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Abstract—The increasing adoption of the Internet of Things
has led to the need for systems with higher spectral and energy
efficiency (EE) in order to enable communication. Larger data
rate demands had led researchers to look at millimeter wave
(mmWave) bands to boost network rates. This paper investigates
the downlink performance of a three-tier heterogeneous network
that consists of sub-6 GHz macrocells overlaid with small cells
operating on both the mmWave and sub-6 GHz bands. A model
is developed using tools from stochastic geometry to analyze the
coverage, rate, area spectral efficiency, and EE of such a network.
Various deployment strategies and their impacts on the consid-
ered metrics are studied. Simulation results are used to verify
the validity of the proposed model.

Index Terms—Blockage models, fifth generation (5G), hybrid
heterogeneous networks (HetNets), Internet of Things (IoT),
millimeter wave, stochastic geometry.

I. INTRODUCTION

HE EXPONENTIAL growth in recent traffic
Trequirements has led to the need for new tech-
nologies to augment current network capacity. This coupled
with congestion in the existing spectrum has led researchers
to investigate the viability of previously unused frequency
bands, such as the millimeter wave (mmWave) band. The
deployment of mmWave base stations (BSs) operating at
10-300 GHz frequency bands [1] with available bandwidths
of 2 GHz or more is considered a key enabler to achieve
higher spectral and energy efficiency (EE) in fifth generation
(5G) networks [2]-[5].

The use of mmWave transmissions was not considered
feasible in the past due to various factors, such as greater
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pathloss and severe penetration losses. Experimental measure-
ments using directional antennas [1], show that blockages
cause substantial differences in the line-of-sight (LoS) and
non LoS (NLoS) pathloss characteristics [6]. The higher
pathloss restricts the cell sizes in mmWave networks, however,
smaller wavelengths allow large antenna arrays to be packed
in relatively small areas which makes transmit and receive
beamforming more viable.

The performance of standalone mmWave cellular networks
have been investigated in prior works [7]-[9] using insights
from the propagation channel measurements. Rangan et al. [7]
showed that mmWave networks are predominantly noise lim-
ited, while sub-6 GHz networks are interference-limited.
Rangan et al. [7] proposed analytical blockage models for
dense urban areas using various curve fitting techniques.
However, these approaches lack the flexibility to be applied
to diverse scenarios, such as a rural setting. In [8], the SINR
and rate coverage trends of a standalone mmWave network
were investigated by using real building locations of the
Manhattan and Chicago regions. The authors also presented
a comparison of real-world blockages with different blockage
models. Bai and Heath [9] used stochastic geometry to ana-
lyze coverage and rate trends in standalone mmWave networks
by deploying BSs using the Poisson point process (PPP).
However, in these works, networks in which sub-6 GHz and
mmWave BSs co-exist are not analyzed.

Most of the existing works in literature have focused on
coverage and rate trends in UHF networks using stochastic
geometry. For example, the work in [10] derives tractable
expressions for coverage and rate in a network with gen-
eral fading. The authors in [11]-[14] analyzed multitier het-
erogeneous networks (HetNets). Predictions of site specific
performance are given in [15]. However, the models proposed
in [11]-[15] are not directly applicable to mmWave commu-
nications due to the difference in propagation characteristics.
Several recent studies, such as [16]-[20] have presented ana-
lytical frameworks to investigate the coverage and rate trends
for the co-existing mmWave and sub-6 GHz networks.

Multiobjective optimization has been previously used
for various problems in wireless communications.
Bedeer et al. [21] and Amin et al. [22] used it for
optimization in cognitive radio networks and to optimize the
spectral and EE. However, there is little work that uses these
techniques for mmWave HetNets.

The use of high gain directional antennas opens up the pos-
sibility of relaying in mmWave networks without significantly
increasing the interference. Zhang et al. [23] analyzed the
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use of nonorthogonal multiple access, coupled with mmWave
relaying to improve the coverage and rate performance.
Zhang et al. [24] discussed the use of cooperative multicasting
for multimedia transmissions. Relaying can have significant
impact for coverage in indoor mmWave networks, where there
are denser blockages. Yang er al. [25] used relaying to bypass
obstacles and hence improve coverage.

In this paper, we introduce a tractable model for the anal-
ysis of a three-tier HetNet that consists of both mmWave and
sub-6 GHz BSs. We use this model to analyze the coverage,
rate, area spectral efficiency (ASE) and EE of the network.
We also investigate several tradeoffs between the considered
metrics and discuss optimal deployment strategies.

II. CONTRIBUTION AND ORGANIZATION

In contrast to prior works [9]-[17], this paper extends the
existing models of HetNets to incorporate mmWave small cells
and analyzes the performance of the proposed network model
using various metrics for disparate propagation environments,
like coverage probability, rate, ASE, and EE. In particular, the
main contributions of this paper are as follows.

1) We propose a tractable stochastic geometric approach
to perform the analysis of the downlink transmission
scheme of mmWave/sub-6 GHz hybrid 3-tier HetNets.
We model the received SINR distributions at the user
to derive the analytical expressions for tier associa-
tion and coverage/outage probability in mmWave/sub-6
GHz hybrid HetNets. The analytical expressions are val-
idated through extensive Monte Carlo simulations. We
also study the impact of deploying mmWave small cells
co-existing with traditional sub-6 GHz HetNet on the
achievable EE, SE, and coverage probability. One of the
key research finding is that the co-existence of mmWave
and sub-6 GHz small cells overlaid with sub-6 GHz
macrocell results in a significant improvement in spectral
efficiency and coverage probability.

2) To the best of the authors’ knowledge, the threefold
tradeoff between EE, ASE, and outage probability has
not yet been investigated in mmWave/sub-6 GHz hybrid
K-tier HetNets. An optimization problem for computing
the green efficient solution to maximize the EE under the
minimum ASE and outage probability constraint is for-
mulated and solved using convex optimization method.
Various useful design insights are concluded from these
findings, such as the fact that the increase in the BS
density increases ASE and decreases the network EE,
thus showing that network densification may not always
result in the most efficient solution.

3) The inter-relationship between the coverage probability
and network power consumption threshold is investi-
gated in downlink transmission of mmWave/sub-6 GHz
hybrid K-tier HetNets. Furthermore, the impact of this
relationship on the achievable EE and ASE is analyzed.

4) We employ the exponential decay blockage model con-
sidering a two-state statistical model for each link. We
use real building statistics obtained from the shape
files of Chicago city (CC), USA, Lancaster University
(LU), U.K., and NUST Campus (NC), Pakistan using
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the quantum geographic information system software
to determine the blockage density. These three regions
represent urban, suburban, and rural areas, respectively.

5) We investigate different deployment strategies to observe

the impact of an increase in the mmWave BS density
in mmWave/sub-6 GHz hybrid K-tier HetNets on the
network power consumption in comparison to the tradi-
tional sub-6 GHz K-tier HetNet. Finally, we also analyze
the impact of deliberately offloading users to a specific
tier on the achievable network ASE.

The remainder of this paper is organized as follows.
Section III introduces the system model, Section IV derives
analytical expressions for association and coverage probabil-
ity for both mmWave and sub-6 GHz tiers and corresponding
numerical results are presented in Section V. Section V-A
validates our model by comparing analytical results with simu-
lation results, while Section V-B presents a detailed discussion
of the effect of deployment parameters on the considered
coverage probability and ASE. Section V-C investigates the
tradeoff between ASE and EE subject to outage probability
threshold, whereas Section V-D studies the tradeoff between
coverage probability and network power consumption thresh-
old. Finally, Section VI draws the conclusions of this paper.

III. SYSTEM MODEL AND MATHEMATICAL
PRELIMINARIES

A. Spatial Distributions

We consider the downlink transmission in a K-tier HetNet
composed of sub-6 GHz macrocells overlaid with small cells
operating at both sub-6 GHz and mmWave frequency bands,
as shown in Fig. 1. The BSs of the kth tier are uniformly
distributed in R? and modeled as a 2-D homogeneous PPP
@ with intensity Ag, where k € K = {1, 2, 3}. The users are
also assumed to be uniformly distributed as a PPP &, with
intensity A, in R2. For better analytical tractability, we assume
that all k-tier BSs have the same transmission power px ix,
biasing factor 6 and pathloss exponent (PLE) . It should be
noted that small cells operating at sub-6 GHz constitute tier 2,
whereas the small cells operating in the mmWave frequency
band form tier 3. The small cells operating in mmWave can
be either LoS or NLoS to the user. Let CI>]3“ and CI%\I be the PPP
of LoS and NLoS mmWave small cells obtained by applying
independent thinning [27] on &3 using the LoS probability
function p(R) to determine whether a link of length R is LoS or
not. The intensities of <I>]3“ and <I>I3\I are subsequently determined
by p(R)A3 and (1 — p(R))A3, respectively. A3 and A, are
interchangeably used for mmWave small cell tier throughout
this paper.

We consider the maximum received power association
scheme, which is formulated as follows:

(l* cic, m* e<1>1) = arg max (Pkﬁkxkiff';l)

= arg max(Pkax,;zk)
Yk € ;Vt € ®y; Vn € @, (1)
Yitn € {0, 1}Vk € K; Vi € &y; Vn € &,

Z Z Vk,t,n = IVn € @, (2)

kelC te®y

subject to:
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Fig. 1. System model of mmWave enabled 3-tier HetNet.

where Py, is the transmission power of the rth BS of tier
k normalized by its fixed pathloss given by (47/A)2, Ac as
the carrier wavelength, and xi; , is the Euclidean distance of
user n from the rth BS of tier k. Since each BS of tier k has
the same transmission power, Py; = Py and xi;, becomes
the distance of the user n from the closest kth tier BS xi .
Yk.t.n 1S @ binary indicator variable showing whether or not
user n is served by the tth BS of tier k. For clarity purpose,
we define
Tk Y Ok ~ a %k 3)
Py ) Qg
which are the normalized transmit power, biasing factor and
PLE, respectively, of tier k conditioned that a user is associated
with tier [.

Without loss of tractability, the analysis is carried out
assuming a typical user to be located at origin O [27]. The
SINR of a typical user at a distance x associated with its
kth tier BS, for k € {1, 2} operating in sub-6 GHz can be
expressed as

Prhox %
Dkel1.2) icwppy Prhix; 4 0

k

4)

SINRy = v, =

where D i) 2y D ica\n, Prhix; “ is the total interference
from macrocells or small cells operating in sub-6 GHz except
for the serving BS by, h, is the channel gain of the typical
user at distance x from the serving BS and o2 is the noise
power.

Similarly, the SINR of a typical user at distance x associ-
ated with its small cell operating in mmWave band can be
expressed as

Q)
P3M M;hex™%3

¥
P3 Y ey Ziecl>§")\b0 Gihix; * +o0?

where j € {L, N} shows if the interfering link is either LoS
(L) or NLoS (N), M; and M, are the main lobe gains of the
transmit and receive antennas, respectively, and Gy is the direc-
tivity gain of the interfering BSs. It is assumed that both
the BSs and users are in perfect alignment such that the
mmWave small cell is able to steer its antenna in the direc-
tion of a tagged user, whereas the user is also able to do
the same for its tagged BS. Hence, the directivity gain of
the desired signal link is given by M,M;. The beam direc-
tion of an interfering link is assumed to be independently and

SINR3 = y3 = 5
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uniformly distributed in (0, 277 ]. Similarly, the directivity gain
of an interfering link denoted by Gj, where [ € {1, 2, 3,4} is
given by

0, 0
G| = M,M;, with prob. E| = —r
2w 21
® ®
Gy = M,m;, with prob. E, = —r<1 — —t>>
G — 2 2
1= . 0.\ 0,
G3 = mM;, with prob. E3 = 1——)—
2 ) 2w
® ®
G4 = mymy, withprob. B4=((1-—=)(1-=
2 2

where m, and m;, are the receiver and transmitter side lobe
gains, and ®, and ®, are the receiver and transmitter half
power beamwidths, respectively.

B. Blockage Model

We use the same blockage model as the one used by
Bai and Heath [9], given by
E(R) = ¢ PR (6)
where R is the link distance and B is a parameter com-
puted using statistics of the buildings. The parameter S is
calculated as

_ —x In(1 —«)

- )

p
where A is the average area of the buildings in the considered
region, k is the fraction of the total area covered by build-
ings and y is the average perimeter of the buildings in the
considered region. The blockage parameters for CC (urban
environment with dense blockages), LU (suburban environ-
ment), and NC (rural environment) are determined using the
procedure outlined in [8]. These values, along with the envi-
ronments, are shown in Fig. 2. The corresponding 2-D average
LoS distance is given as

_ (1 —k)mA

RL=—— 277
L= — o

®)

C. Performance Metrics and Tradeoffs

We consider the following performance metrics.
1) The SINR coverage probability for each tier k, defined as

Bk =Py >T) )

where T is the SINR threshold. The aggregated cover-
age probability for the three-tier HetNets considered in
Section III-A can be written as

(10)

where & is the association probability that the typical
user is associated with tier k. Similarly, the aggregated
outage probability for three-tier HetNets can be defined

as B, =1— E..
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Fig. 2. Blockage scenarios under consideration. (a) CC, USA (8 = 0.0224). (b) LU, U.K. (8 = 0.0057). (c) NC, Pakistan (8 = 0.0014).

2) The rate coverage probability for the kth tier Ex(R) can
be computed using the SINR coverage probability E. x
as in [16], as follows:

PRy >r) = P(yk > 27/Bk _ 1) = Ecyk(zr/Bk _ 1)

(11)
where r is the rate threshold and By is the signal
bandwidth allocated to a user associated with the kth

tier. Hence, similar to (9), the aggregated rate coverage
probability is defined by

3
ER) =) &Ex(27% —1).
k=1
3) We define the ASE Q as the total rate in a unit area
normalized by the bandwidth, given by

12)

3

Q= MEcx(Dlogy(1+7)
k=1

(13)

where E. 1 (T) is the coverage probability conditioned
on the user associated with the tier k and T is the SINR
threshold. The unit of € is b/s/Hz/m?.

4) We define the EE of the network denoted by n as
follows:

Y &Brlogy(1+ T)Ecx(T)
22:1 kk(épk,tx + pc)

where € is the amplifier efficiency and p. is the load-
independent circuit power.
Having listed the metrics used for analysis, we now move to
some of the important tradeoffs that will be investigated during
the course of this paper.

1) Tradeoff Between EE, ASE, and Outage Probability:
The coverage probability in each tier k, i.e., E.x(T) is dif-
ferent, and increasing the individual tier BS density will
have a different impact on the overall coverage probabil-
ity E.(7). From (12), it is quite obvious that Q increases
with an increase in A;. In order to achieve maximum 2,
it is optimal to activate all tiers, which in turn will result
in a lower coverage probability E.(7). Hence, we investi-
gate the tradeoff between EE, ASE, and coverage probability
for the proposed 3-tier model incorporating mmWave small
cells co-existing with sub-6 GHz macrocells and small cells.

(14)

Different from the previous works, the effect of an outage
probability threshold is investigated on the achievable EE
and ASE. We formulate an EE maximization problem sub-
ject to minimum ASE and outage probability requirement,
as follows:

P1:
gk

st Q> Qmn

(1 — E(T)) = OF™(T)

0 <A <A™WkekK (15a)
where Q™" is the minimum ASE requirement and Og‘i“(T)
is the minimum outage probability threshold at SINR target
of T dB. It is worth mentioning that there is no feasible
solution to this optimization problem if OICnin(T) > (1 —
maxi Z¢ k(7)) due to the fact that such coverage probabil-
ity cannot be achieved irrespective of the tier BS density.
This optimization problem is investigated for the case when
OM™(T) < (1 — maxg Ec x(T)).

The problem P1 is a nonlinear fractional problem which

can be solved by using the Dinkelbach-type method [26] as
follows:

Gn) = me[E(i) —nF|x € C] (i)mflx[E(A) — n(i)F]

where & = {A1, A2, ..., Ak} EQY) = A Yopey &Brlogy (1 +
TEex(T), F = Yk m((1/O)pras + po)s € = (AQ =
QM (1 - B(1) < OM"(T),0 < A < A™,Vk € K}
and the equality (a) follows by applying the sequential convex
programming to approximate E(X) with the first-order Taylor
expansion, such that E)\) =E (AU)) + VE(AU))(A — &(7)) given
the jth iterative %) and ith iterative n”. The optimal 1* can
be found by obtaining 1 such that G(n) = 0, through standard
convex optimization methods.

2) Tradeoff Between Coverage Probability and Network
Power Consumption: The coverage probability P, is analyzed
as a function of network power consumption constraint for tra-
ditional HetNet with no mmWave small cells in comparison to
our proposed 3-tier model incorporating mmWave small cells
co-existing with sub-6 GHz macrocells and small cells. From
this perspective, we have formulated an optimization problem
to maximize the coverage probability subject to the network
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power consumption constraint as follows:

P2: rriax E(T)

S.t. Z)\k< pktx+pc) = Pmax

0 < < AM™Vk e K (15b)

where pmax 1 the maximum network power consumption con-
straint. The solution to P2 is given by A} = min{kg, A, e
where Ag can be found by taking the derivative of E.(T)
with respect to A; and setting it equal to zero and Ay <
(Pmax/[(1/€)(por,x + Uc)])(1/|K|)~

IV. ANALYSIS OF THE COVERAGE PROBABILITY

We begin our analysis by presenting expressions for asso-
ciation and coverage probabilities. Detailed proofs have been
omitted due to length constraints.

A. Association Probability

To obtain the aggregated coverage probability from (9)
of the three-tier HetNet, we need to first derive the per-tier
association probability &.

Lemma 1: The association probability that the user is
associated with tier k € {1, 2} is given as

o
§k=2nkk/ xexp| —m Z M Cex % 4 J(x) | dx
0 k€K \kmm
(16)

and it follows that the association probability for the mmWave
tier, or tier 3, is given by:

H=1- ) &

kef1,2}

A7)

where C, = (PAk@Ak)O/ @) and J(x) is the term that accounts for
the mmWave tier and is given by

~ A\ 1/ap 1/d] 1oy
J0) = Zﬂ;kmm (e—ﬁ(P303> L B (P)
~ 0\ l/ay o
o L/ <ﬂ2 <153 é3>2/azvx2/a;veﬁ(1>393) (V/ay

+ Zﬁ(ﬁ3é3)l/wxl/a7v)>~ (18)

B. mmWave Small Cell Tier Coverage

The SINR coverage probability of the mmWave small cell
tier, given by E.3(7), is defined as the probability that the
received SINR is greater than a certain threshold 7" > 0, i.e.,
Ec3(T) = P(y3 > T). As stated previously, the mmWave
small cell BSs tier process ®3 can be divided into two inde-
pendent PPPs: 1) the LoS small cell BS process CI>I3‘ and 2) the
NLoS small cell BS process d>’3v . Equivalently, @% and <I>13V can
be considered as two independent mmWave small cell BS tiers.
Under the assumption of open access, a user will connect to
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the BS with the lowest pathloss. As a result, a user serviced by
the mmWave small cell tier will connect to either the nearest
LoS small cell BS or the nearest NLoS small cell BS.

The probability of a user being associated to an NLoS small
cell BS, given that a user is being served by the mmWave small
cell tier is

é&N — Pl:x;](xN > x;C(L:I
=Plx, > Ay(x)]

(a) [ An(x)
= / exp{—2m A3 / tp(H)dt}fy (x)dx (19)
0 0

where An(x) = x®/%, equality (a) follows from
(32), and fy(x) = (@/dx)(1 — Plxy > A =
2w az3x(l — p(x)) exp{—2m A3 fg(l — p(OH)tdt}, with Plxy >

AL() ] = exp{—27mA3 [y (1 — p(t))tdt} obtained by the fol-
N ——

X
lowing [9, Lemma 2], and Ar(x) = aL/oN
Given that a user is served by an NLoS small cell BS, the
probability density function (PDF) of its distance to the serving
BS is
)
(a) 2 23x(1 — E(x))el 2773 fy (-2}
B &N

—21s [y N 2 yan

(20)

where (a) follows from Lemma 1 and (18), and Z(.) is the
LoS probability function defined in (5). Detailed steps about
computing the PDF are outlined in Lemma 2. The probability
that a user is associated with an LoS small cell BS is given by
&, = 1 — & y. Similarly, for a user that is served by an LoS
small cell BS, the PDF of its distance to the serving small
cell BS is

2JT)\.3)CE()C)€{72”)L3 -/O lE(t)dt}e{_zn)W fAL(X)(l E(t))tdli

frx) =

&L
21

Finally, we derive the expression for the overall coverage prob-
ability for users associated with the mmWave tier, given in the
following theorem.

Theorem 1: The SINR coverage probability E. 3(T) of users
associated with the mmWave small cell tier is

Py = Y &,;8Y)

je{L,N}

(22)

where EELS). (T) and E%)(T) are the conditional coverage prob-
abilities when a user, associated with the mmWave small
cell tier, forms a link with a small cell BS in CDL and CDév s

respectively. Subsequently, & gt )(T) can be evaluated by

H(/) (T) /OO exp(—
0

where B;(T, x) are shown at the bottom of the next page in
(24a) and (24b) and fj(x),Vj € {L, N} is given in (20) and
(21). For [ € {1,2,3,4}, a = (M;/M,M;), where M; and &,
are constants defined in Gj, as outlined in Section III-A.

X4 To?

i~ BT i e
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A particular case of the above theorem can be obtained by
making the substitution I;, = Iy = 0, which follows from the
fact that o2 > I + Iy in noise-limited mmWave networks. In
this case, we have

—~(L) 27[)\,3 e —_ —XaLO'ZT
acﬁ(T) = xBx)expy ————— — 2mA3
0

&L PiM, M,

X
x/ tE()dt — 2w A3
0

AL(k) }
x/ t(1 — E(0))dt pdx
0

(25a)
_ 2mhy [ _
™ (1) = —/ (1-0E®
&~ Jo
—XN 2T
X eXpy —————— — 273
PyM,M,
X
X f t(1 — E@)dt — 2w A3
0
An(x)
X / tE()dt ¢dx. (25b)
0

C. Sub-6 GHz and Aggregate Network Coverage

Prior to deriving the expressions for coverage of sub-6 GHz
cells, we present the following lemma.

Lemma 2: The PDF fx, (x) of the distance Xj between a
typical user and its serving sub-6 GHz AP, i.e., k € K \ kypm
is given by

27T)\.k 2 2/4;

Xexpy —m ij(fjx 1% 4+ J(x)

k =1

Jx () = (26)

where &; is defined in (15) and J(x) is defined in (17). We
now present the theorem for aggregate network coverage.

Theorem 2: The aggregate network coverage E.(7) can be
computed as
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TABLE I
PARAMETER VALUES

Numerical value
Parameter Symbol (unless stated
otherwise)
Sub-6 GHz
bandwidth Bi, By 20 MHz
mmWave
bandwidth Bs 100 MHz
Amplifier
efficiency ¢ 0-9
Circuit power Pe 0.1W
Transmit power
of k™ tier P; =0.0039
normalized by P P, =9.895 x 10~°
fixed pathloss P3=7.27x10""
(W)
Recelve.r mrfun M. =10 dB
lobe gain, side M,, m,,
. m, = —10 dB
lobe gain and O, 0. — 90°
beam width r
Transmitter main
lobe gain, side My, my, M, =20 dB
. m; = —10 dB
lobe gain, beam O, O, — 30°
width e
and
dv

o0
Z(T,a, 0) = TZ/“f

<%)Z/a 1+—v% (31)

If we substitute o> = 0, which is a fair assumption given
that the sub-6 Hz networks are typically interference-limited
and o] = oy, considerable simplification follows:

o 2 T ék
= — 42 . N e
Eex(T) —/(; expq —x j_El A\ TPk > arctan T

2
. - - 2
E(T) = Z EBex(T) + 838 3(T) 27) + —nxexp —x? ijq —2mA3
kek\3 M =1
where E.3(7T) is defined in Theorem 1. Furthermore E. (T), P30y VoL 4y
where k € {1, 2}, is given by X K xe ¥
*© —Tx%g2 0
ek = fo GXP{ T 51 — 82 }ka (®dx  (28) %1/“Nx4/wv
X
where 0
51 = nkli’%/alxz/dlZ<T, Oll,é1> (29)
, ) ) x (1 —e P9 . (32)
82 = w2 2(T, 00, o) (30)
4 00 oo
1 1
B(T,x) = 27y, Z DI —1p(t)dt + —1(1 — p()dt (24a)
= L/ 14 (Do) AL() 1+ (Txvrr=oNay)

4
By (T, X) = 27 Aty sz[

=1

oo o0
/ —tp(Ddr + /
Ave) 1+ (TxeN—oLay) x 14 (Txovi—eva))

—1(1 —p(t))dt:| (24b)
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V. NUMERICAL RESULTS
A. Model Accuracy and Analysis

In this paper, we assume that the mmWave and sub-6 GHz
operating frequencies are 28 and 2.4 GHz, respectively. We
use the term intersite distance ry to define the BS deploy-
ment density. We define Ao such that vz 9 = 1000 m and use
it as a basis to determine individual tier BS densities. We also
assume that the sub-6 GHz PLE is 4 and the mmWave LoS
and NLoS PLEs are 2 and 4, respectively. Unless otherwise
specified, values for the different parameters used in this sec-
tion are given in Table I. We use Monte Carlo simulations,
using PPP deployment, to verify the presented model. A sin-
gle user is deployed at the origin in each iteration and its SINR
is calculated using channel gains generated from an exponen-
tial distribution with mean 1. We employ 10000 trials in order
to generate ergodic simulation results.

Fig. 3(a) shows the biased and unbiased network cover-
age. The graphs show that offloading users to small cells
improves the SINR coverage of the network. Furthermore, we
can notice that the analytical results are close to the simula-
tion ones, which validates our model. The graphs in Fig. 3(b)
show the biased and unbiased rate coverage probabilities E (R)

o
©

(10)

10dB =
=3 o
~ ©

0.6

0.5

0.4

0.3

Coverage probability at T

028 o0-0-e

0.1
107 10° 10! 102 10% 10*

Fig. 5. Impact of varying tier 3 BS density on the coverage probability with
01 = 6, = 63 = 0 dB for three real buildings blockage model consisting of:
CC, LU, and NC. Here, A1 = A¢ and Ay = 30Ag.

as a function of the rate threshold, . We can observe that the
biased network shows greater rates as opposed to the unbiased
network, which is natural given the greater bandwidth allotted
to users associated with mmWave BSs. We can also see that
simulation results match the trend generated using (12).

Fig. 4 shows the relationship between the tier association
probabilities & and varying mmWave BS density A3. Results
show that &3 increases as A3 increases. This follows from the
fact that the average cell radius is reduced which allows for
greater probabilites of LoS links being formed. The macrocell
association is significantly lower due to sparse deployments.
The figure also shows that simulation results match those
obtained using Lemma 1.

B. Effect of BS Density and Biasing Factor on Coverage
Probability and ASE

In this section, we analyze the impact of the BS den-
sity and biasing factor on the performance metrics considered
in this paper. This analysis is conducted for three different
blockage environments: 1) CC (urban environment with dense
blockages); 2) LU (suburban environment); and 3) NC (rural
environment).
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Fig. 6. Tradeoff between ASE and EE in an unbiased network with 25" =
9.5493 x 1073 per m?. In this figure, an optimal )Lg‘ is found with A1 = A¢,
A2 = 30hg, Ay = 100 users’km? € = 90%, and p. = 0.1 W.

Fig. 5 shows the relation between the coverage probabil-
ity at an SINR threshold 7 = 10 dB and A3/Ao, where Xg
is fixed. The graph shows that increasing BS density yields
better coverage only for relatively sparse deployments. An
optimum density exists, which depends on the environment.
The CC area has the greatest optimum mmWave BS density
of Az = 3001 followed by LU, with A3 = 30%¢ and finally
the NC with an optimum BS density of A3 = 6. The trends
show that as the density of blockages increases, the optimal
mmWave cell radius decreases. This follows from the fact
that the LoS probability function decays exponentially with
increasing blockages.

C. Tradeoff Between ASE and EE Subject to Outage
Probability Threshold

In this section, we analyze the impact of the outage proba-
bility threshold on the achievable EE and ASE. Fig. 6 shows
the tradeoff between ASE and EE in an unbiased network.
The network ASE increases with increasing A3. However, the
network power consumption increases with increasing BSs,
hence a tradeoff occurs between ASE and EE. Networks
deployed in environments with sparse blockages show greater
maximum EE when compared to those deployed in urban set-
tings. In suburban or rural settings, a less dense mmWave
BS deployment is required to achieve better coverage, and
hence, better rates. As a result, the power required to main-
tain those data rates is lower and the maximum EE is greater.
The result also shows an environment dependent EE profile,
which follows from our result in Fig. 5.

Fig. 7 shows the trend between EE and ASE subject to the
outage probability constraint P(y < T). The curves are gen-
erated by changing the SINR threshold, and determining the
outage probability, ASE and EE for each value of 7. Results
show that the ASE increases as the outage increases up to
a certain point, after which it gradually decreases. The trend
is explained by (13), which outlines the dependence of ASE
on the coverage probability. The ASE increases as long as
the term log,(1 4+ 7T) is dominant. However, at larger SINR
thresholds, the decrease in the coverage probability becomes
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when Ay = X9, A2 = A3 = 30A¢, and 1, = 100 users/km?2. In this figure, a
load-independent power p. of 0.1 W and an amplifier efficiency € of 0.9 are
considered.
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Fig. 8. Coverage probability versus network power consumption for an
unbiased network. In the first strategy (optimal )\5" is found), A1 = Ag, Ay =
300, and A = 9.5493 x 1073 per m2. In the second strategy (optimal Ay
is found), A = A9, A = A3 = 3029, and AT'™ = 9.5493 x 10~ per m?.

dominant, and thus, the ASE decreases. The network EE ver-
sus outage probability follows a similar trend as the ASE. This
is evident from similarity of the numerator in (13) to the one
in (12).

D. Coverage Probability Versus Network Power
Consumption Threshold

Here, we investigate the effect of network power consump-
tion on the coverage probability in the three-tier HetNet.

Fig. 8 shows the optimum coverage for a given network
power constraint using two deployment strategies. In the first
strategy, A1 and A are fixed, and the optimal mmWave small
cell density A3 is found. The second strategy increases the
BS density of the entire network by increasing X¢. Since Ap,
A2, and A3 are integer multiples of Ao the entire network
deployment becomes denser. The network power consumption
is calculated as ppet = Zi:l A ((1/€)pr.ix + pc). The curves
show that increasing the density of all tiers of the network
leads to poorer gains in coverage regardless of the envi-
ronment. This is because there is no significant decrease in
user association with sub-6 GHz cells but there is signifi-
cant increase in interference. Increasing only the mmWave
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A = 9.5493 x 103 per m?.

BS density also leads to lower energy consumption than in
the previous case.

Fig. 9 depicts the coverage probability versus the network
power constraint at a given SINR threshold for the proposed
HetNet model in comparison to the traditional sub-6 GHz
HetNet model with no small cells operating in mmWave band.
It can be seen that at the given SINR threshold, the cov-
erage probability for the sub-6 GHz only network does not
increase beyond 0.2 regardless of the power constraint. Results
show that sub-6 GHz networks generally show lower cover-
age probabilities at SINR threshold of 10 dB than the networks
with mmWave small cells. This stems from the fact that the
mmWave links are noise limited and improved SINRs can be
achieved through the use of directional antenna. This leads to
improved coverage probabilities.

VI. CONCLUSION

We analyzed propagation models for coverage in HetNets
with both mmWave and sub-6 GHz small cells, and sub-
sequently used them to study various performance metrics
of the network. Then, we considered a variety of blockage
environments to sustain the tractability of the analysis. The
effects of the deployment parameters, such as BS density, on
coverage probability, rate, spectral efficiency, and EE were
studied. Through rigorous analysis, we concluded that intro-
ducing mmWave small cells considerably improves coverage
and hence spectral efficiency. It was also seen that deployment
strategies need to be devised keeping the environment in mind.
Simulation results support the analytical findings.
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