurdles in the early stages of 

computational research to be addressed to model industry relevant surfaces.  The first of these 

hurdles was developing an accurate starting structure representative of amorphouse silica 

rather than quartz/crystalline silica. Methods to reduce topological and bonding defects 

presented in these surfaces were first addressed by Garofalini et al. [298, 299], who used 

empirical molecular dynamics to compare develop accurate vitreous silica models. Since this 

work, there have been several alternative models proposed [300], a detailed overview can 

also be found in Rimola’s review [30]. 

As pH increases above ~3, deprotonation of silanol terminal groups takes place, 

leading to negatively charged surfaces [301, 302]. Methods using ab-initio calculations to 
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describe these deprotonated states at pH 7 were first implemented by Hassanali et al. [303]. 

Due to the significantly higher than normal bulk silica charges in this method, a more recent 

parameter set by Buteneth et al. [242] has been proposed. These MD parameters are able to 

closely reproduce ab-initio and DFT results at the surface-water interface [242], however 

there is limited experimental data to compare with. 

Complexity to the problem is also added when considering the water models to use, as 

the combination of force-field and water model has been shown to significantly affect the 

behaviour of proteins [304-306]. The quartz-water interactions using the Lopes [307], 

CHARMM water contact angle [254] and Clay force-field [26], have been compared with x-

ray reflectivity and ab initio calculations [308]. In spite of these force-fields all having a very 

similar functional form, the Clay force-field was seen to best represent the structuring/dipole 

moment of interfacial water from these experiments, however the Clay force-field is not 

designed to describe bulk silica, as all bonding terms other than those for the surface 

hydroxyls are absent. The structural differences between quartz, amorphous silica and pH 

effects have significant implications on the behaviour of interfacial water and hydrophobicity 

of the surface. Specifically, the highly ordered surfaces of quartz have been seen both 

theoretically and experimentally to feature a dense distribution of geminated surface silanols, 

leading to ordered water layers [116, 309, 310]. Conversely, amorphous silica surface is 

characterised by isolated silanols [311, 312], resulting in disordered water layers [313-315].  

3.4. Modelling Protein-Inorganic Surface Interactions 

As elaborated earlier, there are several limitations in the modelling of protein-surface 

interactions. Whilst protein models have been significantly refined and applied for suitability 

in studying protein folding [316-318], protein-protein [319, 320] and protein-membrane [321, 

322] interactions, there is limited literature for protein-surface interactions [272]. This is 
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slowly being addressed, with prominent force-fields including the Dual force-field [323] and 

Interfacial force-field [252, 324] by Latour et al. and the INTERFACE force-field [325] by 

Heinz et al. It should be noted, however, that although these force-fields are being developed 

to more accurately describe protein-surface interactions, we can still utilise traditional class 1 

force-fields to gain insight into the adsorption process. 

Another challenge that is slowly being bridged in protein-surface modelling is the 

trade-off that exists in system size/detail and simulation time. Whilst computational power is 

significantly increasing, allowing larger and longer simulations, there are several studies 

using peptides or small/rigid proteins that are of high relevance in the field of anti-fouling. 

For example, work by Schwierz used steered molecular dynamics to “push” a polyalanine 

peptide onto a polar surface, mimicking and comparing the behaviour to AFM [97]. These 

simulations revealed that the peptide adsorption resistance is caused by the strongly bound 

water hydration layer and characterized by the simultaneous gain of both total entropy in the 

system and total number of hydrogen bonds between water, peptide, and surface. Similarly, 

Penna has simulated peptide adsorption on surfaces [118, 326] to propose a generalized 

molecular level mechanism for peptide adsorption. These works noted that an incoming 

contaminant would undergo a multi-phase adsorption process, as summarised in Figure 3.2. 

 

Figure 3.2 generic peptide adsorption mechanism proposed by Penna and Biggs [118]. This mechanism is 

composed of three phases: (1) biased diffusion of the peptide from the bulk phase toward the surface; (2) anchoring 



58 

 

of the peptide to the water/solid interface via interaction of a hydrophilic group with the water adjacent to the surface 

or a strongly interacting hydrophobic group with the surface; and (3) lockdown of the peptide on the surface via a 

slow, stepwise and largely sequential adsorption of its residues. WL = water layer. 

It should be noted that there are several studies involving protein adsorption on 

surfaces [327-332], however, the direct relevance to anti-fouling is limited. These studies 

have provided some insight to protein adsorption, for example how the terminal group effects 

the folding and dynamics of proteins [332], or the effect of silica surface hydroxylation on 

protein adsorption orientation [333]. However, it should be noted that the majority of these 

studies use hard proteins, like lysozyme, as the contaminant model. These proteins are not 

relevant for biofouling, and are more sensitive to environmental influences like surface 

features [52, 320, 334]. 

In this thesis, we have studied the soft protein EAS hydrophobin, which is known to 

be involved in the fungal biofouling process. Whilst the Class 2 hydrophobin HFb1 has been 

simulated adsorbing on graphite [335] and PDMS [336], EAS has only been computationally 

studied in solution and at the air-water interface [77, 79]. 

3.5. Computational Models 

Surface and protein models are presented below with a brief description outlining 

relevant details on construction or source of the model. Due to the variance in simulation 

detail and force-fields used, a brief description of the simulation procedure will be presented 

at the beginning of each results chapter (Chapters 4-7). 

 

3.5.1. Polyester Surface Model 

The polyester substrate model comprised polyester chains comprising 15 units of 2-

butyl-2-ethyl-1,3-propanediol, 2 units of trimethylolpropane and 16 units of isophthalic acid. 

Tributoxymethyl-melamine crosslinks were reacted with the polyester chains to form the 
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crosslinked polyester film typical of common industrially used coatings. Details of the 

construction procedure can be found in work by Yarovsky and Evans [281]. The polyester 

surface has a density of 1.3 g per cm3, compatible with experiments, and an average film 

thickness of 15 Å, with lateral dimensions of 37 Å in the x and y directions. 

 

3.5.2. Silica Surface Model 

To allow for both experimental comparison and future surface modification we used a 

previously modelled silica surface [287, 337] described by Garofalini et al. [298]. This 

represents a realistic, highly hydrated amorphous silica surface with a surface silanol density 

of 4.7 OH groups per nm2. The amorphous silica substrate displays a density of 2.6 g/cm3 

(comparable to experiment), an average film thickness of 17 Å (in the z direction) and lateral 

dimensions of 27 Å (Chapter 4), and 81 Å (Chapters 5-7), in both x and y directions. 

3.5.3. Surface functionalisation 

To incorporate functionality to the polyester surface, the ‘grafting from’ and ‘grafting 

to’ approaches were considered. To simulate a ‘grafting from’ method, whereby PEG/POX 

chains are grown from all available functionalisation sites [338], PEG/POX molecules were 

attached to the polyester substrate, leaving no OH groups unreacted. In contrast, for the 

‘grafting to’ method, fully grown chains typically react with only a portion of available 

functional sites [253], and therefore functional ligands were attached to randomly identified 

OH groups on the polyester surface, leaving a portion of unreacted OH groups. The ‘grafting 

to’ approach was also employed to generate functionalised silica models. 
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Chapter 4 

4. Effect of Substrate Behaviour on Tethered Surfaces 

4.1. Overview 

This work finalises studies focusing on environmentally responsive coatings, under 

the Australian Research Council (ARC) Linkage Grant LP0990511 in partnership with 

BlueScope Steel. In this chapter, we present a molecular dynamics study investigating de-

swelling and swelling of some of the most commonly used responsive materials – PEG-

functionalised silica and polymer surfaces – as a function of hydration and temperature. 

We show that PEG chains grafted onto the hard silica substrates exhibit a dehydration 

induced collapse that is far more pronounced compared to chains grafted onto the soft 

polyester surface. The difference between the hard and soft substrates is particularly notable 

at low coverage densities where the chains are sufficiently separated from one another. We 

conclude that soft substrates may be detrimental for the efficient response of the 

functionalised surfaces to changes in hydration. Therefore, enhancement of the surface 

hardness must be considered when designing responsive surfaces for solution-based 

applications, such as antimicrobial coatings for interchangeable wet/dry environments and 

biomedicine. 

In this chapter, simulations on silica surfaces performed by Lachlan Shaw are used for 

comparison with simulations of both polyester models, conducted by Kamron Ley, who also 

performed all the analyses. This work has been published in the peer-reviewed journal, 

Journal of Molecular Simulation [195]. 
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4.2. Introduction 

Surfaces that are able to resist the non-specific binding of proteins and other foulants 

are sought after in many applications, with the aim to not only deter but control biomolecule 

adhesion. In biomedicine, functionalised surfaces are used to manufacture prosthetic devices 

to replicate functions of human tissues and organs [339, 340], as well as to act as carriers in 

drug delivery systems [341-344]. In these applications, a solid surface is grafted with 

oligomers that display non-immunogenicity, non-antigenicity, hydrophilicity, and protein-

rejection properties to target the issue of protein adhesion, rendering the material 

biocompatible.  

In Section 1.9.1.1 we presented a detailed overview of PEG’s unique ability to change 

conformation in response to various triggers [132] which in turn can assist in excluding 

foreign materials such as organic contaminants including proteins, from its proximity [133, 

134]. These examples illustrate that PEG’s unique ability to reject proteins and other 

contaminants combined with its non-toxic and anti-genetic properties is a justification of its 

extensive use as a surface protector for biomedical and industrial applications. Despite this, 

an understanding of its fundamental behaviour at the atomic level is still lacking. 

The specific interactions of PEG with water molecules have long been shown to be 

responsible for the induced conformational changes. Atomic-force microscopy [345] and ab-

initio calculations [346] have shown that the distance between adjacent oxygen units in a 

PEG oligomer was responsible for the type of hydrogen bonding formed, with shorter 

distances stabilising helical conformations. Another study using low-field NMR [149] 

discovered that the swelling response of PEG chains could be attributed to water. In this 

study, it was noticed that once a 1:1 ratio of tightly bound water per unit of ethylene glycol 

(EG) was achieved, additional water would induce swelling behaviour on the PEG chains. 
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Unfortunately limitations arise in the experimental characterisation of PEG’s dynamic 

behaviour due to its relatively small length and extreme flexibility [347]. This is particularly 

prevalent in the case of low molecular weight PEG oligomers (e.g. pentamers), which are of 

particular interest for self-cleaning surface design. Limitations in experimental 

characterisation combined with the desire to understand the surface grafted behaviour of this 

‘popular’ polymer have instigated the use of computational modelling and in particular 

classical force-field molecular dynamics [194, 348-351]. However, the majority of molecular 

dynamics studies have so far concentrated on the conformation, chain dimension and overall 

behaviour of isolated PEG chains in solution. To the best of our knowledge, there has been no 

fully-atomistic molecular dynamics study investigating the hydration induced conformational 

transitions of low molecular weight PEG chains grafted on different substrates. 

In this thesis, we use force-field molecular dynamics to investigate the hydration 

induced response of PEGylated substrates at various temperatures. Substrates included 

inorganic and organic films in the form of silica and polyester respectively, with various PEG 

coverage densities examined. These interfaces are prominent in both biological and non-

biological systems [352], as shown by some of the examples described above. Understanding 

the behaviour and interactions in these systems at the nanoscale [353-355] will facilitate 

design of responsive surfaces for applications in industry and medicine. 

4.3. Method 

4.3.1. Models of PEG grafted silica and polyester 

substrates 

Silica and polyester models were constructed as detailed in sections 3.5.1 and 3.5.2. 

The silica model was a periodically replicated three-dimensional cell with a vacuum spacer in 
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the z direction and 3D periodic boundary conditions to mimic a 2D periodic silica film. For 

all subsequent simulations the surface, OH groups remained free to move, while the 

underlying SiO2 atoms were kept fixed (constrained) at their initial x, y and z coordinates. 

Unlike silica, the polyester model lacks hydroxyl groups at the outer surface layer and 

therefore, attachment of hydroxyl residues onto polyester substrates was required [291, 292, 

356] to enable subsequent covalent tethering of PEG derivatives [340]. 

PEGylation of both silica and polyester substrates was undertaken as described 

previously (Section 3.5.3). The PEGylated polyester and silica substrates with a finite number 

of OH groups unreacted (“grafting to” approach) are denoted PolyOH-σPEGn and SiOH-

σPEGn respectively, while Poly-σPEGn denotes PEGylated polyester surfaces with no OH 

groups unreacted, attained from the ‘grafting from’ method. The parameter σ represents the 

grafting density of PEG chains in units of PEG molecules per unit area, and the subscript (n) 

represents the degree of PEG oligomerization. PEG chains were tethered to polyester at a 

surface density ranging between 0.29-1.00 PEG/nm2 and to silica at a density ranging 

between 0.13-0.94 PEG/nm2.  We considered PEG pentamers (n=5) and octamers (n=8) 

which display a free radius of gyration of ~4.8 Å and 6 Å respectively. A summary of all 

substrate models examined is presented in Table 4.1. 

Table 4.1 Summary of substrate models  

Substrate Description Residual silanol 

coverage density 

(OH groups per nm2) 

PEG coverage 

density (PEG 

per nm2) 

PEG 

chain 

length 

Poly-σPEG5 PEGylated polyester 

without residual OH 

sites 

n/a 0.29-1.00 5 

Poly-σPEG8 8 

PolyOH-σPEG5 PEGylated polyester 

with residual OH sites 

4.36-5.07 

 

0.29-1.00 

 

5 

PolyOH-σPEG8 8 

SiOH-σPEG5 PEGylated silica with 

residual OH sites 

3.23-4.04 

 

0.13-0.94 

 

5 

SiOH-σPEG8 8 
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4.3.2. Computational details 

The COMPASS force field [253], optimised for the simulation of condensed phase 

polymers and organic/inorganic interfaces was used to evaluate the inter- and intra-molecular 

interactions within the all-atom models. The COMPASS force field has been demonstrated to 

predict cohesive properties of an extensive number of polymers including polyethylene 

glycol oligomers [357]. Energy minimisation was performed to relieve any induced strain in 

the constructed models prior to molecular dynamics simulations. For energy minimisation, 

non-bonded interactions were calculated using the Ewald procedure with an accuracy of 0.01 

kcal mol-1 and an update width of 1.0 Å. The conjugate gradient algorithm was used for 

energy minimisation, with an energy convergence criterion of 0.01 kcal mol-1 Å-1. For MD 

procedures, non-bonded interactions were calculated using the atom-based summation 

method with a cutoff radius of 15.5 Å, a spline width of 5.0 Å and a buffer width of 2.0 Å. A 

long-range vdW tail correction was applied for non-bonded interactions larger than the cutoff 

radius. A 1.0 fs time step was used for the NVT dynamics, utilising the Andersen thermostat 

[266] to control the temperature with a collision ratio of 1.0. All systems were equilibrated by 

ensuring that no energy drifts occur during the data collection stage of MD. Analysis of 

properties for all substrates listed in Table 4.1 was undertaken over the final 1 ns of 

equilibrium MD that continued for the total time specified in the next section for each system. 

4.3.3. Simulating the hydration induced response of 

PEG grafts 

Having prepared the PEGylated substrates, we utilized a molecular dynamics (MD) 

procedure that emulates the wetting (hydration) and drying (dehydration) of the grafted films 

[338]. To represent a fully hydrated state we use a flexible simple point charge (SPC) water 

model [253] to explicitly solvate the systems and a vacuum environment to emulate a de-
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hydrated state. PEG chains were initially extended in the direction normal to the surface 

plane prior to MD in explicit solvent (hydrated state), where a ~20 Å water layer was added 

to solvate the PEGylated substrates with water density of 1 g∙cm-3, as shown in Figure 4.1a. 

The water layer extended over 30 Å from the terminal PEG unit and a ~30 Å vacuum spacer 

was also added above the water layer. MD simulation of these systems was then undertaken 

for 2 ns at temperatures of 298 K and 370 K. After simulations in the aqueous (W) 

environment, PEG chains were subjected to dehydration by removing water molecules and 

undertaking MD of the PEGylated films in a vacuum (V) environment. A schematic diagram 

of the setup is shown in Figure 4.1b. Simulation of the vacuum systems was again undertaken 

for 2 ns at a temperature of 298 K and 370 K. Once simulated in the vacuum environment, 

resultant systems were transitioned back to a fully hydrated environment (Figure 4.1c) by 

undertaking molecular dynamics in solvated systems for 2 ns at temperatures of 298 K and 

370 K.  

 

Figure 4.1 Typical model setup highlighting dehydration (W(a)→V(b) transition)  and hydration (V(b) 

→W(c) transition)  of PEGylated substrates. Colour codes: white-hydrogen, grey-carbon, red-oxygen and yellow-

silicon. 

We monitored the height of the grafted PEG chains in both dry and wet environments 

over the final 1 ns of equilibrium MD. This height was defined as the vertical distance from 

the anchor point (reacted O atoms) to the uppermost atom of the PEG. A change in chain 

 
(a) 
W 

 
(b) 
V 

 
(c) 
W 

 

de-swelling swelling 
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height (∆ℎ) was then determined according to the following: ∆ℎ = ℎ𝑤 − ℎ𝑣 where ℎw and ℎv 

represents the chain height in the water and vacuum states respectively. During dehydration 

(W→V transition), a positive change in chain height (∆ℎ) indicates a collapse of the grafted 

molecules, while the hydration induced transition (V→W transition) is expected to result in 

swelling of the grafts. We also monitored the shape of the tethered PEG chains by calculating 

their radius of gyration in the xy plane as a function of distance from their individual anchor 

points in the direction normal to the surface (z axis). These profiles were then mirrored about 

the z-axis providing a visual representation of the chain-occupied volume.  

4.4. Results 

The majority of the results presented henceforth are focused on PEGylated pentamer 

surfaces. This has been undertaken to focus the discussion on qualitative trends common to 

pentamer and octamer systems. Any difference in behaviour will be highlighted.    

4.4.1. De-swelling of PEGylated surfaces upon drying 

When the hydrated PEG chains are subjected to dry conditions (W→V transitions), 

they exhibit a collapse manifested by a change in chain height (∆ℎ). Figure 4.2 shows that the 

extent of collapse is strongly dependent on the chemical nature of the substrate. PEG chains 

grafted onto silica demonstrate a significant collapse, particularly within the low coverage 

density range (σ) of 0.13 – 0.5 PEG per nm2. PEG chains grafted onto polyester substrates 

also exhibit a dehydration induced collapse, but far less pronounced compared to silica. The 

difference between silica and polyester substrates is particularly notable at coverage densities 

below 0.5 PEG per nm2 where the chains are adequately isolated from one another. This is in 

agreement with previous experimental studies which have suggested that in the low grafting 

density regime, the response of the grafted chains is strongly dependent on the nature of the 

substrate [358, 359]. The conformation of the chains is depicted in Figure 4.3, which displays 
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the radius of gyration of the chains in the xy plane, as a function of vertical distance from 

their anchor point. It can be seen from Figure 4.3a and b that the de-swelling of PEGylated 

silica can be characterised by two types of key conformational transitions during dehydration: 

an extended-to-mushroom transition at high grafting densities (0.94 PEG per nm2) and an 

extended-to-pancake transition at low grafting densities (0.13 PEG per nm2). In contrast, 

dehydration of PEGylated polyester (Figure 4.3c and d) is characterised by a slight 

compression of the chains in the lateral direction and limited de-swelling perpendicular to the 

surface. Overall, PEG chains tethered onto polyester display a globule-like conformation in 

both wet and dry environments, which explains the limited response observed for these 

systems. These qualitative trends detected for pentamer chains were also observed for 

octamers, although for the latter, the degree of collapse was greater due to the longer tethered 

segments.  

 

Figure 4.2 Change in PEG height (Δh) during de-swelling as a function of coverage density for PEG5 

grafted substrates simulated at 298 K. Error bars represent the standard deviation. 
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Figure 4.3 Radius of gyration profiles for PEG in the lateral (x-y) plane as a function of (z) for PEGylated 

silica in water (a) and vacuum (b) and PEGylated polyester in water (c) and vacuum (d). Simulations were at 298 K 

for low, intermediate and high coverage densities. 

Our simulations indicate that the dehydration induced collapse of PEG octamers is 

strongly influenced by temperature. At 370 K the extent of collapse is reduced relative to the 

room temperature transition (Figure 4.4). This behaviour is observed for both silica and 

polyester grafted films and is associated with the conformation of the grafted chains in water. 

At 370 K, the octamer chains adopt a partially collapsed state in water (Figure 4.5a) while at 

298 K, they display a much more extended chain conformation (Figure 4.5b). This 

temperature induced collapse is a result of expulsion of interfacial waters and the breaking of 

intermolecular hydrogen bonds between water and PEG segments. This is shown in Figure 

4.6 where we observe an increase in the inter-molecular hydrogen bonding between water 

and PEG chains for systems simulated at 298 K in comparison to systems simulated at 370 K. 

Such temperature sensitive solubility usually originates from the existence of a lower critical 

solution temperature (LCST) beyond which the polymer becomes insoluble in water. PEG 

has indeed been shown to exhibit a low critical solution temperature of ~371 K [360]. 
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Interestingly, the LCST has been shown to decrease with increasing molecular weight [360, 

361], which may explain why the octamer tethered chains are more sensitive to this 

temperature induced transition compared to their pentamer counterparts. 

 

Figure 4.4 Change in PEG height (Δh) during the W→V transition as a function of coverage density for (a) 

SiOH-σPEG5 and (b) SiOH-σPEG8 systems simulated at  298 K and 370 K. Error bars represent the standard 

deviation. 

 

 

Figure 4.5 Radius of gyration profiles for PEG in the lateral (x-y) plane as a function of (z) for PEGylated 

silica during de-swelling at (a) 370 K and (b) 298 K for low, intermediate and high coverage densities. 

 

 
(a) 

 
(b) 

 

0

8

16

24

-6 -4 -2 0 2 4 6

z 
(Å

)

Rgx,y (Å)

SiOH-0.13PEG8 W 370K

SiOH-0.40PEG8 W 370K

SiOH-0.94PEG8 W 370K

0

8

16

24

-6 -4 -2 0 2 4 6

z 
(Å

)

Rgx,y (Å)

SiOH-0.13PEG8 W 298K

SiOH-0.40PEG8 W 298K

SiOH-0.94PEG8 W 298K

 

 
(a) 

 
(b) 

 

-8

0

8

16

0.0 0.4 0.8 1.2

C
h

a
n

g
e

 i
n

 h
e

ig
h

t,
 Δ

h
(Å

)

Coverage (PEG/nm2)

W→V SiOH-σPEG5 298 K

SiOH-σPEG5 370 K

0

6

12

18

0.0 0.4 0.8 1.2

C
h

a
n

g
e

 i
n

 h
e

ig
h

t,
 Δ

h
(Å

)

Coverage (PEG/nm2)

W→V
SiOH-σPEG8 298 K

SiOH-σPEG8 370 K



70 

 

 

Figure 4.6 Average number of inter-molecular H-bonds per PEG between available donor-acceptor pairs in 

PEG and water as a function of coverage density for SiOH-σPEG8 systems simulated at 298 K and 370 K. 

  

4.4.2. Swelling of PEGylated surfaces  

When the dried films were immersed in water they exhibited negligible swelling 

within the timeframe of our simulation (Figure 4.7), indicating a slow response to solvation 

after the chains have collapsed onto the surface in dry environments, the effect especially 

prominent for PEGylated polyesters. It appears that the energy requirements for a reversible 

wetting-dewetting response depend on the initial conformational state of the system. The 

simulations showed that the brushes fully extended in water exhibit a quick collapse when 

dehydrated. This collapsed layer forms a densely packed zone at the surface which slows 

down diffusion of water into the film, as seen in Figure 4.8, showing a reduction in the 

density of water near the PEG film boundary as a result of chain collapse during dehydration. 
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Figure 4.7 Change in PEG height (Δh) during swelling as a function of coverage density for PEG5 grafted 

substrates simulated at 298 K. Error bars represent the standard deviation. 

  

Figure 4.8 Atomic density profiles of σ = 0.40 pentamer PEGylated silica systems at 298K (a) before and (b) 

after dehydration. 

Work by Chen [21] has suggested that limited swelling will occur until a ratio of 1:1 

of tightly bound water per EG unit is achieved, at which point additional water will interact 

with the hydrated chains causing swelling of the chains. Figure 4.9

 

shows the average number of intermolecular hydrogen bonds between pentamer PEG systems 
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and water. Before dehydration, the PEG chains adopt an extended conformation in water, and 

there is generally more than 1 hydrogen bond per EG unit. Post-dehydration, the tethered 

segments maintain a collapsed state despite re-immersion into water. In this case there is less 

than 1 hydrogen bond per EG unit, re-affirming that 1:1 H-bonding ratio is needed for full 

hydration of the chains. It can then be assumed that the collapsed layer we observe in our 

simulations most likely does not correspond to an equilibrium structure but constitutes a 

kinetically trapped conformation of the layer. 

 

Figure 4.9 Average number of intermolecular hydrogen bonds between PEG and water before and after 

dehydration of pentamer silica systems. 

 

Figure 4.10 Snapshots of the three types of hydrogen bonding networks formed. (a) intra-molecular 

hydrogen bonding between PEG repeat units (b) intra-molecular hydrogen bonding of water to PEG, encouraging 
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the trans-trans-gauche conformational adoption as suggested by Gaub et al. [346]. (c) inter-molecular hydrogen 

bonding of water. 

. 

Investigation into the water structuring near the PEG layer revealed three key types of 

water interactions. At low hydration levels (1-3 H-bonds per chain), the involvement of water 

appears to assist in forming an extended (more than one EG unit apart) intra-molecular H-

bonding network (Figure 4.10a) causing the tethered chain to ‘backfold’ and adopt globular 

states. As the chains became more hydrated (3-5 H-bonds per chain), water molecules are still 

involved in intra-molecular interactions; however, in this case, the water mediated H-bonding 

network is formed between neighbouring EG repeat units, which promote a trans-trans-

gauche conformation of the chains (Figure 4.10b). At the highest levels of solvation (>5 H-

bonds per chain) we begin to see the formation of inter-molecular H-bonds between adjacent 

PEG molecules, promoting an extended PEG chain conformation (Figure 4.10c). 

Further to the involvement of water in swelling, there have been other studies [146, 

147] which have inferred that these trapped waters interacting with the oligomer oxygen are 

critical to anti-fouling behaviour. These works have suggested that during protein adsorption, 

PEG chains are compressed, releasing the trapped water and resulting in a significant 

thermodynamic penalty on the incoming contaminant. With this in mind, it becomes apparent 

that the intermediate-high coverage densities studied may be more appropriate for an anti-

fouling surface, due to their ability to trap greater amounts of water molecules, with 5-6 

hydrogen bonds per chain still possible in the pre-hydration state. However, we believe 

further investigation of the dehydration mechanics is necessary, especially if the re-swelling 

of these chains is prohibited due to unfavourable configurations formed in a vacuum 

environment, or are we presented with a trade-off in the re-swelling vs trapping of water in 

dry environments. 
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4.4.3. Effects of surface hardness and roughness  

During dehydration, we observe a decrease in surface roughness for silica based 

substrates, while for polyester we observe no notable change. The roughness of silica is 

consistently higher than polyester in both wet and dry environments and across all coverage 

densities despite the fact that the end-grafted chains on both silica and polyester can adopt 

globule-like conformations (Figure 4.3b and d). Previous studies [340, 362] have shown that 

polyester is far more flexible than silica and is richer in the atomic-scale surface 

irregularities. Moreover, the flexibility of the polyester substrate provides a means for the 

formation of surface cavities as previously discussed [121, 291, 363]. The natural flexibility 

of the polyester substrate allows for significant rearrangement of tethered chains, while 

asperities along the surface of the polyester provide ample volume for the tethered chains to 

sink into. As a result, PEG chains are able to adopt a more compacted, denser arrangement on 

polyester compared to silica, in both aqueous and non-aqueous environments. To confirm this 

finding, we present density profiles of PEGylated substrates in dry environments (Figure 

4.11). The solid lines in the profiles depict the atomic density along the perpendicular axis of 

the grafted films and the perforated lines mark the substrate/PEG interface boundary. Along 

the solid line, the point at which the density begins to decrease marks the onset of the surface 

boundary, around ~15 Å for silica (Figure 4.11a) and ~18 Å for polyester (Figure 4.11d). For 

PEGylated polyesters, we observe that the tethered chains display a surface profile that 

overlaps the substrate boundary, indicating penetration of the polyester by the PEG chains. In 

contrast, the concentration profiles for PEGylated silicas are characterised by a distinct peak 

away from the substrate boundary (around ~19 Å), associated with the protruding tethered 

chains (Figure 4.11c). Furthermore, for the polyester surfaces, the concentration of atoms 

(atomic density) at the substrate-chains interface increases significantly, indicating a more 
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compacted, denser surface film (Figure 4.11b). These trends were also detected for octamer 

tethered chains. 

 

Figure 4.11 Atomic density profiles of PEGylated silica (a-c) and polyester (d-f) at low (a and d), 

intermediate (b and e) and high (c and f) coverage densities. PEGylated with PEG5 chains and simulated in vacuum 

at 298 K. 

4.5. Conclusion 

In this chapter we investigated the hydration-induced response of PEGylated 

substrates that include soft, organic polyester and hard, inorganic silica surfaces. PEG chains 

grafted onto silica exhibit significant de-swelling compared to chains grafted onto polyester. 
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The natural flexibility of the polyester substrate allows for significant rearrangement of 

tethered chains, with asperities along the polyester surface providing ample volume for the 

tethered chains to extend into and adopt a more compact and dense arrangement compared to 

silica, in both aqueous and non-aqueous environments. The difference between the substrates 

is particularly notable at low coverage densities where the chains are more spaced out. 

The de-swelling of PEGylated silica can be characterised by an extended-to-

mushroom transition at high grafting densities (0.94 PEG per nm2) and an extended-to-

pancake transition at low grafting densities (0.13 PEG per nm2). In the extended 

conformation state, the PEG chains form more than 1 hydrogen bond per monomer unit with 

water. Below this ratio, the tethered PEG chains maintain a collapsed state despite the 

presence of water. We show that inter-molecular hydrogen bonding responsible for the 

conformational state of the tethered chain in water can be temperature controlled. At 

temperatures close to or higher than the low critical solution temperature of PEG, the extent 

of de-swelling can be reduced. This is attributed to the highly dynamic hydrogen bonds 

between PEG and water due to the thermally induced fluctuations. 

Due to the significant loss in responsive behaviour observed for polyester surfaces, it 

was decided to investigate the effect of functionalised silica substrates for the remainder of 

this project. 
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Chapter 5 

5. Elucidating molecular mechanisms of PEG and POX anti-

fouling coating efficacy 

5.1. Overview 

In the previous chapter we assessed the effect of substrate hardness and chemistry on 

the responsive behaviour of functionalised surfaces, where it was concluded that silica 

surfaces significantly out-perform the soft polyester surfaces. In this chapter, we assess how 

chemistry and surface density of commonly used anti-fouling surface ligands affect the 

interfacial properties relevant to biofouling. 

We compare the hydration, heterogeneity, and chain dynamics of poly(ethylene 

glycol) (PEG) and poly(2-oxazoline) (POX) modified silica surfaces. We show that PEG 

systems exhibit greater chain dynamics, whilst POX systems show superior hydropathicity 

and hydration behaviour. Furthermore, the observed structure-property relations for the PEG 

and POX modified surfaces provide an improved molecular understanding of the effects of 

molecular features on anti-fouling properties, and highlight the importance of entropic 

barriers associated with surface ligand mobility and interfacial water structure and dynamics 

for anti-fouling efficacy.  
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5.2. Introduction 

Over the last decade, significant research efforts have focused on discovering anti-

fouling surface coatings with good efficacy, robustness, and design simplicity. However, the 

ability to design more effective anti-fouling coatings is limited by the paucity of fundamental 

knowledge on how these surfaces behave at a molecular level. Existing theories that attempt 

to explain anti-fouling coating efficacy are dated (late 90s and early 2000s) and are often 

conflicting. This has arisen because of the difficulty of studying these three phase systems at 

the molecular level using experimental techniques [31], hampering rational design and 

development of more effective coatings [4], and vital experimental validation of molecular 

level theories and simulations. 

Computational simulations can provide a valuable adjunct to experiments in 

elucidating the important molecular interactions responsible for anti-fouling behaviour, and 

in supporting one or more of the anti-fouling theories summarised earlier in Section 1.8. POX 

has attracted significant attention as an alternative to PEG in biofouling applications [212-

214]. Recent work elucidated its low biofouling properties [214, 215] and good 

biocompatibility [216-218], stimulating interest in POX as a valuable biomaterial [219] and 

anti-fouling coating [109, 219, 220] for biomedical applications [221, 222]. The 

hydropathicity of the monomer, and resulting wettability of the coatings, are believed to 

control the anti-fouling efficacy of POX. The methyl and ethyl substituted analogues 

(PMeOx and PEtOx) have been shown to suppress protein adsorption [176, 212, 219, 220, 

225, 228] while the propyl analogue (PPrOx) promotes cell adhesion and growth [226, 228]. 

It has been proposed that this behaviour is due to the increased length of the hydrophobic 

propyl side chain of the PPrOx coating providing larger hydrophobic contact. There are 

several experimental studies comparing the anti-fouling efficacy of PEG and POX coatings 

[212, 213, 229, 230]. Whilst it is clear that both polymers show remarkable properties, such 
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as imparting stealth abilities (avoiding immune response) for drug-delivery and protein 

resistance for anti-fouling surfaces, POX coatings generally outperform PEG coatings in most 

cases. This is due to several valuable properties of POX. In oxidative environments POX 

coatings are more stable than PEG coatings [212], the degradation products of PEG chains 

(e.g. peroxides) are toxic [213] whilst those of the more stable POX remain non-toxic [212, 

213], and, whilst degraded PEG coatings may retain some anti-fouling properties [231], 

protein resistance usually declines rapidly [212, 232, 233]. 

Recent simulation studies have considered the behaviour of short PEG chains tethered 

to silica surface in the aqueous environment [121, 146, 194, 195, 292, 362, 364]. Despite the 

publication of a large number of detailed experimental studies on anti-fouling coatings, a 

molecular level understanding of POX surfaces is still far from complete. Here we use all-

atom molecular dynamics (MD) simulations to systematically compare the properties of PEG 

and POX surfaces. Our results also allow the existing theories of anti-fouling surfaces to be 

examined for consistency with these molecular interactions.  

5.3. Methods 

A short propyl spacer separates PEG hexamers and POX tetramers from the silica 

surface (constructed as per Section 3.5.2), with methyl (PMeOx), ethyl (PEtOx) and propyl 

(PPrOx) as shown in the schematics (Table 5.1). Both PEG and POX Systems were grafted in 

a manner compatible with grafting to and grafting from methods [365] at coverage densities 

of 1.4, 2.2 and 3.0 chains/nm2, corresponding to α= 0.32, 0.52, 0.71, where α is the ratio of 

grafted chains to free silica surface hydroxyl groups. 

Systems were solvated using an explicit water layer of 80 Å thickness, with a 20 Å 

vacuum space above the water box added to create a pseudo air-water interface. Five replicas 
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were simulated using MD for 30 ns to accumulate statistics for the chain surface water and 

bulk water behaviour. 

Simulation details 

Simulations were performed using the LAMMPS [366] software with the CGENFF36 

force-field used for the surface functionalization, and the CHARMM-compatible Cruz-Chu 

[254] silica parameters. The TIP3P [367] water model was applied, with the SHAKE [267] 

algorithm employed to constrain water bond length and angle. For the evaluation of non-

bonded interactions, a twin-range cutoff of 0.8 and 1 nm were used for van der Waals 

interactions, with a 1 nm cutoff for electrostatics and the PPPM solver used to calculate the 

long-range damping effect. The energy minimizations were carried out using the conjugate 

gradient method with a convergence criterion of 10-4 kcal/mol energy tolerance and 10-6 

kcal/mol.Å force tolerance.  MD was performed in the NVT ensemble using a timestep of 1 

fs and a temperature of 298 K was maintained by a Nosé-Hoover thermostat [264] with a 0.1 

ps coupling time. Systems were simulated for 30 ns, and results averaged over the last 10 ns 

of simulation for 5 replicas, unless stated otherwise. 

  



81 

 

 

Table 5.1 Quantitative description of surfaces. 

   
Grafting Density (Chains/nm2) 

   
Low (1.37) 

Medium 

(2.19) 
High (3.01) 

C
h
ai

n
 T

y
p
e 

PEG 

 

Surface Coverage (%) 92.0 ± 1.7 93.7 ± 1.8 96.2 ± 1.8 

Average thickness (Å) 22 ± 3 25 ± 4 28 ± 4 

Hydropathicity ratio 0.32 ± 0.01 0.33 ± 0.01 0.33 ± 0.01 

DC-O (Å) -0.13 ± 0.01 0.34 ± 0.01 0.47 ± 0.01 

PMeOx 

 

Surface Coverage (%) 77.0 ± 3.3 80.9 ± 1.4 92.2 ± 1.4 

Average thickness (Å) 24 ± 4 27 ± 4 30 ± 4 

Hydropathicity ratio 0.56 ± 0.01 0.59 ± 0.01 0.62 ± 0.01 

DC-O (Å) 0.10 ± 0.01 0.54 ± 0.01 0.40 ± 0.01 

DO-N (Å) 0.51 ± 0.01 1.31 ± 0.01 1.42 ± 0.01 

PEtOx 

 

Surface Coverage (%) 78.5 ± 2.8 83.5 ± 3.1 92.9 ± 2.1 

Average thickness (Å) 25 ± 4 29 ± 4 32 ± 4 

Hydropathicity ratio 0.51 ± 0.01 0.55 ± 0.01 0.54 ± 0.01 

DC-O (Å) 0.78 ± 0.01 1.05 ± 0.01 1.19 ± 0.01 

DO-N (Å) 0.48 ± 0.01 1.14 ± 0.01 1.52 ± 0.01 

PPrOx 

 

Surface Coverage (%) 74.2 ± 4.3 87.4 ± 2.1 95.4 ± 1.7 

Average thickness (Å) 27 ± 4 30 ± 4 34 ± 4 

Hydropathicity ratio 0.48 ± 0.01 0.50 ± 0.01 0.45 ± 0.01 

DC-O (Å) 1.16 ± 0.01 1.58 ± 0.01 2.19 ± 0.01 

DO-N (Å) 0.71 ± 0.01 1.35 ± 0.01 1.66 ± 0.01 

 

 

 

5.4. Results and Discussion 

We employed molecular dynamics simulation to identify relationships between chain 

chemistry, grafting density, and interfacial properties. The two prevailing anti-fouling 
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theories, hydration theory and steric repulsion, drove a focus in this section on chain 

behaviour and interfacial hydration. The molecular level insight gained here can also aid 

interpretation of experimentally observed phenomena, and may allow identifications of 

functional groups with enhanced anti-fouling capacity. 

Figure 5.2 shows the average atomistic composition of the interface in the direction 

perpendicular to the bulk surface for the low and high MPOX and PEG systems. The 

schematic in Figure 5.1 shows representations of the various components shown in Figure 

5.2. The results presented below describe the relationship between average structure and 

dynamic behaviour of various components featured in Figure 5.1 with respect to chain 

chemistry and grafting density. Discussion of the grafted chain behaviour is presented first 

then the role of the interfacial water is discussed. The discussion is framed  and informed by 

traditional anti-fouling theories, as well as previously identified factors which influence 

molecular adsorption on surfaces such as the atomic surface roughness, surface rigidity [121, 

268, 287, 291, 292, 362, 364, 368] and dynamics [368]. 
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Figure 5.1 Schematic of PEG and water molecules for density plots in Figure 5.2. Colours: Silica (orange), 

PEG primer (black) and sweeping (grey) layers, surface-bound water (green), bulk water (dark blue). Water within 

3.5 Å of the polymer layer is separated into H-bond donor (yellow), acceptor (red) or no H-bond (light blue). 
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Figure 5.2 Z (left) and X-Y (right) profile of (A) Low PMeOx, (B) High PMeOx, (C) Low PEG, (D) High 

PEG. For Z profiles, density is normalised such that a value of 1 is the heavy atom density of bulk water. Colours 

represent silica (orange), polymer (grey), surface-bound water (green), bulk water (dark blue). Water within 3.5 Å of 

the polymer layer is separated into H-bond donor (yellow), acceptor (red) or no H-bond (light blue). For PEG 

systems, the polymer layer is broken into primer (black) and sweeping (grey) layers. For X-Y profiles, blue = 

hydrophobic segments of chains (CH2, CH3), red = hydrophilic segments (O, N, OH, NH) and gold = the exposed 

substrate. 
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5.4.1. Average Chain Structure 

Chain z-length (normal to the surface) distributions for all systems are shown in 

Figure 5.3. Regardless of grafting density the distributions of POX systems become tighter 

around the mean with increasing side chain length. Similarly, for all three POX systems, the 

length distribution becomes more uniform with increasing grafting density. The average 

chain z-length correlates positively with side chain length. As discussed below, increased 

uniformity of the length distribution with side chain length does not influence the chain 

dynamics, however, the decrease in chain length variability will decrease interfacial 

roughness. Larger interfacial surface roughness increases the surface area, and allows a larger 

number of water molecules are in the interfacial region. This is reflected in the narrowing of 

the interfacial water bands from low to high grafting density as seen in Figure 5.2. Previous 

work has indicated that atomic scale roughness plays a role in enhancing anti-fouling efficacy 

[291]. Our results suggest that, regardless of side chain chemistry, well-ordered, uniform 

chains at the highest grafting density provide the least roughness and hence are likely to have 

lower anti-fouling efficacy. 
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Figure 5.3 Chain z-length distribution plots for all systems at (A) Low, (B) Medium and (C) High grafting 

densities. Colours: PEG (black), PMeOx (green), PEtOx (blue) and PPrOx (red). 

Surface coverage, characterised as the percentage of the silica substrate covered by 

functional chains and not exposed to the solvent, is summarised in Table 5.1. For POX films 

the presence of side chains, regardless of length, impedes collapse of the chains onto the 

surface. At low grafting density the chains do not collapse onto the surface, resulting in 74.2-

78.5% surface coverage (Table 5.1). The space between chains is filled with water molecules 

and the water content does not drop below 40% of the bulk water density in the interfacial 

region. At medium grafting density there is an increase in the density of the polymer layers, 

and slightly less water permeation for all systems. Interestingly, medium PMeOx and PEtOx 

systems show similar amounts of hydrogen-bonded water to low grafting density systems 

(discussed later in the chapter), despite having lower water content. At high grafting densities 
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the POX layers are densely packed, with all systems showing 90-95% surface coverage and 

very little water permeation in the interfacial region. 

Chain length distributions for the linear PEG chains are significantly different from 

those of the POX systems (Figure 5.3). The distributions are broader and centred about 

smaller values, despite PEG having a longer monomer length than its POX counterparts. The 

broader distributions indicate a higher degree of conformational flexibility, reflected in the 

dynamic behaviour discussed below. In comparison to the POX systems the length 

distributions do not increase uniformly with increasing grafting density suggesting a different 

mechanism than that discussed above.  

Table 5.2 PEG chain conformations based on a twin height difference cut-off between the oxygen before 

PEG repeat units (O(0)), of the third repeat unit (O(3)) and the terminal unit (O(T)). 
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It has been well documented that one of the key characteristics associated with PEG’s 

ability to reduce protein adhesion is its ability to adopt specific conformations in water. 

Importantly, it was identified that a flat or ‘pancake’ orientation of the PEG chains would 

likely result in an attractive PEG-protein interaction, whereas mushroom-brush 

conformations were likely to provide repulsive interactions [187, 188]. This is strongly 

related to the fact that compression of PEG chains is likely to increase the accessible surface 

area of the non-polar PEG segments, which encourage hydrophobic interactions that promote 

protein adsorption [189]. To investigate this, we studied five conformational states for PEG, 

based on distance cut-offs, as shown in Surface coverage, characterised as the percentage of 

the silica substrate covered by functional chains and not exposed to the solvent, is 

summarised in Table 5.1. For POX films the presence of side chains, regardless of length, 

impedes collapse of the chains onto the surface. At low grafting density the chains do not 

collapse onto the surface, resulting in 74.2-78.5% surface coverage (Table 5.1). The space 

between chains is filled with water molecules and the water content does not drop below 40% 

of the bulk water density in the interfacial region. At medium grafting density there is an 

increase in the density of the polymer layers, and slightly less water permeation for all 

systems. Interestingly, medium PMeOx and PEtOx systems show similar amounts of 

hydrogen-bonded water to low grafting density systems (discussed later in the chapter), 

despite having lower water content. At high grafting densities the POX layers are densely 

packed, with all systems showing 90-95% surface coverage and very little water permeation 

in the interfacial region. 

Chain length distributions for the linear PEG chains are significantly different from 

those of the POX systems (Figure 5.3). The distributions are broader and centred about 

smaller values, despite PEG having a longer monomer length than its POX counterparts. The 

broader distributions indicate a higher degree of conformational flexibility, reflected in the 
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dynamic behaviour discussed below. In comparison to the POX systems the length 

distributions do not increase uniformly with increasing grafting density suggesting a different 

mechanism than that discussed above.  

Table 5.2.  

The surface coverage, characterised as the percentage of the silica substrate covered 

by functional chains and not exposed to the solvent, is summarised in Table 5.1. For POX 

films the presence of side chains, regardless of length, impedes collapse of the chains onto 

the surface. At low grafting density the chains do not collapse onto the surface, resulting in 

~75% surface coverage. The space between chains is filled with water molecules and the 

water content does not drop below 40% of the bulk water density in the interfacial region. At 

medium grafting density there is an increase in the density of the polymer layers, and slightly 

less water permeation for all systems. Interestingly, medium PMeOx and PEtOx systems 

show similar amounts of hydrogen-bonded water to low grafting density systems (Table 5.4), 

despite having lower water content. At high grafting densities the POX layers are densely 

packed, with all systems showing 90-95% surface coverage and very little water permeation 

in the interfacial region. We examined the average conformational distributions of PEG 

chains (Figure 5.4) and transition behaviour (Table 5.3) with respect to these states. 
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Figure 5.4 Distribution of PEG conformations for low (black), medium (red) and high (blue) grafting 

densities. 
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Table 5.3 Conformational Distribution – Shows the percentage breakdown for all transitions occurring 

during the simulations. 

   

Transfer To: 

   

pancake hook arch mushroom brush 

T
ra

n
sf

er
 F

ro
m

: 

L
o
w

 
pancake - 15 7 2 2 

hook 27 - 3 4 5 

arch 6 2 - 2 1 

mushroom 2 6 2 - 4 

brush 2 6 1 2 - 

M
ed

iu
m

 pancake - 5 7 2 2 

hook 7 - 1 7 7 

arch 7 2 - 5 2 

mushroom 2 5 5 - 13 

brush 1 7 1 12 - 

H
ig

h
 

pancake - 2 2 0 0 

hook 2 - 1 4 5 

arch 3 0 - 3 0 

mushroom 1 4 5 - 28 

brush 0 6 2 30 - 

 

The relationship between the inter-chain separation distance and chain conformation 

has been reported previously [195], notably by Benková [192-194]. They noted a critical 

grafting density exists at 2.185 chains per nm2, below which chains displayed strong 

interactions with the silica surface. At and above this value the chains adopted more 

extended/brush-like conformations.  The results of our simulations are consistent with these 

observations, with more than 60% of the chains adopting pancake/arch regimes at low 

grafting densities, see Figure 5.4. When combined with the high percentage of PEG chains in 

the hook conformation (25%), it is evident that PEG-silica interactions are more favourable 

than PEG-water interactions. This strong interaction with the surface leads to high PEG 

surface coverage of ~92%, even at low grafting density, compared to 74-79% for the POX 

counterparts.  
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PEG chain behaviour can be categorised in terms of mobility and conformation. The 

chains are either behaving dynamically and undergoing frequent conformational transitions, 

or they are trapped in quasi-stable, relatively long-lasting (>1ns) conformations due to strong 

and persistant surface interactions. These chain categories have been named the sweeping and 

primer layers respectively (Figure 5.2(c,d and e)). It is the primer layer which leads to the 

increased surface coverage and results in very little water permeation in the interfacial region. 

At low surface coverage the percentage of chains in the primer layer is 43%, likely making 

the surface prone to fouling. An analysis of chain transitions (Table 5.3) provides an 

indication of how the primer layer is formed. Around 30% of all transitions lead to the hook 

conformation.  From this hook state 27% of all transitions result in pancake conformation. 

This behaviour suggests that the hook state is an intermediate transitional state that fosters 

stepwise contact formation of the primer layer from the grafting point to the chain end.  

At medium coverage densities there is a slight increase in surface coverage to 94%, 

and there is more even distribution of conformations. Approximately 25% of chains are still 

in the transition hook conformation, but the percentage in the pancake conformation has 

dropped from 53% to 15%. A substantial decrease in the number of transitions from the hook 

to pancake conformation is also observed. We conclude that the increased grafting density 

limits the ability of the chains to make stepwise contacts to form the pancake conformation 

due to volume exclusion effects of other grafted chains on the surface. The broad range of 

conformations this grafting density permits suggests it would be ideal if the anti-fouling 

ability of PEG coatings were due to spring-like compression/extension behaviour. We see a 

high population of transitions into both hook and arch conformations.  However, at increased 

grafting density we see these chains preferring transitions into the higher energy mushroom 

and brush conformations.  
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At high grafting densities we approach the packing density of SAM surfaces and, 

unsurprisingly, we see a dominance of brush and mushroom conformations. Whilst some of 

these drop into a lower energy hook conformation, they quickly transition back into a 

brush/mushroom state. It is clear these chains are experiencing the lateral restrictions 

described by Benková, and are likely to result in increased PEG-protein interactions. It 

should be noted that the PEG chains in this study are significantly shorter than those used in 

Benková’s work, with 66-80% lower molecular weight. This may explain why the medium 

grafting density systems show limited lateral repulsion compared to those in Benková’s work. 

We conclude that surface coverage is largely independent of POX side chain 

chemistry and that grafting density will determine the exposure of the substrate to biofouling 

material, with the increase in order at high grafting densities seeing decreased surface 

roughness. Conversely, the linear PEG chains collapse into a primer layer at low surface 

coverage and it is at higher surface coverages where the brush conformations exist that are 

known to promote anti-fouling efficacy. Due to the presence of the primer layer, surface 

exposure is largely independent of grafting density for PEG, in contrast to the POX systems. 

 

5.4.2. Hydropathicity 

Recently, there has been significant research focusing on the effect of nanopatterned 

and heterogeneous surfaces to modulate the interplay between materials, the solvent 

environment and biological systems [107, 110, 369]. Since Ostuni [370] developed a simple 

model for examining hydrophobic patches, experimentalists have tailored heterogeneous 

interfaces with the patch length scales varying from microscale [371] to nanoscale [104, 106, 

113, 114, 370, 372]. Using MD, Penna [368, 373] observed that nanoscale channels with 

domain sizes larger than a single chain width were too large and they facilitated hydrophobic 
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association. Whilst it is well known that atomic scale zwitterionic heterogeneity provides 

anti-fouling effects that can be achieved with homogenous coatings [235, 374, 375], to our 

knowledge there has been only limited investigation into the effect of the amphipathic 

character of  polymers like PEG and POX on the anti-fouling performance of these chains 

(outside of limited discussion of hydrophobic/non-polar and hydrophilic patches [189]).  

To examine this, we have plotted surface hydropathicity (Figure 5.2 XY profiles) and 

calculated the hydropathicity ratio (Table 5.1) of exposed heavy atoms to the solvent 

environment (carbon and oxygen/nitrogen atoms within 3.5 Å of interfacial water molecules), 

where a ratio of 1 = fully hydrophilic surfaces, and 0 = fully hydrophobic surfaces. Whilst 

POX chains show reasonable changes in hydropathicity with grafting density, because of the 

flexibility of PEG chains we see a constant hydropathicity ratio around 0.33, unsurprisingly 

the ratio of oxygen to carbon atoms in the repeating unit of PEG. The XY profiles (Figure 

5.2) appear to show an increased hydrophilicity for PEG systems as the grafting density 

increases, however as seen in Table 5.1 the hydropathicity ratio actually sees a very minor 

increase. This is due to the inherent flexibility of the PEG chains, described by the terminal 

C-O height in Table 5.1 (DC-O) (z-distance from terminal carbon to oxygen, positive and 

negative value indicates the oxygen is above or below the carbon respectively). We see a 

slight increase from -0.13 Å at low grafting density, to 0.47 Å at high grafting density, 

suggesting that when a terminal carbon atom is most exposed to the solvent environment, the 

oxygen atom is still accessible. 

Within the POX systems there is a significant relationship between side-chain length 

and hydrophobicity, with a shorter side-chain resulting in increased hydrophilicity for all 

grafting densities. For PMeOx systems, the hydrophilicity increases with grafting density. 

While PEtOx and PPrOx systems see a similar increase in hydrophilicity from low to medium 

grafting density, an increase in hydrophobicity is seen at high grafting densities that we again 
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attribute to the DC-O length. For PMeOx systems we see very minor differences in DC-O, 

fluctuating between 0.10-0.54 Å, with a consequential increase of 0.06 in the hydropathicity 

ratio. For PEtOx systems we see a slight increase in DC-O, from 0.78 Å at low grafting 

densities, to 1.05 Å at medium grafting densities, seeing an increase to the ratio (0.51-0.55). 

The slight increase in DC-O to 1.19 Å at high grafting densities results in a decreased 

hydropathicity ratio to 0.54. For PPrOx systems the grafting density appears important, as the 

ratio decreases from 0.50 to 0.45 when going from medium to high grafting density, and the 

DC-O increases from 1.58-2.19 Å. Interestingly, there appears to be no correlation between 

DO-N and the hydropathicity ratio, with all systems showing an increased DO-N as the grafting 

density increases. 

5.4.3. Chain Dynamics 

The sweeping mechanism proposed for long chains suggest that the dynamics of the 

chains at the interface can disrupt protein adsorption [136]. It was recently reported that 

increased dynamic behaviour of chains of varying length disrupts favourable short range 

interactions (hydrogen bonds etc.) and improves in anti-fouling efficacy [372]. Furthermore, 

a reduction in the chain mobility on contact with the protein suggests an entropic penalty 

working against protein adsorption [372]. 

Figure 5.5 shows the root mean squared displacement (RMSD) of the tethered chains 

for all systems. In Figure 5.5 it can be seen that the behaviour of POX systems at each 

grafting density is similar, indicating that increasing the length of side chain does not 

substantially restrict the chain dynamics.  At low and medium grafting densities the PMeOx 

RMSDs have higher variance than the longer sidechain systems. This can be explained by the 

roughness of the chain length distributions (Figure 5.2) which show a noisy profile and 

multiple peaks, unlike the other POX systems. The grafting density has a significant impact 
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on the chain dynamics for the POX systems. At the highest grafting density, 3.0 chains per 

nm2, the RMSD values stabilize around 1 Å, suggesting that the tethered chains are in a very 

tightly packed configuration.  There are substantial increases, approximately 100% averaged 

across the three systems, in the RMSD values of the chains when the grafting density is 

decreased from 2.2 to 1.4 chains per nm2. This absence of lateral crowding, along with 

limited chain collapse at the interface for the POX systems and increased interfacial 

hydration at the low grafting density, explains this increase in chain dynamics. The entropy 

penalty associated with protein adsorption arises from a loss of chain flexibility [372], rather 

than chain dynamics per se. The larger increase in RMSD from medium to low grafting 

density suggests that lower grafting density will be optimal for anti-fouling efficacy. 

However, as the total entropy penalty relates to not only the change in dynamics but also to 

the number of chains affected, both low and medium grafting densities should be 

investigated.  
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Figure 5.5 Average RMSD of chains: PEG (black), PMeOx (green), PEtOx (blue) and PPrOx (red) at low 

(solid) medium (dotted) and high (dash) coverage densities. 

 

The dynamics of the PEG systems do not follow the same pattern as the POX. Linear 

PEG chains are more mobile than those in POX coatings, with all 3 grafting densities 

showing higher RMSDs than even the lowest grafting density of POX coatings. There is not 

the same increase in chain dynamics with decreasing grafting density for the PEG systems, 

with the profiles of 1.4 and 2.2 chains per nm2 being very similar. We distinguish two 

categories of PEG conformations, primer and brush, and separating the RMSDs profiles of 

chains into these categories explains this phenomenon. Figure 5.6 shows that separating the 

PEG into the two types of conformations produces similar trends to those in POX systems, 

with the lower grafting density PEG, in both the primer and brush conformations, having 

higher RMSDs. This implies that the only way to increase chain dynamics for PEG systems is 

to increase the chain length rather than further decrease grafting density. We conclude that, 
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for the chain length investigated here, there exists some optimal grafting density for PEG 

between 1.4 and 2.2 chains per nm2, where we believe the contribution to the RMSD from the 

primer layer would be minimized, an increase in grafting density would not inhibit the lateral 

motion of the chains, and the entropic penalty for protein adsorption on the PEG chains 

would be highest.  

 

Figure 5.6 RMSD of PEG chains separated into sweeping (solid) and primer (dotted) layers at low (black), 

medium (red) and high (blue) grafting densities. 

Clearly, the entropy cost associated with loss of flexibility of chains on protein 

adsorption requires further computational investigation. The grafting densities for the PEG 

and POX systems that we predict to have highest anti-fouling efficacy differ due to the 

different chemistry of the chains. PEG chains need an optimal density, whereas lower 

grafting density of POX chains increase the entropic penalty per chain. For POX, identifying 
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the optimal balance of the penalty per chain and the total number of chains impacted will 

result in the greatest anti-fouling efficacy. 

 

5.4.4. Hydration behaviour 

The relationship between polymer density and water penetration can be seen in the Z 

density plots (Figure 5.2). A comparison of polymer and water densities for all systems 

shows POX coatings have increased hydration within the polymer layer relative to PEG 

systems. We propose this is due to greater porosity and the absence of the primer layer in 

POX layers. For PMeOx surfaces we see a tethered layer that is less condensed than PEG, 

allowing significant hydration of the POX chains, particularly at low grafting densities. 

Furthermore, due to the side-chain on POX, we see small pockets of water being trapped 

between the chains and the surface at ~15-20 Å, the majority of which form hydrogen bonds 

to the POX chains. At high grafting densities it is clear the polymer layer is too dense to 

allow water permeation into the layer. However, in Table 5.4 we see a significant peak in 

water atoms acting as hydrogen-bond donors, likely due to exposure to the amide terminal 

group mentioned earlier. For PEG systems, the collapsed primer layer prevents the 

penetration of water molecules into the polymer layer, with water permeation being limited to 

small cavities that exist within the polymer layer. Work by Sheikh et al. [146, 147] has linked 

the anti-fouling performance of surfaces to the ability of water to permeate through the 

polymer layer. Their studies suggest that surfaces that allow greater hydration of the polymer 

layer should see increased anti-fouling efficacy. According to this theory we should see POX 

systems outperform PEG systems at both low and intermediate grafting densities, due to the 

significantly higher levels of surface hydration. However, between medium and high grafting 

density the brush PEG conformation start to dominate, and there is increased hydration of the 
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interface. Detailed hydrogen bonding data can also be seen in Table 5.4. At both low and 

medium grafting densities the additional hydrogen bonding sites presented in POX surfaces 

allow higher hydration than PEG chains. At both low and medium grafting densities there is 

little difference in the number of hydrogen bonds per chain for the POX systems. However, 

compared to PEG at these grafting densities, ~3 additional hydrogen bonds per chain are 

present. At high grafting densities the number of hydrogen bonds per chain levels out due to 

overcrowding within the polymer layer preventing hydration within the polymer. Around 

40% of hydrogen bonds at high grafting densities originate from the terminal group in all 

systems. The extra 0.4-0.8 hydrogen bonds per chain at high grafting density for PMeOx and 

PEtOx systems demonstrates the advantage of extra hydrogen bonding groups and shorter 

hydrophobic side-chain length on POX chains. 

Table 5.4 Detailed Hydrogen bond information for all systems. Hydrogen bond cut-offs used a distance of 

3.5 Å and angle 20o. 

  

H-Bonds per 

Chain 
Terminal 

Contribution (%) 
Acceptor:Donor 

ratio 
  1.37 5.8 ± 0.3 25 0.87 

PMeOx 2.19 4.9 ± 0.2 29 0.86 
  3.01 2.7 ± 0.1 39 0.87 
  1.37 5.6 ± 0.4 26 0.88 

PEtOx 2.19 4.4 ± 0.2 30 0.87 
  3.01 2.3 ± 0.1 40 0.91 
  1.37 5.5 ± 0.3 26 0.88 

PPrOx 2.19 3.5 ± 0.2 33 0.87 
  3.01 1.6 ± 0.1 40 0.92 
  1.37 3.1 ± 0.5 40 0.86 

PEG 2.19 2.3 ± 0.4 47 0.83 
  3.01 1.9 ± 0.3 55 0.80 

 

Whiteside’s theories [157, 158] predict that hydrophilic chains should be hydrogen 

bond acceptors rather than donors. In our simulations, as grafting density increases, we see 

clearly that a higher percentage of POX chains accept hydrogen bonds while PEG systems 
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adopt a hydrogen bond donor role. Whiteside’s theory predicts that we should see similar 

anti-fouling performance from all surfaces at low grafting densities; however, as the grafting 

density increases we would expect POX systems to outperform PEG based on hydration. This 

can be understood from consideration of the chain topography and terminal group chemistry. 

As the grafting density increases, we see predominantly hydrogen bonds with water by the 

terminal groups of PEG. Furthermore, as noted in Figure 5.4, PEG chains tend towards brush 

and mushroom configurations as the grafting density increases. This results in the terminal 

hydroxyl group being exposed to the surface, allowing an increase in hydrogen bond donor 

interactions. For POX systems, as the grafting density increases, the side-chains begin to 

extend outwards from the surface. This results in shielding/reduced exposure of the NH 

terminus, whilst still maintaining good exposure of the carbonyl group. This is reflected by 

the DO-N values shown in Table 5.1, where an increase in grafting density sees increased DO-N 

values, showing that the terminal side chain is extending above the terminal nitrogen. These 

values show a clear trend, where an increase in side-chain length corresponds to a higher DO-

N value and less fluctuation, for all grafting densities. 
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Figure 5.7 Average dipole moment of water calculated with respect to the Z-axis (001 plane). The dipole 

angle for water in the first water layer is shown for low (black) medium (blue) and high (red) grafting densities, as 

well as bulk water (grey) for PEG (A), PMeOX (B), PEtOX (C), and PPrOX (D) systems. 

To characterise the structural orientation of water, the dipole moment of water 

molecules have been calculated (Figure 5.7). It can be seen that the hydration of polymer 

layers and heterogenic hydrophobicity of the surfaces (Table 5.1) has a significant impact on 

the dipole moment of water. In all systems, a noticeable peak is presented at 90o for the first 

and second water layer, reflective of the strong hydrogen bond acceptor ability for both 

surfaces. For PEG systems, these peaks show a subtle decrease in peak intensity as the 

grafting density is increased, due to the decrease in the percentage of hydrogen bond 

acceptors (Table 5.4). Furthermore, there is a very clear shift towards 60o in the dipole 

moment for the medium and high density PEG systems, due to water molecules orienting 

their oxygen towards the surface. The opposite is noticed for the PPrOx system, where a shift 

towards 120o intensifies with increasing grafting density, resulting in increased hydrogen 
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bond acceptor interactions. Although our surfaces are not zwitterionic, we believe the 

heterogeneous domain spacing between polar groups and hydrophobic groups on PMeOx and 

PEtOx systems may recapitulate the disordered water behaviour described by Kitano, and 

allow an even distribution of dipole orientations. For PMeOx, and to a lesser degree PEtOx 

systems, other than the consistent 90o peak, we observe small shifts in the dipole orientation 

of water molecules in the first water layer compared to those in bulk water, suggesting these 

surfaces would display the best protein repelling ability under Kitano’s theories. 

The MSD and density decay profile of water molecules in the first water layer (Figure 

5.8) show trends which also suggest that POX systems should display higher anti-fouling 

efficacy than PEG systems. Specifically, the low PMeOx system show a highly mobile water 

layer, likely to be caused by the low surface coverage of the polymer. As seen in the density 

plots (Figure 5.2) the majority of water within the first layer does not form hydrogen bonds 

with the polymer layer. At low grafting densities, the additional surface coverage presented 

by the PEG primer layer appears to compensate for the reduced hydrogen bonding and 

contributes to the lower mobility. 
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Figure 5.8 MSD (a) and decay profile (b) of water molecules in the first water layer for PMeOx (green) and 

PEG (black) at low (solid) and medium (dashed) grafting densities. 

At medium grafting densities the PMeOx surface displays significantly lower mobility 

than the low grafting density systems, as more water in this layer forms hydrogen bonds with 

the polymer chains. This has a significant effect on the decay profile of the water layer 

(Figure 5.8b) where we see water density decaying at almost half the rate of the PEG and low 



105 

 

PMeOx. We suggest that this is due to the POX carbonyl groups allowing stronger 

interactions with the water molecules than those formed with the PEG ether/terminal group. 

Furthermore, the increase in exposed hydrophilic surface area for PMeOx surfaces, 

particularly at medium grafting densities (Table 5.1) is likely to contribute to this behaviour. 

Although these results suggest medium PMeOx systems present almost a two-fold increase in 

water affinity, it is unclear whether this will lead to reduced protein-surface, and further 

theoretical and experimental studies are needed. 

5.5. Conclusion 

We have used molecular dynamics simulations to study the typical behaviour of 

common ligand protected anti-fouling surfaces, the molecular details of chain dynamics, and 

the contributions of ligand hydropathicity and hydration. We have identified the presence of a 

PEG primer layer, that allows high surface coverage even at low PEG grafting densities. 

Furthermore, we identified quasi-stable conformational states for PEG chains, and how these 

interact with neighbouring chains/surface molecules, allowing the extension or collapse into 

other conformations. 

We believe the medium grafting density PMeOx and PEtOx systems studied here are 

leading candidates for high anti-fouling efficacy, as they combine atomic scale heterogeneity, 

and a hydration layer with almost twice the surface binding affinity to that of PEG. We 

propose that the hydrophobic exposure of PEG systems, particularly at medium and high 

grafting densities, is likely to lead to the enhancement of protein adsorption, whilst low 

grafting density POX systems do not provide sufficient surface coverage. However further 

investigation of protein adsorption on these surfaces is needed to confirm these hypotheses. 

In Chapter 7 we look to address this area.  
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Our results suggest that current anti-fouling theories do not fully account for some of 

the more complicated atomistic detail of the traditional and novel chain functionalisation now 

being developed. Synergy between experimental characterisation and theoretical calculations 

will help design more effective anti-fouling coating strategies and technologies.  
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Chapter 6 

6. Binding Motifs and Behaviour of EAS Hydrophobin at the 

Silica Surface-Water Interface 

6.1. Overview 

In the previous two chapters we established a strong understanding of the interfacial 

behaviour of anti-fouling surfaces in water. Before we explore the anti-fouling efficacy of 

these surface coatings, it is important to understand the behaviour of our model contaminant, 

EAS hydrophobin, both in solvent phase, and at interfaces. To do this, we have employed all-

atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric 

EAS hydrophobin on fully hydroxylated silica. Particular interest has been paid to the Cys3-

Cys4 loop, which has been shown to exhibit disruptive behaviour in solution, and the Cys7-

Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at 

interfaces. Specific and water mediated interactions with the surface were also analysed. 

We have identified two possible binding motifs, one which allows unfolding of the 

Cys7-Cys8 loop due to the surfactant-like behaviour of the Cys3-Cys4 loop, and another 

which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We 

have also identified intermittent interactions with water which mediate the protein adsorption 

to the surface, as well as longer lasting interactions which control the diffusion of water 

around the adsorption site. These results have shown that EAS behaves in a similar way at the 

air-water and surface-water interfaces, and have also highlighted the need for hydrophilic 

ligand functionalisation of the silica surface in order to prevent the adsorption of EAS 

hydrophobin. 
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This work has been published in the peer-reviewed journal, Frontiers in Molecular 

Biosciences [376]. 

6.2. Introduction 

Although the technologies to remove biofilms are improving considerably, there are 

significant limitations in reactive treatments due to the small length scales where biofilms are 

problematic. Examples of this are particularly evident in marine environments, where 25-50 

µm biofilms on a ship hull increase hydrodynamic drag by 8-22% respectively [56, 377], as 

well as health industries, where it is estimated that 20% of fatalities world-wide are due to 

infectious diseases, of which 80% are associated with biofilm formation [378]. With these 

factors considered, it is not surprising that the focus of anti-fouling technologies has shifted 

to the design of surfaces that have the potential to maintain their clean state by resisting the 

non-specific binding of proteins and other foulants. However, significant limitations in these 

coating technologies arise due to our limited understanding of the interactions and behaviour 

of microbes at interfaces.  

Nanostructured surfaces with alternating hydrophobic/hydrophilic characteristics have 

recently been shown to be able to either promote or inhibit protein adsorption [104], the 

phenomenon can potentially be exploited to design surfaces resistant to biofouling. These 

phenomena were further detailed in Section 1.6. More recently there has been significant 

research into the behaviour of interfacial water, and the critical role it plays in protein 

adhesion. A detailed summary of this research was presented in Section 1.7. 

The focus of this study is on Class I hydrophobins, specifically, the Class I 

hydrophobin EAS, found in the fungus Neurospora Crassa [76]. Detailed background and 

information on hydrophobin can be found in Section 1.4. To date there has been significant 

research on the behaviour of EAS hydrophobin in bulk water solution and at the air-water 
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interface which has shown several important properties, including the inability for EAS to 

aggregate in aqueous solution [78, 80] which has largely been attributed to the flexible, 

intrinsically disordered Cys3-Cys4 loop [77]. Although it has been previously shown that the 

Cys3-Cys4 loop is not required for monolayer formation [79], at the air-water interface the 

Cys3-Cys4 loop was theoretically shown to stabilize into surfactant-like conformations, with 

hydrophobic residues being directed to the air, and hydrophilic residues to the water. 

Despite the high interest and some significant research on hydrophobin at the air-

water interface, both experimental and theoretical, to the best of our knowledge there have 

been no studies investigating the behaviour of EAS hydrophobin with atomistic detail at the 

surface-water interface. Therefore, although some advances have shown significant value for 

anti-fouling technologies, many fundamental aspects of microbial adhesion have not yet been 

described. For example, certain microbes have a higher preference for hydrophilic surfaces 

rather than hydrophobic [379] while hydrophobins are able to adsorb strongly on surfaces 

regardless of hydrophobicity. To combat some of these deficiencies in understanding, MD 

simulations and other modelling techniques have become increasingly popular [380, 381]. 

Thanks largely to advances in computational performance [382] the value of all-atom and 

coarse-grained models in MD has significantly increased as researchers are now able to 

simulate experimentally relevant system sizes and timescales. This allows the investigation of 

proteins and peptides at surfaces, however newer issues arise with the limitations in 

parameters available that accurately describe the interactions of both organic and synthetic 

surfaces, and issues in adequate conformational sampling [383, 384] that restrict the 

simulations of relatively large protein-surface systems. 

In this study, we implement MD to get insights into the initial stages of monomeric 

adsorption of EAS hydrophobin on highly hydrated silica surfaces, in order to gain some 

understanding of the possible conformational changes that may be responsible for monolayer 
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formation. Specific attention is paid to the behaviour of both the Cys3-Cys4 and Cys7-Cys8 

loops, due to their previously described behaviour at the air-water interface [76, 77, 79]. We 

also examine the behaviour of water at the protein-silica interface, specifically the role of 

water bridged interactions that promote protein adhesion to the surface. These interfaces are 

prominent in both biomedical and industrial environments [203, 385, 386] and understanding 

the behaviour and interactions in these systems at the nanoscale [93, 362, 387] will be critical 

for the rational design of anti-fouling surfaces. 

6.3. Methodology 

6.3.1. Protein-solvent system 

The NMR solution structure of the class I hydrophobin EAS, determined by Kwan et 

al., was obtained from the PDB structure 2FMC [76]. The protein was protonated in 

zwitterionic form and simulated in a periodic box of 70 × 70 × 70 Å filled with explicit water 

and 2 counter-ions to maintain system neutrality. The system was simulated for 30 ns with 

five replicas using the CHARMM22 [246] force-field, and another five replicas using the 

CHARMM27 [388] force-field with CMAP corrections to refine the NMR structure as a 

benchmark for comparison between the solution and the surface-water interface behaviour. In 

solution, the CHARMM22 protein models were seen to better maintain the β-core structure 

from the NMR data than the CHARMM27, as shown by the root mean square deviations 

(RMSD) of key areas (Appendices Figure A6.1). For the β-core and Cys7-Cys8 loop, which 

are expected to be reasonably stable in solution, the CHARMM22 force-field simulations 

exhibited significantly lower RMSD than those for the CHARMM27 force-field. Conversely, 

for the highly mobile and flexible Cys3-Cys4 loop, the CHARMM22 force-field simulations 

exhibited a higher RMSD than CHARMM27. 
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On evaluation of secondary structure behaviour over time (Appendices Figure A6.2), 

it was noted that the CHARMM22 simulation led to a slight diminishing in the anti-parallel 

β-sheets of the core region, however the Cys7-Cys8 structuring was maintained. The 

CHARMM27 force-field maintains the core region, however due to the unfolding of the 

Cys7-Cys8 loop in solution, the β-structuring in these regions was completely lost. For these 

reasons, we have chosen to use the CHARMM22 force-field, as it gives a more 

experimentally consistent representation of the protein structure and behaviour in solution. 

 

6.3.2. Surface-protein system 

The protein initially equilibrated in bulk solvent as described above was placed 

approximately 9 Å from the surface, in four different initial orientations rotated 90o about the 

y-axis (as shown in Figure 6.1), to allow the investigation of binding orientations in 

spontaneous adsorption. The system was solvated using an explicit water layer of 80 Å 

thickness, with a 20 Å vacuum space above the water box added to create an air-water 

interface, and two counter-ions added to maintain system neutrality. Systems were first 

energy minimised using the conjugate gradient method. Following this, the water molecules 

were allowed to relax around the protein and surface by applying a short (2 ns) MD with the 

protein and surface constrained. Constraints were then removed and MD applied to the entire 

system for 50 ns to investigate the spontaneous initial adsorption events of the protein onto 

the silica surface. Simulations were repeated for each starting protein orientation with 

different initial velocities and equilibration was monitored by assessing the total energy trend. 

Whenever the protein adsorbed to the surface it happened spontaneously within the first 10 ns 

of the simulations. Data for analyses were collected from the equilibrated 20 ns of the 

simulation trajectory unless otherwise specified. 
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Figure 6.1 Snapshots of the four different initial orientations (A,B,C,D) of EAS hydrophobin with respect to 

the silica surface. The protein is positioned approximately 9 Å from the surface. 

6.3.3. Simulation settings 

Simulations were performed using the LAMMPS [366] software with the 

CHARMM22 [246] force-field used for the protein, and the CHARMM-compatible Cruz-

Chu [254] silica parameters. The TIP3P [367] water model was applied, with the SHAKE 

[267] algorithm employed to constrain water bond length and angle. For the evaluation of 

non-bonded interactions, a twin-range cutoff of 0.8 and 1 nm were used for van der Waals 

interactions, with a 1 nm cutoff for electrostatics and the PPPM solver used to calculate the 

long-range damping effect. The energy minimisations were carried out using the conjugate 

gradient method with a convergence criterion of 10-4 kcal/mol energy tolerance and 10-6 

kcal/mol.Å force tolerance.  MD was performed in the NVT ensemble using a time-step of 1 

fs and a temperature of 298 K was maintained by a Nosé-Hoover thermostat [264] with a 0.1 

ps coupling time.  

6.4. Results 

Five of the eight simulated systems adsorbed at the surface-water interface, whilst the 

other three adsorbed at the air-water interface. Our analyses will primarily focus on the 

systems that adsorbed at the surface-water interface, with particular emphasis on the 

behaviour of the Cys3-Cys4 loop, Cys7-Cys8 loop and the role of interfacial water in the 
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adsorption of EAS hydrophobin. This behaviour will be compared to behaviour in bulk and at 

the air-water interface to determine whether the physicochemical properties or water 

behaviour are maintained, and validated against the existing and already detailed studies of 

EAS hydrophobin at the air-water interface [77, 79]. 

6.4.1. Protein binding at the surface-water interface 

Hydrophobin adsorption at the surface-water interface occurred spontaneously and we 

were able to identify two possible binding motifs at the interface, one in which adsorption 

occurs through the Cys3-Cys4 loop (Binding Motif 1, Figure 6.2A and B), and another which 

has the Cys3-Cys4 loop away from the surface (Binding Motif 2, Figure 6.2B and Figure 

6.4C). Interestingly, the initial protein orientation had minimal impact on the binding motif at 

the surface-water interface, as most systems experienced a slight reorientation in bulk water 

prior to adsorbing. The exception to this is the system that initially had the Cys3-Cys4 loop 

closest to the surface (Figure 6.1B), where the protein segregated to the air-water interface. 

This is most likely due to the Cys3-Cys4 loop initially contracting towards the β-core of the 

protein, resulting in increased distance between the protein and surface and therefore 

minimising the attractive long-range interactions between them. 
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Figure 6.2 Distance between the centre of mass of residues and the average height of the surface hydroxyl 

groups for systems that adsorbed (A) through the Cys3-Cys4 loop (Residues 19 to 45, Binding Motif 1) and (B) with 

the Cys3-Cys4 loop in bulk water (Binding Motif 2). (C) Distance between the centre of mass of residues and the 

average profile of the air-water interface. Different colours represent the initial protein orientation as shown in 

Figure 6.1. In Binding Motif 1, black and green colours were from orientation (A), red from orientation (D). In 

Binding Motif 2, red was from orientation (D) again, and black was from orientation (C). 
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As expected, the interactions involved in both binding motifs are dominated by the 

surface-protein hydrogen bonding, due to the highly hydrophilic nature of the surface. There 

are, however, subtle differences in the specific nature of these hydrophilic interactions. In 

Binding Motif 1 (Figure 6.2A), the adsorption is largely due to the direct or water-mediated 

anchoring of residues 20-24 (QSMSG) and 38-40 (DLS) (detailed in figures 6.3 and 6.6), 

which are found at the beginning and end of the Cys3-Cys4 loop (residues 19 to 45). Within 

these groups, there are significant interactions between the surface hydroxyl groups and the 

hydrophilic side-chains of serine and aspartic acid, which encourage a tighter initial binding 

to the surface and subsequent interactions between the protein backbone and surface 

hydroxyls. Work by Sunde et al. [79] has shown that removal of these residues inhibits 

surface activity and rodlet formation, however this only coincided with the mutated proteins 

EASΔ17 and EASΔ19 (EAS mutations with residues 24-40 and 23-41 removed respectively). 

It would be interesting to see if there was correlation between the mutation of residues 20-24 

and 38-42 to glycine and a delay/inhibition of rodlet formation. 

In Binding Motif 2 (Figure 6.2B), persistent interactions with the surface occur in 

regions 6-7 (PN), 10-13 (SIDD), 50-52 (IGS) and 65-68 (VTNT) (detailed in figures 6.3 and 

6.6). Unlike Binding Motif 1, these regions are dominated by backbone interactions, with 

very few side chain interactions having a significant occupancy over the simulation. 

Interestingly, this binding motif is almost identical to the binding of the EASΔ15 (EAS 

mutation with residues 25-39 removed) monomer at the air-water interface [79]. From our 

results, it appears that the presence of the Cys3-Cys4 loop can inhibit the unlocking of the 

Cys7-Cys8 loop and thus monolayer formation, which will be discussed further below. It 

should be noted that due to the high flexibility, mobility and disordered behaviour of the 

Cys3-Cys4 loop in bulk water, a broad distribution of distances from the surface can be seen 
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in Binding Motif 2 (Figure 6.2B). This behaviour has also been shown to occur at the air-

water interface. [79] 

6.4.2. Specific interactions 

To date there have been several studies by Walsh et al. on how the spacing of 

hydroxyl groups on silica surfaces affects the behaviour of interfacial water, and how that 

influences the binding of hydrophobic and hydrophilic molecules and peptides [116, 389]. 

Importantly, these works highlighted that larger spacing of hydroxyl groups on the surface 

would result in areas void of water. Free energy calculations have shown that it was 

energetically favourable for small hydrophobic moieties like methane to penetrate these 

voids, where they would then be shielded by the surface interfacial water. This phenomenon 

was further explored on amorphous silica models with atomistic roughness, similar to those 

used in this study, by Schneider and Ciacchi [117]. In this study, it was noted that these 

hydrophobic voids were present in larger volumes due to surface cavities, which allowed 

penetration of hydrophobic side chains. On peptides which had alternating hydrophilic and 

hydrophobic residues, similar to those on EAS hydrophobin, it was noticed that adsorption 

was significantly enhanced as the hydropathicity of the interfacial water and voids could be 

matched, as well as allowing increased electrostatic interactions with the surface. In our 

simulations of EAS with the atomistically rough amorphous silica surface, we do indeed 

notice this phenomenon occurring. The average number of contacts for residues in contact 

with the surface during the last 20ns of simulations for both binding motifs is presented in 

Figure 6.3. 
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Figure 6.3 Average number of contacts with the surface for EAS over the last 10 ns of simulation in binding 

motif (A) 1 and (B) 2. Colours are matched to the residue-surface distance plots in Figure 6.2 and represent different 

simulation runs. Heavy atoms of a given residue are considered in contact with the surface if they fall within 4.5 Å of 

any surface atom. 

As can be seen, significant contacts occur in hydrophobic residues such as Met22 in 

Binding Motif 1 and Ile50 in Binding Motif 2, as the hydrophobic sidechain penetrates the 
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surface cavities. As with the aforementioned studies, these residues become shielded by 

surrounding interfacial water, which holds the residue sidechains in these voids, and allows 

further electrostatic interactions to occur as backbone atoms and shorter residues like glycine, 

proline and alanine come in contact with the surface hydroxyl groups, as well as charged and 

polar residues like serine, aspartic acid and asparagine, which form direct interactions with 

the surface and surrounding water. 

6.4.3. Behaviour of the Cys7-Cys8 and Cys3-Cys4 

loops 

The comparison of EAS hydrophobin features in bulk water and at the surface-water 

interface revealed several key differences. In bulk water, the amyloidogenic region (F72-I75) 

of the Cys7-Cys8 loop [80] interacts with the hydrophobic core of the protein, forming anti-

parallel β-sheets in all five protein simulations in solution (Figure 6.4A). Interestingly, in two 

of the systems where the protein adsorbed through the Cys3-Cys4 loop to the surface-water 

interface (Binding Motif 1), we see significant interactions between adjacent strands in the 

Cys7-Cys8 loop, encouraging the formation of an exposed β-hairpin (Figure 6.4B). This 

intermediate state is consistent with the proposed model for EAS aggregation into 

monolayers at an interface [80]. 

 

Figure 6.4 Snapshots of EAS hydrophobin conformations (A) in bulk water, (B) at the surface-water 

interface when adsorbed through the Cys3-Cys4 loop (Binding Motif 1) and (C) at the surface-water interface with 
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the Cys3-Cys4 loop in bulk (Binding Motif 2). Yellow arrows represent β-sheet structuring. The amyloidogenic region 

(F72-I75) is shown in purple and the Cys3-Cys4 loop shown in green. 

 In one of the systems that adsorbed through the Cys3-Cys4 loop (Binding Motif 1) a 

partial unlocking of the amyloidogenic region was observed, however interactions with the 

Cys3-Cys4 loop prevented the development of a β-hairpin structure. As can be seen in Figure 

6.5, hydrogen bonding of residues near the C-terminus of EAS encourages the formation of 

either an alpha-helical structure (Figure 6.5A) which promotes the folded conformation of the 

Cys7-Cys8 loop seen in all bulk water simulations, or a β-sheet (Figure 6.5B), which 

encourages the unfolding of the Cys7-Cys8 loop. Upon conformational rearrangement at the 

surface-water interface, two of the three systems that adsorbed through the Cys3-Cys4 loop 

(Binding Motif 1) were able to overcome the energy barrier needed to break a critical 

hydrogen bond between residues Ala41 of the Cys3-Cys4 loop and Ala77 of the Cys7-Cys8 

loop. Interestingly, there is a strong positive correlation between the degree of β-sheet 

formation for the Cys7-Cys8 loop and the number of contacts between the Ser40 (adjacent to 

the key Ala41 residue) sidechain and the surface (Figure 6.3A black, green, and red bars, and 

Appendices Figure A6.3 B, C, and D, respectively). This interaction between Ser40 and the 

surface may be the first step in the process of unlocking the amyloidogenic region and 

subsequent hydrophobin monolayer formation. In silico mutation of the Ser40 to glycine 

could provide some insight into this relationship but is outside the scope of this thesis. 
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Figure 6.5 Snapshots of EAS hydrophobin conformations highlighting hydrogen bonding between (A) 

residues Asn79 and Lys62, Ala77 and Ala41, resulting in a helical formation, (B) histogram showing the separation 

distance of residues Ala77 and Ala41 in system where Cys7-8 loop remains folded and (C) residues Asn79 and Lys62, 

Asn76 and Lys62, encouraging the formation of the β-hairpin (D) histogram showing the separation distance of 

residues Ala77 and Ala41 in the system where Cys7-8 loop unfolds over time. 

In systems which did not adsorb through the Cys3-Cys4 loop (Binding Motif 2) 

partial unfolding of the Cys7-Cys8 region was observed, however due to the aforementioned 

hydrogen bond (Ala41 to Ala77) persisting, there was no formation of a β-hairpin. This is 

likely to be due to the Cys3-Cys4 loop remaining in bulk solution, which enables it to retain 

the mobility and flexibility that is highly disruptive for the monolayer formation. As 

mentioned previously, this binding motif is consistent with the experimental observations by 

Sunde et al. [79] of the binding of EASΔ15 at the air-water interface. Our finding also 

supports a more recent study by de Simone et al. [77] which suggested that the primary role 

of the Cys3-Cys4 loop is to prevent the aggregation of hydrophobin in bulk water. Combined 
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with the knowledge that these EASΔ15 proteins form rodlets that are almost indistinguishable 

from the native EAS [79], we hypothesize that formation of an exposed β-hairpin is 

extremely likely in the event of the Cys3-Cys4 loop (A) being removed or (B) unfolding and 

interacting with the interface.  

Changes in secondary structure on adsorption to the surface-water interface 

(Appendices Figure A6.3) further show the disruptive influence the Cys3-Cys4 loop has on 

the protein conformation. In systems adsorbing through Binding Motif 2 (Appendices Figure 

A6.3A), we see no structuring in the Cys7-Cys8 region due to disruptive interactions with the 

Cys3-Cys4 loop. This disruptive influence on the secondary structure is significantly reduced 

for systems interacting with the surface through Binding Motif 1. However, we also see how 

significant the Ala41-Ala77 interaction is. When this interaction is persistent (Appendices 

Figure A6.3B) we see a stable 310-helix in residues 76-79. Other than a temporary isolated β-

sheet formation in residues 68-69 we see no significant changes in secondary structure. When 

this interaction is broken (Appendices Figure A6.3C), we begin to see the significant 

enhancement in β-sheet formation, particularly in residues 73-81. On the system with no 

Ala41-Ala77 interaction (Appendices Figure A6.3D) we see a very early and persistent β-

hairpin formed. 

6.4.4. The role of structure and dynamics of 

interfacial water in hydrophobin adsorption 

It has been well documented that highly hydroxylated silica surfaces, similar to those 

in this study, form significant hydrogen bonding with water molecules that enable them to 

retain an ordered interfacial water layer [390]. Furthermore, with studies showing the 

importance of water-mediated interactions for bio-fouling [9, 114, 118-122], we have 

investigated the specific involvement of water in the mechanisms of hydrophobin adsorption 
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observed in our simulations. Studies have shown that proteins initially anchor to the surface-

bound first hydration layer, resulting in significant restructuring of the interfacial water [118]. 

It is then believed that intermittent interactions between these water molecules and protein 

residues encourage protein adsorption to the surface, which results in the displacement of 

these water molecules. Indeed, in our simulations, such dynamics have been observed as 

polar and charged amino acid residues experience transient interactions with the interfacial 

water molecules, encouraging rotation of the residues to maximize the contact surface area 

with the silica surface. As a result, due to the preferential interactions of the protein residues 

with the surface hydroxyl groups, the number of hydrogen bond sites available to water 

molecules is significantly reduced, leading to the observed displacement of water. In all three 

of the air-water simulations a partial unlocking of the Cys7-Cys8 loop occurred. However, 

this was perturbed by the formation of anti-parallel β-sheets between Ile75 of the Cys7-Cys8 

loop and Leu43 from the Cys3-Cys4 loop, suggesting that although this intermediate 

transition is seen at both interfaces, the effects of multiple proteins at the interface must be 

investigated to confirm whether this physicochemical transition is critical for the formation of 

monolayers. 

In our simulations, the protein adsorption displaces water molecules as it adsorbs to 

the surface, resulting in surface areas significantly void of water, and a high level of 

occupancy around the protein. This displacement results in concentrated areas of high water 

occupancy around the protein adsorption site, as it is highly likely that the water molecules in 

this region are still forming “cushioned” interactions. Due to steric hindrances, the sections of 

the protein around these areas of high occupancy cannot move closer to the surface, and 

instead form long lasting interactions with water, which results in slower water diffusion. To 

clarify this phenomenon, we have monitored the change in dipole moment orientation of 

water from interfacial regions around the surface, in a similar method to Hung et al. [114]. 
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We have first computed the average water dipole moment at the water-surface interface 

without the influence of the protein. Water molecules within 3 Å of the surface hydroxyls 

have been considered, with an average distribution taken from the last 0.2 ns of simulation.  

As can be seen in Figure 6.6, the average dipole moment shows a broad symmetric 

distribution peaking at 90o. This distribution can be attributed to the high levels of surface 

hydroxylation, combined with a relatively smooth and rigid surface. 

 

Figure 6.6 Histograms showing the distribution of water dipoles around the surface with no protein (red) 

and with protein (blue) for water trapped between the surface and residues (A) Gln20 and (B) Asp38 

When comparing to systems with the protein at the surface-water interface, we 

consider cushioned water to be those that are within 3 Å of both the silica surface and a 

protein residue. All water molecules over the last 20 ns that fit this criterion have been 
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considered, and the average dipole moment has been shown as a probability with an angle bin 

size of 10o. Results have shown that for these bridging interactions it is largely the side chain 

of charged and polar amino acid residues that have been involved in the formation of these 

long-lasting hydrogen bonds, enabling the water mediated protein-surface interactions. 

Specifically, for water trapped between polar residues such as Gln20 (Figure 6.6A) there is a 

significant shift in water dipole orientation towards 150o, which shows that the water 

molecule acts as hydrogen bond acceptor, resulting in its hydrogens pointing towards the 

surface. Conversely for negatively charged residues like Asp38 (Figure 6.6B) water acts as a 

hydrogen bond donor, resulting in a shift towards 30o, and hydrogen atoms pointing away 

from the surface. Residues that were more than 5 Å away from the surface are seen to have 

no effect on the dipole moment of cushioned waters. This is likely because the distance 

between the protein and surface does not allow for water molecules to form bridging bonds 

with both the protein and surface, and suggests that these water molecules still have a greater 

binding affinity to the protein rather than the surface.  
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Figure 6.7 Snapshots of hydropathicity for EAS in (A) Binding Motif 1 and (B) Binding Motif 2, as seen by 

the silica surface and (C) at the air-water interface from top view and (D) side view showing the interface boundary 

(air layer is above water molecules, water molecules below have been hidden for clarity). Blue and red colors 

represent hydrophobic and hydrophilic regions respectively. 

 

Using pyMLP [391, 392], we have mapped the hydropathicity of the protein in both 

surface binding motifs (Figure 6.7) as well as at the air-water interface. As expected, the 
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surface-water adsorption motifs (Figure 6.7A, B) are both dominated by hydrophilic 

interactions, with binding motif 2 (Figure 6.7B) showing slightly increased hydrophobic 

interactions due to the aforementioned surface cavitation effects. Conversely, at the air-water 

interface (Figure 6.7C), we see a more dominant hydrophobic surface, particularly outside of 

the air-water interface. Furthermore, adsorption results in significant water loss, particularly 

around hydrophobic residues (Table 6.1), where on average at least one water molecule per 

residue was lost on adsorption to the air-water interface, behaviour not seen occurring at the 

surface-water interface. It is important to note that preferential bonding between silica and the 

charged groups of aspartic acid are likely to exclude water, and most likely the reason for the 

5% difference. Also, for the large discrepancy in proline, there are only three proline residues 

in the studied area, and as seen in Appendices Figure A6.5, one of which is in the middle of 

three long hydrophobic side-chains, Leu34, Ile35 and Val37 extending out of the interface, 

and into the “air” environment, hence creating a significant loss in water. 

Table 6.1 Average loss of contacts with water for residues in the region Gln20-Ile50 for systems that 

adsorbed at the air-water and surface-water interface (Binding Motif 1), compared to the bulk environment, over the 

last 10 ns of simulation. A contact was defined as a water atom coming within 3 Å of the amino acid group type 

defined by Livingstone and Barton [393]. A detailed plot can be found in Appendices Figure A6.5. 

 Air-water Surface-Water 

Hydrophobic 34% 17% 

Hydrophobic (long) 36% 16% 

Polar 14% 14% 

Proline 52% 20% 

Aspartic Acid 24% 29% 

 

 

The three-dimensional mean squared displacement (MSD) of water molecules at the 

surface-water interface and air-water interface with and without the presence of EAS have 

been compared to that of bulk water (Figure 6.8A). The curves are generated over a short-

time domain (10 ps), with the gradient from a line of best fit plot proportional to the diffusion 

coefficient for the water molecules in the respective zones, similar to our previous work 

[364]. We observe a diffusion coefficient of 4.3×10-5 cm²/s for bulk water (Figure 6.8A), 
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which is slightly higher than the reported 4.0×10-5 cm²/s diffusion coefficient for TIP3P with 

Ewald summation [394]. As expected, the water at the surface-water interface (2.35×10-5 

cm²/s) is significantly slower than bulk, due to stabilizing interactions with the silica surface. 

This is again reduced further when the protein is present (2.10×10-5 cm²/s), which shows that 

the protein does in fact trap water in the adsorption region, and limit the diffusion of water 

through aforementioned long polar and charged side-chain residues that are 5-6 Å from the 

surface, such as aspartic acid and serine. Conversely, at the air-water interface the diffusion is 

a factor of 10 faster without the protein, (1.15×10-4 cm²/s) slowing significantly in the 

presence of the protein (6.75×10-5 cm²/s). This behaviour is in turn replicated for the mobility 

of the protein itself, where the diffusion of the protein at the two interfaces can be seen in 

Figure 6.8B. At the surface-water interface the protein is practically immobile on the surface, 

with very little movement occurring once the protein is adsorbed (0.03, 0.01 ×10-5 cm²/s for 

Binding Motifs 1 and 2 respectively). Comparatively at the air-water interface the high water 

diffusion sweeps the protein along the interface quite quickly (3.94×10-5 cm²/s), suggesting 

that there may be different mechanisms involved for monolayer formation at the air-water 

and surface-water interface, due to the vastly different surface hydropathicity and mobility of 

the protein. We believe that this provides further support to the theory that the Cys3-Cys4 

loop has surfactant-like behaviour at the air-water interface, especially considering the 

significant effects it has on the water diffusion coefficient. 
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Figure 6.8 Mean squared displacement (MSD) plots of: (A) water molecules at the, air-water, bulk water 

and surface-water interface; both with and without the presence of EAS hydrophobin. (B) lateral MSD of the protein 

at the air-water interface, in bulk solution, and in both binding motifs at the surface-water interface. 

These results demonstrate that the presence of water at the interface plays an 

important role in the mechanism of protein adsorption to the surface. Specifically, water 

mediates interactions between the surface hydroxyls and the protein by forming hydrogen 
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bond bridges between the hydroxyls and the polar residues with medium to long side chains 

like serine, asparagine and glutamine, or the negatively charged residues of aspartic and 

glutamic acids. Furthermore, it appears that the surface silanol layer does not provide 

sufficient hydration retention thus enabling some water-mediated contacts as the main water 

layer is displaced and residual water molecules are trapped. This stabilizes the adsorption by 

secondary bridging interactions in addition to direct protein-surface interactions. We believe 

this deficiency could be overcome through surface functionalisation by hydrophilic ligands 

that would be capable of maintaining a substantially thick and mobile hydration layer and 

prevent the protein from reaching the surface [95, 120-122]. 

6.5. Conclusion 

In this work, we have shown two possible binding motifs for EAS hydrophobin at a 

hydrated silica surface during the early spontaneous adsorption events identified by MD 

simulations with atomic-level resolution. We found that for hydrophilic surfaces, the 

previously proposed aggregation state created by the unfolded Cys7-Cys8 loop is possible 

when hydrophobin adsorbs through residues 20-24 and 38-42 of the Cys3-Cys4 loop. It 

appears that there is a small energy barrier required to break a hydrogen bond formed 

between Ala41 and Ala77, which is necessary for the formation of the isolated β-sheet 

resulting from the unlocking of the Cys7-Cys8 loop. Furthermore, we have shown that the 

presence of areas void of water, due to roughness and hydroxyl spacing, allows the 

penetration of hydrophobic side chains, which bring the protein closer to the surface. 

Furthermore, there are significant interactions with the interfacial water layer which allow the 

formation of both intermittent and long-lasting interactions with this layer that seem to 

encourage rather than prevent the protein surface adhesion. 
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While this study does shed light on the monomeric hydrophobin behaviour at the 

surface water interface, the conformational sampling enabled by the brute force MD is far 

from comprehensive yet it remains a challenge for systems of such sizes at all-atom detail. In 

addition, there is significant information lacking to provide specific strategies for the 

development of anti-fouling coatings. In the next chapter, we will provide further 

investigation into the hydrophobin monolayer formation at various functionalised surfaces. 
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Chapter 7 

7. Modelling Anti-Fouling Systems 

7.1. Overview 

In Chapter 5, we established a strong understanding of the interfacial behaviour of 

anti-fouling surfaces in water, comparing the hydration, heterogeneity, and chain dynamics of 

PEG and POX modified silica surfaces. Combining this knowledge with the behaviour of our 

contaminant, EAS hydrophobin, at the air-water and silica-water interfaces (Chapter 6), we 

look to elucidate whether entropic barriers associated with surface mobility or those from 

interfacial water have greater contributions to anti-fouling efficacy.  

To do this, we have employed all-atom molecular dynamics to study initial stages of 

the spontaneous adsorption of monomeric EAS hydrophobin on PEG and POX functionalised 

silica surfaces. Due to the complexity of these interfaces, we have focussed on identifying 

general trends that can be attributed to the hydration and dynamics of the surface coatings 

detailed in Chapter 5. Whilst we were unable to identify any key interactions responsible for 

protein adsorption occurring, it appears that chains under the steric repulsion theory (Section 

1.8.1) had a greater impact on delaying the initial adsorption of EAS, whilst hydration and 

hydropathicity (Section 1.8.2) seemed to provide a more effective barrier for reducing the 

contact area. 

 

7.2. Introduction 

Over the last decade, significant research efforts have focussed on discovering anti-

fouling surface coatings with good efficacy, robustness, and design simplicity. However, the 
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ability to design more effective anti-fouling coatings is limited by the paucity of fundamental 

knowledge on how these surfaces behave at a molecular level. To prevent the fouling of 

surfaces through protein adsorption, there are several approaches which can be separated into 

three main approaches, detailed earlier in this thesis, different surface chemistries (Section 

1.6.1), surface roughness and morphology (Section 1.6.2), and a combination of both (Section 

1.6.3). More recently, inspiration from plants like the lady’s mantle leaf [395] has led to the 

implementation of coatings where common organic chain molecules are chemically grafted to 

surfaces, substantially reducing the amount of adsorbed protein compared to the base surface 

[138, 396]. Typical characteristics of these protein-resistant chains such as poly(ethylene 

glycol) (PEG) (Section 1.9.1) and poly(2-oxazoline) (POX) (Section 1.9.2), are their 

hydrophilic nature, the presence of hydrogen bond acceptors, no hydrogen bond donors, and 

charge neutrality [158, 369]. The origin of this resistance has been explained on the basis of 

hydration theory [148, 202, 397], steric repulsion [33, 34, 138] or as a combination of the two 

[159, 398], as detailed earlier in Section 1.8. 

In Chapter 5, we have examined the conformity of existing theories that attempt to 

explain anti-fouling coating efficacy [33-35, 136-139, 157, 158]. We compared surfaces with 

high chain dynamics, relating to steric repulsion theories (Section 1.8.1) (PEG) to those with 

high hydration behaviour (Section 1.8.2) (POX), with results suggesting that current anti-

fouling theories do not fully account for some of the more complicated atomistic detail of the 

traditional and novel chain functionalisation now being developed. We hypothesised that 

medium grafting density (2.2 chains/nm2) PMeOx and PEtOx systems are leading candidates 

for high anti-fouling efficacy, as they combine atomic scale heterogeneity, and a hydration 

layer with almost twice the surface binding affinity to that of PEG. We believe that the 

hydrophobic exposure of PEG systems, particularly at medium and high grafting densities, is 
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likely to lead to the enhancement of protein adsorption, whilst low grafting density POX 

systems do not provide sufficient surface coverage. 

To test these predictions, we have implemented all-atom MD simulations to 

investigate the adsorption of EAS Hydrophobin monomers to PEG and POX functionalised 

surfaces, and to further the fundamental understanding of interactions between a protein and 

functional coating, critical for the rational design of anti-fouling surfaces. In this chapter, we 

again use the Class I hydrophobin, EAS, as our contaminant model. Detailed background and 

information on EAS hydrophobin can be found in Section 1.4. In the previous chapter, we 

also identified two potential binding motifs (Figure 6.2) at the surface-water interface, and 

identified that roughness and hydrophobic exposure (in the form of hydroxyl spacing in 

silica), allows the penetration of hydrophobic side chains, which bring the protein closer to 

the surface, leading to enhanced protein adsorption. In this chapter we investigate if this 

behaviour is consistent even on functionalised surfaces, or if the added functionality is able to 

provide resistance/differences in adsorption behaviour. 

 

7.3. Method 

PEG and POX (PMeOx and PEtOx) surfaces. Both PEG and POX Systems were 

grafted in a manner compatible with grafting to and grafting from methods [365] at coverage 

densities of 1.4 and 2.2 chains/nm2, corresponding to α= 0.32 and 0.52, where α is the ratio of 

grafted chains to free silica surface hydroxyl groups. 

The NMR solution structure of the class I hydrophobin EAS, determined by Kwan et 

al., was obtained from the PDB structure 2FMC [76]. The protein was protonated in 

zwitterionic form and placed approximately 9 Å from the surface, in four different initial 

orientations rotated 90o about the y-axis, to allow the investigation of binding orientations in 
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spontaneous adsorption. The system was solvated using an explicit water layer of 80 Å 

thickness, with a 20 Å vacuum space above the water box added to create a pseudo air-water 

interface, and two counter-ions added to maintain system neutrality. Systems were first 

energy minimised using the conjugate gradient method. Following this, the water molecules 

were allowed to relax around the protein and surface by applying a short (2 ns) MD with the 

protein and surface constrained. Constraints were then removed and MD applied to the entire 

system for 200 ns to investigate the spontaneous initial adsorption events of the protein onto 

the silica surface. Five replicas were simulated for each orientation (except low PEG systems, 

where only 4 replicas were simulated) to accumulate statistics. 

Simulation details 

Simulations were performed using the LAMMPS [366] software with the 

CHARMM22 [246] force-field used for the protein, the CGENFF36 force-field used for the 

surface functionalisation, and the CHARMM-compatible Cruz-Chu [254] silica parameters. 

The TIP3P [367] water model was applied, with the SHAKE [267] algorithm employed to 

constrain water bond length and angle. For the evaluation of non-bonded interactions, a twin-

range cutoff of 0.8 and 1 nm were used for van der Waals interactions, with a 1 nm cutoff for 

electrostatics and the PPPM solver used to calculate the long-range damping effect. The 

energy minimisations were carried out using the conjugate gradient method with a 

convergence criterion of 10-4 kcal/mol energy tolerance and 10-6 kcal/mol.Å force tolerance. 

MD was performed in the NVT ensemble using a timestep of 1 fs and a temperature of 298 K 

was maintained by a Nosé-Hoover thermostat [264] with a 0.1 ps coupling time. 

7.4. Results and discussion 

In Chapter 5, we examined the solvent behaviour of PEG and POX coatings, 

particularly focusing on the hydration and chain dynamics to check consistency or lack 
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thereof with current anti-fouling theories. We identified distinct differences in the interfaces 

presented by PEG and POX surfaces, with PEG coatings presenting a dynamic interface 

typical of anti-fouling surfaces described by steric repulsion theories (Section 1.8.1).  POX 

coatings present a static interface with enhanced hydration behaviour (Section 1.8.2). In this 

chapter, we investigate the interaction of EAS hydrophobin with PEG and POX modified 

surfaces, to ascertain whether there is a relationship between PEG/POX responsive behaviour 

and anti-fouling efficacy. 

Table 7.2 summarises results of the MD simulations (runs (R)) for each of the 6 

systems at the completion of 200 ns of simulation. The non-interacting runs did not converge 

to the point where the protein diffused toward the surface-interface, in all these cases the 

protein had adsorbed at the air-water interface. As we have previously simulated EAS 

behaviour at the air-water interface (Chapter 6), the analysis in this chapter is based only on 

the “adsorbed runs” (ARs), the number of runs where the protein was in direct contact with 

the surface at termination of the run. Of these, runs with an average contact area greater than 

750 Å2 over the last 50 ns have been labelled “AA”, and only those were used for adsorbed 

state analysis, as below this value the protein is in a metastable state. A disruption event 

“DE”, refers to events where the minimum of the protein comes within 0.5Å of the surface 

and then moves outside this region for more than 0.5 ns.  To interpret this table, surfaces with 

showing better antifouling performance would have a low AA/AR ratio (i.e. proteins are 

adsorbing weakly rather than strongly) and a larger number of disruption events. 
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Table 7.2 Simulated system data summary: R = Total number of runs performed; NIR = non interacting 

runs; AR = adsorbed runs; AA = high contact area ARs used for adsorbed state analysis, DE = Number of disruption 

events. Low (L) and Medium (M) refer to the chain coverage density used (1.4 and 2.2 chains/nm2). 

System R AR AA DE 

PEG (L) 16 11 9 4.5 

PEG (M) 20 20 20 2.3 

PMeOx (L) 20 11 10 1.4 

PMeOx (M) 20 20 16 1.9 

PEtOx (L) 20 18 18 1.7 

PEtOx (M) 20 20 16 3.2 

 

The analysis performed here is split into two sections. First, we discuss the process of 

protein adsorption at the solid/liquid interface, comparing the ability of different surfaces to 

hinder initial protein adsorption, as well as the overall strength of adsorption (contact area) 

compared to previously investigated hydration and dynamic behaviour (Chapter 5). The final 

section of the results examines the adsorbed states of the protein at each of the solid/liquid 

interfaces compared to the previously observed behaviour of EAS hydrophobin at the 

air/water [77, 79, 376] and silica/water [368, 376] interfaces.  

 

7.4.1. Initial adsorption process 

As described in Chapter 5, there is only one structured persistent hydration layer at 

the surface-water interface that the protein must penetrate to contact the functional chains. 

This is due to the moderate packing density and flexibility of the chains. Furthermore, due to 

the thickness of the polymer layer, the protein is not able to form direct interactions with the 

substrate itself. Therefore, we have focussed our analysis on protein interactions with the 

hydration layer or the polymer chains. 
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Figure 7.9 shows the distance-time evolution for an exemplar adsorption trajectory of 

EAS at the low GD PEG/water interface, (An exemplar trajectory for each system is shown in 

Appendices Figure A7.1). EAS was initially started slightly within the cut-off distance from 

the surface to limit EAS diffusing to the air-water interface. It should also be noted that the 

chain max distance should only be used as a guide for all chains, especially PEG, as the chain 

length distributions identified previously (Figure 5.2) are very broad (>10 Å) at the grafting 

densities studied. We notice that the adsorption process is consistent across all systems, with 

the only differences being in the number of adsorption/contact events. Timing of events in the 

exemplar trajectory are used for the process description purpose and should not be considered 

as representative of average process time.  

We observed a period of reversible engagement with the interface during the first ~20 

ns (Figure 7.9). In this phase regions of the protein interact directly with the hydration layer 

above the interface, or come into direct contact with the polymer chains. At approximately 24 

ns the protein becomes kinetically trapped at the interface, with minor fluctuations in the 

minimum protein height as the contact area between protein and surface increases. At 

approximately 26 ns, we see a small (~2 Å) reduction in the protein minimum height, as the 

protein embeds into the polymer layer, where it remains stably adsorbed for the remainder of 

the run.  The protein is able to penetrate into the polymer layer due to the lower grafting 

density of the polymer chains on amorphous silica substrate and associated reduced rigidity 

compared to the behaviour observed at typical SAMs [95, 122, 159]. Embedding of the 

protein into the body of the chains introduces an additional energy barrier which must be 

overcome in order for the protein to disengage with the interface. 
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Figure 7.9 Exemplar temporal behaviour of the protein above low PEG chains (black); height of minimum 

of the protein (blue); and maximum (red). 

Although the surfaces used in this study show significantly less ability to deter the 

protein than patterned systems used in a previous work [368], we notice that low GD PEG 

surfaces show the greatest ability to disrupt the initial adsorption (4.5 DE’s), with medium 

PEtOx (3.2) and PEG (2.3) showing reasonable resistance. This suggests that the dynamic 

interface/steric repulsion behaviour provides a greater ability to prevent the formation of 

stable contact between the protein and the surface than the hydration and heterogeneity 

observed at the POX/water interfaces. 
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7.4.2. Adsorbed state analysis 

 

 

Figure 7.10 Average contact area of EAS at the solid/liquid interfaces of the adsorbed runs. The errors 

associated with the averages are the standard deviations across all such runs and do not consider fluctuations within 

individual runs. 

To compare the strength of adsorption of EAS we use contact area as a metric, as it 

captures both the interaction strength between the protein and surface, as well as the 

displacement of water. As shown in Figure 7.10, we notice the contact area is generally lower 

for POX systems than PEG. In our simulations, low grafting density PMeOx (1099 Å2) 

chains perform slightly better than PEG (1199 Å2) and PEtOx (1256 Å2). However, there is 

no statistical difference between the 3 functional chains. Conversely, at medium grafting 

densities we see significant reduction from both PMeOx (969 Å2) and PEtOx (981 Å2) 

chains, whilst PEG (1661 Å2) sees enhanced strength of adsorption compared to the other 

surfaces.  
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This behaviour agrees with most of our predictions in the previous chapter, namely 

the low POX grafting systems do not provide sufficient surface coverage, and the flexibility 

of PEG terminal regions sees hydrophobic exposure for medium grafting PEG systems, 

resulting in reduced anti-fouling effectiveness. Interestingly, the slight increase in 

hydrophobicity and reduction in hydration retention of PEtOx is seen to have negligible 

effect at medium grafting densities. It should also be noted that whilst low grafting density 

PEG chains have an average contact area similar to that of POX chains, there is a significant 

larger standard deviation, likely attributed to the dynamic interface causing matches and 

mismatches in hydrophobicity and potential adsorption sites.  

7.4.3. Chain dynamics 

The sweeping mechanism proposed for long chains suggests that the dynamics of the 

chains at the interface can disrupt protein adsorption [136]. It was recently reported that 

increased dynamic behaviour of chains of varying length disrupts favourable short range 

interactions (hydrogen-bonds etc.) and improves anti-fouling efficacy [368]. Furthermore, a 

reduction in the chain mobility on contact with the protein suggests an entropic penalty 

working against protein adsorption [368]. In Chapter 5, we investigated the dynamics of 

chains in a solvent environment, noting significant differences in the dynamics of PEG and 

POX chains. We noted that PEG chains at low and medium grafting densities displayed 

almost indistinguishable RMSD profiles, due to surface interactions and the presence of a 

primer layer at low grafting densities, whilst PMeOx and PEtOx chains at low grafting 

density had a higher RMSD than those at medium grafting density. From these results, and 

under steric repulsion theories, we predicted that low grafting density POX would outperform 

medium grafting density POX, and medium grafting density PEG would outperform the 

lower grafting density PEG, due to the higher RMSD. 
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To the best of our knowledge, currently there is no method which can be easily 

implemented to calculate the loss of chain entropy upon protein adsorption. However, whilst 

the RMSD profile for chains in solvent give a semi-quantitative representation of chain 

dynamics, a reduction in the RMSD for chains in contact with the protein can be qualitatively 

used to describe the entropic penalty taken by the chains associated with protein adsorption. 

Figure 7.11 presents the RMSD profile for chains in solvent (as calculated in Chapter 5, 

Figure 5.5), as well as those in contact with EAS are shown. Despite having almost identical 

RMSD in a solvent environment, we see PEG chains at low grafting density providing 

significantly more entropic resistance to protein adsorption than those at medium grafting 

density, with a 40% and 25% reduction in RMSD respectively, suggesting that the primer 

layer presence, and conformational freedom attributed at the lower grafting density provide 

increased anti-fouling efficacy for PEG chains. A similar trend is noticed for POX systems, 

with PMeOx seeing 42% and 25%, and PEtOx 45% and 30% reductions for low and medium 

grafting density respectively. In Chapter 5 it was speculated that there was some optimal 

grafting density between 2.2 and 3 chains/nm2 for the PEG system which would maximise 

the entropic penalty working against adsorption. Here the loss of chain dynamics is more 

significant at the lower grafting density. Considering the number of DE’s and contact area for 

low and medium PEG systems, we believe it is more effective to have fewer chains with a 

higher reduction in RMSD than more chains with a moderate decrease in RMSD. 
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Figure 7.11 RMSD of chains for adsorbed runs for chains in contact (within 5Å) with EAS. Colours: PMeOx 

(green), PEtOx (blue) and PEG (black), and the RMSD of chains in a solvent environment: PMeOx (dark green), 

PEtOx (dark blue) and PEG (grey) at low (solid) and medium (dotted) grafting densities. 

However, when RMSD profiles are combined with the contact area plots (Figure 

7.10), we notice that for PEG systems there is a relationship between the RMSD reduction 

and average contact area. Furthermore, we notice the entropic penalty associated with the 

sweeping mechanism of chains does not give a reliable indication of anti-fouling efficacy 

alone, as we see medium POX systems having the lowest average contact area for all systems 

studied. We believe that the difference in the trends of adsorption behaviour suggests two 

different mechanisms for anti-fouling are likely present, which we attribute to the 

heterogeneity and hydration behaviour of these coatings. Work by Sheikh et al. [146, 147] 

has linked the anti-fouling performance of surfaces to the ability of water to permeate the 

polymer layer. Their studies suggest that surfaces that allow greater hydration of the polymer 

layer should see increased anti-fouling efficacy. Furthermore, Whiteside’s theories [157, 
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158], predicted that hydrophilic chains should be hydrogen bond acceptors rather than 

donors, and work by Kitano et al. [164-167] proposed that surfaces which are able to form 

strong interactions with interfacial water, whilst maintaining a disordered, bulk-like water 

layer, would provide limited entropic benefits for an approaching protein. Whilst we have not 

been able to determine which of these theories is most accurate, or to distinguish between 

them, we believe the hydration behaviour we observed in the simulations allows water 

molecules to compete with the protein for adsorption sites at the surface-water interface, 

thereby providing the additional entropic barrier responsible for minimising the protein 

contact area seen for medium POX systems in Figure 7.10. 

7.4.4. Protein behaviour 

The versatility of EAS to adsorb onto essentially any surface is likely due to its 

exposed surface consisting of hydrophobic and hydrophilic domains at a variety of length 

scales. A key region of this protein, the Cys3-Cys4 loop, portrays an inherently disordered 

conformation and high flexibility to both prevent aggregation in bulk phase [77], and at the 

air/water interface. It displays surfactant-like behaviour [77] and potentially stabilises 

adsorption [376],  most likely due to the presence of a mixture of hydrophobic and 

hydrophilic residues capable of interacting with non-homogeneous interfaces. In other work 

[104, 114],  amphiphilic domains at the amino acid length scale have been shown to aid 

protein adsorption to the surface of tightly packed hydrophobic/hydrophilic domain separated 

SAM surfaces. In addition, the overall surface of EAS has been shown to have large 

hydrophobic and hydrophilic domains [399]. Another key region on this protein is the Cys7-

Cys8 loop. This loop plays a pivotal role in the mechanism for monolayer formation 

important for biofouling. It has been shown to adopt a beta barrel secondary structure 

positioned at opposite sides of the adsorbed protein to enable association with the Cys7-Cys8 

loop of other monomers, thereby enabling fibril propagation [80]. An important aspect of the 
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anti-fouling capacity of these ligands is the capacity to limit and disrupt the interaction of the 

Cys7-Cys8 loop with the surface.  

With this behaviour in mind, we have plotted the average contact probability for EAS 

residues with the functional chains for all systems (Figure 7.12). For most systems, we see a 

profile very typical of EAS adsorption at the surface/water interface, as detailed on silica 

(Chapter 6) and other work [368], with adsorption is predominantly occurring via contact 

between the Cys3-Cys4 loop and surface, consistent with the Binding Motif I identified in 

chapter 6 (Figure 6.2). Whilst we do see some adsorption profiles similar to Binding Motif II, 

there is a clear dominance for adsorption through the Cys3-Cys4 loop, likely attributed to the 

need for the flexibility and heterogeneity to neutralise the added surface functionality. 

At low grafting density, there is little difference between the adsorption profiles, 

except that PEtOx has a greater portion of the Cys3-Cys4 loop in contact with the surface 

than other systems. At medium grafting densities, however, we notice significant differences 

in the adsorbed conformation. For PEG surfaces, there is increased contact for all four Cys 

loops. This is not surprising given its significantly larger contact area compared with other 

systems. However, the overall dominance of the Cys3-Cys4 loop suggests that the flexibility 

of this region provides a natural defence mechanism able to negate the sweeping motion 

functionality. Conversely, for POX systems at medium grafting density, especially PMeOx, 

we see a small increase in contact probability for the Cys7-Cys8 loop, and a significant 

decrease in all other peaks. As mentioned earlier, the capacity of anti-fouling chains to 

prevent this type of adsorption behaviour could potentially interfere with monolayer 

formation as amyloidogenic region is less accessible. 
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Figure 7.12 Probability for residues of EAS coming in contact with PEG/POX surfaces. 

 

 

7.5. Conclusions 

In this work we have employed all-atom MD simulations to examine the adsorption 

process and early phase of the adsorbed behaviour for EAS hydrophobin at the interface 

between short functional chains tethered to an amorphous silica surface and water. Three 

different functional chains, PMeOx, PEtOx and PEG, were grafted to silica at low (1.37 

chains/nm2) and medium (2.19 chains/nm2) grafting densities. We have explored the two 
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predominant anti-fouling theories, steric repulsion and hydration theories, to gain a 

fundamental understanding of anti-fouling coatings, and to design principles for producing 

anti biofouling surfaces. 

These results confirmed some predictions that were based on the solvent phase 

behaviour of these systems (Chapter 5), with medium PMeOx and PEtOx systems showing a 

strong ability to reduce contact area of the protein. We believe that this is because they 

combine atomic scale heterogeneity, and a hydration layer that is able to prevent the protein 

from forming a large contact area with the coating. We correctly predicted that the medium 

grafting density PEG system would have the least effective anti-fouling efficacy, which we 

reason is likely to be due to hydrophobic exposure, and the inherent flexibility of EAS’ Cys3-

Cys4 loop. However, we incorrectly predicted the ability of low PEG systems to heavily 

disturb and delay the adsorption of proteins. 

Whilst we were unable to identify any key interactions responsible for protein 

adsorption occurring, it appears that chains under the steric repulsion (PEG) theory had a 

greater impact on delaying the initial adsorption of EAS, whilst hydration and hydropathicity 

(POX) seemed to provide a more effective barrier for reducing the contact area. It would be 

interesting to investigate surface coatings that are capable of providing both these 

functionalities, and the effect this may have on protein adsorption.  
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Conclusions and Future Work 

8. Conclusions 

Responsive surfaces have been suggested to enhance anti-fouling performance and 

longevity of materials in many applications from industrial coatings to tissue engineering and 

drug delivery. However, in order to tailor surfaces for specific applications the underlying 

molecular mechanism that enables a functionalised surface to change properties in response 

to an external trigger must be understood. Atomistic simulations provide a useful tool to 

design more effective anti-fouling coatings, providing insight to the fundamental knowledge 

on how these surfaces behave at a molecular level. 

Initially, we investigated the hydration-induced response of PEGylated substrates that 

include soft, organic polyester and a hard, inorganic silica surfaces. We showed that PEG 

chains grafted onto the hard silica substrates exhibit a dehydration induced collapse that is far 

more pronounced compared to chains grafted onto the soft polyester surface, especially at 

low grafting densities. We conclude that soft substrates may be detrimental for the efficient 

response of the functionalised surfaces to changes in hydration. 

In a comparison of PEG and POX functionalised silica surfaces, we show that PEG 

systems exhibit greater chain dynamics, whilst POX systems show superior hydropathicity 

and hydration behaviour. The observed structure-property relations for the PEG and POX 

modified surfaces provide an improved molecular understanding of the effects of molecular 

features on anti-fouling properties, and highlight the importance of entropic barriers 

associated with surface ligand mobility and interfacial water structure and dynamics for anti-

fouling efficacy. 
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We successfully modelled the interaction of EAS with unmodified, and PEG/POX 

modified silica surfaces. On unmodified silica surfaces we were able to identify two possible 

binding motifs, and several key interactions that appeared key for adsorption at the surface-

water interface. However, upon adsorption of EAS hydrophobin at PEG and POX 

functionalised surfaces, we were unable to identify any key interactions responsible for 

protein adsorption occurring. Whilst we did see some adsorption profiles similar to Binding 

Motif II, we noticed a clear dominance for adsorption through the Cys3-Cys4 loop, likely 

attributed to the need for the flexibility and heterogeneity to neutralise the added surface 

functionality. 

Finally, we have explored the two predominant anti-fouling theories, steric repulsion 

and hydration theories, to gain a fundamental understanding of anti-fouling coatings, and to 

design principles for producing anti biofouling surfaces. From our simulations, it appears that 

chains under the steric repulsion theory had a greater impact on delaying the initial adsorption 

of EAS, whilst hydration and hydropathicity seemed to provide a more effective barrier for 

reducing the contact area. 
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9. Future Work 

We have shown that functionalised surfaces with chains presenting under steric 

repulsion theory have a greater impact on delaying the initial adsorption of protein 

contaminants, whilst hydration and hydropathicity seemed to provide a more effective barrier 

for reducing the strength of adsorption. However, from our simulations it is apparent that 

individually, these surfaces are not able to fully deter protein adsorption. It would be 

interesting to investigate surface coatings that are capable of providing both these 

functionalities, and the effect this may have on protein adsorption. 

One method of achieving this is through more advanced chains, like polyzwitterionic 

chains, as mentioned in Section 1.9.3. PZI’s present significantly enhanced hydration 

properties than POX, and also have potential for high chain dynamics too. However, as 

mentioned earlier in this thesis, the computational power required to simulate the quantum 

region severely limits the overall system size. Although QM/MM could allow a small surface 

to be modelled, we believe the current computational power is not sufficient to accommodate 

simulations including the surface, protein and explicit water. 

Another method is to look at varying degrees of chemical heterogeneity, dynamics 

and roughness, by functionalising substrates with alternating hydrophobic/hydrophilic chains. 

In recent work not included in this thesis [368], we have begun to explore these effects by 

investigating the effect such alternating ligands have on interfacial water, the adsorption 

process and conformational rearrangements of EAS hydrophobin. 

It should also be noted that in order to fully be able to understand and design more effective 

anti-fouling coatings, a greater understanding of the biofouling process is still needed. 

Focusing specifically on EAS and other hydrophobins, although suggestions on the 

monolayer formation structure have been suggested [80], the method by which these 
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monolayers form is still not yet known. Whilst being able to deter/delay the adsorption of 

monomers, or force them to adsorb in unfavourable conformations seems like an effective 

strategy, we do not fully know if this will achieve the desired effect. We believe that synergy 

between experimental characterisation and theoretical calculations will help design more 

effective antifouling coating strategies and technologies.  
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Appendices 

The RMSD plots (Appendices Figure A6.1) show that the CHARMM22 force-field is 

a much better representation of the solution structure than the CHARMM27 force-field. The 

rigid regions of the protein (Appendices Figure A6.1A) have a much lower RMSD using 

CHARMM22 than CHARMM27, showing a better representation of the NMR structure. 

Conversely, for the Cys3-Cys4 loop we see much higher RMSD in CHARMM22 than 

CHARMM27, however as this region is highly flexible and mobile, as well as intrinsically 

disordered, the CHARMM22 force-field is again more suitable. 

When looking at the secondary structure reproduction for CHARMM22 (Appendices 

Figure A6.2B), we see slight diminishing in the anti-parallel β-sheets of the core region 

(residues 43-47, 52-54, 58-62, 79-82). However, we do see the formation of an anti-parallel 

β-sheet in residues 73-76 as the Cys7-Cys8 loop remains folded to the β-core. For the 

CHARMM27 (Appendices Figure A6.2C) system we see much better retention of core and 

turn regions; however, as the Cys7-Cys8 loop spontaneously unfolds in solution we see full 

loss of β-sheet secondary structure for this loop. We also see small segments occasionally 

forming a 310-helix in residues 67-69. 
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Appendices Figure A6.1 - RMSD plots for NMR structures (blue), CHARMM22 (black) and CHARMM27 

(red) of (A) protein and not Cys3-Cys4 loop; and (B) Cys3-Cys4 loop only. Systems are compared to the lowest 

energy NMR structure from Kwan et al. 2006. Dotted blue lines represent the standard deviation for the 20 NMR 

structures. 
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Appendices Figure A6.2 - Timeline graphs showing secondary structure of (A) 20 lowest energy 

configurations from NMR (PDB ID 2FMC, Kwan et al. 2006) (B) Secondary structure fluctuations for EAS in bulk 

solution using CHARMM22 (C) Secondary structure fluctuations for EAS in bulk solution using CHARMM27. 

Green color represents a turn structure, blue a 310-helix, yellow a parallel/anti-parallel β-sheet and gold an isolated β-

sheet. 
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Appendices Figure A6.3 - Timeline graph of secondary structure for Cys7-Cys8 loop regions of (A) Binding 

Motif 2 and the three different systems in Binding Motif 1 (B-D). For Binding Motif 1, (B), (C), and (D) correspond to 

the black, green, and red simulation runs in Figure 2 and Figure 3 of the main text. Green colors represent a turn 

structure, blue a 310-helix, yellow a parallel/anti-parallel β-sheet and gold an isolated β-sheet. 
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Appendices Figure A6.4 - Average number of contacts with water for residues in the Cys3-Cys4 loop in bulk 

solution, and again at the air-water and surface-water interface over the last 10 ns of simulation. A contact was 

defined as a water atom coming within 3Å of the specified residue. 
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Appendices Figure A7.1 - Exemplar temporal behaviour of the protein above PMeOx low (A), medium (B), 

PEtOx low (C), medium (D) and PEG low (E) and medium (F). Colours: polymer maximum height (black); height of 

minimum of the protein (blue); and maximum (red). 
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